

Article

What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals?

Ramón Martínez-Cancino ^{1,2*}, Arnaud Delorme ¹, Johanna Wagner ¹, Kenneth Kreutz-Delgado ², Roberto C. Sotero ³ and Scott Makeig ¹

¹ Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California San Diego, La Jolla, California, USA;

² Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA

³ Computational Neurophysics Lab, University of Calgary, Calgary, Canada

* Correspondence: ram033@eng.ucsd.edu

Abstract: Modulation of the amplitude of high-frequency cortical field activity locked to changes in phase of a slower brain rhythm is known as phase-amplitude coupling (PAC). The study of this phenomenon has been gaining traction in neuroscience because of several reports on its appearance in normal and pathological brain processes in humans as well as across different mammalian species. This has led to the suggestion that PAC may be an intrinsic brain process that facilitates brain inter-area communication across different spatiotemporal scales. Several methods have been proposed to measure the PAC process, but few of these enable detailed study of its time course. It appears that no studies have reported details of PAC dynamics including its possible directional delay characteristics. Here, we study and characterize the use of a novel information theoretic measure that may address this limitation: local transfer entropy. We use both simulated and actual intracranial electroencephalographic data, and in both cases we observe initial indications that local transfer entropy can be used to detect the onset and offset of modulation process periods revealed by mutual information phase-amplitude coupling (MIPAC). We review our results in the context of current theories about PAC in brain electrical activity, and discuss technical issues that must be addressed to see local transfer entropy more widely applied to PAC analysis.

Keywords: Phase amplitude coupling, cross frequency coupling, information theory, transfer entropy

1. Introduction

A hallmark feature of electrophysiological recordings of brain activity is the presence of rhythmic oscillations [1,2]. Interaction between activity in different frequency bands has been associated with particular brain states and stimulus responses in both healthy and pathological conditions in humans and, more generally, in mammalian brains [3]. Until recently, oscillatory dynamics in different frequency bands were, in effect, treated as largely independent. It is now acknowledged that rhythms at different frequencies can temporally interact both within and between brain structures. More importantly, clearly-defined cross-coupling interactions between neural frequency bands appear across mammalian brain evolution, suggesting they may be supported by a universal evolutionary mechanism serving essential brain functions [1,4]. These facts bring relevance to cross-frequency coupling (CFC) studies, and more importantly, to its most widespread and studied variant, phase-amplitude coupling (PAC).

In phase-amplitude coupling, the phase of a slower rhythm regulates changes in the amplitude of activity at higher frequencies, either within the same signal or between two recorded signals [3]. It is understood that high-frequency oscillations (HFOs) emerge from and are topologically constrained within small brain functional areas. In contrast, larger generating areas and/or area-coupled networks are associated with slower rhythms [2]. A consensus view of brain PAC is that activity in disjoint

frequency bands interacts by manifesting an architectural hierarchy: low-frequency oscillations manifest or express synchrony within large neuronal ensembles, while their phase constrain the appearance of faster field activity within brief time/phase windows in local populations [1,5]. This pattern of cortical rhythmic interdependence is believed to foster efficient information transmission across spatiotemporal scales [4]. Implicit here is also the idea that PAC reflects the causal influence of low-frequency phase on high-frequency amplitude.

PAC has been observed between various frequency bands, in multiple brain regions, under different task conditions and in multiple species (see Table 1 in [3]). In addition to the widespread prevalence of PAC in healthy brain process, links have been found between PAC and a variety of neurological pathologies (e.g., in epilepsy [6], Parkinson's disease [7,8], Alzheimer's disease [9], mild cognitive impairment [10], schizophrenia [11,12], and obsessive-compulsive disorder [13]).

Several methods have been proposed to estimate PAC. Although none has been established yet as the gold standard, three methods have been most often used by the scientific community: the Mean Vector Length Modulation Index (MVLmi) [14], the Kullback-Leibler Modulation Index (KLmi) [15], and the General Linear Model Modulation Index (GLMmi) [16]. These methods rely on the assumed covariation of the phase and amplitude time series to statistically estimate PAC presence and strength. One limitation of these approaches is their lack of time resolution. A new PAC estimation method based on mutual information, recently proposed by us in [3]), addresses this challenge. Another limitation of 'correlation'-based PAC estimation is that it assumes that interactions between the two time series are instantaneous, thus missing the effect of any delayed interplay among frequency bands.

Delays among brain signals arise mainly due to intrinsic information propagation lags through brain circuitry. It has been demonstrated that the brain oscillatory processes are intimately related to these delays, which are believed to constitute an essential mechanism for inter- and intra-brain network synchronization [17]. The delay coordinated activity has proven vital for normal brain function to such an extent that its disruption has been associated with pathologies like multiple sclerosis[18] and schizophrenia [19]. The ability to estimate interaction delays in brain signals may enable estimation of the directionality and causation in the interaction. Thus, the estimation of directed interaction dynamics in PAC multi-scale scenarios may help understand the PAC process's functional significance.

Concepts from information theory (IT) have proven effective in addressing some current PAC constraints (e.g., [3]). In addition to the advantage provided by the model-free assumption in the estimation of IT quantities, two specific developments have made information theory especially suitable to addressing some current PAC limitations: (1) Introduction of transfer entropy [20] as a measure of predictive information transfer and interaction delays between time series; and (2) development of theory and methods for estimating pointwise or *local* IT measures by Lizier [21].

Here, we explore the use of local transfer entropy to study and characterize phase-amplitude coupling dynamics. We aim to provide an initial report of the use of local transfer entropy to study the temporal dynamics of delay interactions in the PAC process. In Section 2, we provide a general background on information theory and introduce the concepts and estimation techniques for transfer entropy as well as its local measure. We then address PAC estimation using transfer entropy (Section 3) and then present simulated and actual data results in Sections 4 and 5 respectively. In Section 6, we discuss the results and provide general observations on the use and interpretation of TE in the context of PAC.

2. Information theory and transfer entropy

Information theory background. A central quantity in Information Theory is the Shannon Entropy H . To introduce this key concept, let's assume two discrete random variables X and Y with sets of values x and y respectively, probability distributions $p(x)$, $p(y)$, conditional probabilities $p(x|y)$ and $p(y|x)$, and joint distribution $p(x,y)$. These quantities are related by $p(x,y) = p(x|y)p(y) = p(y|x)p(x)$. The quantity $H(X)$, which is the average of the "log-surprise" $\log_2 p(x) = -\log_2 p(x)$ for

an observation $X = x$ (see Eq. 1), represents the expected uncertainty associated with a measurement x of the random variable X .

$$H(X) = - \sum_x p(x) \log_2 p(x) \quad (1)$$

Shannon entropy can be extended to two random variables X and Y , then the joint entropy can be defined as in Eq. 2.

$$H(X, Y) = - \sum_{x,y} p(x, y) \log_2 p(x, y) \quad (2)$$

It is also convenient to define the notion of conditional entropy as the average uncertainty about x that remains when the value of y is known (Eq. 3).

$$H(X | Y) = - \sum_{x,y} p(x, y) \log_2 p(x | y) \quad (3)$$

With these definitions in place, we can then formalize the mutual information (MI) between the random variables X and Y as a non-negative and symmetric measure defined in Eqs. 4 and 5:

$$I(X, Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \geq 0 \quad (4)$$

$$= H(X) - H(X | Y) \quad (5)$$

By assuming a third random variable Z , one obtains the conditional mutual information (Eq. 6).

$$I(X, Y | Z) = H(X | Z) - H(X | Y, Z) \quad (6)$$

Transfer entropy. Now let's assume the coupled physical system \mathcal{X} and \mathcal{Y} , whose behaviour is described by the random process X and Y produces the time series $x_t = \{x_1, \dots, x_N\}$, $y_t = \{y_1, \dots, y_N\}$ at the discrete recording times $t \in \{1 \dots N\}$. With these definitions in place, Wiener's principle of causality states that, if knowledge about the past of realizations of X and Y together allows one to predict the future of Y better than knowledge about the past of Y alone, then a causal influence can be assigned from the process X to Y [22]. In the information-theoretic framework, this principle can be reformulated as "*What information does the past of X provide about the future of Y , that the past of Y did not already provide?*" [23]. The quantity capturing this principle, *transfer entropy*, was formalized by Schreiber [20] in terms of the conditional mutual information (Eq. 7).

$$TE(Y \rightarrow X) = I(X^+; \mathbf{Y}^- | \mathbf{X}^-) \quad (7)$$

Here X^+ is a future random variable of the process X , whereas \mathbf{X}^- and \mathbf{Y}^- designate the reconstructed past state variables of the process X and Y respectively. This quantity as stated in Eq. 7 can be viewed as the *average* information contained in the past of the source signal \mathbf{Y}^- about the next state X^+ of the destination that was not already contained in X past, \mathbf{X}^- . Current extensions of this formulation has been proposed by Wibral et al. [23] and Lizier et al. [24] by assuming: (1) An interaction delay u between the time series x_t and y_t ; (2) The times series x_t and y_t can be approximated by a Markov process of order k and l respectively. With this assumptions, Eq. 7 can be rewritten in an more general form [24] as in Eq. 8.

$$TE_{Y \rightarrow X}^{(k,l)}(t, u) = I(X_t : Y_{t-u}^{(l)} | X_{t-1}^{(k)}) \quad (8)$$

Transfer entropy is a positive asymmetric quantity whose interpretation is still being debated. However, a consensus seems to be forming around the idea that the quantity provided by TE, far from being

interpreted as "true causality", may be a predictive information transfer [23,25] or predictive causality. These are important concepts that are usually tangled in discussions of information transfers (see [25] for an in-depth discussion). The idea of causal effect may be assumed as to the extent to which the source process is a direct drive in the next state of a destination process [25]. This can be seen in a falling row of dominoes. On the other side, predictive causality implies the ability to predict without committing to a belief in causal efficacy.

Local transfer entropy. Most of the information theory quantities currently in use (e.g., entropy, mutual information, transfer entropy) can be seen as an spatial or time average of more fundamental *local* or *pointwise* information bearing quantities. Local information theoretic measures characterize quantities from a specific, localized subset of measurements x and y of the random variables X and Y , rather than the associated average measure computed over all available data [26]. For example, local mutual information values $i(x, y)$ (Eq. 9) may be averaged to compute overall MI $I(X, Y)$ (Eq. 10):

$$i(x, y) = \log_2 \frac{p(x | y)}{p(x)} \quad (9)$$

$$I(X, Y) = E_{X,Y} [i(x, y)] \quad (10)$$

Since the TE is just a conditional MI (see Eq. 7), local transfer entropy can be defined as the pointwise conditional mutual information computed from an specific source state $y_{t-u}^{(l)}$ to a specific target event x_t conditioned by the event state history of the target $x_{t-1}^{(k)}$ [24] as in Eq. 11.

$$te_{Y \rightarrow X}^{(k,l)}(t, u) = i(x_t : y_{t-u}^{(l)} | x_{t-1}^{(k)}) \quad (11)$$

While the TE is a strictly positive quantity, the local transfer entropy, may be either positive or negative, indicating whether or not the source $y_{t-u}^{(l)}$ is providing informative information regarding the set $x_t, y_{t-u}^{(l)}, x_{t-1}^{(k)}$. In the context of this work, we will only consider local TE positive values.

One of the practical advantages of the local transfer entropy is that it provides information about the dynamics of the information transfer at the same time that it can be used to recover the interaction delay δ between the time series of the system analyzed as in Eq. 12 [26].

$$\delta = \underset{u}{\operatorname{argmax}} \left(TE_{Y \rightarrow X}^{(k,l)}(t, u) \right) \quad (12)$$

These features will be exploited in this manuscript to analyze the dynamics of the PAC process.

Estimating transfer entropy. Estimation of transfer entropy is usually carried out through the use of mutual information and conditional mutual information estimation methods. The simplest and most widespread estimators for MI are extensions of algorithms to compute entropy based on straightforward plug-in evaluation of defining densities by its empirical estimates (called the *plug-in* estimator by [27]). Another popular branch of entropy estimation methods use a similar principle but estimate the underlying densities by (1) kernel estimation methods (KDE) [28,29] or (2) by taking advantage of the geometry of the space jointly formed by the support of the variables used in the computation, approximating the densities at the point x using the volume defined by a sphere encapsulating its K nearest neighbors (known as K-nearest neighbors, K-NN [30–32]). Despite its widespread popularity, these family of methods is known to have serious bias problems [33–37]. Recent advances in the development of MI nearest-neighbour estimators, specifically that proposed by Kraskov, Stogbauer, and Grassberger (KSG) [32] have provided an alternative to the problem of the bias by providing a method that effectively bypasses the need to estimate densities. The KSG estimator builds on the nearest-neighbors-based Kozachenko and Leonenko entropy estimator (KL) [38], which Kraskov et al. modified to make the bias resulting from the nonuniformity of the densities in marginal spaces cancel each other. To do this, Kraskov et al. observed that for any fixed K value, the distance to the K th neighbor in the joint space is larger than the distances to the neighbors in the marginal

spaces, which lead to use different distances scales in the joint and marginal spaces when using the KL estimator for computing MI [32]. Consequently, Kraskov et al. recommended not to use a fixed value of K for the marginal entropy estimation and proposed a K-NN MI estimator in (Eq. 13).

$$I(X, Y) = \psi(K) - \langle \psi(n_x + 1) + \psi(n_y + 1) \rangle + \psi(N) \quad (13)$$

Here N is the number of samples of X and Y , and ψ denotes the digamma function ($\psi(x) = \Gamma(x)^{-1} \frac{d\Gamma(x)}{dx}$). The terms $n_x(i)$ and $n_y(i)$ designate the number of samples falling into a strip of the marginal space of X and Y respectively, defined by the distance to its K nearest neighbors. MI values $I(X, Y)$ are returned in nats. For a detailed derivation of the method see [32] or [3].

The KSG estimator constitutes an effective non-parametric estimator of MI that is data efficient (resolving structures down to the smallest possible scales), adapts resolution (binning scale changes according to the underlying data point density), and has minimal bias [32]. The neat formulation of the KSG estimator allowed Lizier [26] to extend it to compute local mutual information by unrolling the expectation ($\langle \dots \rangle$) in Eq. 13, yielding Eq. 14:

$$i(x, y) = \psi(K) - \psi(n_x + 1) - \psi(n_y + 1) + \psi(N) \quad (14)$$

An extension of this formulation has been proposed for the computation of local transfer entropy through the direct estimation of conditional mutual information in the form of Eq. 15.

$$i(x, y|z) = \psi(K) - \psi(n_{xz}) + \psi(n_{yz}) - \psi(n_z) \quad (15)$$

In this manuscript we used this formulation proposed by Lizer for the computation of TE [39] as implemented in the JIDT Toolbox [40].

Active information storage. From the corollary of Wiener's causality principle in the IT context, it can be derived that for the values of TE to be interpretable in the context of Wiener causality it is necessary to ensure that a signal can optimally predict its own future behavior. It is then convenient to introduce an IT quantity to describe how well a signal can predict itself. This is the aim of the active information storage (AIS) introduced by Lizier [21], which defined a measure of how much of the information from the past of the process X is observed to be in use in determining its *next observation*. Formally, the AIS can be defined as the expected mutual information between realizations $x_n^{(k)}$ of the past state $X_n^{(k)}$ and the corresponding realizations x_{n+1} of the process X (Eq. 16)

$$AIS_x(k) = I(X_n^{(k)} : X_{n+1}) \quad (16)$$

Given a range of values for the state's length parameters k and l , we use the maximal values of AIS to estimate the optimal value of the state's lengths that ensures optimal signal self-prediction.

3. Approaching PAC estimation with information theory local measures

We now study and characterize the temporal dynamics of directed information transfer (from phase to amplitude) in the PAC process through local transfer entropy. Note that we assume only directed phase to amplitude interactions. This choice is discussed in Section 6.3.

Most methods for computing PAC follow a similar data processing pipeline. First, high and low-frequency band signals are extracted for the two frequency ranges in which the PAC coupling is to be assessed. These frequency bands are centered on a lower central frequency f_{phase} for the phase time series, and a higher central frequency f_{amp} for the amplitude time series. For this, either band-pass filtering or time-frequency decomposition can be used with similar results. Then instantaneous phase and amplitude time series are obtained from the low- and high-frequency band signals, respectively, using the Hilbert transform or else directly from the complex signal when time-frequency decomposition has been used. These time series are then used to compute a PAC

measure. After the PAC measure is computed, a statistical analysis is usually carried out by comparing the estimated PAC value with a distribution of surrogate PAC values calculated under a no-PAC assumption. Surrogate values are obtained by computing PAC from the original input signals after shuffling the two time-series many times as to destroy any PAC relationship [15]. Significance is then assessed by determining whether the estimated PAC measure for the actual data belongs or not to the distribution of surrogate PAC values. Here, we will follow this same preprocessing pipeline.

We have recently proposed and validated a method to estimate time-resolved PAC using local mutual information: MIPAC [3]. Estimating PAC through MIPAC begins by computing two time series capturing instantaneous phase and amplitude in the two frequency bands of interest. Then local mutual information is computed between these two signals following Eq. 14. When computing Eq. 14 in MIPAC, rather than the euclidean norm, a circular norm [41] is used to compute and find the nearest neighbors in the marginal space defined by the support of the instantaneous phase. Finally, the local mutual information time series is low-pass filtered under f_{phase} .

Our analysis using local transfer entropy resembles that used for MIPAC [3]. Again it begins by computing two time series capturing the instantaneous low-frequency phase and high-frequency band amplitude. To assess phase-to-amplitude information transfer and estimate the delay in the interaction between these frequency features, we first estimate the TE for a range of delays u . Since the TE is maximal when the parameter u is the actual interaction delay δ [23], we choose to analyze the local transfer entropy time series corresponding to the u that maximizes the TE. Statistical significance is then computed at each latency as described previously.

Before TE computation, special consideration should be given to selecting the state history length for each signal. Although a few algorithms and methods have been proposed to estimate these lengths (e.g., [42,43]), a consensus on choice of method is far from being reached [26]. In our work, we estimate the history lengths (also called '*embedding parameters*') k and l by determining empirically the embedding values that maximize the AIS in the instantaneous phase and amplitude. Since the KSG algorithm is bias corrected by construction, the values of k and l that maximize the TE should successfully capture the corresponding past states' relevant information. The estimated history values, along with an estimate of the nearest neighbors parameter K , are used then to estimate the delay u as described previously. In the current manuscript, data processing, simulations, computation, and analysis were performed using EEGLAB [44], functions from the PACTools plug-in [45], and custom scripts written in MATLAB (The Mathworks, Inc.). The JIDT Toolbox [40] was used to compute local TE and AIS.

4. Simulation results

Simulating PAC. Simulated PAC signal coupling was generated by following [46]. Here, coupling in the signal was simulated between amplitude frequency $f_{Amp} = 70$ Hz and phase frequency $f_{phase} = 6$ Hz with a sampling frequency of $fs = 1000$ Hz. The lower frequency component, or modulator S_ϕ was built by band-pass filtering a Gaussian white noise signal around f_{phase} assuming a $\Delta f_{phase} = 1$ Hz bandwidth. The filter consisted in a Hamming-windowed (sinc) FIR notch filter implemented in the EEGLAB function *pop_eegfiltnew.m* [44]. The modulator signal was normalized to have unit standard deviation $\sigma_{phase} = 1$ before computing the cosine of its instantaneous phase obtained by using the Hilbert transform. The resultant modulator signal S_ϕ was then used to generate the high frequency component, or carrier S_A . For this, a sinusoid with frequency $f_{Amp} = 70$ Hz was modulated by using a sigmoid fed by S_ϕ as in Eq. 17.

$$S_A(t) = \frac{1}{1 + \exp(-\lambda S_\phi(t))} \quad (17)$$

Here, the parameter $\lambda = 6$. We then introduced a delay between S_A and S_ϕ by shifting S_A τ ms forward respect to S_ϕ . In the reminder of the text $\tau = 30$ ms if not otherwise specified. Finally, to

obtain the simulated PAC signal, we added both the delayed S_A, S_ϕ and a Gaussian white noise with power of 0.5 dBW, as implemented in MATLAB function *wgn*.

Simulation results. A continuous PAC simulated signal was generated as indicated at the beginning of this Section. Figure 1 shows the time-averaged mutual information phase amplitude coupling (MIPAC) computed between phase frequencies from 3 to 10 Hz (1-Hz steps) and amplitude frequencies from 40 to 120 Hz (in 10-Hz steps) in the simulated signal. The figure shows that the coupling has been effectively introduced between amplitude frequency $f_{Amp} = 70$ Hz and phase frequency $f_{phase} = 6$.

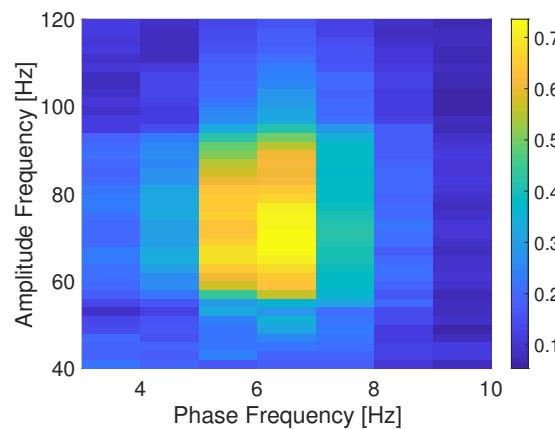


Figure 1. Comodulogram for the simulated PAC signal. Comodulogram depicting the time-averaged mutual information phase amplitude coupling (MIPAC) computed between phase frequencies from 3 to 10 Hz (1-Hz steps) and amplitude frequencies from 40 to 120 Hz (10-Hz steps) for the simulated signal.

In Fig. 2 we show the simulated PAC signal (top panel) and the time course of the MIPAC computed for $f_{phase} = 6$ and amplitude frequencies from 40 to 120 Hz (10-Hz steps) (lower panel). Black and red lines here depicts the beginning and end of the high frequency oscillation (HFO) bursts. In this case we see that from the perspective of the MIPAC, PAC seems to be present along the whole signal while missing some HFO around 1000 Hz and 4000 Hz. Roughly, the MIPAC seems to peak after the onset of the HFO, but this is not strict, since MIPAC peaks appear following the HFO in some instances. In these instances, MIPAC appear to be *reset* by the onset of the following HFO.

To characterize the self-prediction ability of the instantaneous phase and amplitude components, at $f_{phase} = 6$ Hz and $f_{Amp} = 70$ Hz respectively, for a given value of nearest neighbors $K = 50$, we compute the active information storage as a function of the history length parameter k . Significance testing was carried out by generating 100 surrogate values. The results of this computation are shown in Fig. 3.

In Fig. 3 all computed AIS values for both instantaneous phase and amplitude were statistically significant ($p < 0.05$, uncorrected) as per a test performed using 100 surrogate values. The maximum AIS values for instantaneous phase and amplitude appear to suggest that $k = 1$ for phase, and $k = 3$ for amplitude ensure an optimal self signal prediction. In the following, we will use these peaks on the AIS as values for the history length parameters for instantaneous phase ($k = 1$) and amplitude ($l = 3$). After testing with multiple values for nearest neighbors (not shown here), this result appears to be stable with respect to the parameter K . Next, for the given embedding parameters ($k = 1$ and $l = 3$) and delay $u = 30ms$, we compute the TE in both directions between instantaneous phase and amplitude for a number of values of K (nearest neighbors). Significance testing was carried out by generating 100 surrogate values. Figure 4 shows the results of this computation. Here only positive and significant ($p < 0.05$, uncorrected) TE values are shown. Note that, independent of the value of K used, transfer of information from phase to amplitude appears to be dominant, peaking at $K = 116$. In the remainder of this analysis, the transfer of information from amplitude to phase will not be considered.

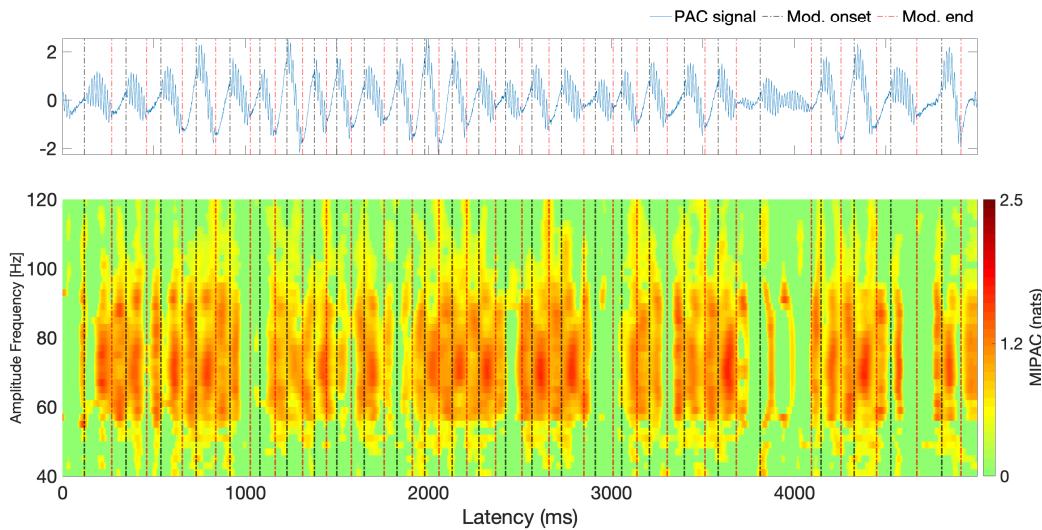


Figure 2. Simulated PAC signal and MIPAC. Top panel shows the simulated PAC signal with coupling between amplitude frequency $f_{Amp} = 70$ Hz and phase frequency $f_{phase} = 6$ Hz using a sampling frequency of $fs = 1000$ Hz. Here the phase component is delayed 30 ms respect to the amplitude component. Vertical black and red dotted lines denote the onset and end of HFO bursts. Lower panel shows the MIPAC computed between $f_{phase} = 6$ Hz and amplitude frequencies from 40 to 120 Hz (10-Hz steps). Despite the delay between the frequency components, MIPAC seems able to detect the temporal evolution of PAC in the simulated signal. MIPAC appears to peak roughly by the end of the HFO events with some instances were the peaks persist after the culmination of the HFO. In these cases, a *reset* of the MIPAC appears to occur with the onset of the following HFO. All non-zero values are statistically significant ($p < 0.05$, uncorrected) as per a test performed using 100 surrogates values. Non-significant values were set to zero.

The lower panel of Figure 5 shows TE computed from instantaneous phase at 6 Hz to amplitude in a band from 40 Hz to 120 Hz (Fig. 5). The upper panel is similar to that in Fig. 2, showing the simulated signal and the onset and offset of the HFO (red and black vertical dotted lines). For the TE computation we used the parameters estimated in the previous analysis: $k = 1$, $l = 3$, $u = 30$ and $K = 116$. We can see that despite similarities to the MIPAC results in Fig. 2, the TE seems to peak synchronized with onsets and offsets of the HFO. Similar to the behaviour of MIPAC in Fig. 2, TE miss the HFO events happening near 1000 and 4000 ms.

Finally, to test TE's capability to recover different delays, we simulated a PAC signal with the same parameters as described at the beginning of the current section but with different delays u between the phase and amplitude components. These delays were ranging from 0 to a time corresponding to one full cycle of the phase frequency component at $f_{phase} = 6$ Hz, in this case, 166 points. Delay estimation followed as described by the end of the Section 3, by using a range of delays ranging from 0 to 166 points and the parameters k , l , and K used previously. Figure 6 shows normalized TE values in a color code as a function of the delay values used in the simulation (y-axis) and subsequent estimation (x-axis). The red dots denote the maximum TE achieved for each simulated signal given the estimated delay, and indicate the best estimated delay. Ideally, estimated and simulated delays would meet in the black dotted diagonal line. From our results, the procedure followed appears to successfully recover the simulated delay, being the maximum deviation from the real simulated delay only ten samples, equivalent to 10 ms.

5. Estimating PAC with transfer entropy from actual ECoG data

To evaluate our findings in real data, we used the same methodology followed in Section 4 on actual electrocorticography (ECoG) data from a single human subject.

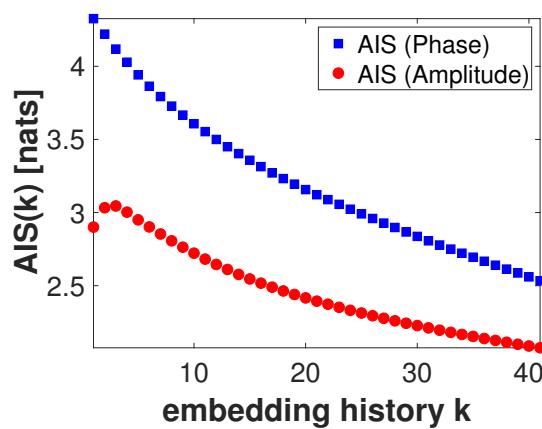


Figure 3. Active information storage as a function of the embedding history k . Active information storage (AIS) computed for the instantaneous phase at $f_{phase} = 6$ Hz (blue squares) and instantaneous amplitude $f_{Amp} = 70$ (red dots). Peaks in the AIS suggest that an embedding history of $k = 1$ for the phase and $l = 3$ for the amplitude are adequate to capture the relevant past history. All values shown are statistically significant ($p < 0.05$, uncorrected) as per a test performed using 100 surrogate values.

Data collection. Electroencephalographic (EEG) recording from a single subject undergoing pre-surgical epilepsy evaluation at the North Shore University Hospital - Long Island Jewish Medical Center (NY) was performed using intracranial electrodes. The recording was at a sampling rate of 1999 samples per second per channel. Seizure detection algorithms were used and additionally reviewed by an EEG technician and a physician. From a labeled seizure data clip, 5 seconds of data were extracted from an electrode (label: Tm2) located in the temporo-medial area (label: Tm2). Figure 7 shows the spectral characteristics of the data clip obtained through a wavelet decomposition as implemented in the EEGLAB software function *newtimef.m*. We can see a rhythmic low frequency activation at 4-8Hz simultaneously with a broadband (30-250Hz) activation from this figure. We will refer to these frequency bands as low and high, respectively.

Computing MIPAC. Figure 8 shows MIPAC computed between the low (4-8Hz) and high (30-250Hz) frequency ranges of the data clip shown in Fig. 7. Instantaneous phase and amplitude were extracted from the low and high frequency ranges respectively as detailed in Section 3. Here the time courses of the ECoG signal and of MIPAC are shown in red and blue respectively. Significance computed using 100 surrogates ($p < 0.05$, uncorrected) appears in light gray. As we expected, increases in MIPAC correspond to HFO bursts.

Estimating PAC using local TE. Using the same instantaneous phase and amplitude derived from the low- and high-frequency bands defined previously, analysis was carried out as in Figures 3 and 5. First, AIS was computed for values of embedding history from 1 to 50 (figure not shown). Retaining the embedding history parameters corresponding to the highest AIS, their values were set to $k = 3$ (phase) and $l = 3$ (amplitude). We computed transfer entropy in both directions, from phase to amplitude and from amplitude to phase, as a function of the K nearest neighbor parameter in the range of 1 to 40 (Fig. 9). The resulting information transfer was predominantly from phase to amplitude, independent of the value of K . However, some information transfer from amplitude to phase was also found.

Next, we computed the TE from instantaneous phase to amplitude using the parameters k and l from the AIS analysis and $K = 100$, for a range of delays values ranging from zero to 195 samples (corresponding to half a cycle of the central frequency $f_{phase} = 6$ Hz of the lower frequency band). The maximum TE in the delay range studied corresponded to a value of $u = 85$ samples (figure not shown). We selected this delay value along with the values of k , l and K previously used to compute the local transfer entropy from instantaneous phase to amplitude (Fig. 10).

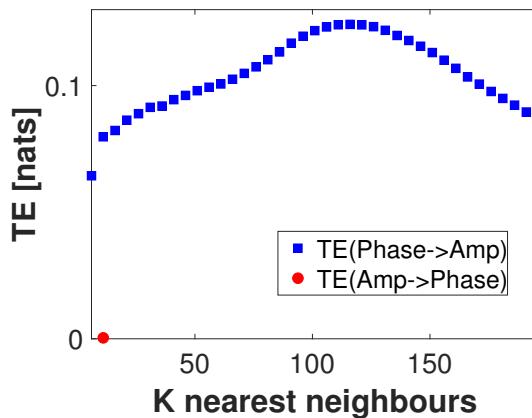


Figure 4. Transfer entropy as a function of K -nearest neighbors. Transfer entropy computed from the phase frequency component at $f_{phase} = 6$ to the amplitude frequency component at $f_{Amp} = 70$ (blue square), and in the opposite direction (red dots), as a function of the K -nearest neighbors values. Embedding history of $k = 1$ for the phase and $l = 3$ for the amplitude were used. Only significant ($p < 0.05$, uncorrected) positive values are shown. Information transfer from phase to amplitude appears to be predominant, independent of the value of K .

In Figure 10 the time course of the signal and the local TE are shown in red and blue respectively. Significance testing ($p < 0.05$, uncorrected) for local TE, carried out using 100 TE surrogates, is shown in light gray. Local TE values were filtered below 12Hz (roughly two times the central frequency of the lower frequency band) for better visualization of their main features. As can be seen here, local TE increases and peaks roughly at the beginning and end of HFO bursts. This result resembles that obtained for the simulated signal in Fig. 5.

6. Discussion

6.1. Computing TE and MIPAC in simulated PAC data

In Section 4 we simulated a PAC signal (sampling rate, 1000Hz) in which the instantaneous phase at $f_{phase} = 6$ Hz modulated was the instantaneous amplitude at $f_{amp} = 70$ Hz. A delay of $u = 30$ samples (equivalent to 30 ms) was introduced to simulate a causal interaction from phase to amplitude. Using this signal, we computed mutual information-based phase-amplitude coupling (MIPAC) for all combinations of phase frequencies from 3 to 10 Hz (in 1-Hz steps) and amplitude frequencies from 40 to 120 Hz (in 10-Hz steps). A comodulogram conformed with the temporal average of MIPAC values (Fig. 1) confirmed the existence of PAC at the selected frequencies. Comparing MIPAC time series to the time course of the simulated signal for $f_{phase} = 6$ Hz and $f_{amp} = 70$ Hz, we found that increases in MIPAC corresponded to bursts of HFO (at 70Hz) in the signal. Next, we computed bidirectional transfer entropy between phase ($f_{phase} = 6$ Hz) and amplitude ($f_{amp} = 70$ Hz). A critical step when computing transfer entropy is determining the signal's history length or embedding parameters. Several methods have been proposed to estimate these values, but none has produced a consensus as to the best estimation method. Here we explored the space of parameters that maximize signal *self*-prediction, as measured by active information storage (AIS) [21], to obtain the embedding parameters we used for instantaneous phase (k) and amplitude (l) (see Fig. 3). To compute the AIS, we assumed a value for the nearest neighbors of $K = 50$. However, the value of K seems not to be relevant, as AIS is very robust to the selection of this parameter [47]. Using the estimated parameters k and l , we computed transfer entropy as a function of the nearest-neighbor parameter K in both directions, from phase to amplitude and from amplitude to phase (Fig. 4). We found that in the simulated signal, the transfer of information from phase to amplitude was dominant, independent of the selected value of K . TE's

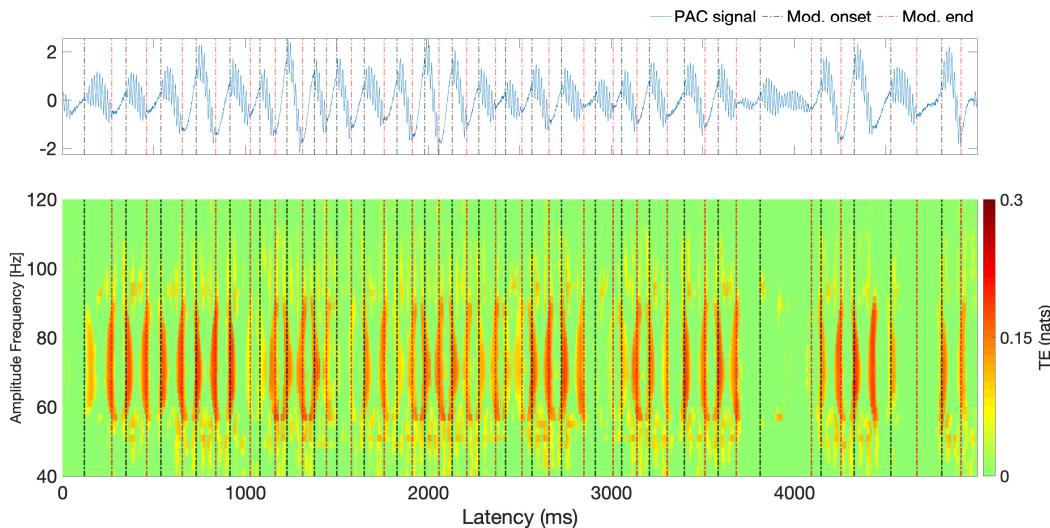


Figure 5. Simulated PAC signal and local TE. Top panel is similar to top panel in Fig. 2 and shows the original simulated signal and the black and red vertical dotted lines denoting the onsets and offsets of the HFO events. Bottom panel shows the TE computed from the simulated signal instantaneous phase at $f_{phase} = 6$ to the instantaneous amplitude in the 40–120 Hz band. Significant TE values here appear at the beginning and end of HFO events. All non-zero values are statistically significant ($p < 0.05$, uncorrected) as per a test performed using 100 surrogates values. Non-significant values were set to zero.

dependency on the parameter K seemed to be described by a concave function with a maximum at $K = 116$, which we used in further computations.

At this point is important to recall that TE estimation was carried out using the KSG estimator implemented in the JIDT toolbox [40], and when using this estimator, TE is defined to be the average value of the local TE. In this case, we found that the K value corresponding to peak TE in Fig. 4 was suitable for describing the process simulated, but using lower K values to estimate local TE led to increased variance in the time series. This fact brings to the table the issue that how to select the number of neighbors in the KSG algorithm is still under discussion.

Using parameters k , l and K estimated in the previous analysis, we replicated the analysis in Fig. 2 using local TE. Given that in this case the flow of information *from phase to amplitude* was dominant (Fig. 5), we only computed local TE in this given direction. In this analysis we found that for a range of frequencies near $f_{amp} = 70$ Hz, the phase at $f_{phase} = 6$ Hz evokes an increase in local TE near onsets and ends of HFO signal bursts. This result, as we can see, differs from the time course of MIPAC, which seems to most often reach its maximum local value *during* the HFOs.

As it was demonstrated by Wibral et al. [23], TE is maximal when the delay parameter u is equal to the true interaction delay δ [23]. This principle can be used to estimate the interaction delay between the process involved in the TE computation by exploring the space of the parameter u . In Fig. 6 we simulated several signals using the same parameters as in Fig. 2 but varying the delay between instantaneous phase and amplitude in a range from zero to 116 samples, corresponding to a full cycle of the phase frequency. For each of these signals, TE was computed for a range of u varying from zero to 116 samples. The TE maximum was indicated by red dots in Fig. 6, while the true delay was indicated by the diagonal dashed black line. For each signal we obtained a plateau of maximum TE values around the true simulated delay value, with the maximum deviation in the value of u being no bigger than 10 ms. It is obvious from Fig. 6 that the maximum TE values always underestimate the real value and that an almost constant bias of 10 ms seems to be present. The cause of this bias is not clear and will be the subject of planned future study. However, we note that the 10-ms bias or deviation is in on the order of the generation of action potentials.

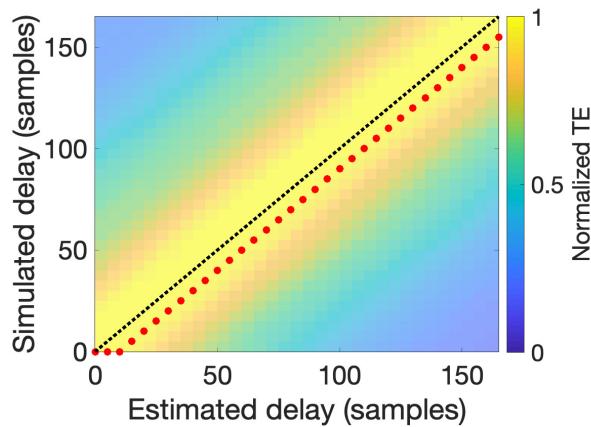


Figure 6. *Delay estimation.* Transfer entropy estimated using different delays ranging from 0 to the time corresponding to one full cycle of the phase frequency component at $f_{phase} = 6$ Hz, here 166 points (x-axis) for a set of simulated signals generated using the same delay values (y-axis). For each simulated signal, the maximum estimated TE value is indicated by a red dot, this yielded the best estimated delay. Estimated values appear to be consistently close to optimal estimation performance, indicated by the diagonal black dotted line.

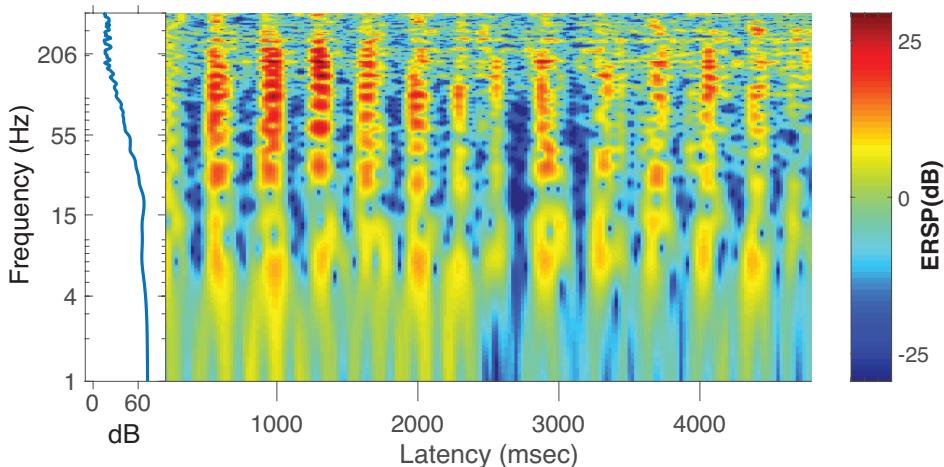


Figure 7. *Time-frequency features of data clip.* Spectral characteristics of the 5-sec data clip obtained through a wavelet decomposition as implemented in EEGLAB function *newtimef.m*.

6.2. Estimating PAC with local TE in actual ECoG data

To evaluate the use of local TE in the estimation of PAC in actual ECoG data, we used a brief recording from intracortical electrodes (ECoG) of a single patient undergoing pre-surgical epilepsy monitoring (see Section 5). We used five seconds of data during a clinician-labelled seizure from a single channel in the medial temporal brain region. The spectral characteristics of the signal (Fig. 7) indicated two main frequency ranges with significant activity, a low-frequency range between 4-8 Hz and a higher broadband frequency range (30-250Hz) sometimes referred to as high-frequency broadband [48]. These two frequency ranges were used to extract instantaneous (low-frequency) phase and (high-frequency) amplitude, and then to compute PAC using the MIPAC method (Fig. 8). As in the simulated signal, statistically significant increases in MIPAC corresponded clearly to bursts of HFO in the signal. This result was later compared with the local TE-derived PAC.

To estimate the local TE between these frequency components, we carried out a similar analysis to the one performed for Fig. 3 to estimate the embedding parameters for phase (k) and amplitude (l), resulting in $k = l = 3$. These values were used to study the relationship of the bidirectional TE to

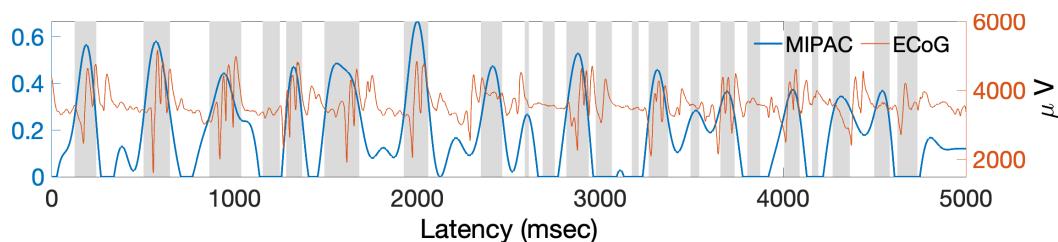


Figure 8. Time course of ECoG data and MIPAC. The red trace is the time course of one ECoG data channel during an epileptic seizure. The blue trace shows MIPAC computed between ECoG signal phase at 4-8Hz and amplitude in the band 30-250Hz. Statistically significant MIPAC values ($p < 0.05$, uncorrected, 100 surrogates) are shown in light gray.

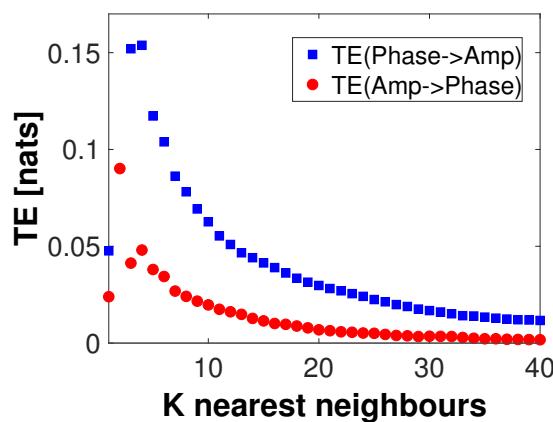


Figure 9. Transfer entropy in ECoG data as a function of K -nearest neighbor values. Transfer entropy computed between instantaneous phase at 4-8Hz and instantaneous amplitude in the range 30-250Hz within the 5-sec data clip for a range of K -nearest neighbor values. Information transfer from the phase to the amplitude is designated with blue squares, while red circles designate transfer in the opposite direction. The process seems dominated by flow of information from phase to amplitude, although there exists some flow of information in the opposite direction. Each value shown is statistically significant ($p < 0.05$, uncorrected) as per a test performed with 100 surrogates values.

the nearest neighbor parameter K (Fig. 9). Contrasting with the results for the simulated signal (Fig. 4), in the actual signal under study we found statistically significant transfer of information between phase and amplitude in both directions, though from phase to amplitude dominated. This result was preserved over the range of K studied (up to $K = 100$). Next, we investigated the local TE for $K = 2$ where the TE between phase and amplitude in both directions was maximal, and confirmed that the variance of the local TE was considerably higher than for higher K values (not shown), and that TE features appear to become independent of K for values over $K = 40$. Based on this, we decided to use the value $K = 40$ as well as $k = l = 3$ in our next computation. Then, we computed local TE from phase to amplitude using the same frequency components (Fig. 10). The result replicated our finding for the simulated signal in which the local TE peaks occurred at HFO burst onsets and offsets. We speculate that these information transfer maxima at the beginnings and ends of HFO bursts reflect the causal role of the low-frequency oscillation controlling the appearance of HFOs, most likely indicating that firing of neurons in the local neighborhood is thereby constrained within a small time window (a few 10s of ms). Thereby, spike impulses from the PAC area, upon reaching common target neurons in near synchrony, are thereby more effective in affecting the activity of the target neurons, thereby possibly also effecting short and long-term plasticity in those neurons and shaping effective coupling strength of this network pathway [49–51].

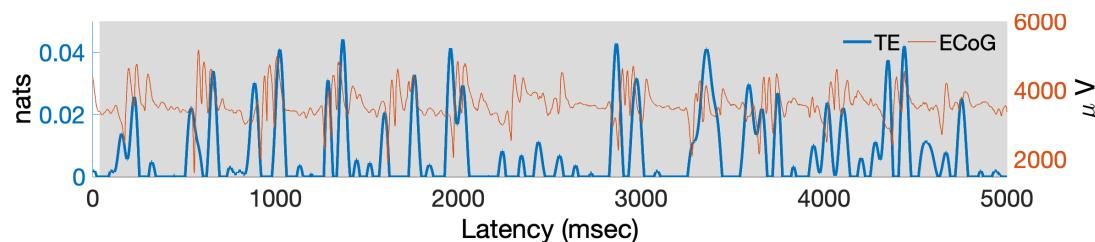


Figure 10. Time courses of ECoG data and of local TE between phase and amplitude time series. The red trace shows the time course of the 5-sec ECoG data clip recorded during an epileptic seizure. Computed local transfer entropy (from phase to amplitude) is shown in blue. The local TE time course seems to peak at onsets and offsets of HFO bursts in the ECoG signal. Statistically significant TE values ($p < 0.05$, uncorrected, 100 surrogates) are shown in light gray.

6.3. The problem of directional causality in PAC

In our work, we have only assumed the flow of information directed from low-frequency phase to high-frequency broadband amplitude, disregarding the potential opposite interaction which was suggested recently by [52]. This choice is in line with an overwhelming amount of experimental work published in the last years indicating and providing models to support phase-to-amplitude coupling (e.g., [51,53–56]). For example, neurophysiological evidence for the modulation of the high-frequency amplitude by the phase of slow neuronal oscillations has been observed in the interaction between slow neocortical oscillations and thalamocortical rhythmic burst firing (spindles) during slow-wave sleep [53]. Slow oscillations are composed of synchronized states alternating between hyperpolarization (down-state) and depolarization (up-state) and spread through the neocortex travelling to the thalamus, where they promote a pattern of increase and decrease in rhythmic burst firing. Thus, the spindles' temporal evolution is continuously initiated, shaped, and terminated by slow-wave-promoted corticothalamic feedback (for reviews see [51,53,54]), providing evidence for the modulation of high frequency amplitude through oscillatory phase.

Another example supporting phase-to-amplitude interaction comes from work of Schroeder and Lakatos, [55,56] examining coupling between gamma band (30–100 Hz) amplitude and phase at delta (< 3 Hz) or theta (4–7 Hz) frequencies [2,14]. Slow oscillations in the cortex can become entrained to external rhythms, thus aligning high excitability phases or up-states to occurring or expected external events so as to enhance their sensory processing. During the slow-oscillation high-excitability phase, gamma band (or high-frequency broadband) amplitudes may be enhanced such that a gamma burst occurs at the time when a task-relevant input is expected. Since gamma-band activity appears to be more metabolically-demanding than low-frequency oscillations [57,58], the coupling between gamma and the slower phase is believed to ensure that information transference resources are used efficiently and gamma (and concomitantly, spike signaling) is selectively enhanced at critical time points. This suggests that slow oscillations act as gatekeepers for local high-frequency (and spiking) activity, thus suggesting a phase-to-amplitude causal relationship (for a review see [59]). It is appropriate to recall that PAC has been demonstrated in nonlinear oscillators [60] in which there is no additional modulation process or known mechanism for generating such an effect, the nonlinearity of the system thus being the most probable cause of the finding. Therefore, PAC results (including those obtained through information theory-based methods) must be interpreted cautiously, especially if there is no physiologically plausible mechanism or model explaining the process. We acknowledge that a causal relationship from high-frequency amplitude to low-frequency phase might exist, but we argue this should come from some common driving activity operating with different delays in the high- and low-frequency ranges in which PAC is assessed.

6.4. MI and TE, two faces of the PAC process?

In both our simulated and actual data analyses, MIPAC indicated a continuous modulation process with a local maximum within the time window of the modulation process. On the other hand, TE peaks appeared at the beginning and end of modulation periods. These results pose the question of what information about PAC in cortex are provided by instantaneous MIPAC (a form of local mutual information) and by delay-estimating transfer entropy (TEPAC). Recall that local mutual information captures both linear and nonlinear statistical relationships between the two time series involved in its computation, while positive transfer entropy indicates a *weak* causality or predictive information transfer between them. These two principles are thus not in contradiction, nor are our PAC results. We hypothesize that the flow of information at the beginning of the modulation process, as measured by local TE, initiates or facilitates the process that MIPAC measures. However, the mechanisms responsible for this facilitation remains unclear, and this idea may conflict with the implicit assumption that the PAC phenomenon is a continuous process carried out and determined by the influence of the timing of neural oscillations on a brain area's cell ensemble. Another option is that TE may not represent a physical process in the PAC phenomena, and the results obtained are just a statistical characterization of the modulation process without involving a physical interaction. In the current manuscript we do not address these questions but rather have provided an initial report characterizing PAC computed using local transfer entropy. We do believe, despite these open questions, that the ability of TE to estimate interaction delays, adding to the overlapping information provided by MIPAC, may favor the use of local TE in addition to or instead of MIPAC for intensive PAC analysis. However, in our opinion there are a few technical considerations that first must be addressed before recommending local transfer entropy as a method for studying PAC in electrophysiological signals.

6.5. General considerations for approaching PAC estimation using local transfer entropy

Perhaps the most controversial issue when computing transfer entropy is how to estimate its embedding parameters. As we have already discussed, there is yet no consensus on the best way to approach this estimation. Also, note that the exhaustive search method used in this manuscript may not be practical to use when studying PAC in lengthy continuous signals. In such cases, methods like that proposed by Ragwitz [43], that estimate the dimension and delay of the embedding while minimizing the prediction error for future samples of the time series, may be the better option. This method is implemented in two of the most advanced, specialized, and widely used software tools for computing transfer entropy and other IT measures: JIDT [40] and Trentool [61].

Currently, the only way to accurately estimate local IT measures including transfer entropy is via the KSG estimator which also requires setting another parameter, the number of neighboring points K in the joint space spanned by the signal supports used to define the marginal neighborhoods to compute Eq. 14. Unfortunately, there is currently no efficient approach to estimating this parameter, though once it is set properly (to avoid undersampling of points in the marginal spaces), the computed measure, either local TE or MI, is quite stable to the selection of [47]. Here we focused on characterizing the PAC process from the perspective of local TE applied to continuous signals. We did not consider the case of data segments time-locked to a set of similar stimulus events (i.e., event-related data epochs). We believe these same methods could also be applied to event-related data, estimation in this case taking advantage of the data geometry inherent in the matrix of similarly latency-locked data windows (of dimension, number of trials by latencies), as proposed by Gomez-Herrero [62] and earlier applied by us for MIPAC estimation [3].

Here, despite the above-mentioned limitations, we have shown the potential of TE to address the study of delayed interactions in the PAC process. It should be noted that the same formulation used here for TE potentially allows studying PAC conditioned by other and/or more variables. This indeed, may be a perfect approach to address the question of directionality between two processes when both may be driven by some third process. Although computing TE while conditioning on several other signals (e.g, instantaneous phase and amplitude values at other sources or channels) seems currently

numerically infeasible [24], it is convenient to know this may be an option in the future, given the ever-retreating compute horizon.

7. Conclusions

Here we used local transfer entropy (TE) to estimate and characterize phase-amplitude coupling in cortical local field activity. We used first simulated and then actual ECoG seizure data and in both cases found local TE peaks at onsets and offsets of PAC modulation periods estimated using MIPAC, our previously reported method for estimating time-resolved PAC. Although further investigation is needed, we hypothesize that information transfer indicated by TE may signal, or even facilitate the coupling process. This mechanism should be the focus of further studies. We discussed some limitations we consider important to address before recommending that studies of PAC in electrophysiological signals rely on the use of local transfer entropy. Despite these cautions, we see real potential in the use of TE for the study of PAC, and specifically in the study of its interaction delays, which to date are an issue not widely discussed in the PAC literature. We are aware that in our attempt to characterize PAC by features highlighted by local TE we are leaving a number of open questions. We hope this initial investigation will help catalyze interest in the application of local TE to the brain PAC phenomenon, hopefully shedding light on the physiological role of PAC processes in the human brain.

Author Contributions: Conceptualization, RMC and RCS; methodology, validation and formal analysis, RMC; software and visualization, RMC and AD; data curation, RMC, AD and SM; writing—original draft preparation, RMC, JW and SM; writing—review and editing, RMC, AD, JW, KKD and SM; supervision, AD, KKD and SM; funding acquisition, AD and SM

Funding: This work was supported by National Institutes of Health grant 5R01-NS047293-12 and by a gift from The Swartz Foundation (Old Field NY).

Acknowledgments: The authors would like to thank Joseph Lizier for fruitful discussions and advice, and Ashesh Mehta for producing the data used in Section 5. Thanks also to The Swartz Foundation (Old Field, NY) for its contribution to making this research possible

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Buzsaki, G. *Rhythms of the Brain*; Oxford University Press, 2006.
2. Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. *science* **2004**, *304*, 1926–1929.
3. Martínez-Cancino, R.; Heng, J.; Delorme, A.; Kreutz-Delgado, K.; Sotero, R.C.; Makeig, S. Measuring transient phase-amplitude coupling using local mutual information. *NeuroImage* **2019**, *185*, 361–378.
4. Buzsáki, G.; Geisler, C.; Henze, D.A.; Wang, X.J. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. *Trends in neurosciences* **2004**, *27*, 186–193.
5. Lozano-Soldevilla, D.; ter Huurne, N.; Oostenveld, R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. *Frontiers in computational neuroscience* **2016**, *10*, 87.
6. Nonoda, Y.; Miyakoshi, M.; Ojeda, A.; Makeig, S.; Juhász, C.; Sood, S.; Asano, E. Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. *Clinical Neurophysiology* **2016**, *127*, 2489–2499.
7. López-Azcárate, J.; Tainta, M.; Rodríguez-Oroz, M.C.; Valencia, M.; González, R.; Guridi, J.; Iriarte, J.; Obeso, J.A.; Artieda, J.; Alegre, M. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. *Journal of Neuroscience* **2010**, *30*, 6667–6677.
8. De Hemptinne, C.; Ryapolova-Webb, E.S.; Air, E.L.; Garcia, P.A.; Miller, K.J.; Ojemann, J.G.; Ostrem, J.L.; Galifianakis, N.B.; Starr, P.A. Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. *Proceedings of the National Academy of Sciences* **2013**, *110*, 4780–4785.
9. Goutagny, R.; Gu, N.; Cavanagh, C.; Jackson, J.; Chabot, J.G.; Quirion, R.; Krantic, S.; Williams, S. Alterations in hippocampal network oscillations and theta–gamma coupling arise before A β

overproduction in a mouse model of Alzheimer's disease. *European Journal of Neuroscience* **2013**, *37*, 1896–1902.

10. Dimitriadis, S.I.; Laskaris, N.A.; Bitzidou, M.P.; Tarnanas, I.; Tsolaki, M.N. A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses. *Frontiers in neuroscience* **2015**, *9*, 350.

11. Allen, E.A.; Liu, J.; Kiehl, K.A.; Gelernter, J.; Pearlson, G.D.; Perrone-Bizzozero, N.I.; Calhoun, V.D. Components of cross-frequency modulation in health and disease. *Frontiers in systems neuroscience* **2011**, *5*, 59.

12. Grove, T.B.; Lasagna, C.A.; Martinez-Cancino, R.; Pamidighantam, P.; Deldin, P.J.; Tso, I.F. Neural oscillatory abnormalities during gaze processing in schizophrenia: Evidence of reduced theta phase consistency and inter-areal theta-gamma coupling. *Accepted for publication at Biological Psychiatry: Cognitive Neuroscience and Neuroimaging* **2020**.

13. Bahramisharif, A.; Mazaheri, A.; Levar, N.; Schuurman, P.R.; Figuee, M.; Denys, D. Deep brain stimulation diminishes cross-frequency coupling in obsessive-compulsive disorder. *Biological psychiatry* **2016**, *80*, e57–e58.

14. Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. *science* **2006**, *313*, 1626–1628.

15. Tort, A.B.; Komorowski, R.; Eichenbaum, H.; Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. *Journal of neurophysiology* **2010**, *104*, 1195–1210.

16. Penny, W.; Duzel, E.; Miller, K.; Ojemann, J. Testing for nested oscillation. *Journal of neuroscience methods* **2008**, *174*, 50–61.

17. Petkoski, S.; Jirsa, V.K. Transmission time delays organize the brain network synchronization. *Philosophical Transactions of the Royal Society A* **2019**, *377*, 20180132.

18. Felts, P.A.; Baker, T.A.; Smith, K.J. Conduction in segmentally demyelinated mammalian central axons. *Journal of Neuroscience* **1997**, *17*, 7267–7277.

19. Whitford, T.J.; Ford, J.M.; Mathalon, D.H.; Kubicki, M.; Shenton, M.E. Schizophrenia, myelination, and delayed corollary discharges: a hypothesis. *Schizophrenia bulletin* **2012**, *38*, 486–494.

20. Schreiber, T. Measuring information transfer. *Physical review letters* **2000**, *85*, 461.

21. Lizier, J.T. *The local information dynamics of distributed computation in complex systems*; Springer Science & Business Media, 2012.

22. Wiener, N. The theory of prediction. *Modern mathematics for engineers* **1956**.

23. Wibral, M.; Pampu, N.; Priesemann, V.; Siebenhühner, F.; Seiwert, H.; Lindner, M.; Lizier, J.T.; Vicente, R. Measuring information-transfer delays. *PloS one* **2013**, *8*, e55809.

24. Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T. An introduction to transfer entropy. *Cham: Springer International Publishing* **2016**, pp. 65–95.

25. Lizier, J.T.; Prokopenko, M. Differentiating information transfer and causal effect. *The European Physical Journal B* **2010**, *73*, 605–615.

26. Wibral, M.; Vicente, R.; Lizier, J.T. *Directed information measures in neuroscience*; Springer, 2014.

27. Antos, A.; Kontoyiannis, I. Convergence properties of functional estimates for discrete distributions. *Random Structures & Algorithms* **2001**, *19*, 163–193.

28. Moon, Y.I.; Rajagopalan, B.; Lall, U. Estimation of mutual information using kernel density estimators. *Physical Review E* **1995**, *52*, 2318.

29. Steuer, R.; Kurths, J.; Daub, C.O.; Weise, J.; Selbig, J. The mutual information: detecting and evaluating dependencies between variables. *Bioinformatics* **2002**, *18*, S231–S240.

30. Dobrushin, R.L. Prescribing a system of random variables by conditional distributions. *Theory of Probability & Its Applications* **1970**, *15*, 458–486.

31. Vasicek, O. A test for normality based on sample entropy. *Journal of the Royal Statistical Society: Series B (Methodological)* **1976**, *38*, 54–59.

32. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. *Physical review E* **2004**, *69*, 066138.

33. Wibral, M.; Lizier, J.T.; Priesemann, V. Bits from brains for biologically inspired computing. *Frontiers in Robotics and AI* **2015**, *2*, 5.

34. Treves, A.; Panzeri, S. The upward bias in measures of information derived from limited data samples. *Neural Computation* **1995**, *7*, 399–407.

35. Victor, J.D. Binless strategies for estimation of information from neural data. *Physical Review E* **2002**, *66*, 051903.

36. Panzeri, S.; Senatore, R.; Montemurro, M.A.; Petersen, R.S. Correcting for the sampling bias problem in spike train information measures. *Journal of neurophysiology* **2007**, *98*, 1064–1072.

37. Kozachenko, L.; Leonenko, N.N. Sample estimate of the entropy of a random vector. *Problemy Peredachi Informatsii* **1987**, *23*, 9–16.

38. L.F. Kozachenko, N. Sample Estimate of the Entropy of a Random Vector. *Peredachi Inf.* **1987**, *23*, 9–16.

39. Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Local information transfer as a spatiotemporal filter for complex systems. *Physical Review E* **2008**, *77*, 026110.

40. Lizier, J.T. JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. *Frontiers in Robotics and AI* **2014**, *1*, 11.

41. Berens, P.; others. CircStat: a MATLAB toolbox for circular statistics. *J Stat Softw* **2009**, *31*, 1–21.

42. Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. *Physica D: Nonlinear Phenomena* **1997**, *110*, 43–50.

43. Ragwitz, M.; Kantz, H. Markov models from data by simple nonlinear time series predictors in delay embedding spaces. *Physical Review E* **2002**, *65*, 056201.

44. Delorme, A.; Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. *Journal of Neuroscience Methods* **2004**, *134*, 9–21. doi:10.1016/j.jneumeth.2003.10.009.

45. Martínez-Cancino, R.; Delorme, A.; Kenneth, K.D.; Scott, M. Computing phase amplitude coupling in EEGLAB: PACTools. *Proceedings of the 20th International IEEE Conference on BioInformatics And BioEngineering 2020*.

46. La Tour, T.D. Nonlinear models for neurophysiological time series. PhD thesis, Universite Paris-Saclay, 2018.

47. jidt/README-SchreiberTeDemos.pdf at master · jlizier/jidt. <https://github.com/jlizier/jidt/blob/master/demos/octave/SchreiberTransferEntropyExamples/README-SchreiberTeDemos.pdf>. (Accessed on 09/11/2020).

48. Onton, J.A.; Makeig, S. High-frequency broadband modulation of electroencephalographic spectra. *Frontiers in human neuroscience* **2009**, *3*, 61.

49. Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. *Trends in cognitive sciences* **2010**, *14*, 506–515.

50. Zhang, T.; Xu, X.; Zheng, C. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. *Frontiers in Computational Neuroscience* **2013**, *7*, 27.

51. Fell, J.; Axmacher, N. The role of phase synchronization in memory processes. *Nature reviews neuroscience* **2011**, *12*, 105–118.

52. Jiang, H.; Bahramisharif, A.; van Gerven, M.A.; Jensen, O. Measuring directionality between neuronal oscillations of different frequencies. *Neuroimage* **2015**, *118*, 359–367.

53. Rasch, B.; Born, J. About sleep's role in memory. *Physiological reviews* **2013**.

54. Bergmann, T.O.; Born, J. Phase-amplitude coupling: a general mechanism for memory processing and synaptic plasticity? *Neuron* **2018**, *97*, 10–13.

55. Schroeder, C.E.; Lakatos, P. The gamma oscillation: master or slave? *Brain topography* **2009**, *22*, 24–26.

56. Schroeder, C.E.; Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. *Trends in neurosciences* **2009**, *32*, 9–18.

57. Mukamel, R.; Gelbard, H.; Arieli, A.; Hasson, U.; Fried, I.; Malach, R. Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. *Science* **2005**, *309*, 951–954.

58. Niessing, J.; Ebisch, B.; Schmidt, K.E.; Niessing, M.; Singer, W.; Galuske, R.A. Hemodynamic signals correlate tightly with synchronized gamma oscillations. *science* **2005**, *309*, 948–951.

59. Wagner, J.; Makeig, S.; Hoopes, D.; Gola, M. Can oscillatory alpha-gamma phase-amplitude coupling be used to understand and enhance TMS effects? *Frontiers in human neuroscience* **2019**, *13*, 263.

60. Aru, J.; Aru, J.; Priesemann, V.; Wibral, M.; Lana, L.; Pipa, G.; Singer, W.; Vicente, R. Untangling cross-frequency coupling in neuroscience. *Current opinion in neurobiology* **2015**, *31*, 51–61.
61. Lindner, M.; Vicente, R.; Priesemann, V.; Wibral, M. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy. *BMC neuroscience* **2011**, *12*, 119.
62. Gómez-Herrero, G.; Wu, W.; Rutanen, K.; Soriano, M.C.; Pipa, G.; Vicente, R. Assessing coupling dynamics from an ensemble of time series. *Entropy* **2015**, *17*, 1958–1970.