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Abstract 

This study aims to explore the effect of real-time visual feedback (VF) information of the pres-

sure of center (COP) provided by intelligent insoles on balance training in a one leg stance 

(OLS) and tandem stance (TS) posture. Thirty healthy female college students were randomly 

assigned to the visual feedback balance training group (VFT), non-visual feedback balance 

training group (NVFT), and control group (CG). The balance training includes: OLS, tandem 

Stance (dominant leg behind, TSDL), tandem stance (non-dominant leg behind, TSNDL). The 

training lasted 4 weeks, the training lasts 30 minutes at an interval of 1 days. There was a 

significant difference in the interaction effect between Groups*Times of the COP parameters 

(p<0.05) for OLS. There was no significant difference in the interaction effect between 

Groups*Times of the COP parameters (p>0.05) for TS. The main effect of the COP parameters 

was a significant difference in Times (p<0.05). The COP displacement, velocity, radius, and 

area in VFT significantly decreased after training (p < 0.05). Therefore, the visual feedback 

technology of intelligent auxiliary equipment during balance training can enhance the benefit 

of training. The use of smart wearable devices in OLS balance training may improve the visual 

and physical balance integration ability. 

 

Key words: balance training, real-time visual feedback, smart wearable devices, center of 

pressure 
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1. Introduction 

An increase in age is usually accompanies by degeneration in sensory and neuromuscular 

control mechanisms, thereby causing adverse effects on posture control [1]. Impaired posture 

control can seriously affect physical function and cause falls in the elderly [2]. Decreased bal-

ance function and poor posture control are closely related to an increased risk of falls and mo-

bility difficulties. Balance ability refers to the human body to adjust automatically to maintain 

postural stability when it moves or is subjected to external forces [3]. Balance control is usually 

affected by joint range of motion and muscle strength, which can be used to monitor the sensory 

information of the mechanism [4]. Therefore, good balance must be regulated by the sensory 

system and neuromuscular system. 

   During upright posture control, people are clearly aware of their position changes in space 

when they give VF based on the displacement of the foot center of pressure (COP) or body 

center of mass (COM) [5]. The visual system can provide the human body with information 

about the surrounding environment, location, direction, and speed during movement. When the 

visual information is removed or altered, the action system must compensate by receiving pro-

prioceptive feedback and sensory information from the vestibular system in order to maintain 

balance [6]. Therefore, VF can help increase the body's stability and balance ability while con-

trolling the posture of the human body. In recent years, sensorimotor integration technology 

has been used to provide VF to improve the balance ability of people with disabilities and high-

risk falls. Previous studies have indicated that internal feedback on one's own posture sway can 

be obtained through VF so that the body can control its posture changes more autonomously 
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[7]. In a study detailing the effect of VF from COP on balance posture control of adolescents 

and the elderly, it was found that the use of VF for COP in the standing task is a common 

method for evaluating and training posture control [8]. Therefore, VF can improve the upright 

posture control and change postural sway in the anterior–posterior and medial–lateral direc-

tions to maintain balance. In addition, further findings on ankle movement can clarify different 

types of VF on body sway and ankle joint mechanisms that contribute to postural sway control 

[9]. The comparison between the traditional body training and computer vision feedback train-

ing indicated that the computer vision feedback group had a better effect on the balance posture 

control of the human body [10]. Therefore, providing VF in balance training can effectively 

improve the balancing ability of participants.  

VF training to control body posture helps improve the body’s ability to maintain balance 

and achieve a stable standing effect. It can stabilize the body posture and significantly improve 

static and dynamic balance ability [11]. Previous studies have found that COP displacement 

and mean velocity of patients with spinal cord injury decreased after VF standing balance train-

ing, indicating that the ability of static and dynamic stability improved significantly after train-

ing [11]. After applying wearable devices to balance training for the elderly, the COP area and 

COP parameters displayed a significantly decrease, indicating that balance training is effective 

for improving postural control and functional performance in older adults [12]. These studies 

used screen COP displacement projection onto the screen as balance training to maintain sta-

bility. Therefore, appropriate external real-time VF information (the position of the real-time 

COP) should be provided during balance training to improve the control ability of posture bal-

ance and increase the benefit of training. 
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 In summary, effectively using the real-time VF information of COP provided by smart 

wearable devices for balance control and training can benefit technology-assisted balance train-

ing at home, thereby aiding sports training and physical rehabilitation. This study aims to en-

hance the benefit of balance training effectively by using the real-time VF information of COP 

provided by smart insoles in the OLS or TS posture. This study demonstrates the effect of a 

simple technology-assisted VF system on body balance. 

2. Materials and Methods  

2.1. participants 

Thirty healthy female college students were recruited and randomly assigned to the VFT, 

NVFT, and CG with 10 persons in each group. The height (167. 59±4. 68 cm), weight (57. 

10±7. 15 kg), and age (20. 12±1. 13) of each participant were recorded. None of the participants 

had any known neurological, motor, visual impairment, or disability. The participants were 

informed of the content, process, and precautions for the study group. The test instructions 

were read out to them and they understood and were willing to cooperate fully with the exper-

imenter and signed the consent form. The study was approved by the Research Ethics Com-

mittee of Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (IRB109-053-B) 

and was conducted in accordance with the Declaration of Helsinki.  

2.2. Equipment 

A force plate (BTS P6000, BTS Bioengineering, Italy) was used to calculate the coordinates 

of the COP displacement in the mediolateral (ML) and anteroposterior (AP) directions and the 
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COP velocity. Force plate signals were collected at a sampling frequency of 300 Hz and syn-

chronized with the motion analysis system. In order to avoid the impact of different wear and 

tear during the test and training, all participants wore the same experimental tights and uniform 

sports shoes. The training shoes were equipped with the same intelligent leg pad as the VF 

training group to avoid the interference from the insole material, which could affect the training 

effect. The use of iPad Pro with Podoon APP was simultaneously studied as a VF device. 

2.3. Procedures 

Participants were recruited prior to the experiment and their foot length was measured. Then, 

the smart foot pad matching their foot length was selected and cut. The participants would have 

a five-minute warm-up run and one minute of rest. After this preparation, thirty female college 

students were randomly divided into three groups: VFT, NVFT, and CG without any training. 

The training includes OLS-NF, OLS-VF, TSDL-NF, TSDL-VF, TSNDL-NF, and TSNDL-VF 

[13, 14]. It lasted 4 weeks, and took place thrice a week. It comprised of balance training for 

30 min each (static standing for 30 s) at intervals of 1–2 days. In OLS, participants were in-

structed to stand on their dominant leg, while the non-supported leg was flexed at the knee with 

the plantar surface of the foot stabilized on the knee of the supporting leg [15]. In TS, the 

participants ’ feet (on a line, heel-toe position) were placed on the center of the force plate [16]. 

They were asked to keep the dynamic point in the central circle as much as possible. The iPad 

Pro was located at an eye-level height, 1 m apart from the participants. After 4 weeks, the 

content of the post-test was found to be the same as that of the pretest. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2020                   doi:10.20944/preprints202009.0740.v1

https://doi.org/10.20944/preprints202009.0740.v1


7 of 22 

 

2.4. Statistical analysis 

In this study, the average values of three test results in each subject's test action were calculated 

and used for statistical analysis. MATLAB (R2014a, The MathWorks, USA) was used for sta-

tistical analysis. The experiment used mixed design two-way analysis of variance (ANOVA) 

(Group ×Times) to compare the differences in pretest and post-test among the VFT, NVFT, 

and CG. For each measurement, post hoc least significant difference (LSD) comparisons were 

performed on the significant effects. The level of significance was set at α < 0.05. 

3. Results 

In this study, participants were divided into the VFT, NVFT, and CG under VF and NF 

conditions for 4 weeks. The training results of the COP ML max displacement or COP AP max 

displacement are depicted in Figure 1. In OLS-NF, there was a significant difference in the 

interaction effect between Groups*Times (p <0. 001), the simple main effect of the COP ML 

max displacement showed a significant difference among the three groups in the post-test (p=0. 

003), post hoc analysis showed a significant decrease in VFT/CG and NVFT/CG (▽36. 87%, 

p=0. 001, ▽18. 08%, p=0. 031), VFT and NVFT were significantly decreased after training 

(▽18. 38%, p＜0. 001 and ▽2. 99%, p=0. 001). The simple main effect of the COP AP max 

displacement showed a significant difference among the three groups in the post-test (p=0. 

044), post hoc analysis showed a significant decrease in VFT/CG and NVFT/CG (▽33. 01%, 

p=0. 030 and ▽33. 35%, p=0. 029), and VFT was significantly decreased after training (▽31. 

94%, p=0. 018). In OLS-VF, there was a significant difference in the interaction effect between 

Groups*Times (p=0. 031), the simple main effect of the COP ML max displacement showed a 
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significant difference among the three groups in the post-test (p=0. 010), post hoc analysis 

showed significant decrease in VFT/CG, NVFT/CG (▽35. 99%, p=0. 009 and ▽37. 44%, 

p=0. 007), VFT was significantly decreased after training (▽21. 76%, p=0. 005). The simple 

main effect of the COP AP max displacement showed significant differences among the three 

groups in the post-test (p <0. 001), post hoc analysis showed a significant decrease in VFT/ 

NVFT (▽87. 07%, p＜0. 001), VFT/CG and NVFT/CG were significantly decreased (▽123. 

00%, p＜0. 001 and ▽19. 21%, p＜0. 001), VFT was significantly decreased after training 

(54. 22%, p=0. 008). 

In TSNDL-NF, there was no significant difference in the interaction effect between 

Groups*Times of COP ML max displacement and COP AP max displacement (p=0. 368 and 

p=0. 325). The main effect of the COP ML max displacement was a significant difference 

between the groups (p <0. 001), analysis of pretest and post-test showed significant decrease 

in VFT and NVFT (▽20. 44%, p=0. 005 and ▽21. 74%, p=0. 014). The main effect of the 

COP AP max displacement showed a significant difference between the groups (p=0. 030), 

analysis of pretest and post-test showed a significant decrease in VFT (▽26. 74%, p=0. 002). 

In TSDL-NF, there was no significant difference in the interaction effect between 

Groups*Times of COP ML max displacement and COP AP max displacement (p=0. 151 and 

p=0. 135). The main effect of the COP ML max displacement was a significant difference 

between the groups (p=0. 004), analysis of pretest and post-test showed a significant decrease 

in VFT (▽29. 97%, p=0. 003). The main effect of the COP AP max displacement was a sig-

nificant difference between the groups (p=0. 047), analysis of pretest and post-test showed a 

significant decrease in VFT (▽24. 15%, p=0. 031).In TSNDL-VF, there was no significant 
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difference in the interaction effect between Groups*Times of COP ML max displacement and 

COP AP max displacement (p=0. 123 and p=0. 273). The main effect of the COP ML max 

displacement was a significant difference between the groups (p=0. 006), analysis of pretest 

and post-test showed a significant decrease in VFT (▽12. 75%, p=0. 025). The main effect of 

the COP AP max displacement was a significant difference between the groups (p=0. 003), 

analysis of pretest and post-test showed a significant decreased in VFT (▽31. 08%, p＜0. 001). 

In TSDL-VF, there was no significant difference in the interaction effect between 

Groups*Times of COP ML max displacement and COP AP max displacement (p=0. 079 and 

p=0. 063). The main effect of the COP ML max displacement was a significant difference 

between the groups (p=0. 009), analysis of pretest and post-test showed a significant decrease 

in VFT or NVFT (▽43. 12%, p＜0. 001 and ▽46. 88%, p＜0. 001). The main effect of the 

COP AP max displacement was a significant difference between the groups (p=0. 004), analy-

sis of pretest and post-test showed a significant decrease in VFT (▽18. 27%, p=0. 001). There-

fore, compared with the NVFT and CG, the COP ML max displacement and COP AP max 

displacement in the VFT were significantly decreased, which proved that VFT was beneficial 

in improving the balance ability of the human body. 
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Figure 1. Mean + SD of Times: pre and post training * Group: VFT、NVFT and CG for the OLS-NF, OLS-VF, 

TSDL-NF, TSDL-VF, TSNDL-NF, and TSNDL-VF in COP ML and COP AP max displacement parameter. 
*
 

indicates a significant difference in interaction (Group*Times) (p<0.05). 
†
 represents a significant difference in 

the main effect (group) (p<0.05). 
‡
 indicates a significant difference in the main effect (Times) (p<0.05). 

#
 indi-

cates a significant difference from pretest. 
a
 indicates a significant difference with VFT. 

b
 indicates a significant 

difference with NVFT. 
c
 indicates a significant difference with CG. There was a significant difference in the 

interaction (Group*Times) of the COP ML max displacement or COP AP max displacement in OLS (p<0.05). 

There was no significant difference in the interaction (Group*Times) of the COP ML max displacement or COP 
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AP max displacement in TS (p>0.05). 

The training results of the COP ML velocity or COP AP velocity are listed in Figure 2. In 

OLS-NF, there was a significant difference in the interaction effect between Groups*Times 

(p=0. 013), the simple main effect of the COP ML velocity showed a significant difference 

among the three groups in the post-test (p <0. 001), post hoc analysis showed a significant 

decrease in VFT/CG and NVFT/CG (▽22. 89%, p＜0. 001 and ▽14. 21%, p=0. 006), VFT 

significantly decreased after training (▽6. 30%, p=0. 003). The simple main effect of the COP 

AP velocity showed a significant difference among the three groups in the post-test (p=0. 002), 

post hoc analysis showed a significant decrease in VFT, NVFT, and CG (▽28. 32%, p=0. 001), 

VFT significantly decreased after training (▽7. 30%, p=0. 009).In OLS-VF, there was a sig-

nificant difference in the interaction effect between Groups*Times (p=0. 018), the simple main 

effect of the COP ML velocity showed a significant difference among the three groups in the 

post-test (p <0. 001), post hoc analysis showed a significant decrease in VFT/CG, NVFT/CG 

(▽30. 85%, p＜0. 001 and ▽24%, p＜0. 001), VFT and NVFT were significantly decreased 

after training (▽19. 94%, p=0. 001 and ▽17. 93%, p=0. 003). The simple main effect of the 

COP AP velocity showed a significant difference among the three groups in the post-test (p <0. 

001), post hoc analysis showed a significant decrease in VFT/CG and NVFT/CG (▽22. 44%, 

p＜0. 001, ▽13. 74%, p=0. 002), VFT significantly decreased after training (▽17. 10%, p=0. 

001, ▽8. 40%, p=0. 031). 

In TSNDL-NF, there was no significant difference in the interaction effect between 

Groups*Times of COP ML velocity or COP AP velocity (p=0. 570 and p=0. 170). The COP 
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ML velocity was significantly different between the groups (p=0. 038), analysis of pretest and 

post-test showed a significant decrease in VFT/CG and NVFT/CG (▽9.42%, p=0. 009 and ▽

12.20%，p=0. 001). VFT and NVFT were significantly decreased in training (8.69%, p <0. 

001). The main effect of the COP AP velocity was a significant difference between the groups 

(p=0. 043), analysis of pretest and post-test displayed a significant decrease in VFT (▽13. 

61%, p=0. 003). In TSDL-NF, there was no significant difference in the interaction effect be-

tween Groups*Times of COP ML velocity or COP AP velocity (p=0. 598 and p=0. 598). The 

COP ML velocity was significantly different between the groups (p=0. 049), analysis of pretest 

and post-test illustrated a significant decrease in VFT (▽3. 50%, p=0. 009). The main effect 

of the COP AP velocity was a significant difference between the groups (p=0. 049), analysis 

of pretest and post-test showed a significant decrease in VFT (▽11. 35%, p=0. 004). In 

TSNDL-VF, there was no significant difference in the interaction effect between 

Groups*Times of COP ML velocity or COP AP velocity (p=0. 080 and p=0. 106). The COP 

ML velocity was not significantly different between the groups (p=0. 493), there was a signif-

icant difference in time (p=0. 034), analysis of pretest and post-test showed a significant de-

crease in VFT (▽3. 20%, p=0. 037). The main effect of the COP AP velocity was a significant 

difference between the groups (p=0. 025), analysis of pretest and post-test showed a significant 

decrease in VFT (▽7. 50%, p=0. 047). In TSDL-VF, there was no significant difference in the 

interaction effect between Groups*Times of COP ML velocity or COP AP velocity (p=0. 228 

and p=0. 808), the COP ML velocity was not significantly different between the groups (p=0. 

022), analysis of pretest and post-test showed a significant decrease in VFT (▽6. 60%, p＜0. 

001). The main effect of the COP AP velocity was a significant difference between the groups 
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(p=0. 011), analysis of pretest and post-test indicated a significant decrease in VFT (▽6. 60%, 

p=0. 002). Therefore, compared with the NVFT and CG, there was a significant decrease in 

the COP ML velocity or COP AP velocity in the VFT, which proved that the VFT was superior 

to the NVFT and CG. 

 

Figure 2. Mean + SD of Times: pre and post training * Group: VFT、NVFT and CG for the OLS-NF, OLS-VF, 

TSDL-NF, TSDL-VF, TSNDL-NF, and TSNDL-VF in COP ML and COP AP velocity parameter. 
* 

indicates a 

significant difference in interaction (Group*Times) (p<0.05). 
†
 represents a significant difference in the main 
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effect (group) (p<0.05). 
‡
 indicates a significant difference in the main effect (Times) (p<0.05). 

#
 indicates a 

significant difference from pretest. 
a
 indicates a significant difference with VFT. 

b
 indicates a significant differ-

ence with NVFT. 
c
 indicates a significant difference with CG. There was a significant difference in the interaction 

(Group*Times) of the COP ML velocity or COP AP velocity in OLS (p<0.05). There was no significant difference 

in the interaction (Group*Times) of the COP ML velocity or COP AP velocity in TS (p>0.05). 

The training results of the COP radius and COP area are presented in Figure 3. In OLS-NF, 

there was a significant difference in the interaction effect between Groups*Times (p=0. 001). 

The simple main effect of the COP radius showed significant differences among the three 

groups in the post-test (p=0. 005), post hoc analysis displayed a significant decrease in VFT/CG 

and NVFT/CG (▽34. 34%, p=0. 031 and ▽53. 77%, p=0.001), and the VFT significantly 

decreased after training (▽28. 67%, p=0. 001). The simple main effect of the COP area showed 

significant differences among the three groups in the post-test (p=0. 016), post hoc analysis 

showed a significant decrease in VFT/CG and NVFT/CG (▽64. 90%, p=0. 047, ▽95. 39%, 

p=0. 005), VFT significantly decreased after training (▽42. 83%, p＜0. 001). In OLS-VF, 

there was a significant difference in the interaction effect between Groups*Times (p=0. 002), 

the simple main effect of the COP radius showed significant differences among the three 

groups in the post-test (p=0. 002), post hoc analysis showed a significant decrease in VFT/CG 

and NVFT/CG (▽48. 25%, p=0. 014 and ▽69. 75%, p=0. 001), VFT significantly decreased 

after training (▽69. 75%, p=0. 003). The simple main effect of the COP area showed signifi-

cant differences among the three groups in the post-test (p=0. 001), post hoc analysis showed 

a significant decrease in VFT/CG and NVFT/CG (▽80. 54%, p=0. 001 and ▽98. 37%, p＜

0. 001), VFT significantly decreased after training (▽47. 16%, p＜0. 001).  
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In TSNDL-NF, there was no significant difference in the interaction effect between 

Groups*Times of COP radius and COP area (p=0. 323 and p=0. 175). The main effect of the 

COP radius was a significant difference between the groups (p=0. 009), analysis of pretest and 

post-test displayed a significant decrease in VFT (▽25. 76%, p=0. 002). The main effect of 

the COP area was a significant difference between the groups (p=0. 045), analysis of pretest 

and post-test revealed a significant decrease in VFT (▽35. 51%, p=0. 022). In TSDL-NF, there 

was no significant difference in the interaction effect between Groups*Times of COP radius 

and COP area (p=0. 077 and p=0. 300). The main effect of the COP radius was a significant 

difference between the groups (p=0. 001), analysis of pretest and post-test showed a significant 

decrease in VFT (▽19. 17%, p＜0. 001). The main effect of the COP area was a significant 

difference between the groups (p=0. 045), analysis of pretest and post-test revealed a signifi-

cant decrease in VFT (▽33. 35%, p＜0. 001). In TSNDL-VF, there was no significant differ-

ence in the interaction effect between Groups*Times of COP radius and COP area (p=0. 568 

and p=0. 861). The main effect of the COP radius was a significant difference between the 

groups (p <0. 001), analysis of pretest and post-test depicted a significant decreased in VFT 

and NVFT (▽16. 71%, p＜0. 001, ▽29. 14%, p＜0. 001). The main effect of the COP area 

was a significant difference between the groups (p <0. 001), analysis of pretest and post-test 

showed a significant decrease in VFT and NVFT (▽44. 75%, p＜0. 001, ▽31. 62%, p＜0. 

001). In TSDL-VF, there was no significant difference in the interaction effect between 

Groups*Times of COP radius and COP area (p=0. 389 and p=0. 052). The main effect of the 

COP radius was a significant difference between the groups (p=0. 031), analysis of pretest and 

post-test exhibited a significant decrease in VFT (▽21. 31%, p=0. 005). The main effect of the 
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COP area was a significant difference between the groups (p=0. 002), analysis of pretest and 

post-test showed a significant decreased in VFT (▽39. 48%, p＜0. 001). Therefore, the COP 

radius and COP area in the VFT decreased significantly, compared with the NVFT and CG, 

which proves that VFT can enhance the balance control ability of the human body. 

 

Figure 3. Mean + SD of Times: pre and post * Group: VFT、NVFT and CG for the OLS-NF, OLS-VF, TSDL-

NF, TSDL-VF, TSNDL-NF, and TSNDL-VF in COP radius and COP area parameter. 
*
 indicates a significant 

difference in interaction (Group*Times) (p<0.05). 
†
 represents a significant difference in the main effect (group) 
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(p<0.05). 
‡
 indicates a significant difference in the main effect (Times) (p<0.05). 

#
 indicates a significant differ-

ence from pretest. a indicates a significant difference with VFT. 
b 

indicates a significant difference with NVFT. 
c 

indicates a significant difference with CG. There was a significant difference in the interaction (Group*Times) of 

the COP radius or COP area in OLS (p<0.05). There was no significant difference in the interaction (Group*Times) 

of the COP radius or COP area in TS (p>0.05). 

4. Discussion 

The purpose of this study was to perform balance training for participants with the VF tech-

nique provided by a smart wearable device of COP, in order to observe the effect of this tech-

nique on the static balance posture control of women. After four weeks of balance training, the 

results showed that visual feedback training can improve the stability of human posture control 

by OLS and TS static balance training on VFT intelligent App.  

In this study, the decrease in COP ML/COP AP displacement and COP ML/COP AP vari-

ance in VFT demonstrated that the participants could control body sway in a considerably sta-

ble manner with the help of real-time VF information. The body integrates vision, vestibular 

sense, and somatosensory through the central nervous system (CNS) to maintain human bal-

ance performance [17]. After the balance training of external VF, the results of COP ML /COP 

AP displacement decreased in OLS with participants’ dominant /non-dominant leg illustrating 

that the use of technology-assisted App to provide VF training can help reduce the displace-

ment in the AP and ML directions. In addition, the sway and posture changes in the AP direc-

tion are closely related to ankle neuromuscular function. The “ankle strategy” can improve 
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ankle stability and reduce COP displacement to improve balance ability [18]. The “ankle strat-

egy” can maintain the body balance in AP direction showing the static posture balance of stand-

ing. In this study, the decrease in AP and ML displacement of the COP indicated that the tech-

nique-assisted training may increase the balance control ability of the ankle joint to reduce 

body sway and displacement variation after the participation of VF. 

In OLS, the parameters of COP mean velocity, COP ML velocity, and COP AP velocity of 

VFT after four weeks of training; the NVFT was not different before and after training in the 

NF test, but there was a difference in the VF test, and the CG remained unchanged. Meanwhile, 

the COP mean velocity, COP ML velocity, and COP AP velocity in VFT were significantly 

lower than those in the NVFT and CG. In TS, the COP mean velocity, COP ML velocity, and 

COP AP velocity in VFT decreased after four weeks of training, and there was no difference 

between the NVFT and CG. Previous studies have found that the smaller the displacement 

velocity, the better the balance control ability when using VF training [19]. In this study, VF 

training using smart auxiliary equipment may help participants maintain better physical stabil-

ity. When the human body performs visual feedback training, the central nervous system con-

trols the body's goal-directed movements through relevant mechanisms [20]. Posture sway in 

the ML direction is controlled by adduction/abduction of the hip joint mechanism, while the 

postural sway in the AP direction is controlled by plantar flexion/dorsiflexion of the ankle joint 

mechanism [21]. Therefore, in this study, the decrease in COP ML velocity and COP AP ve-

locity in the VFT may be caused by the goal-directed movement of the ankle and hip joint 

mechanism regulated by the CNS during VF training. Past studies have found that balance 

training stimulates proprioception and increases sensory motor nerve signal transmission to 
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improve balance control ability [22], and balance training will strengthen muscular activity and 

improve the stability of the balance mechanism [23]. Therefore, training without the assistance 

of smart devices will strengthen muscle activity, and the central nervous system will mobilize 

the relevant muscle groups for goal-directed movements during the VF test to improve balance. 

However, the VFT conducts visual feedback training during the training process and the CNS 

controls the relevant muscle groups to perform goal-directed movements during training, so 

that the training effect of the visual feedback training group is higher than that of the general 

training group. Therefore, the CNS mobilizes more motor neurons to increase the physical 

stability when performing VF training in OLS and TS. 

In OLS, the parameters of COP area, COP radius, and COP radius variance of VFT decreased 

after four weeks of training; the NVFT and CG remained unchanged. Meanwhile, the COP 

area, COP radius, and COP variance in the VFT were significantly lower than those of the 

NVFT and CG. The results demonstrate that using smart wearable auxiliary VF for training 

has better balance ability than not wearing smart wearable auxiliary training or remaining un-

trained. Previous studies have shown that the COP radius and the COP area can reflect the 

static stability of the human body in the process of OLS; the larger the COP area and COP 

radius, the worse the stability [24]. Therefore, balance training with visual feedback assisted 

by smart insoles can help participants maintain physical stability. The decrease in COP radius 

and COP area is primarily due to conscious control by the human body based on the visual 

information obtained from VF [25]. During the training process, the participants  could inte-

grate VF information and motor sensory information to maintain physical stability under the 

control of the CNS [26]. Previous studies have found that training with VF provided by smart 
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devices can improve balance ability. For example, training with VF provided by a balancer 

(Pro-kin) or balance board (Wii Fit) can reduce the COP radius and COP area of participants  

and increase the physical stability after training [27]. Therefore, the decrease in COP area, COP 

radius, and COP radius variance after training in VF provided by smart insoles may also be due 

to the increase in visual information. In TS, the COP area, COP radius, and COP radius vari-

ance of the VFT decreased after four weeks of training, and there was no difference between 

the NVFT and CG. Consistent with the results of the VFT in OLS, it was observed that physical 

stability in TS also increased after VF training. In addition, previous studies have pointed out 

that smart wearable devices are VF to the body's COM, and the COM VF will strengthen au-

tonomous control and reduce posture sway, thereby achieving more efficient posture control 

or improving balance [28]. The training without smart auxiliary equipment only adjusts itself 

under the original sense organ system, and cannot judge the position effectively through the 

VF [29]. Therefore, the balance ability of the NVFT cannot be significantly improved, and the 

use of VF assisted by smart insoles for training will provide more VF information to strengthen 

the physical autonomous control ability and improve physical balance. 

5. Conclusions  

The balancing ability of the body can be enhanced by assisting proprioception through the 

VF system. The balance mechanism is more dependent on visual feedback as the difficulty of 

the balancing task increases. Whether in the OLS or TS posture, the application of wearable 

technology to VF balance training can significantly improve the ability of young people to 

maintain physical stability and adjust in response to physical instability. Obtaining the real-
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time VF of COP in time compensates for the lack of direct observation of plantar pressure in 

traditional balance training, and is intuitive and simple, provides real-time feedback, and has 

strong operability. In the future, it could be applied to the simple balance training of different 

groups to improve visual and physical balance integration. 

The smart insoles monitoring system can be applied to different movement states of the hu-

man body. A limitation of the study in our investigation on smart insoles has only considered 

the training of static stance in the OLS and TS postures. In the future, the training benefits of 

smart insoles can be further explored through gait experiments to examine changes in muscle 

activity and biomechanics due to the long-term use of smart wearable devices. 
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