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Abstract 

The structures of a number of dimers of sulphur dioxide and ozone have been optimized by 
means of a series of ab initio calculations. The dimer species have been classified as either 
genuine energy minima or transition states of first or higher order, and the most probable 
structures consistent with the experimental data have been confirmed. The molecular orbitals 
engaged in the interactions resulting in adduct formation have been identified and relations 
between the orbitals of the dimers of the valence isoelectronic monomer species examined. The 
vibrational spectra of the most probable structures have been computed, and compared with 
those reported in the literature, particularly with spectra observed in cryogenic matrices. The 
calculations have been extended to predict the properties of a number of possible heterodimers 
formed between sulphur dioxide and ozone. 
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1. Introduction 

 The phenomenon of chalcogen bonding [1] belongs to a whole family of named 

interactions, including hydrogen, lithium, halogen, pnicogen, beryllium, triel and tetrel 

bonding, which are all examples of non-covalent interactions [2]. In the chalcogen bond, an 

attraction occurs between an atom of a group 16 element, O, S, Se or Te, acting as an electron 

acceptor, and any electron donor atom. Interest in non-covalent bonding in species containing 

oxygen and sulphur atoms has prompted us to revisit our theoretical study of the sulphur 

dioxide dimer [3], with particular emphasis on its vibrational spectrum, and to extend our 

computations to the dimer of the valence isoelectronic analogue ozone. The weakly-bound 

sulphur dioxide homodimer has been the subject of a number of theoretical investigations [3-

9]; in most of these studies the authors considered a number of potential candidates for the 

global minimum structure. Gas phase studies have been carried out on the dimer by microwave 

and radiofrequency spectroscopy [9-12], while the infrared spectrum of sulphur dioxide has 

been extensively investigated in cryogenic matrices [13-23]. In many of these vibrational 

studies the SO2 dimer has been specifically identified. Sulphur dioxide also forms binary 

complexes with a variety of atoms and other small molecules; theoretical studies have included 

those with H2S and HCN [5], H2O [5,11], Ar [6], BF3 [24], C2H2 [25], CHCl3 [26], NH3 and 

(CH3)3N [27], CO2, OCS, CS2 and N2O [28], NH3, H2O, HF, PH3, H2S and HCl [29] and 

CH3CN [30]. Many of these, and other, binary complexes have been observed in the gas phase, 

including those with H2O [11], BF3 [24], CH3CN [30], HF and HCN [31], C2H2 [32], C5H5N 

[33], (CH3)2O [34], CO2 [35], OCS [36], CS2 [37], N2O [38] and CHCl3 [39]. As was the case 

for the SO2 dimer, matrix isolation vibrational spectroscopy has also proved a fruitful source 

of data on binary complexes of sulphur dioxide. In this way complexes of SO2 with CH3CN 

[30], Cl2, HBr, H2O, NH3 and C2H4 [40], NH3 and (CH3)3N [41], HF [42], H2O [43], C6H6 [44] 

and BF3 [45] in cryogenic matrices have been characterized. 

 Far less work has been reported on the analogous ozone dimer, indeed only one 

theoretical study has apparently been carried out on this species [46]. The vibrational spectrum 

of ozone in cryogenic matrices has been investigated [16,47-59]. However, most of these 

studies have been more concerned with isotopic analysis [47,48,54,55], the geometry of the 

monomer [50], or with fluorescence [53] or photochemical [55-59] reactions in the matrices. 

Only in one case was the ozone dimer mentioned [59], and in another example the appearance 

of additional absorptions was attributed to the existence of multiple trapping sites [51]. A 
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number of binary complexes containing ozone have been observed in low-temperature 

matrices, including olefins [60], HBr, H2O, NH3, H2CO and C2H4 [61], PH3 [62,63], HF 

[42,64], H2O [65], H2O and SO2 [66], CH2F2 [67], CO [68] and O atoms [69]. In addition to 

the formation of binary complexes, ozone has been found to be a fairly reactive species in 

cryogenic matrices, and reactions between O3 and a range of small molecules and atoms have 

been analysed. These include reactions with CS2 and OCS [70], C2H4 [71], NO [72-74], NO2 

[75], N2H4 [76], AsH3 [77], SbH3 [78], P2 and P4 [79-81], HCN [82], Cl2 and Br2 [83] and Cl 

[84,85] and Ne atoms [86].  

 The SO2-O3 heterodimer has so far eluded investigation, either theoretically or 

experimentally. 

 

2. Computational Methodology 

 The calculations were carried out using Gaussian-16 [87], at the second order level of 

Møller-Plesset perturbation theory (MP2) [88] with Dunning’s augmented correlation-

consistent polarized valence triple-zeta basis sets (aug-cc-pVTZ) [89,90]. Structures were 

optimized and stationary points were identified as genuine minima or transition states by 

vibrational analysis. The wavenumbers and infrared intensities of the resulting species were 

determined at the harmonic level. Interaction energies were computed and corrected for basis 

set superposition error (BSSE) [91], using the Boys-Bernardi full counterpoise procedure [92] 

and for zero-point energy differences. Molecular orbital properties and molecular electrostatic 

potentials were examined using the standard Gaussian methodology [87].  

 

3. Results and Discussion 

3.1. Molecular Structures 

 A number of trial structures were investigated for each adduct. We have used as a 

template the publication of Hargittai [93], which examined a set of seven likely structural 

models for the metal dihalides, which we considered candidates as potential structures for the 

sulphur dioxide dimer. This trial set included three cyclic, two “linear” and two bifurcated 

models, most of which were also investigated by other workers [3-6,8,9]. Along with the seven 

Hargittai structures we also included two species which involved a S…S interaction, with no 

expectation that they would be strong candidates for the preferred SO2 dimer structure, but 

simply for completeness. Our nine possible dimer structures are illustrated in Figure 1 and their 

symmetries, energies and Hessian indices are given in Table 1. Figure 2 shows their relative 

energies, separated according to their classification as genuine minima or transition states. We 
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conclude, in agreement with the previous workers [3-6,9], and with most of the experimental 

data [9,10,12,13,15,19,20,22,23], that our dimer 5 is the global minimum and is a non-

symmetric species of Cs symmetry. The centrosymmetric dimer 2 is also a genuine minimum, 

less than 1 kJ mol-1 higher in energy. Dimer 2, however, being centrosymmetric, would not be 

observable by microwave spectroscopy, therefore there is no possibility of identifying this 

structure in the gas phase. Table 2 reports the computed geometrical parameters of each dimer 

and their deviations from the corresponding monomer values. The perturbations of the bond 

lengths and bond angles from their monomer values are small (less than 0.3 pm and 0.6 o 

respectively), indicating a weak interaction in each case. 

 

               

      1             2       3         

       

               4                                     5                           6  
    

                   
      

     7      8        9    
  

Figure 1. Optimized structures of some dimers of sulphur dioxide. 
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Table 1. Properties of some dimers of sulphur dioxide. 

  

Dimer Symmetry E/H Hessian 

index 

Relative energy/ 

kJ mol-1 

5 Cs -1095.9350 3678 41 0   0 

2 Ci -1095.9347 9649 54 0   0.63 

3 C2 -1095.9343 3272 07 1   1.85 

7 Cs -1095.9341 4356 32 1   2.35 

1 C2h -1095.9339 0229 81 2   2.98 

4 C2v -1095.9326 6035 55 2   6.24 

6 C2v -1095.9322 8723 09 2   7.22 

9 D2d -1095.9300 0351 25 2 13.32 

8 D2h -1095.9298 6160 93 4 13.59 
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Figure 2. Relative energies of the sulphur dioxide dimers.
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Table 2. Optimized geometrical parameters of sulphur dioxide dimers 5 and 2, and their changes relative to the sulphur dioxide monomer. See Figure 1 for 

numbering of the atoms. 

 

Dimer 5 Dimer 2 

Parameter Dimer  value Difference from 

monomer value 

Parameter Dimer  value Difference from 

monomer value 

r(S1O2)/pm 146.57   0.21 r(S1O3,S2O4)/pm 146.51   0.15 

r(S1O3)/pm 146.32 -0.03 r(S1O5,S2O6)/pm 146.30 -0.05 

r(S4O5,S4O6)/pm 146.41   0.06 O3S1O5,O4S2O6/deg 118.40 -0.39 

O2S1O3/deg 118.21 -0.58 r(S1…O4,S2…O3)/pm 322.37 - 

O5S4O6/deg 118.21 -0.58 O5S1…O4,O6S2…O3/deg   83.85 - 

r(O2…S4)/pm 318.79 - S1O3…S2,S2O4…S1/deg 106.60 - 

S1O2…S4/deg 100.27 - O5S1O3…S2/deg a    73.23 - 

O2…S4O5,O2…S4O6/deg   79.37 - O6S2O4…S1/deg a -73.23 - 

O5S4…O2S1/deg a   -60.82 -    

O6S4…O2S1/deg a    60.82 -    

 

a Dihedral angle.
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 The corresponding set of nine potential dimer structures for ozone are illustrated in 

Figure 3 and their properties are collected in Table 3. Their relative energies are presented in 

Figure 4. Only one of our ozone dimers (dimer 2) was found to be a true minimum. This adduct 

corresponds with the second lowest energy sulphur dioxide dimer, while the counterpart of the 

Cs global minimum of (SO2)2 (ozone dimer 5) lies about 5 kJ mol-1 higher in energy. Our result 

is in contrast to that of Slanina and Adamowicz [46], who found the Cs counterpart of our dimer 

5 to be the global minimum species. Part of the difference may be attributed to the use of 

different basis sets, but it has long been realized that the ozone monomer presents particularly 

formidable challenges for computation [94,95], and this is even more apparent for its dimer. 

The parameters of our ozone dimer 2 species are shown in Table 4. Again the perturbations are 

minimal (less than 0.25 pm and 0.2 o). 

 

                                         

  1          2             3      

                               

   4         5               6         

                        

      7            8                9 

                                      
    

Figure 3. Optimized structures of some dimers of ozone. 
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Table 3. Properties of some dimers of ozone. 

  

Dimer Symmetry E/H Hessian  

index 

Relative energy/ 

kJ mol-1 

2 Ci -450.2841 9179 490 0   0 

3 C2 -450.2826 9146 051 1   3.94 

7 Cs -450.2824 3399 654 2   4.61 

5 Cs -450.2823 7307 965 1   4.77 

1 C2h -450.2805 4781 872 2   9.57 

4 C2v -450.2802 0490 636 4 10.47 

9 D2d -450.2799 8305 709 4 11.05 

8 D2h -450.2799 1140 084 5 11.24 

6 C2v -450.2793 6382 300 2 12.68 

 

 

Figure 4. Relative energies of the ozone dimers. 
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Table 4. Optimized geometrical parameters of ozone dimer 2 and their changes relative to the 

ozone monomer. See Figure 3 for numbering of the atoms. 

 

Parameter Dimer  value Difference from monomer 

value 

r(O1O3,O2O4)/pm 128.58   0.20 

r(O1O5,O2O6)/pm 128.53   0.15 

O3O1O5,O4O2O6/deg 116.49 -0.17 

r(O1…O4,O2…O3)/pm 299.07 - 

O5O1…O4,O6…O2O3 /deg   65.08 - 

O1O3…O2,O2O4…O1 /deg 108.32 - 

O5O1…O4O2/deg a  -43.17 - 

O6O2…O3O1/deg a   43.17 - 

 

a Dihedral angle. 

 Based on the genuine minimum structures we found for the sulphur dioxide and ozone 

homodimers, and the Cs first order transition state of (O3)2, we examined eight structures for 

the sulphur dioxide-ozone heterodimer, two each corresponding with dimers 2, 3, 5 and 7, with  

sulphur dioxide and ozone acting as electron donor or electron acceptor in turn (a or b). These 

eight structures are illustrated in Figure 5 and their properties in Table 5. Structures 2a, 2b, 3a 

and 3b were found to be virtually identical; these four structures and complex 5b are all true 

minima. The relative energies are presented in Figure 6 and the bond lengths and angles and 

their changes in Table 6. Again the pattern of very small perturbations is observed; only the 

free O2O6 bond of the ozone sub-unit in complex 2a shows a substantial increase on 

complexation. 
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           2a                  2b 

                            

     3a         3b 

                       

       5a           5b 

                                      

          7a              7b    

 

Figure 5. Optimized structures of some complexes of sulphur dioxide and ozone. 
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Table 5. Properties of some complexes of sulphur dioxide and ozone. 

  

Complex Symmetry E/H Hessian 

index 

Relative energy/ 

kJ mol-1 

2a C1 -773.1098 0096 467 0 0 

3a  C1 -773.1098 0095 885 0 0 

2b  C1 -773.1098 0095 755  0 0 

3b C1 -773.1098 0095 165 0 0 

5a Cs -773.1092 1061 632 1 1.55 

7b Cs -773.1081 7161 056 1 4.28 

7a Cs -773.1081 3721 831 1 4.37 

5b Cs -773.1080 7683 409 0 4.53 

 

 

Figure 6. Relative energies of the sulphur dioxide-ozone complexes.
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Table 6. Optimized geometrical parameters of sulphur dioxide-ozone complexes 2a and 5b, and their changes relative to the sulphur dioxide and ozone 

monomers. See Figure 5 for numbering of the atoms. 

Complex 2a Complex 5b 

Parameter Dimer  value Difference from 

monomer value 

Parameter Dimer  value Difference from 

monomer value 

r(S1O3)/pm 146.72  0.36 r(O1O2)/pm 128.03 -0.35 

r(S1O5)/pm 146.21  -0.15 r(O1O3)/pm 128.69   0.31 

r(O2O4)/pm 127.85  -0.53 r(S4O5,S4O6)/pm 146.37   0.02 

r(O2O6)/pm 129.76   1.39 O2O1O3/deg 116.50 -0.16 

O3S1O5/deg 118.50  -0.29 O5S4O6/deg  118.51 -0.28 

O4O2O6/deg 116.08  -0.58 r(O2…S4)/pm 313.42 - 

r(S1…O4)/pm 291.71 - O1O2…S4/deg   90.03 - 

r(O2…O3)/pm 291.42 - O2…S4O5,O2…S4O6/deg   83.45 - 

O5S1…O4/deg 113.06 - O5S4…O2O1/deg a   59.89 - 

O6O2…O3 /deg   66.12 - O6S4…O2O1/deg a -59.89 - 

O5S1O3…O2/deg a 107.94 -    

O6O2O4…S1/deg a   55.56 -    

 

a Dihedral angle.
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3.2. Interaction Energies 

 The interaction energies of the five genuine minimum energy structures are given in 

Table 7, corrected in each case for BSSE [91] and for zero-point energy differences. Consistent 

with the relatively insignificant intramolecular structural perturbations discussed above, the 

interaction energies are all less than 10 kJ mol-1; the two SO2 dimers and the 2a heterodimer 

all have similar energies, while heterodimer 5b is barely bound at all. 

 

Table 7. Interaction energies of some dimers and complexes of sulphur dioxide and ozone. 

 

Species Interaction energy/kJ mol-1 

Raw BSSE Corrected ΔEo Net 

SO2 dimer 5 13.26 2.38 10.88 1.93 8.95 

SO2 dimer 2 12.59 2.26 10.33 1.86 8.47 

O3 dimer 2 14.39 3.18 11.21 4.21 7.00 

SO2-O3 complex 2a 15.52 3.34 12.18 3.67 8.51 

SO2-O3 complex 5b   9.87 2.17   7.70 1.91 5.79 

 

3.3.  Molecular Orbital Properties 

 The valence molecular orbitals of the sulphur dioxide and ozone monomers are 

illustrated in Figures 7 and 8, and their descriptions are listed in Tables 8 and 9. The energy 

ordering of the orbitals follows the conventional sequence, σ < lp(O) ≈  lp(S) < π < π* < σ*. 

One sulphur and four oxygen lone pairs are expected for the SO2 monomer, and four terminal 

and one central oxygen lone pair in the case of O3. For both SO2 and O3 the π orbitals separate 

into a bonding orbital delocalized over all three atoms, a non-bonding orbital involving only 

the out-of-plane p orbitals of the peripheral oxygen atoms, and an antibonding orbital with 

contributions from the p orbitals of all three atoms. The σ* orbitals, being more diffuse and 

involving more excited atomic orbitals, are less easy to visualize and to assign.  
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    8 (a1)          9 (b2)       10 (a1) 

             

     11 (b2)          12 (a1)        13 (b1) 

             

       14 (b2)           15 (a2)       16 (a1) 

             

    17 (b1)             18 (a1)         19 (a1) 

 

Figure 7. Valence molecular orbitals of the sulphur dioxide monomer. 
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  4 (a1)         5 (b2)              6 (a1) 

             

      7 (a1)          8 (b2)               9 (b1) 

               

          10 (b2)           11 (a1)                12 (a2) 

               

       13 (b1)           14 (b2)                 15 (a1) 

 

Figure 8. Valence molecular orbitals of the ozone monomer. 
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Table 8. Properties of the valence molecular orbitals of sulphur dioxide monomer. 

 

No. Symmetry Energy/H Approximate description a 

1-7   core  

8 a1 -1.48513 σ(OSO)  

9 b2 -1.38753 σ(OSO)  

10 a1 -0.88026 lp(S)  

11 b2 -0.69488 lp(O) 

12 a1 -0.68513 lp(O) 

13 b1 -0.65353 π(OSO)  

14 b2 -0.54142 lp(O)  

15 a2 -0.51405 π(nb)(OSO) 

16 (HOMO) a1 -0.49779 lp(O) 

17 (LUMO) b1 -0.00680 π*(OSO) 

18 a1   0.06607 σ*(OSO) 

19 a1   0.07129 σ*(OSO) 

 

a lp – lone pair; nb – non-bonding.  
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Table 9. Properties of the valence molecular orbitals of ozone monomer. 

 

No. Symmetry Energy/H Approximate description a,b 

1-3   core  

4 a1 -1.74257 σ(OOO)  

5 b2 -1.42739 σ(OOO)  

6 a1 -1.09905 lp(O2)  

7 a1 -0.82911 lp(O1) + lp(O3) 

8 b2 -0.79824 lp(O1) – lp(O3) 

9 b1 -0.77653 π(OOO)  

10 b2 -0.56576 lp(O1) – lp(O3)  

11 a1 -0.55546 lp(O1) + lp(O3) 

12 (HOMO) a2 -0.48829 π(nb)(O1 – O3) 

13 (LUMO) b1 -0.05229 π*(OOO) 

14 b2   0.10144 σ*(OOO) 

15 a1   0.10566 σ*(OOO) 

 

a O1 and O3 – terminal atoms, O2 – central atom. 

b lp – lone pair; nb – non-bonding.  

 

 These monomer orbitals transform readily into those of the dimer and complex species, 

and the orbitals of the five genuine minima are shown in the supplementary material as Figures 

S1 to S5. The corresponding descriptions of the orbitals of the adducts are given in 

supplementary material Tables S1 to S5. The major changes in the characters of the orbitals on 

complexation are that some of the lone pair orbitals of the monomers transform into σ bonding 
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orbitals associated with the intermolecular bonding interactions. Thus, for SO2 dimers 5 and 2, 

for example, four oxygen and one sulphur monomer lone pair orbitals go over into six oxygen 

and two sulphur lone pair orbitals, and two new σ(S…O) orbitals. 

 Further insights into the electronic rearrangements accompanying dimer or complex 

formation are provided by a consideration of the molecular electrostatic potential maps of  the 

adducts. These plots are shown in Figure 9 for the five associated species. The diagrams 

indicate the regions of high electron density, shown in red, shading to more electropositive 

zones, shown in blue, with the peripheral oxygen atoms having the greatest negative potentials 

and the more positive potentials associated with the sulphur atoms and the central oxygen 

atoms of the ozone moieties. The potentials cover a range from about -240 to 240 kJ mol-1.  

 

         

      SO2 dimer 5       SO2 dimer 2     O3 dimer 2 

                                  

           SO2-O3 complex 2a                SO2-O3 complex 5b 

 

                  

 

Figure 9. Molecular electrostatic potential plots of some dimers and complexes of sulphur 

dioxide and ozone. Units: hartree (1 H = 2625.346583 kJ mol-1).  
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3.4. Vibrational Spectra 

 The computed wavenumbers of the five associated species, and their shifts relative to 

the uncomplexed monomers, are shown in Table 10. For the two sulphur dioxide dimers the 

antisymmetric SO2 stretching modes tend to be displaced to the red and the symmetric 

stretching and the SO2 bending to the blue. These shifts are all less than 10 cm-1 in either 

direction, however, consistent with the very low interaction energies (see Table 7). The 

comparisons of our calculated intramolecular wavenumbers with experimental values derived 

from matrix isolation infrared spectroscopic studies [13,15,19-23] are given in Table 11. The 

vibrational data are all in agreement that the observed spectra are compatible with the Cs dimer 

5 structure, except for the argon matrix results of Schriver-Mazzuoli et al. [21] and Ito and 

Hirabayashi [23], who proposed that the Ci isomer 2 more closely fits the experimental data. 

Indeed, Schriver-Mazzuoli and co-workers were able to assign only one band in each of the 

fundamental monomer regions with confidence, consistent with only one mode in each of the 

monomer regions being infrared active [21]. There are some minor mis-matches among the 

assignments of the stretching modes [20,23], but definitive assignments to the bands of the 

electron donor and acceptor based on the experimental spectra alone are difficult to achieve. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2020                   doi:10.20944/preprints202009.0763.v1

https://doi.org/10.20944/preprints202009.0763.v1


21 
 

Table 10. Wavenumbers and wavenumber shifts of some dimers and complexes of sulphur dioxide and ozone. 

 

Species SO2 O3 

Symmetry Modea Wavenumber 

/cm-1 

Shift 

/cm-1 

Symmetry Mode Wavenumber 

/cm-1 

Shift 

/cm-1 

SO2 dimer 5 a′ ν1 (ED) 1300.5 -5.0     

  ν2 ( EA) 1102.5   3.3     

  ν3 (ED) 1099.1 -0.1     

  ν4 (OP)   500.0   6.7     

  ν5 (IP)   494.6   1.3     

 a″ ν9 (EA) 1303.9 -1.6     

SO2 dimer 2 ag ν1 (OP) 1303.2 -2.3     

  ν2 (IP) 1101.4   2.2     

  ν3 (IP)   494.9   1.6     

 au ν7 (IP) 1304.9 -0.6     

  ν8 (OP) 1101.5   2.3     

  ν9 (OP)   495.8   2.5     

O3 dimer 2     ag ν1 (OP) 2419.3 175.0 

      ν2 (IP) 1150.2    -7.7 

      ν3 (IP)   743.1     1.6 
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     au ν7 (IP) 2172.0  -72.3 

      ν8 (OP) 1151.6     -6.3 

      ν9 (OP) 742.8      1.3 

SO2-O3 complex 2a a ν2  1301.3 -4.2 a ν1  2270.1 25.8 

  ν4  1096.5 -2.7  ν3  1132.1 -25.8 

  ν6    494.2   0.9  ν5    740.4   -1.1 

SO2-O3 complex 5b a′ ν3  1102.4   3.2 a′ ν1 2243.8   -0.5 

  ν5    495.3   2.0  ν2  1159.2     1.3 

 a″ ν9  1306.2   0.7  ν4    744.7     3.2 

 

a ED – electron donor; EA – electron acceptor; IP – in-phase; OP – out-of-phase. 
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Table 11. Calculated and experimental intramolecular wavenumbers of sulphur dioxide dimer 5. 

 

Reference Wavenumber/cm-1 a 

ν1(a′) 

νa(SO2)(ED) 

ν2(a′) 

νs(SO2)(EA) 

ν3(a′) 

νs(SO2)(ED) 

ν4(a′) 

δ(SO2)(OP) 

ν5(a′) 

δ(SO2)(IP) 

ν9(a″) 

νa(SO2)(EA) 

This work b 1300.5 1102.5 1099.1   500.0   494.6 1303.9 

Ref. 13 c 1343.1, 1345.2 - - - - 1341.1 

Ref. 15 d 1348.2 1155.8 1153.7   524.0   521.7 1345.6 

Ref. 19 d 1349.2 1155.2 1153.9   526.1   524.0 1346.6 

Ref. 20 d 1346.6 1151.8 1154.2   524.3   522.4 1349.1 

Ref. 21 c 1341.3 1146.6 -   519.5 - - 

Ref. 22 c 1345.1 1155.4 1153.3   527.2   521.8 1341.1 

Ref. 22 d 1349.4 1156.1 1154.3   526.5   524.3 1346.5 

Ref. 23 c 1345.8, 1346.5 1154.8, 1155.5 1152.1, 1152.8  - - 1348.2, 1348.9 

Ref. 23 e 1344.4, 1345.2 1152.9, 1153.6 1149.9, 1150.5 - - 1346.3, 1347.0 

Ref. 23 f 1338.8, 1339.6 1149.0, 1149.8 1145.7, 1146.3 - - 1341.1, 1342.0 

 

a EA – electron acceptor; ED – electron donor; OP – out-of-phase; IP – in-phase. 

b Calculated. c In argon. d In nitrogen. e In krypton. f In xenon.
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 Table 10 includes the calculated data for ozone dimer 2. The shifts of the antisymmetric 

O3 stretching modes are spectacularly large, given the low interaction energy of this dimer, and 

are of opposite sign. This result must be viewed in the context of the computed wavenumbers 

of the ozone monomer, 1157.9, 741.5 and 2244.3 cm-1 for ν1, ν2 and ν3 respectively, giving 

calculated/experimental ratios of 1.05, 1.06 and 2.15, based on the experimental values of 1103, 

701 and 1042 cm-1 respectively, reported by Shimanouchi [96].  This assignment admits a most 

unusual ordering of the stretching vibrations, with ν1 > ν3, which has been confirmed by Lee et 

al. [94,95]. (Slanina and Adamowicz [46] report values of 1135, 726 and 2391 cm-1 for the 

monomer wavenumbers, in much closer agreement with our results.) The antisymmetric 

stretching mode shifts indicate a significant separation of the two (in-phase and out-of-phase) 

vibrations of 247.3 cm-1, compared with separations of only 3.4 cm-1 and 1.7 cm-1 for SO2 

dimers 5 and 2, and of 17 cm-1 calculated for the Cs isomer of (O3)2 by Slanina and Adamowicz 

[46]. The anomalous position of the antisymmetric stretching wavenumber confirms the 

notoriously difficult task of accurately reproducing the experimental wavenumber of the ozone 

monomer theoretically without invoking computationally highly demanding levels of theory, 

such as coupled cluster theory with single and double excitations (CCSD) [94,95], which can 

be prohibitively expensive. Our shifts of the symmetric stretching and bending modes of the 

ozone dimer are much more in line with those of the SO2 dimers (less than 10 cm-1).  

 The computed wavenumber shifts of the SO2 moieties of SO2-O3 complexes 2a and 5b 

are quite consistent with those of the SO2 dimers (less than 5 cm-1, see Table 10). Similarly, 

the O3 shifts of heterodimer 5b are insignificant, but those of the symmetric and antisymmetric 

O3 stretching modes of complex 2a are quite substantial and of opposite sign, yielding a 

separation of 51.6 cm-1. While this separation is not as dramatic as the corresponding result for 

the Ci ozone dimer, it is quite apparent that the antisymmetric stretching vibrations of ozone 

molecules in these homo- and heterodimers are extremely sensitive to complexation. 

4. Conclusions 

 A series of nine structures of each of the sulphur dioxide and ozone homodimers, and 

of eight of their heterodimers has been investigated. Of these, two sulphur dioxide and one 

ozone dimer and two sulphur dioxide-ozone complexes were found to be genuine minima on 

their potential surfaces. These five species were all found to be very weakly bound (less than 

10 kJ mol-1). These low interaction energies resulted in very small perturbations of the bond 

lengths and bond angles of the monomers (less than 0.36 and 1.39 pm for the SO and OO bond 

lengths and 0.29 o and 0.58 o for the OSO and OOO angles). The minimal perturbations of the 

intramolecular geometries are matched by the small computed wavenumber shifts (less than 7 
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cm-1 for the SO2 dimers and the SO2 sub-units of the heterodimers, and less than 10 cm-1 for 

the symmetric stretching and bending of the O3 moieties of the ozone dimers and the 

heterodimers). The exceptions to this statement are ozone dimer 2, where the shifts of the 

antisymmetric O3 stretching mode are 175.0 and -72.3 cm-1, and SO2-O3 complex 2a, where 

the O3 stretching vibrations undergo shifts of 25.8 cm-1 to the blue (antisymmetric) and the red 

(symmetric). The ozone moiety appears to be much more sensitive then sulphur dioxide to 

perturbations of their vibrational spectra due to complexation, but the conclusions regarding 

the magnitudes of the shifts have to be tempered by recognition of the well-known 

susceptibility of ozone to the level of theoretical treatment [94,95]. We acknowledge the 

limitations of our methodology as they apply to the ozone species, but in the interests of 

consistency with our other results, we stand by the conclusions presented in this work. 
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