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Abstract: Modulation of the amplitude of high-frequency cortical field activity locked to changes
in phase of a slower brain rhythm is known as phase-amplitude coupling (PAC). The study of this
phenomenon has been gaining traction in neuroscience because of several reports on its appearance
in normal and pathological brain processes in humans as well as across different mammalian species.
This has led to the suggestion that PAC may be an intrinsic brain process that facilitates brain inter-area
communication across different spatiotemporal scales. Several methods have been proposed to
measure the PAC process, but few of these enable detailed study of its time course. It appears
that no studies have reported details of PAC dynamics including its possible directional delay
characteristics. Here, we study and characterize the use of a novel information theoretic measure that
may address this limitation: local transfer entropy. We use both simulated and actual intracranial
electroencephalographic data, and in both cases we observe initial indications that local transfer
entropy can be used to detect the onset and offset of modulation process periods revealed by mutual
information phase-amplitude coupling (MIPAC). We review our results in the context of current
theories about PAC in brain electrical activity, and discuss technical issues that must be addressed to
see local transfer entropy more widely applied to PAC analysis.
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1. Introduction

A hallmark feature of electrophysiological recordings of brain activity is the presence of rhythmic
oscillations [1,2]. Interaction between activity in different frequency bands has been associated with
particular brain states and stimulus responses in both healthy and pathological conditions in humans
and, more generally, in mammalian brains [3]. Until recently, oscillatory dynamics in different
frequency bands were, in effect, treated as largely independent. It is now acknowledged that rhythms
at different frequencies can temporally interact both within and between brain structures. More
importantly, clearly-defined cross-coupling interactions between neural frequency bands appear across
mammalian brain evolution, suggesting they may be supported by a universal evolutionary mechanism
serving essential brain functions [1,4]. These facts bring relevance to cross-frequency coupling (CFC)
studies, and more importantly, to its most widespread and studied variant, phase-amplitude coupling
(PAC).

In phase-amplitude coupling, the phase of a slower rhythm regulates changes in the amplitude of
activity at higher frequencies, either within the same signal or between two recorded signals [3]. It is
understood that high-frequency oscillations (HFOs) emerge from and are topologically constrained
within small brain functional areas. In contrast, larger generating areas and/or area-coupled networks
are associated with slower rhythms [2]. A consensus view of brain PAC is that activity in disjoint

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2020                   doi:10.20944/preprints202010.0006.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202010.0006.v1
http://creativecommons.org/licenses/by/4.0/


2 of 19

frequency bands interacts by manifesting an architectural hierarchy: low-frequency oscillations
manifest or express synchrony within large neuronal ensembles, while their phase constrain the
appearance of faster field activity within brief time/phase windows in local populations [1,5]. This
pattern of cortical rhythmic interdependence is believed to foster efficient information transmission
across spatiotemporal scales [4]. Implicit here is also the idea that PAC reflects the causal influence of
low-frequency phase on high-frequency amplitude.

PAC has been observed between various frequency bands, in multiple brain regions, under
different task conditions and in multiple species (see Table 1 in [3]). In addition to the widespread
prevalence of PAC in healthy brain process, links have been found between PAC and a variety of
neurological pathologies (e.g., in epilepsy [6], Parkinson’s disease [7,8], Alzheimer’s disease [9], mild
cognitive impairment [10], schizophrenia [11,12], and obsessive-compulsive disorder [13]).

Several methods have been proposed to estimate PAC. Although none has been established yet as
the gold standard, three methods have been most often used by the scientific community: the Mean
Vector Length Modulation Index (MVLmi) [14], the Kullback-Leibler Modulation Index (KLmi) [15],
and the General Linear Model Modulation Index (GLMmi) [16]. These methods rely on the assumed
covariation of the phase and amplitude time series to statistically estimate PAC presence and strength.
One limitation of these approaches is their lack of time resolution. A new PAC estimation method
based on mutual information, recently proposed by us in [3]), addresses this challenge. Another
limitation of ’correlation’-based PAC estimation is that it assumes that interactions between the two
time series are instantaneous, thus missing the effect of any delayed interplay among frequency bands.

Delays among brain signals arise mainly due to intrinsic information propagation lags through
brain circuitry. It has been demonstrated that the brain oscillatory processes are intimately related to
these delays, which are believed to constitute an essential mechanism for inter- and intra-brain network
synchronization [17]. The delay coordinated activity has proven vital for normal brain function to
such an extent that its disruption has been associated with pathologies like multiple sclerosis[18] and
schizophrenia [19]. The ability to estimate interaction delays in brain signals may enable estimation
of the directionality and causation in the interaction. Thus, the estimation of directed interaction
dynamics in PAC multi-scale scenarios may help understand the PAC process’s functional significance.

Concepts from information theory (IT) have proven effective in addressing some current PAC
constraints (e.g., [3]). In addition to the advantage provided by the model-free assumption in the
estimation of IT quantities, two specific developments have made information theory especially
suitable to addressing some current PAC limitations: (1) Introduction of transfer entropy [20] as
a measure of predictive information transfer and interaction delays between time series; and (2)
development of theory and methods for estimating pointwise or local IT measures by Lizier [21].

Here, we explore the use of local transfer entropy to study and characterize phase-amplitude
coupling dynamics. We aim to provide an initial report of the use of local transfer entropy to study
the temporal dynamics of delay interactions in the PAC process. In Section 2, we provide a general
background on information theory and introduce the concepts and estimation techniques for transfer
entropy as well as its local measure. We then address PAC estimation using transfer entropy (Section
3) and then present simulated and actual data results in Sections 4 and 5 respectively. In Section 6, we
discuss the results and provide general observations on the use and interpretation of TE in the context
of PAC.

2. Information theory and transfer entropy

Information theory background. A central quantity in Information Theory is the Shannon
Entropy H. To introduce this key concept, let’s assume two discrete random variables X and Y with sets
of values x and y respectively, probability distributions p (x), p (y), conditional probabilities p (x | y)
and p (y | x), and joint distribution p (x, y). These quantities are related by p(x, y) = p(x|y)p(y) =
p(y|x)p(x). The quantity H(X), which is the average of the "log-surprise" log1/p(x) = −log2 p(x) for
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an observation X = x (see Eq. 1), represents the expected uncertainty associated with a measurement
x of the random variable X.

H (X) = −∑
x

p (x) log2 p (x) (1)

Shannon entropy can be extended to two random variables X and Y, then the joint entropy can be
defined as in Eq. 2.

H (X, Y) = −∑
x,y

p (x, y) log2 p (x, y) (2)

It is also convenient to define the notion of conditional entropy as the average uncertainty about
x that remains when the value of y is known (Eq. 3).

H (X | Y) = −∑
x,y

p (x, y) log2 p (x | y) (3)

With these definitions in place, we can then formalize the mutual information (MI) between the
random variables X and Y as a non-negative and symmetric measure defined in Eqs. 4 and 5:

I (X, Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
≥ 0 (4)

= H (X)− H (X | Y) (5)

By assuming a third random variable Z, one obtains the conditional mutual information (Eq. 6).

I (X, Y | Z) = H (X | Z)− H (X | Y, Z) (6)

Transfer entropy. Now let’s assume the coupled physical system X and Y , whose behaviour is
described by the random process X and Y produces the time series xt = {x1, ..., xN}, yt = {y1, ..., yN}
at the discrete recording times t ∈ {1...N}. With these definitions in place, Wiener’s principle of
causality states that, if knowledge about the past of realizations of X and Y together allows one to
predict the future of Y better than knowledge about the past of Y alone, then a causal influence can
be assigned from the process X to Y [22]. In the information-theoretic framework, this principle can
be reformulated as "What information does the past of X provide about the future of Y, that the past of Y did
not already provide?" [23]. The quantity capturing this principle, transfer entropy, was formalized by
Schreiber [20] in terms of the conditional mutual information (Eq. 7).

TE (Y → X) = I
(
X+; Y−|X−

)
(7)

Here X+ is a future random variable of the process X, whereas X− and Y− designate the
reconstructed past state variables of the process X and Y respectively. This quantity as stated in
Eq. 7 can be viewed as the average information contained in the past of the source signal Y− about the
next state X+ of the destination that was not already contained in X past, X−. Current extensions of
this formulation has been proposed by Wibral et al. [23] and Lizier et al. [24] by assuming: (1) An
interaction delay u between the time series xt and yt ; (2) The times series xt and yt can be approximated
by a Markov process of order k and l respectively. With this assumptions, Eq. 7 can be rewritten in an
more general form [24] as in Eq. 8.

TE(k,l)
Y→X (t, u) = I

(
Xt : Y(l)

t−u|X
(k)
t−1

)
(8)

Transfer entropy is a positive asymmetric quantity whose interpretation is still being debated. However,
a consensus seems to be forming around the idea that the quantity provided by TE, far from being
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interpreted as "true causality", may be a predictive information transfer [23,25] or predictive causality.
These are important concepts that are usually tangled in discussions of information transfers (see [25]
for an in-depth discussion). The idea of causal effect may be assumed as to the extent to which the
source process is a direct drive in the next state of a destination process [25]. This can be seen in a
falling row of dominoes. On the other side, predictive causality implies the ability to predict without
committing to a belief in causal efficacy.

Local transfer entropy. Most of the information theory quantities currently in use (e.g., entropy,
mutual information, transfer entropy) can be seen as an spatial or time average of more fundamental
local or pointwise information bearing quantities. Local information theoretic measures characterize
quantities from a specific, localized subset of measurements x and y of the random variables X and Y,
rather than the associated average measure computed over all available data [26]. For example, local
mutual information values i (x, y) (Eq. 9) may be averaged to compute overall MI I (X, Y) (Eq. 10):

i (x, y) = log2
p (x | y)

p (x)
(9)

I (X, Y) = EX,Y [i (x, y)] (10)

Since the TE is just a conditional MI (see Eq. 7), local transfer entropy can be defined as the
pointwise conditional mutual information computed from an specific source state y(l)t−u to a specific

target event xt conditioned by the event state history of the target x(k)t−1 [24] as in Eq. 11.

te(k,l)
Y→X (t, u) = i

(
xt : y(l)t−u|x

(k)
t−1

)
(11)

While the TE is a strictly positive quantity, the local transfer entropy, may be either positive or
negative, indicating whether or not the source y(l)t−u is providing informative information regarding

the set xt, y(l)t−u, x(k)t−1. In the context of this work, we will only consider local TE positive values.
One of the practical advantages of the local transfer entropy is that it provides information about

the dynamics of the information transfer at the same time that it can be used to recover the interaction
delay δ between the time series of the system analyzed as in Eq. 12 [26].

δ = argmax
u

(
TE(k,l)

Y→X (t, u)
)

(12)

These features will be exploited in this manuscript to analyze the dynamics of the PAC process.
Estimating transfer entropy. Estimation of transfer entropy is usually carried out through the

use of mutual information and conditional mutual information estimation methods. The simplest
and most widespread estimators for MI are extensions of algorithms to compute entropy based
on straightforward plug-in evaluation of defining densities by its empirical estimates (called the
plug-in estimator by [27]). Another popular branch of entropy estimation methods use a similar
principle but estimate the underlying densities by (1) kernel estimation methods (KDE) [28,29] or
(2) by taking advantage of the geometry of the space jointly formed by the support of the variables
used in the computation, approximating the densities at the point x using the volume defined by a
sphere encapsulating its K nearest neighbors (known as K-nearest neighbors, K-NN [30–32]). Despite
its widespread popularity, these family of methods is known to have serious bias problems [33–37].
Recent advances in the development of MI nearest-neighbour estimators, specifically that proposed by
Kraskov, Stogbauer, and Grassberger (KSG) [32] have provided an alternative to the problem of the
bias by providing a method that effectively bypasses the need to estimate densities. The KSG estimator
builds on the nearest-neighbors-based Kozachenko and Leonenko entropy estimator (KL) [38], which
Kraskov et al. modified to make the bias resulting from the nonuniformity of the densities in marginal
spaces cancel each other. To do this, Kraskov et al. observed that for any fixed K value, the distance
to the Kth neighbor in the joint space is larger than the distances to the neighbors in the marginal
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spaces, which lead to use different distances scales in the joint and marginal spaces when using the KL
estimator for computing MI [32]. Consequently, Kraskov et al. recommended not to use a fixed value
of K for the marginal entropy estimation and proposed a K-NN MI estimator in (Eq. 13).

I (X, Y) = ψ (K)−
〈
ψ (nx + 1) + ψ

(
ny + 1

)〉
+ ψ (N) (13)

Here N is the number of samples of X and Y, and ψ denotes the digamma function (ψ (x) =

Γ (x)−1 dΓ(x)
dx ). The terms nx(i) and ny(i) designate the number of samples falling into a strip of the

marginal space of X and Y respectively, defined by the distance to its K nearest neighbors. MI values
I (X, Y) are returned in nats. For a detailed derivation of the method see [32] or [3].

The KSG estimator constitutes an effective non-parametric estimator of MI that is data efficient
(resolving structures down to the smallest possible scales), adapts resolution (binning scale changes
according to the underlying data point density), and has minimal bias [32]. The neat formulation of
the KSG estimator allowed Lizier [26] to extend it to compute local mutual information by unrolling
the expectation (〈...〉) in Eq. 13, yielding Eq. 14:

i (x, y) = ψ (K)− ψ (nx + 1)− ψ
(
ny + 1

)
+ ψ (N) (14)

An extension of this formulation has been proposed for the computation of local transfer entropy
through the direct estimation of conditional mutual information in the form of Eq. 15 .

i(x, y|z) = ψ(K)− ψ(nxz) + ψ(nyz)− ψ(nz) (15)

In this manuscript we used this formulation proposed by Lizer for the computation of TE [39] as
implemented in the JIDT Toolbox [40].

Active information storage. From the corollary of Wiener’s causality principle in the IT context,
it can be derived that for the values of TE to be interpretable in the context of Wiener causality it is
necessary to ensure that a signal can optimally predict its own future behavior. It is then convenient to
introduce an IT quantity to describe how well a signal can predict itself. This is the aim of the active
information storage (AIS) introduced by Lizier [21], which defined a measure of how much of the
information from the past of the process X is observed to be in use in determining its next observation.
Formally, the AIS can be defined as the expected mutual information between realizations x(k)n of the
past state X(k)

n and the corresponding realizations xn+1 of the process X (Eq. 16)

AISx (k) = I
(

X(k)
n : Xn+1

)
(16)

Given a range of values for the state’s length parameters k and l, we use the maximal values of
AIS to estimate the optimal value of the state’s lengths that ensures optimal signal self-prediction.

3. Approaching PAC estimation with information theory local measures

We now study and characterize the temporal dynamics of directed information transfer (from
phase to amplitude) in the PAC process through local transfer entropy. Note that we assume only
directed phase to amplitude interactions. This choice is discussed in Section 6.3.

Most methods for computing PAC follow a similar data processing pipeline. First, high and
low-frequency band signals are extracted for the two frequency ranges in which the PAC coupling
is to be assessed. These frequency bands are centered on a lower central frequency fphase for the
phase time series, and a higher central frequency famp for the amplitude time series. For this,
either band-pass filtering or time-frequency decomposition can be used with similar results. Then
instantaneous phase and amplitude time series are obtained from the low- and high-frequency band
signals, respectively, using the Hilbert transform or else directly from the complex signal when
time-frequency decomposition has been used. These time series are then used to compute a PAC
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measure. After the PAC measure is computed, a statistical analysis is usually carried out by comparing
the estimated PAC value with a distribution of surrogate PAC values calculated under a no-PAC
assumption. Surrogate values are obtained by computing PAC from the original input signals after
shuffling the two time-series many times as to destroy any PAC relationship [15]. Significance is then
assessed by determining whether the estimated PAC measure for the actual data belongs or not to the
distribution of surrogate PAC values. Here, we will follow this same preprocessing pipeline.

We have recently proposed and validated a method to estimate time-resolved PAC using local
mutual information: MIPAC [3]. Estimating PAC through MIPAC begins by computing two time
series capturing instantaneous phase and amplitude in the two frequency bands of interest. Then local
mutual information is computed between these two signals following Eq. 14. When computing Eq.
14 in MIPAC, rather than the euclidean norm, a circular norm [41] is used to compute and find the
nearest neighbors in the marginal space defined by the support of the instantaneous phase. Finally, the
local mutual information time series is low-pass filtered under fphase.

Our analysis using local transfer entropy resembles that used for MIPAC [3]. Again it begins by
computing two time series capturing the instantaneous low-frequency phase and high-frequency band
amplitude. To assess phase-to-amplitude information transfer and estimate the delay in the interaction
between these frequency features, we first estimate the TE for a range of delays u. Since the TE is
maximal when the parameter u is the actual interaction delay δ [23], we choose to analyze the local
transfer entropy time series corresponding to the u that maximizes the TE. Statistical significance is
then computed at each latency as described previously.

Before TE computation, special consideration should be given to selecting the state history length
for each signal. Although a few algorithms and methods have been proposed to estimate these lengths
(e.g., [42,43]), a consensus on choice of method is far from being reached [26]. In our work, we
estimate the history lengths (also called ’embedding parameters’) k and l by determining empirically
the embedding values that maximize the AIS in the instantaneous phase and amplitude. Since the
KSG algorithm is bias corrected by construction, the values of k and l that maximize the TE should
successfully capture the corresponding past states’ relevant information. The estimated history values,
along with an estimate of the nearest neighbors parameter K, are used then to estimate the delay u
as described previously. In the current manuscript, data processing, simulations, computation, and
analysis were performed using EEGLAB [44], functions from the PACTools plug-in [45], and custom
scripts written in MATLAB (The Mathworks, Inc.). The JIDT Toolbox [40] was used to compute local
TE and AIS.

4. Simulation results

Simulating PAC. Simulated PAC signal coupling was generated by following [46]. Here, coupling
in the signal was simulated between amplitude frequency fAmp = 70 Hz and phase frequency fphase = 6
Hz with a sampling frequency of f s = 1000 Hz. The lower frequency component, or modulator Sφ was
built by band-pass filtering a Gaussian white noise signal around fphase assuming a ∆ fphase = 1 Hz
bandwidth. The filter consisted in a Hamming-windowed (sinc) FIR notch filter implemented in the
EEGLAB function pop_eegfiltnew.m [44]. The modulator signal was normalized to have unit standard
deviation σphase = 1 before computing the cosine of its instantaneous phase obtained by using the
Hilbert transform. The resultant modulator signal Sφ was then used to generate the high frequency
component, or carrier SA. For this, a sinusoid with frequency fAmp = 70 Hz was modulated by using a
sigmoid fed by Sφ as in Eq. 17.

SA (t) =
1

1 + exp
(
−λSφ (t)

) (17)

Here, the parameter λ = 6. We then introduced a delay between SA and Sφ by shifting SA τ ms
forward respect to Sφ. In the reminder of the text τ = 30 ms if not otherwise specified. Finally, to
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obtain the simulated PAC signal, we added both the delayed SA, Sφ and a Gaussian white noise with
power of 0.5 dBW, as implemented in MATLAB function wgn.

Simulation results. A continuous PAC simulated signal was generated as indicated at the
beginning of this Section. Figure 1 shows the time-averaged mutual information phase amplitude
coupling (MIPAC) computed between phase frequencies from 3 to 10 Hz (1-Hz steps) and amplitude
frequencies from 40 to 120 Hz (in 10-Hz steps) in the simulated signal. The figure shows that the
coupling has been effectively introduced between amplitude frequency fAmp = 70 Hz and phase
frequency fphase = 6.
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Figure 1. Comodulogram for the simulated PAC signal. Comodulogram depicting the time-averaged
mutual information phase amplitude coupling (MIPAC) computed between phase frequencies from 3
to 10 Hz (1-Hz steps) and amplitude frequencies from 40 to 120 Hz (10-Hz steps) for the simulated
signal.

In Fig. 2 we show the simulated PAC signal (top panel) and the time course of the MIPAC
computed for fphase = 6 and amplitude frequencies from 40 to 120 Hz (10-Hz steps) (lower panel).
Black and red lines here depicts the beginning and end of the high frequency oscillation (HFO) bursts.
In this case we see that from the perspective of the MIPAC, PAC seems to be present along the whole
signal while missing some HFO around 1000 Hz and 4000 Hz. Roughly, the MIPAC seems to peak
after the onset of the HFO, but this is not strict, since MIPAC peaks appear following the HFO in some
instances. In these instances, MIPAC appear to be reset by the onset of the following HFO.

To characterize the self-prediction ability of the instantaneous phase and amplitude components,
at fphase = 6 Hz and fAmp = 70 Hz respectively, for a given value of nearest neighbors K = 50, we
compute the active information storage as a function of the history length parameter k. Significance
testing was carried out by generating 100 surrogate values. The results of this computation are shown
in Fig. 3.

In Fig. 3 all computed AIS values for both instantaneous phase and amplitude were statistically
significant (p < 0.05, uncorrected) as per a test performed using 100 surrogate values. The maximum
AIS values for instantaneous phase and amplitude appear to suggest that k = 1 for phase, and k = 3
for amplitude ensure an optimal self signal prediction. In the following, we will use these peaks on
the AIS as values for the history length parameters for instantaneous phase (k = 1) and amplitude
(l = 3). After testing with multiple values for nearest neighbors (not shown here), this result appears
to be stable with respect to the parameter K. Next, for the given embedding parameters (k = 1 and
l = 3) and delay u = 30ms, we compute the TE in both directions between instantaneous phase and
amplitude for a number of values of K (nearest neighbors). Significance testing was carried out by
generating 100 surrogate values. Figure 4 shows the results of this computation. Here only positive and
significant (p < 0.05, uncorrected) TE values are shown. Note that, independent of the value of K used,
transfer of information from phase to amplitude appears to be dominant, peaking at K = 116. In the
reminder of this analysis, the transfer of information from amplitude to phase will not be considered.
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Figure 2. Simulated PAC signal and MIPAC. Top panel shows the simulated PAC signal with coupling
between amplitude frequency fAmp = 70 Hz and phase frequency fphase = 6 Hz using a sampling
frequency of f s = 1000 Hz. Here the phase component is delayed 30 ms respect to the amplitude
component. Vertical black and red dotted lines denote the onset and end of HFO bursts. Lower panel
shows the MIPAC computed between fphase = 6 Hz and amplitude frequencies from 40 to 120 Hz
(10-Hz steps). Despite the delay between the frequency components, MIPAC seems able to detect the
temporal evolution of PAC in the simulated signal. MIPAC appears to peak roughly by the end of the
HFO events with some instances were the peaks persist after the culmination of the HFO. In these
cases, a reset of the MIPAC appears to occur with the onset of the following HFO. All non-zero values
are statistically significant (p < 0.05, uncorrected) as per a test performed using 100 surrogates values.
Non-significant values were set to zero.

The lower panel of Figure 5 shows TE computed from instantaneous phase at 6 Hz to amplitude
in a band from 40 Hz to 120 Hz (Fig. 5). The upper panel is similar to that in Fig. 2, showing the
simulated signal and the onset and offset of the HFO (red and black vertical dotted lines). For the TE
computation we used the parameters estimated in the previous analysis: k = 1, l = 3, u = 30 and
K = 116. We can see that despite similarities to the MIPAC results in Fig. 2, the TE seems to peak
synchronized with onsets and offsets of the HFO. Similar to the behaviour of MIPAC in Fig. 2, TE miss
the HFO events happening near 1000 and 4000 ms.

Finally, to test TE’s capability to recover different delays, we simulated a PAC signal with the same
parameters as described at the beginning of the current section but with different delays u between
the phase and amplitude components. These delays were ranging from 0 to a time corresponding
to one full cycle of the phase frequency component at fphase = 6 Hz, in this case, 166 points. Delay
estimation followed as described by the end of the Section 3, by using a range of delays ranging from 0
to 166 points and the parameters k, l, and K used previously. Figure 6 shows normalized TE values in a
color code as a function of the delay values used in the simulation (y-axis) and subsequent estimation
(x-axis). The red dots denote the maximum TE achieved for each simulated signal given the estimated
delay, and indicate the best estimated delay. Ideally, estimated and simulated delays would meet in the
black dotted diagonal line. From our results, the procedure followed appears to successfully recover
the simulated delay, being the maximum deviation from the real simulated delay only ten samples,
equivalent to 10 ms.

5. Estimating PAC with transfer entropy from actual ECoG data

To evaluate our findings in real data, we used the same methodology followed in Section 4 on
actual electrocorticography (ECoG) data from a single human subject.
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Figure 3. Active information storage as a function of the embedding history k. Active information storage
(AIS) computed for the instantaneous phase at fphase = 6 Hz (blue squares) and instantaneous
amplitude fAmp = 70 (red dots). Peaks in the AIS suggest that an embedding history of k = 1
for the phase and l = 3 for the amplitude are adequate to capture the relevant past history. All values
shown are statistically significant (p < 0.05, uncorrected) as per a test performed using 100 surrogate
values.

Data collection. Electroencephalographic (EEG) recording from a single subject undergoing
pre-surgical epilepsy evaluation at the North Shore University Hospital - Long Island Jewish Medical
Center (NY) was performed using intracranial electrodes. The recording was at a sampling rate of 1999
samples per second per channel. Seizure detection algorithms were used and additionally reviewed by
an EEG technician and a physician. From a labeled seizure data clip, 5 seconds of data were extracted
from an electrode (label: Tm2) located in the temporo-medial area (label: Tm2). Figure 7 shows the
spectral characteristics of the data clip obtained through a wavelet decomposition as implemented
in the EEGLAB software function newtimef.m. We can see a rhythmic low frequency activation at
4-8Hz simultaneously with a broadband (30-250Hz) activation from this figure. We will refer to these
frequency bands as low and high, respectively.

Computing MIPAC. Figure 8 shows MIPAC computed between the low (4-8Hz) and high
(30-250Hz) frequency ranges of the data clip shown in Fig. 7. Instantaneous phase and amplitude
were extracted from the low and high frequency ranges respectively as detailed in Section 3. Here the
time courses of the ECoG signal and of MIPAC are shown in red and blue respectively. Significance
computed using 100 surrogates (p < 0.05, uncorrected) appears in light gray. As we expected, increases
in MIPAC correspond to HFO bursts.

Estimating PAC using local TE. Using the same instantaneous phase and amplitude derived
from the low- and high-frequency bands defined previously, analysis was carried out as in Figures
3 and 5. First, AIS was computed for values of embedding history from 1 to 50 (figure not shown).
Retaining the embedding history parameters corresponding to the highest AIS, their values were set to
k = 3 (phase) and l = 3 (amplitude). We computed transfer entropy in both directions, from phase to
amplitude and from amplitude to phase, as a function of the K nearest neighbor parameter in the range
of 1 to 40 (Fig. 9). The resulting information transfer was predominantly from phase to amplitude,
independent of the value of K. However, some information transfer from amplitude to phase was also
found.

Next, we computed the TE from instantaneous phase to amplitude using the parameters k and
l from the AIS analysis and K = 100, for a range of delays values ranging from zero to 195 samples
(corresponding to half a cycle of the central frequency fphase = 6 Hz of the lower frequency band).
The maximum TE in the delay range studied corresponded to a value of u = 85 samples (figure not
shown). We selected this delay value along with the values of k, l and K previously used to compute
the local transfer entropy from instantaneous phase to amplitude (Fig. 10).
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Figure 4. Transfer entropy as a function of K-nearest neighbors. Transfer entropy computed from the phase
frequency component at fphase = 6 to the amplitude frequency component at fAmp = 70 (blue square),
and in the opposite direction (red dots), as a function of the K-nearest neighbors values. Embedding
history of k = 1 for the phase and l = 3 for the amplitude were used. Only significant (p < 0.05,
uncorrected) positive values are shown. Information transfer from phase to amplitude appears to be
predominant, independent of the value of K.

In Figure 10 the time course of the signal and the local TE are shown in red and blue respectively.
Significance testing (p < 0.05, uncorrected) for local TE, carried out using 100 TE surrogates, is shown
in light gray. Local TE values were filtered below 12Hz (roughly two times the central frequency of
the lower frequency band) for better visualization of their main features. As can be seen here, local
TE increases and peaks roughly at the beginning and end of HFO bursts. This result resembles that
obtained for the simulated signal in Fig. 5.

6. Discussion

6.1. Computing TE and MIPAC in simulated PAC data

In Section 4 we simulated a PAC signal (sampling rate, 1000Hz) in which the instantaneous phase
at fphase = 6Hz modulated was the instantaneous amplitude at famp = 70Hz. A delay of u = 30
samples (equivalent to 30 ms) was introduced to simulate a causal interaction from phase to amplitude.
Using this signal, we computed mutual information-based phase-amplitude coupling (MIPAC) for all
combinations of phase frequencies from 3 to 10 Hz (in 1-Hz steps) and amplitude frequencies from 40 to
120 Hz (in 10-Hz steps). A comodulogram conformed with the temporal average of MIPAC values (Fig.
1) confirmed the existence of PAC at the selected frequencies. Comparing MIPAC time series to the time
course of the simulated signal for fphase = 6Hz and famp = 70Hz, we found that increases in MIPAC
corresponded to bursts of HFO (at 70Hz) in the signal. Next, we computed bidirectional transfer
entropy between phase ( fphase = 6Hz) and amplitude ( famp = 70Hz). A critical step when computing
transfer entropy is determining the signal’s history length or embedding parameters. Several methods
have been proposed to estimate these values, but none has produced a consensus as to the best
estimation method. Here we explored the space of parameters that maximize signal self -prediction,
as measured by active information storage (AIS) [21], to obtain the embedding parameters we used
for instantaneous phase (k) and amplitude (l) (see Fig. 3). To compute the AIS, we assumed a value
for the nearest neighbors of K = 50. However, the value of K seems not to be relevant, as AIS is very
robust to the selection of this parameter [47]. Using the estimated parameters k and l, we computed
transfer entropy as a function of the nearest-neighbor parameter K in both directions, from phase to
amplitude and from amplitude to phase (Fig. 4). We found that in the simulated signal, the transfer
of information from phase to amplitude was dominant, independent of the selected value of K. TE’s
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Figure 5. Simulated PAC signal and local TE. Top panel is similar to top panel in Fig. 2 and shows the
original simulated signal and the black and red vertical dotted lines denoting the onsets and offsets of
the HFO events. Bottom panel shows the TE computed from the simulated signal instantaneous phase
at fphase = 6 to the instantaneous amplitude in the 40–120 Hz band. Significant TE values here appear
at the beginning and end of HFO events. All non-zero values are statistically significant (p < 0.05,
uncorrected) as per a test performed using 100 surrogates values. Non-significant values were set to
zero.

dependency on the parameter K seemed to be described by a concave function with a maximum at
K = 116, which we used in further computations.

At this point is important to recall that TE estimation was carried out using the KSG estimator
implemented in the JIDT toolbox [40], and when using this estimator, TE is defined to be the average
value of the local TE. In this case, we found that the K value corresponding to peak TE in Fig. 4 was
suitable for describing the process simulated, but using lower K values to estimate local TE led to
increased variance in the time series. This fact brings to the table the issue that how to select the
number of neighbors in the KSG algorithm is still under discussion.

Using parameters k, l and K estimated in the previous analysis, we replicated the analysis in Fig.
2 using local TE. Given that in this case the flow of information from phase to amplitude was dominant
(Fig. 5), we only computed local TE in this given direction. In this analysis we found that for a range
of frequencies near famp = 70Hz, the phase at fphase = 6Hz evokes an increase in local TE near onsets
and ends of HFO signal bursts. This result, as we can see, differs from the time course of MIPAC,
which seems to most often reach its maximum local value during the HFOs.

As it was demonstrated by Wibral et al. [23], TE is maximal when the delay parameter u is equal
to the true interaction delay δ [23]. This principle can be used to estimate the interaction delay between
the process involved in the TE computation by exploring the space of the parameter u. In Fig. 6
we simulated several signals using the same parameters as in Fig. 2 but varying the delay between
instantaneous phase and amplitude in a range from zero to 116 samples, corresponding to a full cycle
of the phase frequency. For each of these signals, TE was computed for a range of u varying from
zero to 116 samples. The TE maximum was indicated by red dots in Fig. 6, while the true delay was
indicated by the diagonal dashed black line. For each signal we obtained a plateau of maximum TE
values around the true simulated delay value, with the maximum deviation in the value of u being no
bigger than 10ms. It is obvious from Fig. 6 that the maximum TE values always underestimate the real
value and that an almost constant bias of 10 ms seems to be present. The cause of this bias is not clear
and will be the subject of planned future study. However, we note that the 10-ms bias or deviation is
in on the order of the generation of action potentials.
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Figure 6. Delay estimation. Transfer entropy estimated using different delays ranging from 0 to the
time corresponding to one full cycle of the phase frequency component at fphase = 6 Hz, here 166
points (x-axis) for a set of simulated signals generated using the same delay values (y-axis). For each
simulated signal, the maximum estimated TE value is indicated by a red dot, this yielded the best
estimated delay. Estimated values appear to be consistently close to optimal estimation performance,
indicated by the diagonal black dotted line.
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Figure 7. Time-frequency features of data clip. Spectral characteristics of the 5-sec data clip obtained
through a wavelet decomposition as implemented in EEGLAB function newtimef.m.

6.2. Estimating PAC with local TE in actual ECoG data

To evaluate the use of local TE in the estimation of PAC in actual ECoG data, we used a brief
recording from intracortical electrodes (ECoG) of a single patient undergoing pre-surgical epilepsy
monitoring (see Section 5). We used five seconds of data during a clinician-labelled seizure from a
single channel in the medial temporal brain region. The spectral characteristics of the signal (Fig. 7)
indicated two main frequency ranges with significant activity, a low-frequency range between 4-8
Hz and a higher broadband frequency range (30-250Hz) sometimes referred to as high-frequency
broadband [48]. These two frequency ranges were used to extract instantaneous (low-frequency) phase
and (high-frequency) amplitude, and then to compute PAC using the MIPAC method (Fig. 8). As in
the simulated signal, statistically significant increases in MIPAC corresponded clearly to bursts of HFO
in the signal. This result was later compared with the local TE-derived PAC.

To estimate the local TE between these frequency components, we carried out a similar analysis
to the one performed for Fig. 3 to estimate the embedding parameters for phase (k) and amplitude
(l), resulting in k = l = 3. These values were used to study the relationship of the bidirectional TE to
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Figure 8. Time course of ECoG data and MIPAC. The red trace is the time course of 5 sec of one ECoG
data channel during an epileptic seizure. The blue trace shows MIPAC computed between ECoG signal
phase at 4-8Hz and amplitude in the band 30-250Hz. Statistically significant MIPAC values (p < 0.05,
uncorrected, 100 surrogates) are shown in light gray.
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Figure 9. Transfer entropy in ECoG data as a function of K-nearest neighbor values. Transfer entropy
computed between instantaneous phase at 4-8Hz and instantaneous amplitude in the range 30-250Hz
within the 5-sec data clip for a range of K-nearest neighbor values. Information transfer from the phase
to the amplitude is designated with blue squares, while red circles designate transfer in the opposite
direction. The process seems dominated by flow of information from phase to amplitude, although
there exists some flow of information in the opposite direction. Each value shown is statistically
significant (p < 0.05, uncorrected) as per a test performed with 100 surrogates values.

the nearest neighbor parameter K (Fig. 9). Contrasting with the results for the simulated signal (Fig.
4), in the actual signal under study we found statistically significant transfer of information between
phase and amplitude in both directions, though from phase to amplitude dominated. This result was
preserved over the range of K studied (up to K = 100). Next, we investigated the local TE for K = 2
where the TE between phase and amplitude in both directions was maximal, and confirmed that the
variance of the local TE was considerably higher than for higher K values (not shown), and that TE
features appear to become independent of K for values over K = 40. Based on this, we decided to use
the value K = 40 as well as k = l = 3 in our next computation. Then, we computed local TE from
phase to amplitude using the same frequency components (Fig. 10). The result replicated our finding
for the simulated signal in which the local TE peaks occurred at HFO burst onsets and offsets. We
speculate that these information transfer maxima at the beginnings and ends of HFO bursts reflect the
causal role of the low-frequency oscillation controlling the appearance of HFOs, most likely indicating
that firing of neurons in the local neighborhood is thereby constrained within a small time window (a
few 10s of ms). Thereby, spike impulses from the PAC area, upon reaching common target neurons
in near synchrony, are thereby more effective in affecting the activity of the target neurons, thereby
possibly also effecting short and long-term plasticity in those neurons and shaping effective coupling
strength of this network pathway [49–51].
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Figure 10. Time courses of ECoG data and of local TE between phase and amplitude time series. The red trace
shows the time course of the 5-sec ECoG data clip recorded during an epileptic seizure. Computed
local transfer entropy (from phase to amplitude) is shown in blue. The local TE time course seems to
peak at onsets and offsets of HFO bursts in the ECoG signal. Statistically signficant TE values (p < 0.05,
uncorrected, 100 surrogates) are shown in light gray.

6.3. The problem of directional causality in PAC

In our work, we have only assumed the flow of information directed from low-frequency phase
to high-frequency broadband amplitude, disregarding the potential opposite interaction which was
suggested recently by [52]. This choice is in line with an overwhelming amount of experimental work
published in the last years indicating and providing models to support phase-to-amplitude coupling
(e.g., [51,53–56]). For example, neurophysiological evidence for the modulation of the high-frequency
amplitude by the phase of slow neuronal oscillations has been observed in the interaction between slow
neocortical oscillations and thalamocortical rhythmic burst firing (spindles) during slow-wave sleep
[53]. Slow oscillations are composed of synchronized states alternating between hyperpolarization
(down-state) and depolarization (up-state) and spread through the neocortex travelling to the thalamus,
where they promote a pattern of increase and decrease in rhythmic burst firing. Thus, the spindles’
temporal evolution is continuously initiated, shaped, and terminated by slow-wave-promoted
corticothalamic feedback (for reviews see [51,53,54]), providing evidence for the modulation of high
frequency amplitude through oscillatory phase.

Another example supporting phase-to-amplitude interaction comes from work of Schroeder and
Lakatos, [55,56] examining coupling between gamma band (30–100 Hz) amplitude and phase at delta
(< 3 Hz) or theta (4–7 Hz) frequencies [2,14]. Slow oscillations in the cortex can become entrained to
external rhythms, thus aligning high excitability phases or up-states to occurring or expected external
events so as to enhance their sensory processing. During the slow-oscillation high-excitability phase,
gamma band (or high-frequency broadband) amplitudes may be enhanced such that a gamma burst
occurs at the time when a task-relevant input is expected. Since gamma-band activity appears to be
more metabolically-demanding than low-frequency oscillations [57,58], the coupling between gamma
and the slower phase is believed to ensure that information transference resources are used efficiently
and gamma (and concomitantly, spike signaling) is selectively enhanced at critical time points. This
suggests that slow oscillations act as gatekeepers for local high-frequency (and spiking) activity,
thus suggesting a phase-to-amplitude causal relationship (for a review see [59]). It is appropriate to
recall that PAC has been demonstrated in nonlinear oscillators [60] in which there is no additional
modulation process or known mechanism for generating such an effect, the nonlinearity of the system
thus being the most probable cause of the finding. Therefore, PAC results (including those obtained
through information theory-based methods) must be interpreted cautiously, especially if there is no
physiologically plausible mechanism or model explaining the process. We acknowledge that a causal
relationship from high-frequency amplitude to low-frequency phase might exist, but we argue this
should come from some common driving activity operating with different delays in the high- and
low-frequency ranges in which PAC is assessed.
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6.4. MI and TE, two faces of the PAC process?

In both our simulated and actual data analyses, MIPAC indicated a continuous modulation
process with a local maximum within the time window of the modulation process. On the other
hand, TE peaks appeared at the beginning and end of modulation periods. These results pose the
question of what information about PAC in cortex are provided by instantaneous MIPAC (a form of
local mutual information) and by delay-estimating transfer entropy (TEPAC). Recall that local mutual
information captures both linear and nonlinear statistical relationships between the two time series
involved in its computation, while positive transfer entropy indicates a weak causality or predictive
information transfer between them. These two principles are thus not in contradiction, nor are our
PAC results. We hypothesize that the flow of information at the beginning of the modulation process,
as measured by local TE, initiates or facilitates the process that MIPAC measures. However, the
mechanisms responsible for this facilitation remains unclear, and this idea may conflict with the
implicit assumption that the PAC phenomenon is a continuous process carried out and determined
by the influence of the timing of neural oscillations on a brain area’s cell ensemble. Another option is
that TE may not represent a physical process in the PAC phenomena, and the results obtained are just
a statistical characterization of the modulation process without involving a physical interaction. In
the current manuscript we do not address these questions but rather have provided an initial report
characterizing PAC computed using local transfer entropy. We do believe, despite these open questions,
that the ability of TE to estimate interaction delays, adding to the overlapping information provided by
MIPAC, may favor the use of local TE in addition to or instead of MIPAC for intensive PAC analysis.
However, in our opinion there are a few technical considerations that first must be addressed before
recommending local transfer entropy as a method for studying PAC in electrophysiological signals.

6.5. General considerations for approaching PAC estimation using local transfer entropy

Perhaps the most controversial issue when computing transfer entropy is how to estimate its
embedding parameters. As we have already discussed, there is yet no consensus on the best way to
approach this estimation. Also, note that the exhaustive search method used in this manuscript may
not be practical to use when studying PAC in lengthy continuous signals. In such cases, methods
like that proposed by Ragwitz [43], that estimate the dimension and delay of the embedding while
minimizing the prediction error for future samples of the time series, may be the better option. This
method is implemented in two of the most advanced, specialized, and widely used software tools for
computing transfer entropy and other IT measures: JIDT [40] and Trentool [61].

Currently, the only way to accurately estimate local IT measures including transfer entropy is via
the KSG estimator which also requires setting another parameter, the number of neighboring points
K in the joint space spanned by the signal supports used to define the marginal neighborhoods to
compute Eq. 14. Unfortunately, there is currently no efficient approach to estimating this parameter,
though once it is set properly (to avoid undersampling of points in the marginal spaces), the computed
measure, either local TE or MI, is quite stable to the selection of [47]. Here we focused on characterizing
the PAC process from the perspective of local TE applied to continuous signals. We did not consider the
case of data segments time-locked to a set of similar stimulus events (i.e., event-related data epochs).
We believe these same methods could also be applied to event-related data, estimation in this case
taking advantage of the data geometry inherent in the matrix of similarly latency-locked data windows
(of dimension, number of trials by latencies), as proposed by Gomez-Herrero [62] and earlier applied
by us for MIPAC estimation [3].

Here, despite the above-mentioned limitations, we have shown the potential of TE to address the
study of delayed interactions in the PAC process. It should be noted that the same formulation used
here for TE potentially allows studying PAC conditioned by other and/or more variables. This indeed,
may be a perfect approach to address the question of directionality between two processes when both
may be driven by some third process. Although computing TE while conditioning on several other
signals (e.g, instantaneous phase and amplitude values at other sources or channels) seems currently
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numerically infeasible [24], it is convenient to know this may be an option in the future, given the
ever-retreating compute horizon.

7. Conclusions

Here we used local transfer entropy (TE) to estimate and characterize phase-amplitude coupling
in cortical local field activity. We used first simulated and then actual ECoG seizure data and
in both cases found local TE peaks at onsets and offsets of PAC modulation periods estimated
using MIPAC, our previously reported method for estimating time-resolved PAC. Although further
investigation is needed, we hypothesize that information transfer indicated by TE may signal, or
even facilitate the coupling process. This mechanism should be the focus of further studies. We
discussed some limitations we consider important to address before recommending that studies of
PAC in electrophysiological signals rely on the use of local transfer entropy. Despite these cautions, we
see real potential in the use of TE for the study of PAC, and specifically in the study of its interaction
delays, which to date are an issue not widely discussed in the PAC literature. We are aware that in
our attempt to characterize PAC by features highlighted by local TE we are leaving a number of open
questions. We hope this initial investigation will help catalyze interest in the application of local TE to
the brain PAC phenomenon, hopefully shedding light on the physiological role of PAC processes in
the human brain.
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