
Article

Uncertainty Relations in Hydrodynamics

Gyell Gonçalves de Matos1 , Takeshi Kodama 1,2 and Tomoi Koide1,*
1 Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972, Rio de Janeiro, RJ, Brazil
2 Instituto de Física, Universidade Federal Fluminense, 24210-346, Niterói, RJ, Brazil
* Correspondence: tomoikoide@gmail.com

Abstract: Uncertainty relations in hydrodynamics are numerically studied. We first give a review
for the formulation of the generalized uncertainty relations in the stochastic variational method
(SVM), following the work by two of the present authors [Phys. Lett. A382, 1472 (2018)]. In this
approach, the origin of the finite minimum value of uncertainty is attributed to the non-differentiable
(virtual) trajectory of a quantum particle and then both of the Kennard and Robertson-Schrödinger
inequalities in quantum mechanics are reproduced. The same non-differentiable trajectory is applied
to the motion of fluid elements in the Navier-Stokes-Fourier equation or the Navier-Stokes-Korteweg
equation. By introducing the standard deviations of position and momentum for fluid elements, the
uncertainty relations in hydrodynamics are derived. These are applicable even to the Gross-Pitaevskii
equation and then the field-theoretical uncertainty relation is reproduced. We further investigate
numerically the derived relations and find that the behaviors of the uncertainty relations for liquid
and gas are qualitatively different. This suggests that the uncertainty relations in hydrodynamics are
used as a criterion to classify liquid and gas in fluid.
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1. Introduction

The expressions of fundamental laws of physics should be independent of the choice of
coordinates. This requirement is naturally satisfied when dynamics is formulated in the variational
principle. The variational approach is of wide application and describes the behaviors of particles and
fields in classical and quantum systems [1]. On the other hand, there exist several cases where this
approach is not directly applicable. A dissipative system like hydrodynamics is such an example. This
fact indicates that the standard formulation of the variational principle can be improved. As an attempt
to describe dissipative systems, Rayleigh’s dissipation function method is known [2]. This method is,
however, not considered as the improvement of the variational principle, because the dissipative term
is introduced by hand as a correction term to the equation obtained by the variational principle.

Note that virtual trajectories considered in the standard variation are implicitly assumed to be
smooth and non-differentiable trajectories are not considered. This limitation may be an obstacle to
study appropriate optimizations in variation and there are several attempts to relax it. This generalized
framework of the calculus of variations is called stochastic variational method (SVM). For example,
the Navier-Stokes-Fourier (NSF) equation is derived by applying SVM to the Lagrangian which leads
to the Euler equation in the standard classical variational method [3–13]. Another important aspect is
that SVM enables us to describe classical and quantum behaviors in a unified way [14]. In fact, we can
derive the Schrödinger equation by applying SVM to the classical action of the Newton equation. In
other words, the quantization of a classical system can be interpreted as the stochastic optimization of
a classical action.

Uncertainty relations are known to be an important property in quantum mechanics, which
characterizes the correlation between fluctuations of, for example, position and momentum of a
quantum particle. Using this property appropriately [15–19], we can investigate a fundamental
limitation for simultaneous measurements as was pointed out by Heisenberg [20]. Usually, this
property is understood through the non-commutativity of self-adjoint operators. If SVM is a natural
framework of quantum mechanics, the same property should be obtained from the stochasticity of a
quantum particle without introducing operators. Moreover such a study will enable us to define the
uncertainty relations in hydrodynamics. This generalized formulation is studied in Refs. [21,22] and the
Kennard-type and Robertson-Schrödinger-type inequalities are derived in hydrodynamics. Recently
the Kennard inequality of quantum mechanics is investigated in a different stochastic approach [23].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2020                   doi:10.20944/preprints202009.0755.v1

https://doi.org/10.20944/preprints202009.0755.v1


3 of 42

One may wonder that the uncertainty relations in hydrodynamics are hardly surprising because
those in quantum mechanics can be understood as the wave property of wave function. It is known
that there exists a relation between the fluctuations of position and wave number (k) when a wave
packet is decomposed with plane waves. This is however the relation for position and wave number
and, to obtain the relation associated with momentum, we have to assume the Einstein-de Broglie
relation where the momentum is defined by h̄k. On the other hand, our uncertainty relations are
defined for the canonical momentum of fluid elements and are different from the relation for wave
number. Indeed, the minimum value of our relations is affected by viscosity but the corresponding
quantity for wave number is irrelevant to dynamics.

In this paper, some properties of the uncertainty relations in hydrodynamics are studied through
numerical simulations. We first give a review of SVM and the formulation of the uncertainty relations,
following Ref. [21]. In this approach, the origin of the finite minimum value of uncertainty in quantum
mechanics is attributed to the ambiguity of the definition of velocity in the non-differentiable (virtual)
trajectory of a quantum particle. After defining canonical momenta in the Hamiltonian formulation
of SVM, the uncertainty relations, both of the Kennard and Robertson-Schrödinger inequalities, are
reproduced. The same non-differentiable trajectory is applied to the motion of fluid elements in
hydrodynamics. By introducing the standard deviations of position and momentum for fluid elements,
the Kennard-type and Robertson-Schrödinger-type relations are derived for the fluid described by the
NSF equation. These relations are applicable to the trapped Bose gas described by the Gross-Pitaevskii
equation and then the field-theoretical uncertainty relation is reproduced. After the review, we
investigate numerically the derived relations by choosing two parameter set: one is for gas and the
other for liquid. We then find that the behaviors of the uncertainty relations for liquid and gas are
qualitatively different. This suggests that the uncertainty relations in hydrodynamics are used as a
criterion to classify liquid and gas in fluid.

This paper is organized as follows. In Sec. 2, we reformulate the standard variational method in
classical particle systems from the point of view of a field theory. This reexpression of the standard
classical variation is used as the basis to develop SVM. Mathematical preparations for stochastic
calculus are summarized in Sec. 3 and SVM for single-particle systems is discussed in Sec. 4. In Sec. 5,
the Kennard and Robertson-Schrödinger inequalities in quantum mechanics are reproduced in SVM.
The procedure is generalized to continuum media and the uncertainty relations in hydrodynamics are
derived in Sec. 6. The numerical calculations of the derived relations are shown in Sec. 7. Section 8 is
devoted to discussions and concluding remarks.

2. Classical variation and optimal control

We briefly summarize the standard variational method in classical mechanics from the perspective
of an optimal control for a velocity field.

Let us denote the trajectory of a particle r(R, t) = (r1(R, t), · · · , rD(R, t)), which is a function of
the time t in a spatial D-dimensional system of Cartesian coordinates. The dependence on the initial
position r(R, ti) = R at an initial time ti is explicitly shown. The Lagrangian for this single-particle
system is defined through the kinetic term K and the potential term V as,

L = K−V =
M
2

(
dr(R, t)

dt

)2

−V(r(R, t)) , (1)

where dr(R, t) = r(R, t + dt)− r(R, t) and M is the particle mass.
For the later convenience, we rewrite this Lagrangian as a field-theoretical quantity. Note that the

particle probability distribution for this system is defined by

ρ(x, t) = δ(D)(x− r(R, t)) , (2)
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where we used Dirac’s delta function in D dimension. Using this, the above single-particle Lagrangian
is given by

L =
∫

dDx ρ(x, t)
[

M
2

u2(x, t)−V(x)
]

, (3)

where u(x, t) is a smooth vector function and can be interpreted as the velocity field. These Lagrangians
are equivalent by using the identification

dr(R, t) = u(r(R, t), t)dt . (4)

We consider the time evolution of the particle during the period from an initial time ti to a final
time t f . For given u(x, t) and r(R, t), we can calculate the action defined by

I[r] =
∫ t f

ti

dt

[
M
2

(
dr(R, t)

dt

)2

−V(r(R, t))

]
. (5)

The trajectory r(R, t) satisfies Eq. (4) and we determine the form of u(x, t) by employing the Hamilton
principle. The infinitesimal variation of trajectories is given by

r(R, t) −→ r′(R, t) = r(R, t) + δf(r(R, t), t) , (6)

where the infinitesimal smooth function satisfies the boundary conditions δf(x, ti) = δf(x, t f ) = 0.
Then the variation of the action leads to

δI[r] =
∫ t f

ti

dt [−M(∂t + u(r(R, t), t) · ∇)u(r(R, t), t)−∇V(r(R, t))] · δf(r(R, t), t) . (7)

In this calculation, we used

u′(r′(R, t), t)− u(r(R, t), t) =
dr′(R, t)

dt
− dr(R, t)

dt
=

d
dt

δf(r(R, t), t) , (8)

where d/dt = ∂t +
dr(R,t)

dt · ∇. To satisfy δI[r] = 0 for an arbitrary function δf(x, t), the velocity of the
particle should satisfy the well-known Newton equation,

M
d
dt

v(t) = −∇V(r(R, t)) , (9)

where the particle velocity is denoted by

v(t) = u(r(R, t), t) . (10)

3. General setup for Stochastic variation

In the previous section, we implicitly assumed that the particle trajectory is smooth and hence the
virtual trajectory defined by Eq. (6) is always differentiable. As was mentioned in the introduction,
there are several proposals to formulate the variation of non-differentiable trajectories [3–14,24–43].
In this work we use the method proposed by Yasue [14] who introduced this idea to extend the
formulation of Nelson’s stochastic mechanics [44]. See also review papers [45,46]. As a review of
selected topics of stochastic approaches to hydrodynamics, see Ref. [47].

There are two important aspects in applying the variational principle to non-differentiable
trajectories: one is the introduction of two Brownian motions (see Eqs. (11) and (13)) and the other
consists in the generalizations of the time derivative (see Eqs. (15) and (16)).
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Figure 1. An example of the typical trajectory of Brownian motion. The positions at t− dt, t and t + dt
are denoted by ri

t−dt, ri
t and ri

t+dt, respectively.

3.1. Zigzag trajectory and two Brownian motions

As was discussed in Sec. 2, a particle velocity u(r(R, t), t) is the tangential line of a particle
trajectory r(R, t) and satisfies Eq. (4). Let us generalize this relation to formulate the variation of
stochastic variables.

A typical example of a zigzag trajectory is known in Brownian motion as is shown in Figure 1. We
assume the similar behavior to represent a zigzag trajectory in SVM. The simplest way to realize this
idea is to add a noise term of Brownian motion to Eq. (4). The derived equation describes the forward
time evolution of the trajectory and called the forward stochastic differential equation (SDE),

dr̂(R, t) = u+(r̂(R, t), t)dt +
√

2νdŴ(t) (dt > 0) . (11)

The second term on the right-hand side represents the noise term of Brownian motion and hence the
origin of the zigzag motion. We used (̂) to denote stochastic variables and dÂ(t) ≡ Â(t + dt)− Â(t)
for an arbitrary stochastic quantity Â(t). The time variable is discretized with the time width dt but
we should take the vanishing limit of dt at the last of calculations. Here Ŵ(t) describes the standard
Wiener process which satisfies the following correlation properties,

E[dŴ(t)] = 0 ,

E[dŴi(t)dŴ j(t′)] = dt δt,t′ δi,j (i j = x, y, z) ,
(12)

where E[ ] denotes the ensemble average for the Wiener process and the right-hand side of the second
equation is given by Kronecker’s delta functions. The intensity of fluctuations is controlled by a
non-negative real constant ν. For the detailed description of the Wiener process, see, for example,
Ref. [48]. Note that u+(r̂(R, t), t) is stochastic because of the trajectory r̂(R, t), but u+(x, t) is a smooth
function.

The particle velocity (field) is, however, not completely characterized by u+(x, t) alone. As is seen
from Figure 1, there are at least two different possibilities to characterize the particle velocities at the
particle position r̂(R, t): one is lim

dt→0+
(r̂(R, t + dt)− r̂(R, t))/dt and the other lim

dt→0+
(r̂(R, t)− r̂(R, t−

dt))/dt. These two quantities are equivalent in a smooth trajectory, but different in a zigzag trajectory.
This difference plays an important role in SVM.
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Figure 2. The ensembles of trajectories fixing Pt and Ft are represented on the left and right panels,
respectively.

The forward SDE is associated with the former definition, lim
dt→0+

(r̂(R, t + dt)− r̂(R, t))/dt. To

accommodate the latter definition, we introduce the backward time evolution of the trajectory described
by the backward SDE,

dr̂(R, t) = u−(r̂(R, t), t)dt +
√

2νdŴ(t) (dt < 0) , (13)

where the another standard Wiener process Ŵ(t) satisfies

E[dŴ(t)] = 0 ,

E[dŴ
i
(t)dŴ

j
(t′)] = |dt| δt,t′ δi,j (i j = x, y, z) .

(14)

These are the same as those in Eq. (12) by replacing dt with |dt|.

3.2. Mean forward and backward derivatives

Because of the ambiguity of the velocity mentioned above, Nelson introduced two different time
derivatives in stochastic mechanics [44]; one is the mean forward derivative,

D+ f (r̂(R, t)) = lim
dt→0+

E
[

f (r̂(R, t + dt))− f (r̂(R, t))
dt

∣∣∣Pt

]
, (15)

and the other the mean backward derivative,

D− f (r̂(R, t)) = lim
dt→0−

E
[

f (r̂(R, t + dt))− f (r̂(R, t))
dt

∣∣∣Ft

]
. (16)

These expectation values are conditional averages, where Pt (Ft) indicates a set of trajectories fixing r̂t′

for t′ ≤ t (t′ ≥ t). As a schematic figure for these definitions, see Figure 2. For the σ-algebra of all
measurable events of r̂t, Pt and Ft represent an increasing and a decreasing family of sub-σ-algebras,
respectively.

To elucidate the above definitions, we consider the Markov process where the trajectory at t + dt
is determined from the position at t and independent of the hysteresis of the position r(R, t′) (t′ < t)
as is described by the forward SDE. Then the condition denoted by Pt is simplified so that only the
position at t is fixed and then the above definition of the mean forward derivative becomes

D+ f (r̂(R, t)) = lim
dt→0+

E
[

f (r̂(R, t + dt))− f (r̂(R, t))
dt

∣∣∣̂r(R, t)
]

. (17)
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To understand this, let us consider a class of the stochastic trajectories which passes a fixed position
r̂(R, t) at t. As is shown on the left panel of Figure 2, the position of the particle at t + dt still fluctuates
and then we can consider the average for such a fluctuating position. Substituting the forward SDE
into the mean forward derivative, we easily find

D+ r̂(R, t) = lim
dt→0+

E
[

u+(r̂(R, t), t) +
√

2ν
dW(t)

dt

∣∣∣̂r(R, t)
]
= u+(r̂(R, t), t) . (18)

In the second equality, we used the first equation of Eq. (12). In a similar fashion, the average for the
position r̂(t− dt) is considered for the backward SDE, as is shown on the right panel of Figure 2 and
then the mean backward derivative (16) leads to

D− r̂(R, t) = lim
dt→0−

E
[

u−(r̂(R, t), t) +
√

2ν
dW(t)

dt

∣∣∣̂r(R, t)
]
= u−(r̂(R, t), t) . (19)

These derivatives are related through the stochastic partial integration formula,

∫ t f

ti

dt E
[
Ŷ(t)D+X̂(t) + X̂(t)D−Ŷ(t)

]
= lim

n→∞

n−1

∑
j=0

E

[
(X̂(tj+1)− X̂(tj))

Ŷ(tj+1) + Ŷ(tj)

2

]
+ lim

n→∞

n

∑
j=1

E

[
(Ŷ(tj)− Ŷ(tj−1))

X̂(tj) + X̂(tj−1)

2

]

= lim
n→∞

n−1

∑
j=0

E
[

X̂(tj+1)Ŷ(tj+1)− X̂(tj)Ŷ(tj)
]

= E
[

X̂(t f )Ŷ(t f )− X̂(ti)Ŷ(ti)
]

, (20)

where tj = ti + j
t f−ti

n = ti + jdt.

3.3. Fokker-Planck equation and Consistency condition

The two SDE’s should describe the same stochastic process. To satisfy this requirement, the two
velocity fields u±(x, t) cannot be independent.

To see this, we define the particle probability distribution

ρ(x, t) =
∫

dDR ρ0(R)E
[
δ(D)(x− r̂(R, t))

]
, (21)

where ρ0(R) is the distribution of the initial position of the particle satisfying∫
dDR ρ0(R) = 1 . (22)

As is well-known, the evolution equation of ρ(x, t) is obtained by using the SDE’s and Ito’s lemma
[48] which is a truncated Taylor series expansion for a function of stochastic variables as is summarized
in Appendix A. The derived equation is known as the Fokker-Planck equation. By using the forward
SDE in the derivation, this becomes

∂tρ(x, t) = (−∇ · u+(x, t) + ν∇2)ρ(x, t) . (23)

Another Fokker-Planck equation from the backward SDE is given by

∂tρ(x, t) = (−∇ · u−(x, t)− ν∇2)ρ(x, t) . (24)
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The forward and backward SDE’s describe different aspects of the same stochastic trajectory and hence
the above two Fokker-Planck equations must be equivalent. Therefore the following condition should
be satisfied

u+(x, t) = u−(x, t) + 2ν∇ ln ρ(x, t) +
1

ρ(x, t)
∇×A(x, t) , (25)

where A(x, t) is an arbitrary vector function. For the sake of simplicity, we set A(x, t) = 0 and then the
above equation is simplified as

u+(x, t) = u−(x, t) + 2ν∇ ln ρ(x, t) . (26)

This is called the consistency condition. The possible role of the omitted function A(x, t) is not yet
understood.

We are often interested in the velocity field v(x, t) which is parallel to the current of the particle
probability distribution,

ρ(x, t)v(x, t) = ρ(x, t)u+(x, t)− ν∇ρ(x, t) = ρ(x, t)u−(x, t) + ν∇ρ(x, t) . (27)

By using the consistency condition, we find that v(x, t) is given by the average of u±(x, t),

v(x, t) =
u+(x, t) + u−(x, t)

2
. (28)

Using this velocity field, the two Fokker-Planck equations are reduced to the simple equation of
continuity,

∂tρ(x, t) = −∇ · J(x, t) ,

J(x, t) = ρ(x, t)v(x, t) .
(29)

The consistency condition is a key property to obtain the uncertainty relations in this formulation.
In fact, multiplying xi to the condition, the expectation value is calculated as∫

dDx ρ(x, t)
{

xiuj
−(x, t)− xiuj

+(x, t)
}
= 2νδij . (30)

As is seen later, we set ν = h̄/(2M) to reproduce the Schrödinger equation in the SVM quantization.
Then this equation reminds us the expectation value of the canonical commutation rule. See also Ref.
[49].

4. Stochastic variational method for particle

We consider the stochastic variation for single-particle systems where the classical form of the
Lagrangian is given by Eq. (1).

4.1. Stochastic action and its variation

The corresponding Lagrangian for the stochastic variation is obtained by replacing r(R, t) with
r̂(R, t). Such a replacement is however not trivial for the kinetic term because there are now two
possibilities to replace the time derivative of smooth trajectories. In this work, we assume that the
stochastic representation of the kinetic term is given by the most general quadratic form of the two
derivatives,

M
2

[
A(D+ r̂(R, t))2 + B(D− r̂(R, t))2 + C(D+ r̂(R, t)) · (D− r̂(R, t))

]
, (31)
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where A, B and C are real constants. We require that SVM reproduces the result of the classical
variation in the vanishing limit of the stochasticity. In this limit, both of D+ r̂(R, t) and D− r̂(R, t)
coincide with the standard time derivative of a smooth trajectory. Thus, to reproduce the result of the
classical variation in the limit, the three coefficients should satisfy

A + B + C = 1 . (32)

Therefore the coefficients can be parametrized as [50],

M
2

ṙ2(R, t)→ M
2

[
B+ ∑

l=±
Al(Dl r̂(R, t))2 + B−(D+ r̂(R, t)) · (D− r̂(R, t))

]
, (33)

where

A± =
1
2
± αA ,

B± =
1
2
± αB ,

(34)

with αA and αB being real constants. The right-hand side of Eq. (33) coincides with the left-hand side
in the vanishing limit of ν because the two time derivatives coincide with the time derivative of a
smooth trajectory.

In the classical variation, the form of a trajectory is entirely controlled for a given velocity. In
SVM, however, we cannot determine a trajectory without ambiguity even for a given velocity field due
to the stochasticity of the trajectory. Therefore we should consider the optimization of the averaged
behavior of an action. The action is eventually given by the expectation value,

Isto [̂r] =
∫ t f

ti

dt E[Lsto(r̂, D+ r̂, D− r̂)] , (35)

where the stochastic Lagrangian is defined by

Lsto(r̂, D+ r̂, D− r̂) =
M
2
(D+ r̂(R, t), D− r̂(R, t))M

(
D+ r̂(R, t)
D− r̂(R, t)

)
−V(r̂(R, t)) , (36)

with

M =

(
A+B+

1
2 B−

1
2 B− A−B+

)
. (37)

For the variation of the stochastic trajectory, instead of Eq. (6), we consider

r̂(R, t) −→ r̂′(R, t) = r̂(R, t) + δf(r̂(R, t), t) . (38)

The infinitesimal smooth function δf(x, t) satisfies the same properties defined in Sec. 2, δf(x, ti) =

δf(x, t f ) = 0. Note that the fluctuation of δf(r̂(R, t), t) comes from that of r̂(R, t).
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The important feature of the stochastic variation comes from the kinetic term which has the time
derivatives. For example, the stochastic variation of a part of the kinetic term is calculated as

∫ t f

ti

dt E
[
(D+ r̂′(R, t))2 − (D+ r̂(R, t))2

]
= 2

∫ t f

ti

dt E [u+(r̂(R, t), t) ·D+δf(r̂(R, t), t)]

= −2
∫ t f

ti

dt E [D−u+(r̂(R, t), t) · δf(r̂(R, t), t)]

= −2
∫ t f

ti

dt E
[
(∂t + u−(r̂(R, t), t) · ∇ − ν∇2)u+(r̂(R, t), t) · δf(r̂(R, t), t)

]
. (39)

From the second to the third line, we used the stochastic partial integration formula (20). In the last
line, Ito’s lemma is utilized.

On the other hand, the variation of the terms independent of time derivatives is the same as that
in the corresponding classical variation. Summarizing these results, the variation of the stochastic
action is calculated as

δI [̂r] =
∫ t f

ti

dt E [Iδ(r̂(R, t), t) · δf(r̂(R, t), t)] , (40)

where

Iδ(x, t)

= −MB+

{
A+(∂t + u−(x, t) · ∇ − ν∇2)u+(x, t) + A−(∂t + u+(x, t) · ∇+ ν∇2)u−(x, t)

}
−M

B−
2

{
(∂t + u−(x, t) · ∇ − ν∇2)u−(x, t) + (∂t + u+(x, t) · ∇+ ν∇2)u+(x, t)

}
−∇V(x) . (41)

From the perspective of the classical variational approach, one may consider that the vanishing
variation of the action δI [̂r] = 0 is satisfied for any choice of δf(r̂(R, t), t) and find Iδ(r̂(R, t), t) = 0.
However, we can control only the averaged behavior as was discussed above. Note that Eq. (40) is
reexpressed as

∫
dDR ρ0(R)δI [̂r] =

∫ t f

ti

dt
∫

dDx ρ(x, t) Iδ(x, t) · δf(x, t) = 0 , (42)

where we multiply the arbitrary distribution of the initial position ρ0(R) to introduce ρ(x, t) defined
by Eq. (21). Thus the stochastic Hamilton principle requires not Iδ(r̂(R, t), t) = 0 but Iδ(x, t) = 0,

(
∂t + u−(x, t) · ∇ − ν∇2, ∂t + u+(x, t) · ∇+ ν∇2

)
M
(

u+(x, t)
u−(x, t)

)
= − 1

M
∇V(x) . (43)

This equation reproduces the Newton equation in the vanishing limit of fluctuations, ν→ 0. See also
Eq. (7). That is, SVM is the natural generalization of the classical variational method.

It is worth mentioning that the above result of the stochastic variation is formally represented by[
D+

∂Lsto

∂(D− r̂)
+ D−

∂Lsto

∂(D+ r̂)
− ∂Lsto

∂ r̂

]
r̂(R,t)=x

= 0 . (44)

This is the stochastic Euler-Lagrange equation. For the special case where (αA, αB) = (0, 1/2), the
stochastic Euler-Lagrange equation coincides with the equation obtained by Nelson in Ref. [44].
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4.2. Schrödinger equation

As one of the SVM applications, we consider the quantization based on SVM [14]. For this, we
choose (αA, αB) = (0, 1/2) which givesM = diag(1/2, 1/2). Then Eq. (43) is simplified as

(∂t + v(x, t) · ∇)v(x, t) = − 1
M
∇(V(x) + VQ(x, t)) , (45)

where the second term on the right-hand side is known as the gradient of the quantum potential
defined by

VQ(x, t) = −2Mν2ρ−1/2(x, t)∇2
√

ρ(x, t) . (46)

To obtain this expression, we used the averaged velocity (28) and the consistency condition (26) to
eliminate u±(x, t). The evolution of ρ(x, t) is given by the equation of continuity (29). That is, the SVM
optimization for the single-particle Lagrangian leads to the coupled equations of Eq. (29) and Eq. (45).

The coupled equations can be represented in a familiar form. Let us introduce a scalar function
θ(x, t), which corresponds to the velocity potential, as

v(x, t) = 2ν∇θ(x, t) . (47)

This procedure is applicable when the motion is irrotational. Then the equation obtained by the
stochastic variation (43) is reexpressed as

∂tθ(x, t) + ν(∇θ(x, t))2 = − 1
2νM

V(x) + νρ−1/2(x, t)∇2
√

ρ(x, t) . (48)

We further introduce a complex function defined by

Ψ(x, t) =
√

ρ(x, t)eiθ(x,t) , (49)

which automatically satisfies

|Ψ(x, t)|2 = ρ(x, t) . (50)

The equation of Ψ(x, t) is easily found from the evolution equations for ρ(x, t) and θ(x, t),

i∂tΨ(x, t) =
[
−ν∇2 +

1
2νM

V(x)
]

Ψ(x, t) . (51)

This is the Schrödinger equation by choosing

ν =
h̄

2M
, (52)

and then Ψ(x, t) is identified with the wave function. In fact, Eq. (45) is known as the hydrodynamical
representation of the Schrödinger equation which was firstly proposed by Madelung [51] and has been
studied exclusively by Bohm and his collaborators [52–54]. See also the Euler equation of the ideal
fluid shown by Eq. (111) for comparison. From this quantum hydrodynamical perspective, quantum
effects described by the Schrödinger equation are induced by the quantum potential VQ(x, t).

The Bernoulli equation is known to characterize a conservation law of the ideal fluid. Applying
the Bernoulli equation to quantum hydrodynamics (45), the time-independent Schrödinger equation is
obtained. See Appendix B.

From the perspective of SVM, the quantization of classical systems is interpreted as the variation
of the action with more microscopic precision. Suppose that a microscopically non-differentiable
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trajectory seems to be smooth in a coarse-grained scale. When we are interested in macroscopic
behaviors where the non-differentiability is negligibly small, the classical variation is applicable to an
action and the Newton equation is obtained. On the other hand, in the observation with microscopic
scales, SVM should be applied and the Schrödinger equation is obtained.

In Ref. [55], Nelson discussed that the particle introduced for the variation in SVM seems to
permit the instantaneous transmission of signals between two distant systems. Indeed, it is known
that the diffusion type-equation like Eqs. (23) and (24) exhibits a superluminal propagation. See, for
example, Ref. [58] and references therein. We would like to, however, emphasize that the particle
considered for the variation is not necessarily a real object, but rather a mathematical notion to help
the formulation of the stochastic variation. This view is more apparent in the application to fluids
where the motion of the fluid element is considered.

In quantum mechanics, the wave function is required to be a continuous single-valued function.
The corresponding property is however not considered in quantum hydrodynamics. As a matter
of fact, the quantum potential becomes singular at the nodes of wave functions and hence we need
additional condition to connect the solutions for the left and right sides of the singularity. The standard
procedure is to use the Bohr-Sommerfeld type condition for a loop path of the quantum fluid. See Ref.
[22,53,56,57] for details. It is worth mentioning that quantum hydrodynamics has an advantage to
discuss quantum behaviors in generalized coordinates [22].

4.3. Stochastic Noether theorem

From the definition of the probability distribution, the expectation value of the position of the
particle is represented by ∫

dDx xiρ(x, t) =
∫

dDx Ψ∗(x, t)xiΨ(x, t) . (53)

It is very easy to see that this is consistent with the quantum-mechanical representation. For the case
of the momentum, we have to consider the average of the expectation values of the two velocity fields,

M
∫

dDx
u+(x, t) + u−(x, t)

2
ρ(x, t) =

∫
dDx Mv(x, t)ρ(x, t)

=
∫

dDx Ψ∗(x, t)(−ih̄∇)Ψ(x, t) . (54)

This coincides with the quantum-mechanical representation. Consequently, we have to consider the
fluctuations for the two velocities fields separately to define the standard deviation of momentum as is
discussed in Sec. 5.2.

It is interesting to notice that the above representation of the momentum can be obtained from the
stochastic Noether theorem [59]. Let us consider the spatial translation of the stochastic trajectory,

r̂(R, t) −→ r̂′(R, t) = r̂(R, t) + ε(r̂(R, t), t) , (55)

where ε(x, t) is an infinitesimal smooth vector function.
As an example, we consider the system described by the following stochastic Lagrangian,

Lsto(r̂, D+ r̂, D− r̂) =
M
4 ∑

l=±
(Dl r̂(t))2 . (56)
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Here we set (αA, αB) = (0, 1/2) and V(x) = 0 in the stochastic Lagrangian (36). The change of the
stochastic action associated with the spatial translation is

I [̂r′]− I [̂r] =
∫ t f

ti

dt E
[

∂Lsto

∂(D+ r̂)
·D+ε +

∂Lsto

∂(D− r̂)
·D−ε +

∂Lsto

∂r̂
· ε
]

=
∫ t f

ti

dt
d
dt

E
[

∂Lsto

∂(D+ r̂)
· ε + ∂Lsto

∂(D− r̂)
· ε
]

=
M
2

∫ t f

ti

dt
d
dt

E [D+ r̂(R, t) · ε + D− r̂(R, t) · ε] . (57)

Here we used that u±(x, t) satisfy the stochastic Euler-Lagrange equation (44), and

d
dt

E[X̂Ŷ] = E[ŶD+X̂ + X̂D−Ŷ] , (58)

which is obtained from the stochastic partial integration formula (20).
Suppose that the stochastic action is invariant in the homogeneous translation, ε→ const. Then

the above equation leads to

M
2

d
dt

E [u+(r̂(R, t), t) + u−(r̂(R, t), t)] = 0 , (59)

which is equivalently reexpressed as

d
dt

∫
dDx Mv(x, t)ρ(x, t) = 0 . (60)

This represents the conservation of the momentum expectation value used in Eq. (54).

5. Uncertainty relations for particles in SVM

Normally the uncertainty relations in quantum mechanics are attributed to the non-commutativity
of operators. In this section, the same uncertainty relations are shown to be obtained from the
non-differentiability of the stochastic trajectory. See also the discussion for the uncertainty principle in
the original paper by Heisenberg [20]. The discussion developed in this section is based on Ref. [21].

5.1. Stochastic Hamiltonian formalism

In Sec. 4.3, we found that the first order expectation value of the momentum operator in quantum
mechanics can be represented by the averaged expectation value of u±(x, t). To discuss the uncertainty
relations, we should further define the hydrodynamical representation of the fluctuation of momentum.
For this purpose, we consider the Hamiltonian formulation of SVM.

The stochastic Hamiltonian is defined through the Legendre transformation of the velocity,

Hsto(r̂, p̂+, p̂−) =
p̂+(R, t) ·D+ r̂(R, t) + p̂−(R, t) ·D− r̂(R, t)

2
− L(r̂, D+ r̂, D− r̂) . (61)

Here D±r(R, t) should be replaced with p̂+(R, t) and p̂−(R, t) using

p̂±(R, t) = 2
∂Lsto

∂(D± r̂)
. (62)

The additional factor 1/2 in Eq. (61) is introduced for a convention to reproduce the classical result in
the vanishing limit of h̄ (or equivalently ν) [21].
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Using the stochastic Lagrangian (36), the above two momenta are calculated as(
p̂+(R, t)
p̂−(R, t)

)
= 2MM

(
u+(r̂(R, t), t)
u−(r̂(R, t), t)

)
. (63)

When the parameter set to reproduce quantum mechanics (αA, αB) = (0, 1/2) is utilized, these are
simplified as

p̂±(R, t) = Mu±(r̂(R, t), t) . (64)

Substituting these into the stochastic Hamiltonian (61), we find

Hsto(r̂, p̂+, p̂−) =
1

8M
(p̂+(R, t), p̂−(R, t))M−1

(
p̂+(R, t)
p̂−(R, t)

)
+ V(r̂(R, t)) , (65)

where

M−1 =
4

4A+A−B2
+ − B2

−

(
A−B+ − B−

2
− B−

2 A+B+

)
. (66)

To have the inverse, the parameters A± and B± (or equivalently αA and αB) should satisfy the condition,

det(M) 6= 0 −→ A+A−B2
+ −

B2
−
4
6= 0 . (67)

As is analytical mechanics, the variational principle can be formulated with the stochastic
Hamiltonian and then the stochastic action is defined by

I [̂r, p̂+, p̂−] =
∫ t f

ti

dt E
[

p̂+(R, t) ·D+ r̂(R, t) + p̂−(R, t) ·D− r̂(R, t)
2

− Hsto(r̂, p̂+, p̂−)
]

.

(68)

We consider the variations of the three quantities,

r̂(R, t) −→ r̂′(R.t) = r̂(R, t) + δfr(r̂(R, t), p̂+(R, t), p̂−(R, t), t) ,

p̂±(R, t) −→ p̂′±(R.t) = p̂±(R, t) + δfp±(r̂(R, t), p̂+(R, t), p̂−(R, t), t) .
(69)

where the infinitesimal smooth functions satisfy δfa(x, y, z, ti) = δfa(x, y, z, t f ) = 0 (a = r, p±). Then
the results of the stochastic variation are summarized by

D± r̂(R, t) = 2
∂Hsto

∂p̂±
,[

D−p̂+(R, t) + D+p̂−(R, t)
2

+
∂Hsto

∂r̂

]
r̂(R,t)=x

= 0 .
(70)

One can easily confirm that the first line of the equations coincides with Eq. (62). These are the
stochastic generalization of the canonical equation. Note that, to substitute r̂(R, t) = x in the second
equation, p̂±(R, t) are expressed in terms of u±(r̂(R, t), t) by using Eq. (62). Then the stochastic
canonical equations are equivalent to the stochastic Euler-Lagrange equation. As is discussed in Sec.
5.3, these results can be expressed by introducing a generalized Poisson bracket.

The parameters αA and αB affect only the definitions of the two momenta when the stochastic
Hamiltonian does not have a cross term of r̂(R, t) and p̂±(R, t). In the second equation of the stochastic
canonical equation (70), the two momenta always contribute on an equal footing because of ∂Hsto/∂r̂ =
∂V/∂r̂. This property is used to define the standard deviation of momentum later.
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A different Hamiltonian formulation is developed in Ref. [60], where the symmetrized Lagrangian
for D± is considered. Then only one conjugate momentum associated with v(x, t) is introduced
while our formulation needs two momenta p±(R, t). These two momenta plays a crucial role in the
construction of the uncertainty relations in hydrodynamics.

The expectation value of the stochastic Hamiltonian gives that of the Hamiltonian operator in
quantum mechanics. From the definition of the stochastic Hamiltonian, we define the following
function

Hsto(x, t) = Hsto(r̂, p̂+, p̂−)|r̂(R,t)=x

=
M

2det(M)

[
∑

l=±
Al B+

(
A+A−B2

+ +
3B2
−

4

)
u2

l (x, t) + B−

(
3A+A−B2

+ +
B2
−
4

)
u+(x, t) · u−(x, t)

]
+V(x) . (71)

For the parameter (αA, αB, ν) = (0, 1/2, h̄/(2M)) which reproduces quantum mechanics, this is
reduced to

Hsto(x, t) =
M
4

[
u2
+(x, t) + u2

−(x, t)
]
+ V(x) . (72)

In this case, it is easily confirmed that the expectation value coincides with that of the Hamiltonian
operator,

∫
dDx ρ(x, t)Hsto(x, t) =

∫
dDx Ψ∗(x, t)

[
− h̄2

2M
∇2 + V(x)

]
Ψ(x, t) . (73)

For a general set of parameters, the relation between the stochastic Hamiltonian and the energy of the
corresponding system is not yet known. It is worth mentioning that the canonical equations are not
expressed by the standard Poisson bracket in SVM and thus the role of Hamiltonian is changed. See
the discussion in Sec. 5.3.

The quantity corresponding to the Hamiltonian operator is obtained from the Bernoulli equation
in quantum hydrodynamics. See Appendix B.

5.2. Inequalities in SVM and quantum-mechanical uncertainty relations

To study uncertainty relations, we have to define the standard deviations of position and
momentum. For the sake of later convenience, we define the following expectation value,

d f̂ c =
∫

dDR ρ0(R)E[ f (r̂(R, t), t)] =
∫

dDx ρ(x, t) f (x, t) , (74)

where f (x, t) is an arbitrary function and the definition of ρ(x, t) is given by Eq. (21).
Using this definition, the standard deviation of position is defined by(

σ
(2)
xi

)1/2
=
√
d(δr̂i)2c , (75)

where δ f̂ = f (r̂(R, t), t)− d f̂ c. On the other hand, the corresponding definition for momentum is not
trivial because now we have two momenta p̂±(R, t). As we noticed, the momenta always contribute on
an equal footing in the stochastic canonical equations (70). Therefore we define the standard deviation
of momentum by the average of the two contributions,

(
σ
(2)
pi

)1/2
=

√
d(δ p̂i

+)
2c+ d(δ p̂i

−)
2c

2
. (76)
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To calculate this expectation value, we should remember that the above momenta are functions of
r̂(R, t). It is easily shown that this definition coincides with the quantum-mechanical one [21]. See
Appendix C.

The product of the above two deviations is reexpressed as

σ
(2)
xi σ

(2)
pj = σ

(2)
xi

{⌈
(δ p̂j

m)2
⌋
+
⌈
(δ p̂j

d)
2
⌋}
≡ σ

(2)
xi σ

(2)

pj
m
+ σ

(2)
xi σ

(2)

pj
d

, (77)

where

p̂m(R, t) =
p̂+(R, t) + p̂−(R, t)

2
,

p̂d(R, t) =
p̂+(R, t)− p̂−(R, t)

2
.

(78)

From the consistency condition given by Eq. (26), these are reexpressed as

p̂m(R, t) = M {v(r̂(R, t), t)) + 2ναAB+∇ ln ρ(r̂(R, t), t)} ,

p̂d(R, t) = M {2ναB∇ ln ρ(r̂(R, t), t) + 2αAB+v(r̂(R, t), t)} .
(79)

The terms proportional to ∇ ln ρ(r̂(R, t), t) contribute to a finite minimum value of the uncertainty
relations.

Applying the Cauchy-Schwarz inequality E[Â2]E[B̂2] ≥ |E[ÂB̂]|2, the first and second terms on
the right-hand side of Eq. (77) satisfy

σ
(2)
xi σ

(2)

pj
m
≥
∣∣∣⌈δr̂i δ p̂j

m

⌋∣∣∣2 = M2
∣∣∣−2ναAB+δij + dδr̂i δv̂jc

∣∣∣2 ,

σ
(2)
xi σ

(2)

pj
d

≥
∣∣∣⌈δr̂i δ p̂j

d

⌋∣∣∣2 = M2
∣∣∣−2ναBδij + 2αAB+dδr̂i δv̂jc

∣∣∣2 ,
(80)

respectively. In this derivation we used

dr̂i p̂j
m c = −2MναAB+δij + M

∫
dDx ρ(x, t)xivj(x, t) ,

dr̂i p̂j
d c = −2MναBδij + 2MαAB+

∫
dDx ρ(x, t)xivj(x, t) .

(81)

Substituting these results into Eq. (77), the inequality satisfied for position and momentum is
given by [21]

σ
(2)
xi σ

(2)
pj ≥ M2

 (4να2
AB2

+ − ν(B+ − B−))2

1 + 4α2
AB2

+

δij + (1 + 4α2
AB2

+)

(
dδr̂i δv̂jc −

4ναAB2
+

1 + 4α2
AB2

+

δij

)2
 .

(82)

This is the most general representation of the uncertainty relation for single-particle systems in SVM.
This reproduces the standard uncertainty relations in quantum mechanics. Choosing (αA, αB, ν) =

(0, 1/2, h̄/(2M)), the above inequality is reduced to

(
σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥

√(
h̄
2

)2
δij + M2

(
dδr̂i δv̂jc

)2

=

√(
h̄
2

)2
δij + (Re[〈(xi

op − 〈xi
op〉)(pj

op − 〈p
j
op〉)〉])2 . (83)
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In the second line, 〈 〉 means the quantum mechanical expectation value with a wave function.
The position and the momentum operators in Cartesian coordinates are denoted by xi

op and pj
op,

respectively. This inequality is known as the Robertson-Schrödinger inequality in quantum mechanics.
When the second term inside the square root on the right-hand side is ignored, this inequality coincides
with the Kennard inequality, (

σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ h̄

2
δij . (84)

In addition, one can easily confirm in the Robertson-Schrödinger inequality that the second term inside
the square root vanishes for the coherent state.

For the case of the Kennard inequality, the right-hand side of Eq. (82) is simplified as

(
σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ Mν

|4α2
AB2

+ − (B+ − B−)|√
1 + 4α2

AB2
+

δij =
4Mν√

1 + 4α2
AB2

+

|det(M)|δij . (85)

From this representation, one can easily see that the minimum value of uncertainty never vanish for a
finite ν because det(M) 6= 0. That is, a finite minimum uncertainty for position and momentum is not
inherent in quantum mechanics but universal in stochastic dynamics formulated in SVM.

The Cauchy-Schwarz inequality is a special case of the Hölder inequality,(
E[|Â|a]

)1/a (
E[|B̂|b]

)1/b
≥ E[|ÂB̂|] ≥ |E[ÂB̂]| , (86)

where the positive real a and b satisfy 1 < a, b and 1/a + 1/b = 1. The Cauchy-Schwarz inequality
is reproduced for a = b = 2. Using this, we can study a different inequality satisfied for quantum
mechanics. Let us introduce

σ
(a)
xi = d|δr̂i|ac ,

σ
(b)
pi =

d|δ p̂i
+|bc+ d|δ p̂i

−|bc
2

.
(87)

The product of this quantities satisfies the same uncertainty relation as before,(
σ
(a)
xi

)1/a (
σ
(b)
pi

)1/b

≥ M

√√√√ (4να2
AB2

+ − ν(B+ − B−))2

1 + 4α2
AB2

+

δij + (1 + 4α2
AB2

+)

(
dδr̂i δv̂jc −

4ναAB2
+

1 + 4α2
AB2

+

δij

)2

.

(88)

The consistency condition (26) is the origin of the finite minimum uncertainty in SVM as was
shown in the above derivation. In fact, the consistency condition has a close relation to the canonical
commutation rule in the standard formulation of quantum mechanics. Using the definitions of the two
momenta (63), the consistency condition is reexpressed as⌈

1
2
(r̂i p̂j

− − r̂i p̂j
+) + αAB+(r̂i p̂j

− + r̂i p̂j
+)

⌋
= 4Mνdet(M)δij . (89)

For the parameter set to reproduce the Schrödinger equation, (αA, αB, ν) = (0, 1/2, h̄/(2M)), this is
simplified as ⌈

r̂i p̂j
− − r̂i p̂j

+

⌋
= h̄δij . (90)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2020                   doi:10.20944/preprints202009.0755.v1

https://doi.org/10.20944/preprints202009.0755.v1


18 of 42

This reminds us the canonical commutation rule although the imaginary unit (i) does not appear in the
above equation. The role of the imaginary unit and a more detailed discussion will be developed in a
forthcoming paper.

5.3. Generalized bracket

The canonical equations in analytical mechanics can be expressed with the Poisson bracket. The
analogous representation seems to be possible in SVM by introducing the generalized bracket,

{X1, X2|Y+, Y−} =
D

∑
i=1

(
∂X1

∂r̂i
∂Y+

∂ p̂i
+

+
∂X2

∂r̂i
∂Y−
∂ p̂i
−
− ∂X1

∂ p̂i
−

∂Y−
∂r̂i −

∂X2

∂ p̂i
+

∂Y+

∂r̂i

)
. (91)

This bracket is invariant for the simultaneous exchange between (X1, Y+, p̂+) and (X2, Y−, p̂−).
We further suppose that the matrixM does not have off-diagonal components (that is, αB = 1/2)

and hence the stochastic Hamiltonian does not have a cross term of p̂+(R, t) and p̂−(R, t). Then the
stochastic Hamiltonian can be decomposed into the two parts as

Hsto(r̂, p̂+, p̂−) = H(+)(r̂, p̂+) + H(−)(r̂, p̂−) . (92)

This decomposition has an ambiguity for adding a constant but this is irrelevant in the following
discussion. Then the stochastic canonical equations (70) are formally expressed using the above bracket
as

D+ r̂i + D−0
2

=
1
2

D+ r̂i = {r̂i, 0|H(+), H(−)} ,

D+0 + D− r̂i

2
=

1
2

D− r̂i = {0, r̂i|H(+), H(−)} ,[
D+ p̂i

− + D− p̂i
+

2
− { p̂i

−, p̂i
+|H(+), H(−)}

]
r̂(R,t)=x

= 0 .

(93)

It is however noted that the applicability of the generalized bracket is not confirmed for a general
function, like f (r̂i(R, t), p̂i

+(R, t), p̂i
−(R, t)).

Another generalization of the Poisson bracket is known in classical mechanics by Nambu where
the generalized bracket depends on three variables [61]. His approach however will be difficult to
apply to our case because of the two different time derivatives in SVM.

6. Uncertainty Relations for continuum media

We have discussed the quantization of single-particle systems in SVM, showing that quantization
corresponds to the stochastic variation of a classical action. The applicability is however not limited to
quantization. Viscous hydrodynamics can be formulated in SVM.

6.1. Brief summary of variational approach to ideal fluid

We consider the ideal fluid as a continuum medium which is described by the mass distribution
n(x, t) and the velocity field v(x, t). The ideal-fluid action is

I[ρ, v, λ] =
∫ t f

ti

dt
∫

dDxL(x, t) , (94)

where the Lagrangian density is defined by

L(x, t) =
n(x, t)

2
v2(x, t)− ε(n(x, t)) + λ(x, t)[∂tn(x, t) +∇ · {n(x, t)v(x, t)}] . (95)
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Figure 3. The behavior of fluid can be understood as the ensemble of fluid elements.

The internal energy density ε is assumed to be a function only of n(x, t). The mass distribution is
normalized by

MT =
∫

dDx n(x, t) , (96)

where MT is the total mass of the fluid. The first and the second terms on the right-hand side of Eq. (95)
correspond to the kinetic and potential terms, respectively. The third term represents the constraint of
the mass conservation with the Lagrangian multiplier λ(x, t).

There is, however, another view to describe fluids. Fluids can be represented by the ensemble of
fluid elements which are virtual particles with fixed masses, as is shown in Figure 3. The size of a fluid
element is infinitesimal compared to the macroscopic scale of observation, but sufficiently large so that
constituent particles in each element are thermally equilibrated. This is known as the assumption of
the local thermal equilibrium and a fundamental requirement in hydrodynamics.

The trajectory of the fluid element is denoted by r(R, t) where R is the initial position of fluid
elements, r(R, ti) = R. Then the mass distribution is expressed as

n(x, t) =
∫

dDR n0(R)δ(D)(x− r(R, t)) , (97)

where n0(R) is the initial mass distribution satisfying

MT =
∫

dDR n0(R) . (98)

From the above definition of n(x, t), the equation of continuity for the fluid mass is automatically
satisfied,

∂tn(x, t) = −∇ · {n(x, t)v(x, t)} , (99)

where we used the identification

dr(R, t)
dt

= v(r(R, t), t) . (100)
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The action for the ideal fluid in terms of fluid elements is reexpressed as

I[r] =
∫ t f

ti

dt
∫

dDR n0(R)

[
1
2

(
dr(R, t)

dt

)2

− J(r)
ε(n0(R)/J(r))

n0(R)

]
. (101)

To obtain this, note that

J(r)n(r(R, t), t) = n0(R) , (102)

where the Jacobian is defined by

J(r) = det
(

∂r(R, t)
∂R

)
. (103)

We find that the variable of variation in this action (101) is given only by r(R, t), while (ρ, v, λ) are
chosen as the variables in Eq. (94). This is because the mass distribution and the velocity field are
expressed using r(R, t) and its time derivative, and the mass conservation is automatically satisfied in
Eq. (97).

We can implement the variation as is the case in single-particle systems. The variation of the
trajectory of fluid elements is given by

r(R, t) −→ r′(R, t) = r(R, t) + δf(r(R, t), t) , (104)

where the infinitesimal smooth function δf(x, t) satisfies the same boundary condition introduced
before, δf(x, ti) = δf(x, t f ) = 0. The variation of the potential term of the action is calculated as

δ
∫ t f

ti

dt
∫

dDR n0(R)J(r)
ε(n0(R)/J(r))

n0(R)

=
∫ t f

ti

dt
∫

dDR n0(R)

(
d

dn
ε(n)

n

)
δ

n0(R)

J(r)

=
∫ t f

ti

dt
∫

dDR
[

n0(R)

n(r(R, t), t)
∇P(n(r(R, t), t))

]
· δf(r(R, t), t) , (105)

where the adiabatic (isentropic) pressure is thermodynamically defined as

dE = −PdV −→ P = − d
dn−1

( ε

n

)
. (106)

From the second to the third line, we used

δ
n0(R)

J(r)
= −n(r(R, t), t)

J(r)

D

∑
i,j=1

Aij
∂δ f i(r(R, t), t)

∂Rj . (107)

The cofactor of the Jacobian is defined by

Aij =
∂J(r)

∂(∂ri/∂Rj)
, (108)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2020                   doi:10.20944/preprints202009.0755.v1

https://doi.org/10.20944/preprints202009.0755.v1


21 of 42

which satisfies

D

∑
j=1

∂Aij

∂Rj = 0 ,

D

∑
j=1

Aij
∂

∂Rj = J(r)∂i .

(109)

The variation of the action eventually leads to

δI[r]

=
∫ t f

ti

dt
∫

dDR n0(R)

[
d
dt

v(r(R, t), t) +
1

n(r(R, t), t)
∇P(n(r(R, t), t))

]
· δf(r(R, t), t)

=
∫ t f

ti

dt
∫

dDx n(x, t)
[
(∂t + v(x, t) · ∇)v(x, t) +

1
n(x, t)

∇P(n(x, t))
]
· δf(r(R, t), t) .

(110)

From the Hamilton principle, the velocity field should be given by the solution of the following
equation,

(∂t + v(x, t) · ∇)v(x, t) = − 1
n(x, t)

∇P(n(x, t)) . (111)

This is the Euler equation for the ideal fluid. The same argument is applicable to derive the relativistic
Euler equation interacting with electromagnetic fields [62].

To show the equivalence between the two actions (94) and (101), we need to assume that the
trajectories of different fluid elements are not across. Such a condition will, however, not be satisfied in
the case of turbulence.

6.2. Derivation of compressible NSF equation in SVM

In the derivation of the Euler equation, we consider the variation only of the smooth trajectory of
the fluid element. Now we generalize it and take into account the variation of the non-differentiable
trajectory following the discussion developed in the previous section [9,21,43]. There are many
works to derive the NSF equation of the incompressible fluid in the different formulations of the
stochastic calculus of variations [3–8,10,11,30]. The applications to the compressible fluid are developed
exclusively using the framework presented in this paper [9,21,43].

The application of SVM to a continuum medium is straightforward. The zigzag trajectory of fluid
elements is characterized by the forward and backward SDE’s which are defined by

dr̂(R, t) = u+(r̂(R, t), t)dt +
√

2νdŴ(t) (dt > 0) ,

dr̂(R, t) = u−(r̂(R, t), t)dt +
√

2νdŴ(t) (dt < 0) ,
(112)

respectively. The standard Wiener processes are the same as those in the single-particle systems.
The definition of the mass distribution is modified by operating the ensemble average for the

Wiener processes,

n(x, t) =
∫

dDR n0(R)E[δ(D)(x− r(R, t))] , (113)

and then the corresponding consistency condition is expressed with the mass distribution as

u+(x, t) = u−(x, t) + 2ν∇ ln n(x, t) . (114)
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Using the consistency condition, the equation for the mass distribution is shown to be given by the
equation of continuity,

∂tn(x, t) = −∇ · {n(x, t)v(x, t)} , (115)

where the fluid velocity is given by the average of u±(x, t) as is defined in Eq. (28).
The stochastic action corresponding to Eq. (101) is defined by

Isto [̂r] =
∫ t f

ti

dt
∫

dDR
n0(R)

M
E[Lsto(r̂, D+ r̂, D− r̂)] , (116)

where the stochastic Lagrangian is given by

Lsto(r̂, D+ r̂, D− r̂)

= M

[
1
2
(D+ r̂(R, t), D− r̂(R, t))M

(
D+ r̂(R, t)
D− r̂(R, t)

)
− J(r̂)

ε(n0(R)/J(r̂))
n0(R)

]
. (117)

The matrix M is defined in Eq. (37). For the consistency of the dimension of the Lagrangian, we
introduced a mass parameter M. It should be emphasized that the internal energy density ε can be a
function not only of the mass distribution but also, for example, of the entropy density. This is different
from the case of the ideal fluid where the entropy does not change along the motion of fluid element.
In the following calculation, however, we assume that the contribution from the entropy density
in variation are negligibly small and thus the entropy dependence in the internal energy density is
omitted. This simplification, however, affects the definition of the second coefficient of viscosity. See
the discussion below Eq. (121).

Applying the procedure developed in the previous section to Eq. (117), the stochastic Hamilton
principle leads to

(
∂t + u−(x, t) · ∇ − ν∇2, ∂t + u+(x, t) · ∇+ ν∇2

)
M
(

u+(x, t)
u−(x, t)

)
= − 1

n(x, t)
∇P(n(x, t)) .

(118)

Representing the left-hand side using the fluid velocity v(R, t), we find

n(x, t)(∂t + v(x, t) · ∇)vi(x, t)−
D

∑
j=1

∂j{ηEij(x, t) + κΠij
Q(x, t)} = −∂i{P(n(x, t))− ζθ(x, t)} ,

(119)

where

Eij(x, t) =
1
2
(∂ivj(x, t) + ∂jvi(x, t))− 1

D
θ(x, t)δij ,

θ(x, t) = ∇ · v(x, t) ,

Πij
Q(x, t) = n(x, t)∂i∂j ln n(x, t) ,

(120)

and the coefficients are defined by

κ = 2αBν2 ,

η = 2αA(1 + 2αB)νn(x, t) ,

ζ =
η

D
.

(121)
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The shear viscosity term and the bulk viscosity term are represented by ηEij(x, t) and ζθ(x, t),
respectively. This equation is reduced to the Navier-Stokes-Fourier (NSF) equation when the Πij

Q
term is dropped by setting κ = 0 (αB = 0). Note however that the finite contribution of the so-called
second coefficient of viscosity is not reproduced in the above derivation and thus the bulk viscosity ζ is
simply proportional to the shear viscosity η as is shown in the last equation of Eq. (121). To reproduce
this second coefficient, we should consider, for example, the variation of the entropy dependence in
the pressure, as is discussed in Ref. [9]. In the following discussion, however, we ignore this effect.

The last term on the left-hand side, Πij
Q(x, t), corresponds to the quantum potential, because

∂i
∇2
√

n(x, t)√
n(x, t)

=
1

2n(x, t)
∇ · {n(x, t)∇∂i ln n(x, t)} . (122)

Differently from quantum hydrodynamics (45), however, the above term is induced by thermal
fluctuations, not by quantum fluctuations.

The emergence of the Πij
Q(x, t) term reminds us the possible modification of the NSF equation

proposed by Brenner [63–73]. Normally, the fluid velocity is defined so as to be parallel to the mass
flow. Brenner pointed out that the velocity of a tracer particle of fluids is not necessarily parallel to
such a velocity and the existence of these two velocities should be taken into account in the formulation
of hydrodynamics. Then, by applying the linear irreversible thermodynamics, the difference of the
two velocities is found to be characterized by the gradient of n(x, t) as is given by our consistency
condition (26) and a new effect corresponding to the Πij

Q term appears in the modified hydrodynamics.
See also the Table 1 in Ref. [64]. This theory is called bivelocity hydrodynamics but the introduction
of such a modification is still controversial. The similar situation is well-known in the community of
relativistic hydrodynamics where two different fluid velocities are introduced through the energy flow
(Landau-Lifshitz velocity) and a conserved charge flow (Eckart velocity) [74]. In fact, the structure
analogous to bivelocity hydrodynamics naturally appears as the next-to-leading order relativistic
corrections to the NSF equation [72]. Let us denote the Landau-Lifshitz velocity and the Eckart velocity
by uL(x, t) and uE(x, t), respectively. Using Eq. (37) of Ref. [72] and Fick’s law of diffusion, we find
that these two velocities satisfy

uL(x, t)− uE(x, t) ∝ ∇ ln n(x, t) . (123)

This relation is analogous of the consistency condition (114). In addition, if we require the positivity
of the kinetic term of the stochastic Lagrangian, we cannot set κ = 0 and thus the contribution of the
Πij

Q(x, t) term should be maintained. See Appendix D.
Korteweg considered hydrodynamics of liquid-vapor fluids near phase transitions and proposed

to add the similar term to our Πij
Q(x, t) term to the NSF equation [75]. This additional term is associated

with the capillary action induced by surface effects at the boundary of the two fluids. This equation is
called Nevier-Stokes-Korteweg equation. By choosing parameters appropriately, our equation (119)
coincides with the Nevier-Stokes-Korteweg equation. There are so many works to investigate this
equation. See, for example, [76] and references therein.

As was mentioned in the last of Sec. 6.1, we need to assume no intersection of the trajectories
of different fluid elements to show the equivalence of the field-type action (94) and the particle-type
action (101). Once the fluctuations of the trajectories are introduced, however, this will not be satisfied
and thus we cannot find the corresponding field-type action from Eq. (116). The applications of SVM
to field-theoretical systems have not yet been studied sufficiently except for the Klein-Gordon field [77]
and thus it is still an open question whether the NSF equation is obtained from the field-type action
(95) by introducing zigzag fields.
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6.3. Uncertainty relations in hydrodynamics

In the discussion of the uncertainty relations in quantum mechanics, we consider the position and
the momentum of a quantum particle. For the uncertainty relations in hydrodynamics, we consider
those of fluid elements. Suppose that each fluid element has a fixed common mass M which is much
smaller than the total mass of the fluid, M << MT to justify the local thermal equilibrium. Then the
total number of fluid elements is given by

Ne f f =
MT
M

=
∫

dDx ρe f f (x, t) , (124)

where we introduced the distribution of fluid elements,

ρe f f (x, t) =
1
M

n(x, t) . (125)

The choice of M and hence the definition of ρe f f (x, t) depends on our definition of fluid elements. As
is seen soon later, however, the minimum value of uncertainty is independent of the ambiguity of the
definition.

Then the standard deviation of the positions of fluid elements will be defined by(
σ
(2)
xi

)1/2
=
√
d(δr̂i)2c . (126)

The definition of δ is the same as that given below Eq. (75), δr̂i = r̂i(R, t)− dr̂ic, where, however, the
definition of the average d c is replaced by

d f̂ c =
∫

dDR ρ
e f f
0 (R)E[ f (r̂(R, t), t)] =

∫
dDx ρe f f (x, t) f (x, t) . (127)

Here we used the initial distribution of fluid elements ρ
e f f
0 (x) = ρe f f (x, ti).

The standard deviation of the momentum of fluid elements is defined in the same fashion as Eq.
(76) using Eq. (127),

(
σ
(2)
pi

)1/2
=

√
d(δ p̂i

+)
2c+ d(δ p̂i

−)
2c

2
, (128)

where the two momenta are(
p̂+(t)
p̂−(t)

)
= 2M

(
A+B+u+(r(R, t), t) + 1

2 B−u−(r(R, t), t)
1
2 B−u+(r(R, t), t) + A−B+u−(r(R, t), t)

)
. (129)

Using these, we find

dr̂i p̂j
m c = −2MTναAB+δij +

∫
dDx n(x, t)xivj(x, t) ,

dr̂i p̂j
d c = −2MTναBδij + 2B+αA

∫
dDx n(x, t)xivj(x, t) ,

(130)

where the total mass of the fluid MT comes from Eq. (124).
The uncertainty relation in hydrodynamics is eventually given by

(
σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ MT

√
(ξ2 − κ)2

ν2 + ξ2 δij +

(
1 +

ξ2

ν2

)(
M

MT
dδr̂i δv̂jc − ξ(ν2 + κ)

ν2 + ξ2 δij

)2

.

(131)
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Here we introduced the kinematic viscosity

ξ =
η

2n
= 2αAB+ν . (132)

This is the Robertson-Schrödinger-type inequality in hydrodynamics. The right-hand side is
represented by the parameters in hydrodynamics showing that the magnitude of the minimum
value is characterized by viscosity, which is known to be associated with thermal fluctuations through
the fluctuation-dissipation theorem.

The second term inside the square root on the right-hand side depends on the behaviors of fluids
but is always positive. Therefore, by dropping this, the above inequality is simplified and we obtain
the Kennard-type inequality in hydrodynamics,

(
σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ MT

|ξ2 − κ|√
ν2 + ξ2

δij =
4MTν√

1 + (ξ/ν)2
|det(M)|δij , (133)

where

det(M) =
κ − ξ2

4ν2 6= 0 . (134)

It should be emphasized that the minimum value of uncertainty is independent of the definition of
fluid elements. This depends on the total mass of the fluid MT and thus becomes larger as the increase
of the volume of fluids.

In the above definition of σxi , we measure the position from the following expectation value,

dr̂i c =
∫

dDx ρe f f (x, t)xi . (135)

On the other hand, the center of mass of fluids is defined by

1∫
dDx ρe f f (x, t)

dr̂i c , (136)

and then we can define the standard deviation of the position measured from the center of mass by(
Σ(2)

xi

)1/2
=

1∫
dDx ρe f f (x, t)

(
σ
(2)
xi

)1/2
. (137)

Using this definition, the Kennard-type inequality is reexpressed as(
Σ(2)

xi

)1/2 (
σ
(2)
pj

)1/2
≥ 4Mν√

1 + (ξ/ν)2
|det(M)|δij . (138)

Here MT is replaced with M and thus this minimum value depends on the choice of the definition of
the fluid element. This mass cannot be smaller than the mass of the constituent particle of a simple
fluid, mcs. Thus, by substituting mcs into M, the Kennard-type inequality should satisfy(

Σ(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ 4mcsν√

1 + (ξ/ν)2
|det(M)|δij . (139)

To estimate the right-hand side, we consider water at room temperature, where the mass of the
molecule is ∼ 3× 10−26 kg and ξ ∼ 10−6 m2/s. The stochastic intensity ν may be identified with a
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diffusion coefficient in fluid which is normally much smaller than ξ, say, ν ∼ 10−9 m2/s. Then the
minimum value for water becomes

4mcsν√
1 + (ξ/ν)2

|det(M)| ∼ mcsξ ∼ 3× 10−32 [kg m2/s] ∼ 600× h̄
2

. (140)

On the other hand, we choose ξ ∼ 0.3× 10−6 m2/s and ν ∼ 10−4 m2/s for water vapor and then the
minimum value becomes

4mcsν√
1 + (ξ/ν)2

|det(M)| ∼ 60× h̄
2

. (141)

In these calculations, we set κ = 0 to consider the NSF equation. These values are larger than that of
quantum mechanics by two or three order but will be much smaller than the typical coarse-grained
scales of hydrodynamics. To observe the minimum value of uncertainty, we need to measure the mass
distribution and the velocity field with precision. In such a precision, however, the hydrodynamical
description normally looses its validity because the hydrodynamical approach is applicable only to
macroscopic variables observed in a coarse-grained scale.

We have emphasized that the fluid element should be chosen so as to satisfy the local thermal
equilibrium. Mathematically, this condition affects only the definition of the potential term of the
Lagrangian. On the other hand, the uncertainty relations in our formulation are derived from the
consistency condition (26) and the definitions of momenta (62), and thus independent of the property
of the potential term. Therefore, our relations are applicable to continuum media where the local
thermal equilibrium is not satisfied.

6.4. Uncertainty relations in quantum field theory and SVM

The Gross-Pitaevskii equation describes a coarse-grained quantum dynamics of, for example, the
Bose-Einstein condensate in the trapped Bose gas. This equation is normally derived by applying the
mean-field approximation to the bosonic Schrödinger-field equation. Let us consider the uncertainty
relation for such a field-theoretical system.

The bosonic Schrödinger-field operator satisfies the canonical commutation rule,

[φ(x, t), φ†(x, t)] = δ(D)(x− x′) . (142)

Using these field operators, the field-theoretical position and momentum operators are defined by

xi
op =

∫
dDx φ†(x, t)xiφ(x, t) , (143)

pj
op =

∫
dDx φ†(x, t)(−ih̄∂j)φ(x, t) , (144)

respectively. One can easily confirm that these operators satisfy

[xi
op, pj

op] = ih̄Nopδij , (145)

where the number operator is defined by

Nop =
∫

dDx φ†(x, t)φ(x, t) . (146)

Then the Kennard inequality for this many-body system is calculated as

σxi σpj ≥
h̄
2
〈Nop〉δij , (147)
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Figure 4. The time evolutions of the mass distribution and the velocity field are shown on the left and
right panels, respectively. The Reynolds number is set by Re = 10. The initial values are denoted by
the dashed lines. The five different solid lines represent the results for τ = 1, 2, 3, 4 and 5, respectively

where 〈 〉 denotes the standard expectation value with a Fock state vector in quantum field theory.
Then the above standard deviations are defined by

σA =
√
〈(Aop − 〈Aop〉)2〉 , (148)

where Aop is an operator.
This uncertainty relation is reproduced in SVM [21]. As is discussed in Ref. [21] and summarized

in Appendix E, the Gross-Pitaevskii equation is obtained by applying the SVM quantization to the
classical Lagrangian of the ideal fluid (101). To obtain the corresponding uncertainty relation from Eq.
(133), we set (αA, αB, ν) = (0, 1/2, h̄/(2M)),(

σ
(2)
xi

)1/2 (
σ
(2)
pj

)1/2
≥ h̄

2
Nδij . (149)

Note that M is the mass of the constituent particle of the Bose-Einstein condensate and N = MT/M =

〈Nop〉 is the number of particles. This coincides with the result from quantum field theory, (147).

7. Numerical examples and uncertainty relations for liquid and gas

To investigate the behavior of the uncertainty relations in hydrodynamics, we consider the time
evolution of the fluid described by the NSF equation in 1+1 dimensional system. As the initial
condition, we choose the static fluid (v(x, 0) = 0) with the Gaussian mass distribution

n(x, 0) =
MT√
2πx0

e
− x2

2x2
0 ≡ n0√

2π
e
− x2

2x2
0 , (150)

where x0 is a parameter characterizing the spatial distribution. Because we are interested in the
behavior of the NSF equation, we set αB = 0 (or equivalently κ = 0) in the following numerical
calculations.
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7.1. Time evolution of the NSF equation in 1+1 dimension

The adimensional representation of the NSF equation has a unique parameter, the Reynolds
number (Re), defined by

Re =
x0v0

ζ
n =

x0v0

η
n , (151)

where v0 is a typical scale of the fluid velocity.
Then the NSF equation in the adimensional form is represented by

(∂τ + v∂q)v = − 1
n

∂q

(
P− n

Re
∂qv
)

, (152)

where adimensional quantities are introduced as

q =
x
x0

,

v =
v
v0

,

τ = t
v0

x0
≡ t

t0
,

n =
n
n0

,

P = P
1

n0v2
0

.

(153)

We further consider the pressure in the adiabatic (isentropic) process of the ideal gas,

P = C n5/3 . (154)

For the sake of simplicity, we set the coefficient C = 1.
The numerical algorithm to solve the NSF equation is smoothed particle hydrodynamics (SPH).

For the brief summary of SPH, see Appendix F. The mass distribution and the velocity field of the fluid
are calculated and shown on the left and right panels of Figure 4, respectively. The Reynolds number is
set by Re = 10. The initial values, which are given by the static Gaussian distribution mentioned above,
are denoted by the dashed lines. The five different solid lines represent the results for τ = 1, 2, 3, 4 and
5, respectively

Brownian motions of fluid elements are calculated from the forward SDE (11) by substituting
n(x, t) and v(x, t) of the NSF equation. It should be noted that the fluctuations of the trajectories
depend on another parameter αA which does not appear explicitly in the NSF equation. In Figure 5,
we show the trajectories of the fluid elements for two different values of αA fixing Re = 10. The left
panel is the result for αA = 0.1 and the right panel for αA = 10. The forward SDE (11) is numerically
solved using the Euler-Maruyama method with dτ = 0.005. The six different initial positions of the
fluid elements are utilized to show the stochastic trajectories; q(0) = −3.45,−0.84,−0.25, 0.25, 0.84 and
3.45. For the sake of comparison, the streamlines of the fluid are shown by the dotted lines. One can
see that the fluctuation of the trajectory is enhanced for the smaller value of αA because the intensity of
the thermal noise ν can be expressed as

ν =
x0v0

2αARe
. (155)
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Figure 5. The trajectories of Brownian motions of fluid elements. The left and right panels represent
the results for αA = 0.1 and 10, respectively. The six different initial positions are chosen by q(0) =
−3.45,−0.84,−0.25, 0.25, 0.84 and 3.45. For the sake of comparison, the streamlines of the fluid are
shown by the dotted lines.

7.2. uncertainty relations for Gaussian initial condition

The adimensional representation of the standard deviation of position is given by

σ
(2)
xi (τ) =

∫
dDq n(q, τ)

(
qi − MT

M

∫
dDq n(q, τ)qi

)2
=

M
MTx2

0
σ
(2)
xi . (156)

It should be noted that the two masses, M and MT , appear because the definition of ρe f f (q, τ) depends
on the choice of the mass of the fluid element. For the corresponding quantity for momentum, we
define

σ
(2)
pi (τ) =

M2
T

M2

∫
dDq n(q, τ)d2

pi (q, τ) =
1

MMTv2
0

σ
(2)
pi . (157)

Here an adimensional function is introduced by

d2
pi (q, τ) =

1
2 ∑

a=±

[
(vi

a(q, τ))2 −
(

MT
M

∫
dDq n(q, τ)vi

a(q, τ)

)2
]

, (158)

with (
vi
+(q, τ)

vi
−(q, τ)

)
=

M
MTv0

(
A+ui

+(x, t) + 1
2 ui
−(x, t)

1
2 ui

+(x, t) + A−ui
−(x, t)

)
. (159)

These vi
±(q, τ) are adimensional representations of the momentum functions p±(x, t) which are

obtained from Eq. (129) as(
p+(x, t)
p−(x, t)

)
= 2M

(
A+B+u+(x, , t) + 1

2 B−u−(x, t)
1
2 B−u+(x, t) + A−B+u−(x, t)

)
, (160)

with αB = 0.
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Figure 6. The time evolutions of the product (σ(2)
x (τ))1/2(σ

(2)
p (τ))1/2 for the liquid case (αA = 10) are

shown on the right panel. The extended figure for the early stage of the time evolution is plotted on
the left panel in logarithmic scale. The six solid lines represent the results for Re = 1, 2, 3, 5, 10 and 20.
For the sake of comparison, the result for the ideal fluid is denoted by the dotted line. The inclination
of the solid line is enhanced as Re is increased. All solid lines are always larger than the theoretically
predicted minimum values.

Then the Kennard-type uncertainty relation in terms of the adimensional quantities is expressed
as

(
σ
(2)
xi (τ)

)1/2 (
σ
(2)
pj (τ)

)1/2
≥ 1

Re

√
α2

A
4(1 + α2

A)
δij . (161)

For the symmetric initial condition considered here, σ
(2)
xi (τ) and σ

(2)
pj (τ) are independent of M. Thus

our simulations do not have ambiguity associated with the choice of the mass of the fluid element.
Using the Gaussian initial distribution defined by Eq. (150), the initial value of the product is

estimated exactly as

(σ
(2)
x (0))1/2(σ

(2)
p (0))1/2 =

1
2Re

>
1

Re

√
α2

A
4(1 + α2

A)
. (162)

The initial value is always larger than the minimum value for any real αA.
As was discussed in Sec. 6.2, the parameter αA is given by the ratio of the kinematic viscosity ξ and

the diffusion coefficient ν: αA >> 1 for liquid and αA << 1 for gas in water. Thus we investigate the
uncertainty relations for two different values, αA = 10 and αA = 0.1, and, for the sake of convenience,
we call the former liquid case and the latter gas case, respectively.

The time evolution of the product (σ(2)
x (τ))1/2(σ

(2)
p (τ))1/2 for the liquid case (αA = 10) is shown

on the right panel of Figure 6. The extended figure for the early stage of the time evolution is plotted on
the left panel in logarithmic scale. The six solid lines represent the results for Re = 1, 2, 3, 5, 10 and 20.
For the sake of comparison, the dotted line denotes the result for the ideal fluid, which is calculated by
setting (αA, αB, ν) = (0, 0, 0) in the definition of the standard deviations and substituting the numerical
result of the Euler equation. The inclination of the solid line is enhanced as Re is increased. All solid
lines are monotonically increasing functions and always stay above the result of the ideal fluid. Because
of Eq. (162), then, it is easy to see that these lines are always larger than the theoretically predicted
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Figure 7. The time evolutions of the product (σ(2)
x (τ))1/2(σ

(2)
p (τ))1/2 for the gas case (αA = 0.1) are

shown on the left panel. The extended figure for the early stage of the time evolution is plotted on the
right panel in logarithmic scale. The six solid curves represent the results for Re = 1, 2, 3, 5, 10 and 20.
For the sake of comparison, the result for the ideal fluid is denoted by the dotted line. The position of
the local minimum of the solid curve moves to the upper right as Re is decreased. All solid curves are
always larger than the theoretically predicted minimum values.

minimum values. Except for the early stage of the time evolution, the line for smaller Re is closer to
the ideal-fluid line.

The behavior of the product (σ(2)
x (τ))1/2(σ

(2)
p (τ))1/2 for the gas case (αA = 0.1) is qualitatively

different as is shown on the right panel of Figure 7. The extended figure for the early stage of the time
evolution is plotted on the left panel in logarithmic scale. The six solid curves represent the results
for Re = 1, 2, 3, 5, 10 and 20. The result for the ideal fluid is denoted by the dotted line. The position
of the local minima of the solid curves moves to the upper right as Re is decreased. Because of the
initial condition (162), all curves start from the larger values than that of the ideal fluid. The solid lines
behave as decreasing functions in the early stage and, afterward, become increasing functions which
stay below the result of the ideal fluid. Although it is not explicitly shown, these local minima of the
solid lines are always larger than the theoretically predicted minimum values.

In these figures, the solid line of larger Re stays above that of smaller Re in the late stage of the
time evolution. It is because both of the spreading of the mass of the fluid and the evolution of the
velocity field are decelerated as Re decreases due to the enhancement of the effect of viscosity.

In these simulations, we find that the product for the liquid case (αA = 10) is always larger than
that of the gas case (αA = 0.1). This can be understood from the definition of the fluid momenta. As is
seen from Eq. (160), two momenta are given by the linear combination of the two contributions: one is
the fluid velocity v(x, t) and the other ∇ ln n(x, t). In our simulations, these are given by

p+(x, t) = M
{
(1 + αA)v(x, t) +

x0v0

2Re
∂x ln n(x, t)

}
,

p−(x, t) = M
{
(1− αA)v(x, t) +

x0v0

2Re
∂x ln n(x, t)

}
.

(163)

We focus on the behavior at x ≥ 0 in our Gaussian initial condition. Then as is seen from the left panel
of Figure 4, the contribution of ∂x ln n(x, t) is negative but that of v(x, t) is positive. Thus a part of the
contributions from the two terms is canceled for any real αA ≥ 0 in p+(x, t). The same discussion is
applied to p−(x, t) when 0 ≤ αA ≤ 1, but such a cancellation does not occur for αA > 1. Therefore the
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Figure 8. The time evolutions of the product (σ(2)
x (τ))1/2(σ

(2)
p (τ))1/2 for the fluid at the boundary

between liquid and gas (αA = 1) are shown on the right panel. The extended figure for the early stage
of the time evolution is plotted on the left panel in logarithmic scale. The six solid curves represent the
results for Re = 1, 2, 3, 5, 10 and 20. For the sake of comparison, the result for the ideal fluid is denoted
by the dotted line. The position of the local minimum of the solid curves moves to the upper right as
Re is decreased. The solid line of Re = 3 and the dotted line are almost on top of each other. The solid
curves for Re ≥ 5 stay above the dotted line.

standard deviation of momentum for liquid (αA = 10) is always larger than that of gas (αA = 0.1). The
same argument is applicable to the behavior at x < 0. This may suggest that the qualitatively different
behavior in the uncertainty relation may be used to classify liquid and gas in fluids.

To see the behavior of the fluid at the boundary of the liquid and gas cases, the products for
αA = 1 are shown on the right panel of Figure 8. The extended figure for the early stage of the time
evolution is plotted on the left panel in logarithmic scale. The six solid curves represent the results for
Re = 1, 2, 3, 5, 10 and 20. The result for the ideal fluid is denoted by the dotted line. The position of
the local minima of the solid curves moves to the upper right as Re is decreased. Differently from the
previous calculations, the asymptotic behavior depends on Re: the solid curves for Re ≥ 5 stay above
the dotted line but those for Re ≤ 2 stay below. The solid line of Re = 3 and the dotted line are almost
on top of each other.

Suppose that the dotted line for the ideal fluid gives a dividing ridge of liquid and gas. For the
previous simulations for liquid and gas, the solid lines never intersect the dotted line in the late stage
of the time evolution. The intersects in the early stage are affected by the choice of initial conditions
and we focus only on the asymptotic behaviors of the uncertainty relation. Then the classification of
liquid and gas does not depends on the values of Re for αA = 0.1 and 10. On the other hand, the fluid
of αA = 1 changes its behavior depending on Re. There is an critical value Re∗ near Re = 3. For the
fluid with Re > Re∗, the asymptotic behavior of the product is larger than the ideal one and thus is
classified as liquid. On the other hand, the fluid with Re < Re∗ is classified as gas.

8. Discussions and concluding remarks

We showed that the quantum-mechanical uncertainty relations can be reformulated in the
stochastic variational method. In this approach, the finite minimum value of the uncertainty of
position and momentum is attributed to the non-differentiable (virtual) trajectory of a quantum
particle, and both of the Kennard and Robertson-Schrödinger inequalities in quantum mechanics
are reproduced [21]. The similar non-differentiable trajectory is considered for the trajectory of fluid
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elements in hydrodynamics. By applying the same procedure to the position and the momentum of
fluid elements, the Kennard-type and Robertson-Schrödinger-type uncertainty relations are obtained
for fluids described by the Navier-Stokes-Fourier equation or the Navier-Stokes-Korteweg equation
[21]. These relations are applicable to the trapped Bose gas described by the Gross-Pitaevskii equation
and then the field-theoretical uncertainty relation is reproduced.

The derived Kennard-type inequality was numerically investigated with the initial condition of
the static Gaussian mass distribution. We consider two different cases: one is ξ > ν and the other
ξ < ν, where ξ is the kinematic viscosity and ν is identified with the diffusion coefficient. The former
case will correspond to liquid and the latter to gas. We found that the behaviors of the uncertainty
relations for liquid and gas are qualitatively different: the products of the standard deviations for
liquid are always larger than that for the ideal fluid while those for gas are always smaller.

These numerical results suggest that the difference of liquid and gas is characterized through the
behavior of the uncertainty relations. The fluid with a larger uncertainty than that of the ideal fluid
behaves as liquid, while the one with a smaller uncertainty behaves as gas. For a given αA = ξ/ν, a
critical Reynolds number Re∗ may be defined. The fluid of Re > Re∗ behaves as liquid while that of
Re < Re∗ is gas. For the cases of αA = 0.1 and 10, Re∗ will be ∞ and 0, respectively. A finite number of
Re∗ will be observed for the fluid of αA close to 1.

To establish this conjecture, we have to investigate the behaviors in more general initial conditions,
equation of states and higher spatial dimensional systems. Moreover, our definition of the standard
deviation depends on the choice of fluid elements when initial conditions are asymmetric. This does
not stand in the way of finding the generalized relations in hydrodynamics, but, to improve the above
classification, it is worth considering another definition which is independent of the choice of fluid
elements for any initial condition.

There are still many properties of the uncertainty relations which should be studied. The minimum
uncertainty state in hydrodynamics is one of examples. In quantum mechanics, the coherent (squeezed)
state is known as the minimum uncertainty state but the corresponding state in hydrodynamics is not
known [78].

We have considered the standard deviations of position and momentum which are averaged over
all fluid elements. On the other hand, the uncertainty for a single fluid element will be important
in other applications. For example, the particle production from an excited vacuum is studied in
relativistic heavy-ion collisions. In principle, the dynamics of these particles is described by quantum
chromodynamics (QCD), but the non-equilibrium behavior of QCD is very difficult to describe. Thus, as
an effective approach, the excited vacuum is approximately replaced by a classical continuum medium
which is described by relativistic hydrodynamics. This effective model describes the distributions of
the produced particles successfully [74]. In extracting the information of particles from the classical
fluid, we assume a hadronization mechanism where the particles are produced by thermal radiation
from each fluid element which is thermally equilibrated. In this mechanism, the motion of the
fluid element is simply assumed to coincide with the streamline of the relativistic fluid, but it is
unlikely for viscous fluids as was shown in Figure 5. The uncertainty for a single fluid element
will be used to compensate this discrepancy. Moreover the uncertainty relations are associated with
microscopic behaviors which are coarse-grained in hydrodynamics and hence may provide more
detailed information of the statistical distribution of quarks and gluons which are the constituent
particles of the relativistic fluid beyond the standard hydrodynamical analysis.

We have so far considered fluids described in Cartesian coordinates. The uncertainty relations in
generalized coordinates is known to be difficult. For example, the uncertainty relation for angle has
a famous paradox in quantum mechanics [79]. Let us consider a 2-dimensional system described in
polar coordinates. Then the conjugate momentum associated with the angular variable is given by
the angular momentum. If one defines an angle operator θop such that its commutation rule with the
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angular momentum operator Lop is canonical, [θop, Lop] = ih̄, then the obtained Kennard inequality
reads

σθσL ≥
h̄
2

, (164)

where σθ and σL are defined by Eq. (148) with the Hilbert vector . This is however unacceptable because
σθ should be infinite for the eigenstate of L but the maximum value of σθ is finite due to the bounded
domain of the spectrum, 0 ≤ θ < 2π.

This discrepancy is usually attributed to the difficulty of the introduction of a multiplicative
angle operator satisfying the standard canonical commutation rule. See a review paper [79] and the
recent papers [80–84] for survey and discussion. On the other hand, the procedure developed in this
paper need not to introduce the operator representations of position and momentum and thus we can
avoid the difficulty associated with the definition of operators. In Ref. [22], the uncertainty relation in
generalized coordinates is obtained. For a contravariant position vector qi and a covariant momentum
vector pj in a D-dimensional system, the corresponding Kennard inequality is given by

(
σ
(2)
qi

)1/2 (
σ
(2)
pj

)1/2
≥ h̄

2

√∣∣∣∣δi
j −

∫
dDq ∂j{Jρ

(
qi − E

[
q̂ i

t
])
}+

∫
JdDq ρ

(
qi − E

[
q̂ i

t
])

Γk
jk

∣∣∣∣2 ,

(165)

where we used Einstein’s notation of the summation, and J and Γi
jk are the Jacobian and the Christoffel

symbol, respectively. One can confirm that the paradox for the angular uncertainty relation does not
exist in this inequality. Moreover, SVM is applicable to quantum systems in curved geometry [42].
The above uncertainty relation is applicable to curved geometries and hence its generalization to
hydrodynamics may be useful to investigate the properties of, for example, highly dense quark-hadron
matter in binary neutron star mergers which are described in general relativistic hydrodynamics
[85,86].
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Appendix A Ito’s lemma

Let us consider an arbitrary smooth function f (x, t). Then the change of this function on a
stochastic particle, which is described by the forward SDE (11), is given by Ito’s lemma,

d f (r̂(R, t), t) = dt
(
∂t + u+(r̂(R, t), t) · ∇+ ν∇2) f (r̂(R, t), t)

+
√

2ν∇ f (r̂(R, t), t) · dŴ(t) + o(dt) . (A1)

This corresponds to the lower series truncation of the Taylor expansion in the stochastic calculus.
Note that the Wiener process has a dimension dŴ(t) ∼

√
dt, and the above result has a part of the

contribution of the second order in dr̂(R, t).
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The same argument is applied when the stochastic particle is described by the backward SDE (13)
,

d f (r̂(R, t), t) = dt
(
∂t + u−(r̂(R, t), t) · ∇ − ν∇2) f (r̂(R, t), t)

+
√

2ν∇ f (r̂(R, t), t) · dŴ(t) + o(dt) . (A2)

Appendix B Bernoulli equation in quantum hydrodynamics

Interestingly, the energy eigenvalue problem in the Schrödinger equation corresponds to the
Bernoulli equation in quantum hydrodynamics. We find that Eq. (45) can be reexpressed as

1
2
· ∂tv2(x, t) = −v(x, t) · ∇Ber(x, t) , (A3)

where the Bernoulli function is defined by

Ber(x, t) =
v2(x, t)

2
+

V(x)
M
− 2ν2∇2

√
ρ(x, t)√

ρ(x, t)
. (A4)

For the stationary solution, the left-hand side of the above equation vanishes. On the other hand,
v(x, t) · ∇ represents the differential along the flow of the probability distribution. Thus the Bernoulli
function is constant along a streamline of the “quantum fluid",

Ber(x) =
v2(x)

2
+

V(x)
M
− 2ν2∇2

√
ρ(x)√

ρ(x)
=

E
M

, (A5)

where E is a constant. On the other hand, the equation of continuity for the probability distribution
(29) becomes

∇ · {ρ(x)v(x)} = 0 . (A6)

Using the definitions of the phase (47) and the wave function (49), the above two equations lead to(
−2Mν2∇2 + V(x)

)
Ψ(x) = EΨ(x) . (A7)

One can easily see that this is the time-independent Schrödinger equation by choosing ν = h̄/(2M).

Appendix C Relation to quantum mechanical standard deviation

We will show that Eq. (76) is equivalent to that in quantum mechanics. See also the discussion in
Ref. [87]. First we find the second order correlation of the momentum operator in quantum mechanics
as

〈p2
op〉 = 〈−ih̄∇〉 = 〈h̄2(∇ ln

√
ρ(x, t))2 + (∇θ(x, t))2〉, (A8)

where 〈 〉 represents the expectation value with the wave function with the decomposition (49). On
the other hand, Eq. (26) is re-expressed with this decomposition of the wave function as M(u+(x, t)−
u−(x, t)) = h̄∇ ln ρ(x, t). Note that the current of the probability distribution is equivalent to that of
the Fokker-Planck equation. Therefore the mean velocity is expressed as Mv(x, t) = ∇θ(x, t).

Using these relations, we can show

d(Mû+)2 + (Mû−)2c
2

= 〈p2
op〉 , (A9)
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and

dMû± c = 〈pop〉 . (A10)

Summarizing these results, we find

〈p2
op〉 − 〈pop〉2 =

d(Mû+)2c − (dMû+ c)2

2
+
d(Mû−)2c − (dMû− c)2

2
. (A11)

The right-hand side of the above result is equivalent to Eq. (76).

Appendix D The positivity of the kinetic term of the Lagrangian

To obtain the NSF equation, we chose αA > 0 and αB = 0, leading to

Tr(M) > 0 and det(M) < 0, (A12)

whereM is defined by Eq. (37). On the other hand, from the well-known second-order algebra, the
necessary and sufficient condition for the positive-semidefinite kinetic term in the Lagrangian is given
by

Tr(M) > 0 and det(M) > 0, (A13)

and it demands
ξ <
√

κ. (A14)

Therefore, to have a finite viscosity requiring the positive kinetic term, κ should not vanish but this
is not the case of the standard NSF equation. Note, however, that it is not clear whether such a
requirement is mandatory, because the above positivity is irrelevant to the positivity of the fluid energy
which is defined by

∫
d3x

[
1
2

n(x, t)v2(x, t) + ε(n(x, t))
]

, (A15)

and positive independently of the value of κ.

Appendix E Gross-Pitaevskii equation

As we discussed, the quantization of a classical system can be regarded as the stochastic
optimization of the corresponding classical action. Then it is interesting to investigate the quantization
of the ideal fluid where (αA, αB, ν) = (0, 1/2, h̄/(2M)). We further set

ε(n(x, t)) =
U0

2
n2(x, t)

M2 , (A16)

where U0 is the coupling constant of the two-body interaction. Substituting these into Eq. (118) and
introducing the wave function for the continuum medium as

Ψ(x, t) =

√
n(x, t)

M
eiθ(x,t) (A17)

we find

ih̄∂tΨ(x, t) =

[
− h̄2

2M
∇2 + U0|Ψ(x, t)|2

]
Ψ(x, t) . (A18)
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This equation is known as the Gross-Pitaevskii equation. In this derivation, we need not to assume the
local thermal equilibrium and thus SVM is applicable directly to the trajectory of a constituent particle,
instead of the fluid element. Then M is given by the mass of the constituent particle.

One may wonder about the difference between ε and the second term on the right-hand side of
Eq. (A18). This is due to the difference between the left-hand sides of Eqs. (43) and (118),

1
M
∇V(x, t)←→ 1

n(x, t)
∇P(n(x, t)) . (A19)

If the spatial dependence of n(x, t) is small, we approximately find

1
n(x, t)

∇P(n(x, t)) ≈ ∇P(n(x, t))
n(x, t)

. (A20)

Note that the similar procedure is well-known in the derivation of the Bernoulli equation of classical
fluids. Then the above Gross-Pitaevskii equation is replaced with

ih̄∂tΨ(x, t) =

[
− h̄2

2M
∇2 +

U0

2
|Ψ(x, t)|2

]
Ψ(x, t) . (A21)

Here the potential term is the same as Eq. (A16). The above discussion will be related to the different
behavior of the stochastic Hamiltonian in Sec. 5.1 and the Bernoulli equation in Appendix B.

It is worth mentioning that the application of SVM to the derivation of the Gross-Pitaevskii
equation in a many-particle system is studied in Ref. [88].

Appendix F Smoothed particle hydrodynamics

We briefly summarize Smoothed Particle Hydrodynamics (SPH), which is a numerical calculation
method to solve hydrodynamics [89,90]. To implement a numerical simulation, we have to reexpress
the NSF equation. For example, a standard procedure is to replace the differential equation with the
corresponding difference equation by introducing spatial grids. In SPH, however, hydrodynamical
quantities are expressed by the ensemble of a finite number of quasi-particles and then hydrodynamics
is mapped into the motions of the particles. The introduced quasi-particle is called SPH particle.

The SPH particle has a finite volume with is characterized by a length parameter h. Therefore
the hydrodynamical behaviors which are smaller than this scale h are coarse-grained. Let us consider
the SPH representation of the mass distribution. To represent a fluid with NSPH particles, each SPH
particle should have a mass χ which is defined by

χ =
MT

NSPH
, (A22)

where MT is the total mass of the fluid.
Then the coarse-grained mass distribution is given by the sum of the contributions from all SPH

particles,

n(x, t) =
NSPH

∑
i=1

χW(x− ri(t); h) , (A23)
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Figure A1. The i-th SPH particle has an overlap with the j-th particle located in the region of |xj − xi| ≤
h.

where ri(t) denotes the trajectory of the i-th SPH particle and the smoothing function W(x; h) satisfies
the properties,

W(x; h) = 0 (|x| > h) ,

lim
h→0

W(x; h) = δ(D)(x) ,∫
dDx W(x; h) = 1 .

(A24)

This function characterizes the volume of the SPH particle and plays a role of a form factor. Thus the
microscopic oscillations of the mass distribution which are smaller than h are smoothed out in SPH.
See also Figure A1. There are various candidates of the smoothing function. For example the quintic
spline function satisfies the above requirements,

W(x; h) = N


(3− q)5 − 6(2− q)5 + 15(1− q)5 0 ≤ q < 1/3
(3− q)5 − 6(2− q)5 1/3 ≤ q < 2/3
(3− q)5 2/3 ≤ q ≤ 1
0 1 < q ,

(A25)

where q = |x|/h and the normalization factor N is 1/(40h), 63/(478πh2) and 81/(359πh3) for one, two
and three dimensional systems, respectively. For the simulations in this paper, we choose h/x0 = 0.24
and NSPH = 4000.

One can see that the time dependence of the mass distribution (A23) is represented through that
of the SPH-particle trajectory. As a matter of fact, the equation of the trajectory is determined from the
NSF equation. The SPH representation of the NSF equation in 1+1 dimension is given by

d2ri
dt2 = −

NSPH

∑
j=1

χ

(
Πi

n2
i (ri)

+
Πj

n2
j (rj)

)
∂ri W(ri − rj; h) , (A26)

where

Πi = P(n(ri))−
η(ri)

n(ri)

NSPH

∑
j=1

χ

(
drj

dt
− dri

dt

)
∂ri W(ri − rj; h) . (A27)

One can see that the above equation does not have the nonlinear velocity term associated with v · ∇v
in the NSF equation. This is because this term is absorbed into the material derivative d/dt of the
above equation. This is one of the advantages of the SPH scheme. Another advantage is that the
equation of continuity of the fluid mass is automatically satisfied by Eq. (A23).
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