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Abstract: For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of
distributions from a new generator which could be an alternate to the Kumaraswamy-G family
proposed earlier by Cordeiro and de-Castro in 2011. This new generator can also be used to
develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G and
Transmuted-G for bounded unit interval. Some mathematical properties of this new family are
obtained and maximum likelihood method is used for estimating the family parameters. We
investigate the properties of one special model called a new Kumaraswamy-Weibull (NKwW)
distribution. Parameter estimation is dealt and maximum likelihood estimators are assessed
through simulation study. Two real life data sets are analyzed to illustrate the importance and
flexibility of this distribution. In fact, this model outperforms some generalized Weibull models
such as the Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized
Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull,
exponentiated-Weibull and Weibull distributions when applied to these data sets. The bivariate
extension of the family is proposed and the estimation of parameters is given. The usefulness of the
bivariate NKwW model is illustrated empirically by means of a real-life data set.

Keywords: Bivariate family; Kumaraswamy-G family; Marshall and Olkin shock model; maximum
likelihood method; parameter induction; T-X family; Weibull distribution

1. Introduction

The twenty-first century begun with establishing and extending new tools for modern statistics.
In terms of distribution theory, one of the important developments is to define new useful models
and then tested to real life data sets available from simple to complex phenomenons. The modern
distribution theory has also motivated statisticians and practitioners to propose new generalized (G)
families and investigate some of their special models, which can effectively be used in different fields, in
particular, medicine, reliability engineering, agriculture, survival analysis, demography, actuarial study
and others. The G-families proposed by Azzalini [1] (skew-Normal-G (SN-G)), Marshall and Olkin [2]
(Marshall-Olkin-G (MO-G)), Gupta et al. [3] (exponentiated-G (exp-G) [Lehmann alternative 1 (LA1)
and Lehmann alternative 2 (LA2)]), Eugene et al. [4] (beta-G), Gleaton and Lynch [5] (odd log-logistic-G
(OLL-G)), Shaw and Buckley [6] (transmuted-G), Zografos and Balakrishnan [7] (ZBgamma-G),
Cordeiro and de-Castro [8](Kumaraswamy-G (Kw-G)), Alexander et al. [9] (McDonald-G (Mc-G)),
Risti¢ and Balakrishnan [10] (RBgamma-G), Cordeiro et al. [11] (exponentiated-generalized-G (EG-G)),
Bourguignon et al. [12] (odd Weibull-G (OW-G)), Tahir et al. [13] (odd generalized-exponential
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(OGE-G)), Tahir et al. [14] (logistic-X) and Topp-Leone-G (2017) have received increased attention in
recent statistical literature. For more G-families, the reader is referred to Tahir and Nadarajah [15], and
Tahir and Cordeiro [16].

Kumaraswamy [17] pioneered a two-parameter model for bounded unit interval (0, 1) which is
denoted by the random variable (rv) T ~ Kw(a, b). The cumulative distribution function (cdf) and
probability density function (pdf) of T are

R)=1-(1—-t"", te(0,1) (1)

and
r(t) =abt™ 1 (1— )b, )

respectively, where a > 0 and b > 0 are shape parameters.
Cordeiro and de-Castro [8] defined the cdf and pdf of the Kw-G family by

FwG(;0,b,8) =1—[1-G(x:8)", x€(0,1) ©)

and
fraw(%:0,0,8) = abg(x;€) G(x;:8)" ! [1 - G(x;8)7" ", )

where a > 0 and b > 0 are two additional shape parameters, and ¢ is the vector of baseline parameters.

The Kw-G family has received wide-spread recognition and more than sixty special
models have been studied so far, namely: exponential, exponentiated-exponential, Weibull,
exponentiated-Weibull, modified Weibull (Lai et al. [18]), flexible-Weibull (Bebbington et al. [19]),
generalized power Weibull, log-logistic, half-logistic, Lomax, Burr, Kumaraswamy, generalized
gamma, exponentiated-gamma, generalized Rayleigh, Pareto, generalized Pareto, Pareto-IV, Gumbel,
exponentiated-Gumbel (type-II), Fréchet, Laplace, Gompertz, Gompertz-Makeham, normal, inverse
Gaussian, skew-normal, generalized half-normal, Birnbaum-Saunders, skew-f, Nadarajah-Haghighi,
linear failure rate, quadratic hazard rate, Lindley, quasi-Lindley, Lindley-Poisson, Sushila,
half-Cauchy, inverse exponential, inverse Rayleigh, inverse Weibull, inverse Weibull-Poisson,
inverse flexible-Weibull, modified inverse Weibull (using LA2), Fisher-Snedecor, compound-Rayleigh,
exponential-Rayleigh, exponential-Weibull (compounded), exponentiated-Chen, generalized Kappa,
generalized extreme-value, Weibull-geometric (WG), complementary WG, Marshall-Olkin exponential,
Marshall-Olkin Fréchet (MOFr), Marshall-Olkin Lindley, transmuted Weibull, transmuted Pareto,
transmuted modified-Weibull (Sarhan-Zaindin), transmuted exponentiated modified Weibull,
transmuted exponentiated additive Weibull and transmuted MOFr.

Some other special models of the Kw-G family have also been reported in the literature but
these suffer non-identifiability issue (when two parameters appear, for example, in a product and it is
impossible to determine their individual effects). These special models are: power function, Burr III,
generalized linear failure rate, exponentiated-Pareto, exponentiated Burr and exponentiated-Lomax.

Note 1. The citations and the references of the authors of special models of the Kw-G family [8] are
avoided in this section and in references to save space.

Alzaatreh et al. [20] proposed a general method for constructing G-families by using the
transformed-transformer (T-X) approach. Let r(t) be the pdf and R(t) be the cdf of arv T € [a, ]
for —co < a < b < oo and let W[G(x)] be a function of the cdf G(x) or survival function (sf)
G(x) =1 — G(x) of any baseline rv (W(-) is known as generator) such that W[G(x)] satisfies three
conditions:


https://doi.org/10.20944/preprints202009.0713.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2020 doi:10.20944/preprints202009.0713.v1

30f27
(i) WIG(x)] € [a,D],
(ii) W[G(x)] is differentiable and monotonically non-decreasing, and
(iii) xgrgoo WI[G(x)] = aand xh—{%o W[G(x)] =b.
The cdf of the T-X family is
WIG(x)]
Fry(x) :/a (1) dt = R(W[G(x)]), 5)
where W|[G(x)] satisfies the conditions (i)-(iii).
The pdf corresponding to Equation (5) is
frx) = (W6)) & wic(). ©)
dx

The main motivation for proposing our family are:

(i) Constructing new and novel G-families as a function of a cdf, W[G(x)], is a difficult task in these
days. A few pioneer G-families have been developed in the literature considering W[G(x)] viz.
exponentiated-G with power parameter &« > 0 (LA1 and LA2) (Gupta et al. [3]) [G(x)*and 1 — G(x)"],
beta-G (Eugene et al. [4]) [G(x)], ZBgamma-G (Zografos and Balakrishnan [7]) [— log G(x)], odd
log-logistic-G (Gleaton and Lynch [5]) [G(x)/G(x)], RBgamma-G (Ristic and Balakrishnan [10])
[—log G(x)], log-odd logistic-G (Torabi and Montazeri [21]) [log{G(x)/G(x)}], Gumbel-X (Al-Aqgtash
et al. [22]) [log{—log G(x)}], Weibull-X (T-X approach) and Weibull-X (Ahmad et al. [23])
[{—1log G(x)}/G(x)] are the pioneer works. Other G-families either non-composite (alone based on
well-established parent model) or composite (mixture of two G-families) and compounded G-families
are the extensions or modifications of the above described pioneer G-families. For example, the
generator G(x), where T € (0,1) was pioneered by (Eugene et al. [4] for defining the beta-G family,
and later this generator was adopted by (Cordeiro and de-Castro [8]; Alexander et al. [9]; Rezaei et
al. [24]) for defining the Kw-G, Mc-G and TL-G families, respectively. Similarly, the odd generator
G(x)/G(x) (where T € (0,00)) was suggested by (Gleaton and Lynch, [5]) for proposing the odd
log-logistic-G family, and it was adopted by (Bourguignon et al. [12]; Torabi and Montazeri [25]; Tahir
et al. [13]; Silva et al. [26]; Cordeiro et al. [27]; Alizadeh et al. [28]; Cordeiro et al. [29]; Hassan et al.
[30]; Hassan and Nassr [31]; Maiti and Pramanik [32]) for defining the odd Weibull-G, odd gamma-G,
odd generalized-exponential-G, odd Lindley-G, odd Burr-G, odd power-Cauchy-G, odd half-Cauchy,
odd additive Weibull-G, odd power-Lindley-G and odd Xgamma-G, respectively, among others.

(ii) The proposed extension of the Kumaraswamy-G model is based on a new generator W[G(x)] =
1—G(x)°™ for T € (0,1) instead of the common generator G(x) for which the beta-G, Kw-G, Mc-G
and TL-G classes have been developed so far.

(iii) The proposed generator 1 — G(x)¢(*) seems little complicated in comparison to earlier
well-established generator for the unit interval but it has the ability to produce better estimates
and goodness-of-fit (GoF) tests results that can make it distinguishable and attractive for applied
researchers (as evident from the results in Section 6).

(iv) For most of the families and models, if the cdf is in closed form, then the quantile function (qf)
can be straightforward to obtain. In some families and models, where the gf is based on some special
functions like beta, gamma, and others, then the gfs can only be determined by using power series. In
our case, the cdf of the family is in closed form but the qf can be found only numerically.

Note 2. A complete and independent investigation of the properties and application of
our proposed generator F(x) = 1 — G(x)¢™) as a new family like transmuted-G (Tr-G) and
exponentiated-generalized-G (EG-G) will appear in another outlet very soon. It is noted here that the
two G-families (Tr-G and EG-G) have not been developed from any existing parent model similar to
our proposed one.
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The paper is unfolded as follows. In Section 2, we define the new Kumaraswamy generalized
(NKw-G) family. In Section 3, some of its mathematical properties are determined from a useful linear
representation for the family density. We investigate the asymptotics and shapes of the density and
hazard rate, ordinary and incomplete moments, generating function, mean deviations and estimation
of the model parameters. Several properties of a special model viz. new Kumaraswamy Weibull (NKwW)
distribution are discussed in Section 4. A simulation study is also conducted to assess the performance
of maximum likelihood estimators of the newly proposed model in this section. In Section 5, the
usefulness of this distribution is illustrated by means of two real life data sets. In Section 6, we define
the Bivariate New Kumaraswamy G-family of distributions. In Sections 7, the usefulness of the new
bivariate models are illustrated by means of real-life data sets. In fact, we prove empirically that our
proposed model outperforms some well-known univariate and bivariate distributions. Finally, Section
8 offers some concluding remarks.

2. The NKw-G family

For W[G(x)] = G(x) and T € (0,1) just only the beta-G, Kw-G, Mc-G and TL-G families have
been reported so far. No other generators for T € (0, 1) have been published until now. So, our main
objective is to introduce a new family of distributions for T € (0,1) called the NKw-G family and to
study its main structural properties.

Let r(t) be the Kumaraswamy density. By inserting Equation (2) in Equation (5) and letting
W[G(x)]=1— G(x)G(x), the cdf of the NKw-G family is given by

1-G(x;¢) 0 (%)
F(x) =F(x;a,b,&) = ab / (1 - t”)b_1 dt
0

1= {1-[1- G<x;€>c(’“@]a}b' @)

where a > 0 and b > 0 are two shape parameters of the Kw distribution and ¢ is the vector of the
baseline parameters.

The pdf corresponding to Equation (7) is

1

f(x) = Fsa,b,8) = abg(xd) [GuEIW [1-G(yecd]"

x {1 - [1 ~G(x; g)G(x@r}b_l {gg g —log G(x; g)] . ®)

Henceforth, let X be a rv having the density (8). The survival function (sf) S(x) and hazard rate
function (hrf) h(x) of X are, respectively,

s = {1-1-6(x g)G<x;€>}”}b

and

oy MmO [1-Gteee | (g s omn]
v - [1- e Y

3. Properties of the NKw-G family

In this section, we obtain some mathematical properties of the NKw-G family.
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3.1. Quantile function

The most common and simplest method for generating random variates is based on the inverse
cdf. For an arbitrary cdf, the quantile function (qf) is define as Q(u) = F~'(u) = min{x; F(x) > u}.
The gf of the NKw-G family can be determined by inverting (7) and solving two non-linear equations
numerically. We can use the following procedure:
()Setz=z(u) =1—[1— (1—u)/t]V/e;
(ii) Find w = w(u) numerically in wlog(1 — w) = log(z) using any Newton-Raphson algorithm;
(iii) Solving numerically for x in G(x;§) = w yields the qf x = Q(u) of X.

3.2. Asymptotics

The following asymptotics for the density, distribution function and hrf of X hold.
Corollary 1. The asymptotics of Equations (7), (8) and (9) when x — 0 or (G(x) — 0) are

F(x) ~ ~b[G(x)] ",
£(x) ~ abg(x) [G(x)] -,
h(x) ~ abg(x) [G(x)] "+,

Corollary 2. The asymptotics of Equations (7), (8) and (9) when x — oo or (G(x) — 1) are

1—F(x) ~allog G(x)] Y,

) ~ 268 fog ()04,

bg(x)
M)~ ) 1og G

3.3. Analytic shapes of the density and hazard rate function

The shapes of the density and hrf of X can be described analytically. The critical points of the
density of X are the roots of the equation:

g(x){G(x) -2}
8(x) C(x) ' {G(x) —1}[G(x) + {G(x) — 1} 1og G(x)]
+2(x)log Gx) — (a—l)g(X)M[(( )+§G(( ))—1}logG(x)]

a(b—1)g()M(1- M) | +1ogGlx) +1]
+ 1—(1-M)" =0

where M = M(x) = [1 — G(x)]¢™).
The critical points of the hrf of X are obtained from the equation:
g'(x) 1
(M—1)[G(x) —1] [(1 — M) —1] {G(x) + [G(x) — 1] log G(x)}

xg(x) [ [1 = (1= M)"] [G(x) = 1]{ —log? G(x) + G(x) [log G(x) +1)* +2}
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—i—M{Z —2(1=M)* —alog?G(x) — aG(x)*[log G(x) + 1]

+G(x) {(1 — M)* +2alog G(x){ log G(x) + 1} — 1} } =0.

3.4. Linear representation for the NKw-G density

Here, we derive useful expansions for Equation (7) and Equation (8) based on the concept of
exponentiated distributions. For an arbitrary baseline cdf G(x), a rv is said to have the exponentiated-G
(exp-G) distribution with power parameter a > 0 if its cdf and pdf are

Hi(x) = G(x)",  ha(x) =ag(x) G(x)" ", (10)

respectively.

The properties of the exponentiated distributions have been studied by many authors in recent
years. We consider the generalized binomial expansion

> b
(-2 = R ()% )

which holds for any real non-integer b and |z| < 1. Using (11) twice in the following expression
T(x;¢) ={1-[1—-P(x; é)]“}b in Equation (7), where P(x; ) = G(x; &)¢%%), we can write T(x; &) =
Y2 owjr1 P(x; &)™, where wj 1 = Yop_i(—1)/m ) (/11)- Then, we can expand Equation (7) as

F) =1 Y wips [1 - G(x; £)] 1600, 12)
=0

Further, using Mathematica, the power series holds

1= G0 — 143 4. +1) G(x:2)), (13)
i=2
whete ga(j+1) = —(j+1), g3+ 1) = —(+1)/2, qa(j+1) = i+ 1) +1)/6, g5 +1) =

(G+1)(2j+1)/4, etc.
By inserting Equation (13) in Equation (12) and noting that E]?"’:O wir1 =1, we obtain

F(x) =) t:G(x¢), (14)
i=2
where o
ti=—Y wiqi(j+1) fori >2. (15)
j=0

By differentiating F(x), the NKwG density has the form
f(x) =)t hipa (:8), (16)
i=1

where h;1(x; ) is the exp-G density with power parameter (i + 1). Equation (16) reveals that the
NKw-G density function is a linear combination of exp-G densities. Then, some of its mathematical
properties can be determined directly from those of the exp-G distribution.
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3.5. Mathematical properties

The formulae derived throughout the paper can be easily handled in most symbolic computation
platforms such as Maple, Mathematica and Matlab which have currently the ability to deal with
analytic expressions of formidable size and complexity. Henceforth, let Y1 be a rv having the
exp-G distribution with power parameter (i +1). We obtain some mathematical quantities of the
NKw-G family from (16) and those properties of the exp-G distribution. The exp-G properties are
known for at least fifty distributions; see those distributions listed in Tahir and Nadarajah [15].

First, the nth ordinary moment of X, say E(X"), can be expressed from (16) as

[e9)

E(X") =) tit B(Y]'y) = Y (i +1) tis1 T, 17)
i=1 i=1

where 7,; = [*_ x"G(x;&) g(x;&)dx = fol Qc(u; )" uldu, and Qg (u; &) is the gf of the baseline G.
The quantities E(Y/, ;) are known for many G distributions as can been seen in those papers cited in
Tahir and Nadarajah (2015).

Moments are important in any statistical analysis. Some of the most important features of a
distribution can be studied through moments. For instance, the first four moments can be used to
describe some characteristics of a distribution. Clearly, the central moments and cumulants of X can
be determined from (17) using well-known relationships.

Second, the nth lower incomplete moment of X, say my(y) = [Y_ x" f(x)dx, is

il G(y6)) ‘
E t1+1/ x"hity(x )dx:Z(i+1)ti+l/() ! Qq(u;¢)" u'du. (18)

i=1

The last two integrals can be evaluated numerically for most G distributions.

The first incomplete moment 1 (y) is used to construct the Bonferroni and Lorenz curves (popular
measures in economics, reliability, demography, insurance and medicine) and to determine the totality
of deviations from the mean and median of X (important statistics in statistical applications).

Third, for a given probability 7z, the Bonferroni and Lorenz curves (popular measures in economics,
reliability, demography, insurance and medicine) of X are given by B(7r) = my(q) /(7)) and L(7) =
my(q)/ iy, respectively, where g = Q(7;&) can be found from the procedure described at the last
paragraph of Section 2.

Fourth, the total deviations from the mean and median are 6; = 2y} F(y}) — 2m(p}) and
8y = p} — 2my (M), where F(3}) comes from (7).

Fifth, the moment generating function (mgf) M(t) = E(etX) of X follows from (16) as

E i1 Mig1(8) = Y (i +1) tipg pi(t), (19)
i=1 i=0
where M1 (t) is the mgf of ;1 and p; (¢ fo exp[t Qg (u; )] u'du. Hence, we can obtain the mgfs

of many special NKw-G distributions dlrectly from exp-G generating function and Equation (19).

3.6. Estimation of univariate family parameters

Here, we consider the estimation of the unknown parameters of the NKw-G family by the
maximum likelihood method. The MLEs enjoy desirable properties and deliver simple approximations
that work well in finite samples when constructing confidence intervals. The normal approximation
for the MLEs can be handled either analytically or numerically.

d0i:10.20944/preprints202009.0713.v1


https://doi.org/10.20944/preprints202009.0713.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2020 doi:10.20944/preprints202009.0713.v1

8 of 27

The log-likelihood function £(6) for the vector of parameters § = (a, b, ¢) " from n observations
X1, -+, X, has the form

n

t=1{0) = nlog(ad)+ élog [g(xi;8)] + ; G(x;;¢) log[l — G(xi; )]

-1 log {1- 1= Glxs )0t}

i=1

#o=1) Lleg 1 {1 1 Gl )

(xi;6) .
+Zlog[ ) —log[1 -G (xl,c;")]].

The MLE 8 of § can be evaluated by maximizing /(). There are several routines for numerical
maximization of ¢(6) in the R program (optim function), SAS (PROC NLMIXED), Ox (sub-routine MaxBFGS),
among others.

All distributions belonging to the NKw-G family can be fitted to real data using the AdequacyModel
package for the R statistical computing environment (https://www.r-project.org/). An important
advantage of this package is that it is not necessary to define the log-likelihood function and that it
computes the MLEs, their standard errors and some goodness-of-fit statistics (GoFS). We only need to
provide the pdf and cdf of the distribution to be fitted to a data set.

Alternatively, we can differentiate the log-likelihood and solving the resulting nonlinear likelihood
equations. Then, the score components with respect to a, b and ¢ are

ol noo& i
Pl E+l;10g{1_[1_(;(x“§>]c( g)}
r, {1 1= G010 | og {1 - 1 - Gxi )] 6 |
VL 1= [1— (1= G(x;;¢)) 0] ’
ol no& 26 1
% = 5 ulos[t-{1--cuarmy],
A I N o (I CIC:77o BT e
% = Lien L{r oy st cwof
3 Gf [G(x;;8) — 2
== G(xi;s’)) [—log{1 = G(x;;¢)} + G(x3;¢) {1+ log(1 - G(x;;¢))}]
2 (1 Glx ) } .
a—1) L 1_G(x“§)] co | log{l = G(xi )} + G(xi:0)
a—1
o PR a{l—(l—G(xi;(f))G(xi;g)}
{1081 = Gl EN} 6 = 0= L T e e
% (1= G(x;8) 7 [~ log {1~ G(xi: )} + G(xis8) {1+ log(1 ~ G(xsE)}] G,
where g7 = %xég) and Gig = %ﬁgg) are column vectors of the same dimension of ¢.

Setting the score components to zero and solving them simultaneously yields the MLEs of the
model parameters. The resulting equations cannot be solved analytically, but some statistical softwares
can be used to solve them numerically through iterative Newton-Raphson type algorithms.
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For interval estimation and hypothesis tests on the model parameters, we can obtain the (p +
2) x (p +2) observed information matrix J(6) numerically (p is the dimension of ) since the expected
information matrix K(6) is very complicated and requires numerical integration.

Under standard regularity conditions, we have (§ — 6) < A p+2(0,K(0)71), where ~ means
approximately distributed and K(#) is the expected information matrix. The asymptotic behavior
remains valid if K(0) is replaced by the observed information matrix J(6) evaluated at , that is, ] ().
The multivariate normal NV, (0, | (§) ~1) distribution can be used to construct approximate confidence
intervals for the model parameters.

4. The NKwW distribution and its properties

We now define the NKwW distribution by taking the Weibull baseline with cdf G(x) = 1 —
exp(—a xP) and pdf g(x) = a fxP~1 exp(—a xP). Then, the cdf and pdf of the NKwW distribution are,
respectively,

b

Fua() = 1-{1-[1-exp { —ax® (1-exp(-a2) }] '} 20)
and
faow(x) = abaprflexp{ —axf (2 exp(~ax))
x |1—exp{ —axf (1 _exp(_“xﬁ))”“—l

o I T 03

% [1_@‘1’(_‘”/3) + (xxﬁ} _ 1)
exp(—a xP)

-1

Henceforth, we denote by X a rv having density (21). The hrf of X has the form
h(x) = abaBxPlexp { —axP (2 —exp(—w xﬁ)) }
-1
X {1 — exp { —axP (1 - exp(—ocxﬁ)) }]ﬂ

i 1o (1-ep(ae) )]

1 —exp(—axP)
) [ exp(—a1P)

-1

+ocxﬁ].

Figures 1 and 2 display some plots of the pdf and hrf of X for selected parameter values. Figure 1
reveals that the NKwW distribution is right-skewed and reversed-] shaped. Also, Figure 2 shows that
the NKwW hrf can produce increasing, decreasing, bathtub and upside-down bathtub shapes.
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Figure 2. Plots of the NKwW hazard rate for some parameter values.
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4.1. Linear representation of NKwW density
The cdf of the NKwW distribution follows from Equation (14) as
© i
Fnroww () = Z t; [1 —exp(—w xﬁ)} . (22)
i=2

By expanding the binomial term in (22) and noting that ) °, ; = 1, we can write

Aot =151 5 0 (1) epcpest

2
and then by changing the index p by (p + 1)

i
Fnkow (x) =1+ Z t; Z 1)P+t (P-i—l) exp[—(p+1)axf].

Let 6y = 2for p = 0,1,2 and §, = p for p > 3. We can interchange the sums conveniently to
obtain

where v, = (=1)¥ Z;’i(;p (pil) t;.
By differentiating the last expression, the NKwW density can be expressed as

[e9)

fnkow(x) = ) vpe(x; (p+1)a, B), (23)

p=0
where
m(x;(p+1a,B) = (p+1)apxPlexp(—(p+1)axf)
denotes the Weibull density with scale parameter (p + 1)a and shape parameter .

Equation (23) shows that the NkwW density is a linear combination of Weibull densities. So,
several NKwW mathematical properties can be derived from those of the Weibull distribution.

4.2. Properties of NKwW

Let Z, be a rv with density 77(x; (p + 1)a, B). Then, several properties of X can follow from those
of Z,. First, the nth ordinary moment of X can be written as

> %
: _r(”+1> S - (24)
=) Bipr e
Second the cumulants (k,) of X can be determined recursively from (24) as ks = ui —

Yol G ) ki 1!, respectively, where x; = .

The skewness v = x3/ K;/ 2 and kurtosis Yo = K4/ K% of X can be calculated from the third and
fourth standardized cumulants. The skewness and kurtosis plots of the NKwW distribution are
displayed in Figure 3. These plots reveal that the parameters 2 and b play a significant role in modeling
the skewness and kurtosis behaviors of X.

d0i:10.20944/preprints202009.0713.v1
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Figure 3. Plots of the (a) Skewness and (b) Kurtosis of the NKwW(x = (1.5, 0.5, 1.5), g = (2.5, 3.5, 0.5))
model.

Third, we derive an approximation for the density of the sample average X = YI' | X;/+/n of
independent and identically (iid) rvs Xy, - - - , X;; having density (21). Without loss of generality, we
can replace each X; by (X; — p})/Var(X;) in order to simplify the approximation. By doing this, the
previous third and fourth standardized cumulants are y; = p4 and 7y, = p, — 3. Further, we require the
first six Hermite polynomials defined by (—1)"9"¢(x)/0x" = H,(x) ¢(x) for n > 0, where ¢(x) is the
standard normal pdf. They satisfy the recurrence equation H,(x) = yH,_1(x) — (r —1)H,_»(x) (r >
2) and follow as Hy(x) = 1, Hy(x) = x, Hy(x) = x> — 1, H3(x) = x®> —3x, Hy(x) = x* —6x> +
3, Hs(x) = x° — 10x3 + 15x and Hg(x) = x® — 15x* + 45x2 — 15.

The second-order Edgeworth expansion for the sample mean X of standardized NKwW rvs can
be expressed as

! ! 2
fx(x) = ¢(x) {1 | 6% Hs(x) + % Hy(x) + 22 H6<x)} +0(n%2). (25)

It is much more frequent in statistical applications to compute distribution functions than density
functions. By integrating Equation (25), the cdf of X has the form

! I 2
Fx(x) = @(x) = ¢(x) {6"} Ha() + 5% gy 4 5 H5<x>} +0(n), (o)

where ®(x) is the standard normal cdf. Equation (26) provides highly accurate results for the
probabilities associated with Y.
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Fourth, the nth incomplete moment of X, denoted by m,(y) = E(X" | X < y) =
foy x" fnkww (x)dx, is easily found changing variables from the lower incomplete gamma function
= f0°° x*~1e7*dx when calculating the corresponding moment of Z,. Then, we obtain

Z p+1 n/ﬁ7<;+1,(p+1)az5>. 27)

Fifth, the first incomplete moment m1(z) is used to to determine the totality of deviations from
the mean and median of a distribution and construct the Bonferroni and Lorenz curves. The total
deviations from the mean and median M of X can be expressed as 81 = 2} FNkow (1)) — 2m1 (p})
and &, = uj —2m1(M), where M can be determined from Fyg,w (M) = 0.5. The Bonferroni and
Lorenz curves of X for a given probability 77 are given by B(71) = mq(q)/(tmu}) and L(7t) = 7t B(7),
respectively, where g = Q) is the gf of X discussed in Section 4.1.

4.3. Quantile function and simulation study of univariate model

The gf of the NKwW distribution cannot be obtained explicitly. However, we can use
Newton-Raphosn algorithm to generate NKwW variates as follows:

1. Setn,a, B, a,band initial value x°.
2. Generate U ~Uniform(0,1).
3. Update x" by using the Newton’s formula

xx = x0 — R(xo;tx, B,a,b),

where R(x%«, B,a,b) = %m, and Fygpw and fykew are obtained from Equation (20)
and Equation (21), respectivwely. o

4. If |x% —x*| <€ (e >0, very small tolerance limit), then store x
NKwW(«, B, a, b) distribution.

5. If[x? — x*| > ¢, then, set x’ = x* and go to step 3.

6. Repeat steps (2)-(5) n times to generate x1, - - - xy.

0 — x* as a variate from the

The R script to generate observations from the NKwW distribution is given in the Appendix A.

Here we study the performance and accuracy of maximum likelihood estimates of the NKwW
parameters using Monte Carlo simulations. The simulation study is carried out for sample sizes
n = 25, 50, 75, 100, 200 and parameter scenarios: I: « = 0.5, § = 0.5,a =2.5,and b = 1.5,1l: « = 1.5,
=15 a=15andb=15andlll: « = 1.1, = 55,4 = 0.5, and b = 0.5. We used the above
algorithm for sample generation whose R-codes ae given in Appendix A. The simulation study is
repeated for N = 1,000 times each with given sample size and computed the average estimates (AE)
along with their average biases (Bias)of the MLEs and mean squared errors (MSE).

(0; —6)?

N N
Bias(f) = ) N 0 and  MSE(d) = ) N

i=1 i=1
We display Bias and MSE for the parameters «, 8, a and b in Figures 4 and 5, respectively, which indicate
that as sample size increases the bias and MSE decreases. Thus, MLEs perform well in estimating the
parameters of the NKwW distribution.
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Figure 4. Plots of estimated MSEs for selected parameter values.
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4.4. Estimation of NKwW model parameters

Let x1,--- ,x, be a sample of size n from the NKwW distribution given in Equation (21). The
log-likelihood function ¢ = /() for the vector of parameters § = (a, B, a, b) " is

¢ = nlog(abap)— Zx —|—0ch exp(—axP)

+iillog [tx xf-g +exp(—06x?) (1 —exp(—a xf))]
n

#p=1) Llog v+ (a 1) L og [1 - exp(-axf) (1 - exp(-ax))

=1

log [1 — {1 — exp(—zxx?) (1 —exp(—w xfg)) }1 .

The function ¢ can be easily maximized using the AdequacyModel package. The components of
the score vector U(#) are

p p
n [ x; |1+exp(axt) n
Uy = T4 : { : } —Zxﬁexp(—txxﬁ) [axﬁ—l—Zexp(axﬁ)—l}
ﬁ ﬁ — 1 1 1 1
ax; +exp(ax;)—1 i=1

M=

(1)

I
—

i

+w—ni(?ﬁ—w—mi<fﬁ?ﬁ)

i i=1
n ocxf; log(x) 1+exp(zxx?)
Z( [ }>

ocxf;—l—exp(rxxiﬁ) -1

i [wxﬁ log(x exp(—mxf)}

i=1

Zip\ LC uzf* Zip
2)-eong ().

n
Ug = ﬁ+Zlogxi+
B = i=1

X ax.ﬁ X ax.ﬁ — a— -
{ Y+ 2 exp(ax?) 1}—#( 1);(

n n a )
u, = g—l—ZlogZi —(b—l)Z(le_oi,JZl),
i

i=1 i=1

n n
u, = E—i—Zlog(l—zf),
i=1

where z; =1 — exp {fucxi-5 [1 — exp(—lxxlﬁ)} },
2y = xlﬁ {(xxf + exp(wxiﬁ) - 1] exp {—rxxl.ﬁ [2 - exp(—(xxf)] },
by exp(ﬂéxiﬁ) - 1] exp {—ax? [2 - eXp(_axiﬁ)] } '

zip = ocxiﬁ log x; {«xxi

The MLE 6 of 6 can also be obtained by solving the nonlinear equations U, = 0, Ug=0,U, =0
and U, = 0. These equations cannot be solved analytically and statistical software can be used to
obtain the estimates numerically. We can use iterative techniques such as a Newton-Raphson type
algorithm to obtain § using a wide range of initial values. The initial values for the parameters are
important but are not hard to obtain from the fit of the Weibull distribution. This process often results
or leads to more than one maximum. However, in these cases, we consider the MLEs corresponding to
the largest value of the maximum. In a few cases, no maximum is identified for the selected initial
values. In these cases, a new initial value is tried in order to obtain a maximum.

5. Empirical illustrations of NKwW Model

In this section, we compare the NKwW distribution with some well-known extended Weibull
distributions. In order to check the potentiality of the new distribution, we use two real data sets
representing different hydrological events such as precipitation and flood. We compare the NKwW

d0i:10.20944/preprints202009.0713.v1
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model with the Kumaraswamy-Weibull (KwW) (Cordeiro et al. [33]), beta-Weibull (BW) (Lee et al.
[34]), exponentiated-generalized Weibull (EGW) (Oguntunde et al. [35]), McDonald-Weibull (McW)
(Cordeiro et al. [36]), gamma-Weibull (GaW) (Cordeiro et al. [37]), odd log-logistc Weibull (OLLW)
(da-Cruz et al. [38]), Marshall-Olkin Weibull (MOW) (Ghitany et al. [39]), transmuted-Weibull (TrW)
(Khan et al. [40]) and Weibull (W) distributions by means of two data sets described below:

Data Set 1. Precipitation data. The data taken from Katz et al. [41] represent the annual maximum
precipitation (inches) for one rain gauge in Fort Collins, Colorado from 1900 through 1999. The data
are: 239, 232, 434, 85, 302, 174, 170, 121, 193, 168, 148, 116, 132, 132, 144, 183, 223, 96, 298, 97, 116, 146,
84, 230, 138, 170, 117, 115, 132, 125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219, 142, 117, 87,
223,215, 108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102, 269, 98, 271, 95, 212, 151, 136,
240, 162, 71,110, 285, 215, 103, 443, 185, 199, 115, 134, 297, 187, 203, 146, 94, 129, 162, 112, 348, 95, 249,
103, 181, 152, 135, 463, 183, 241.

Data set 2. Flood data. The data taken from Asgharzadeh et al. [42] represent the maximum annual
flood discharges (in units of 1000 cubic feet per second) of the North Saskachevan River at Edmonton,
over a period of 48 years. The data are: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720,
27.500, 28.100, 28.600, 30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200,
40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200,
61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560.

All the calculations in these two applications are performed using the AdequacyModel package
in R. The unknown parameters of the models are estimated by the maximum likelihood method.
The log-likelihood function is evaluated at the MLEs (?). The well-known GoFS such as the
Akaike information criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information
Criterion ( HQIC), Anderson-Darling (A*), Cramér—von Mises (W*) and Kolmogrov-Smirnov (K-S)
are adopted for model comparisons. The lower values of GoFS and higher p-values of the K-S statistic
indicate good fits.

Tables 1 and 3 list the MLEs and their standard errors (SEs) for the NKwW distribution and
other competitive models (KwW, BW, EGW, McW, GaW, OLLW, MOW, TrW and W) fitted to the two
hydrological data sets. The values of the GoFS in Tables 2 and 4 indicate that the NKwW model shows
small values of these statistics and hence it provides the best fit as compared to the other models. The
plots in Figures 6 and 7 also support our claim.
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Figure 6. Estimated (a) density (b) K-M (c) hazard rate, and (d) Box-plots for the data set 1.
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Table 1. MLEs and their SEs (in parentheses) for data set 1.
Distribution o B a b 0
NKwW 0.0089 1.1514 5.0192 0.5054 -
(0.0023) (0.0730) (1.6716) (0.1807) -
KwW 0.0160 1.3962 5.7590 0.3381 -
0.0027) (0.2113) (1.9264) (0.1554) -
BW 0.0219 0.7969 13.2183 1.2340 -
(0.0076) (0.1903) (5.1706) (0.9787) -
EGW 0.0086 0.9045 2.0898  10.5512 -
(0.0022) (0.1288) (0.6257) (4.4416) -
McW 0.0132 1.2859 1.7925 0.5887 2.5824
(0.0032) (0.2544) (0.6126) (0.3831) (0.9474)
GaW 1.1306 0.5469 17.6158 - -
(0.0496) (0.0154) (1.4970) - -
OLLW 0.0045 1.0313 2.4836 - -
(0.0003)  (0.1759)  (0.4532) - -
MOW 0.0032 3.4739 - - 0.1039
(0.0002) (0.3436) - - (0.0489)
W 0.0043 2.4549 - - 0.6144
(0.0003)  (0.1755) - - (0.2078)
' 0.0050 2.2745 - - -
(0.0002)  (0.1629) - - -
Table 2. The statistics #, AIC, BIC, HQIC, A*, W*, K-S and p-value for data set 1.
K-S
Distribution 7 AIC BIC HQIC A* W* K-S  P-value
NKwW 565.2337 1138.4670 1148.8880 1142.6850 0.1722 0.0207 0.0454  0.9863
KwW 566.6253 1141.2510 1151.6710 1145.4680 0.3678 0.0477 0.0572 0.8987
BW 566.2292 1140.4580 1150.8790 1144.6760 0.3149 0.0411 0.0489 0.9707
EGW 566.2248 1140.4500 1150.8700 1144.6670 0.3266 0.0427 0.0487  0.9718
McW 567.4362 1144.8720 1157.8980 1150.1440 0.4868 0.0655 0.0596  0.8695
GaWw 567.2618 1140.5240 1148.3390 1143.6870 0.5071 0.0689 0.0547  0.9257

OLLW 569.6909 1145.3820 1153.1970 1148.5450 0.6649 0.0932 0.0807  0.5335
MOW 568.4818 1142.9640 1150.7790 1146.1270 0.6431 0.0866 0.0595  0.8713
W 573.7855 1153.5710 1161.3870 1156.7340 1.4659 0.2183 0.0872  0.4321
W 576.1180 1156.2360 1161.4460 1158.3450 1.8275 0.2767 0.0936  0.3450
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Figure 7. Estimated (a) density (b) K-M (c) hazard rate, and (d) Box-plots for the data set 2.
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Table 3. MLEs and their standard errors (in parentheses) for data set 2.
Distribution o B a b 0
NKwW 0.1742 0.9887  59.0160  0.2183 -
(0.0316) (0.0619) (0.4024) (0.0585) -
KwW 0.1609 1.0252  54.7825  0.2041 -
(0.0153) (0.0276) (0.1358) (0.0382) -
BW 0.1320 1.1080  23.0602  0.1940 -
(0.0073)  (0.0068) (8.7941) (0.0324) -
EGW 0.0090 0.7774 55966  10.5493 -
(0.0041) (0.1370) (2.0458) (5.6821) -
McW 0.1608 1.0049 145078  0.2210 2.5180
(0.0340) (0.0466) (9.8227) (0.0757) (0.0895)
GaW 4.6144 0.4983  14.7225 - -
(0.1518) (0.0217) (1.7239) - -
OLLW 0.0154 0.9508 2.3925 - -
(0.0021) (0.3378)  (0.9487) - -
MOW 0.0065 3.3556 - - 0.0145
(0.0014)  (0.4292) - - (0.0146)
W 0.0137 1.9476 - - 0.7003
(0.0016)  (0.1941) - - (0.2483)
w 0.0171 1.7719 - - -
(0.0015) (0.1776) - - -
Table 4. The statistics #, AIC, BIC, HQIC, A*, W*, K-S and p-value for data set 2.
K-S
Distribution 7 AIC BIC HQIC A* W* K-S  P-value
NKwW 2151742  438.3485 445.8333 441.1770 0.2003 0.0277 0.0776  0.9346
KwW 215.5195 439.0389 446.5238 441.8675 0.2495 0.0347 0.0834  0.8924
BW 216.1573  440.3147 447.7995 443.1432 0.3387 0.0477 0.0973  0.7538
EGW 218.1801 444.3601 451.8449 447.1887 0.6147 0.0913 0.0973  0.7543
McW 215.7566  441.5132 450.8692 445.0489 0.2699 0.0374 0.0837  0.8895
Gaw 219.4700 444.9401 450.5537 447.0615 0.8278 0.1250 0.1176  0.5203

OLLW 220.4104 446.8208 452.4344 448.9422 (09051 0.1388 0.0934  0.7966
MOW 2182594 4425187 448.1323 444.6401 0.5773 0.0868 0.0791  0.9247
W 224.0997 454.1994 459.8130 456.3208 1.5006 0.2372 0.1291  0.4001
W 225.7065 455.4131 459.1555 456.8273 1.7286 0.2765 0.1399  0.3048

6. Bivariate New Kumaraswamy (BvNKw) G-family

In this Section, we introduce a bivariate extended of the NKw-G family according to Marshall
and Olkin shock model (see, Marshall and Olkin, [43]). Several authors used the Marshall and Olkin
approach as a method to generate bivariate distributions, see Sarhan and Balakrishnan, [44], Kundu
and Dey [45], EI-Gohary et al. [46], Muhammed [47], El-Bassiouny et al. [48], Ghosh and Hamedani
[49], El-Morshedy et al. [50,51], Eliwa et al. [52], Hussain et al. [53], and others. The BvNKw-G
family is constructed from three independent NKw-G families by utilizing a minimization process.
Assume three independent rvs Yy ~ NKw-G(a, by, ¢); k = 1,2, 3. Define Xj= min{Y]-, Y3} j=1,2, the
bivaraite random vector X is said to have the BNKw-G family with parameters vector Y =(a, by, by,
bs, ¢) if its joint reliability function (jrf) is

SNKw-G (X1;8, b1, &) Snkw-G (X254, b2 + b3, ) if x1 < x2

. 28
SNKw-G (X158, b1 + b3, 8) SNkw-G (X2;4,b,8) if x1 > xo, (28)

Sxy, %, (x1,%2,Y) = {

The marginal rfs corresponding to (28) can be writen as

Sx, (%) = Snkw-G (xi;a,b; +b3,0); i =1,2. (29)
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The corresponding joint pdf (jpdf) to (28) can be formulated as
fkw-G (x158,b1, ) fw-G (X258, b2 4 b3, ) if x1 < x2
fx,x (x1,x2;Y) = fakw-c (Y14, b1 + b3, 8) fnkw-c (¥2;4,02,8)  if x1 > x0 (30)

m,fNKW—G (x;a,b1 + by + b3,§) if xy =x=1x,

where the jpdf in (30) can be derived from a well-known formula (see Eliwa and El-Morshedy, [54].
The marginal pdfs corresponding to (29) can be proposed as

fx.(xi) = fukw-g (xi;a,b; +b3,8); i =1,2. (31)

If X have the BNKw-G family, then the distributions of max{Xj, X;} and min{X;, X, } are

3 3
Fmax{Xl,Xz}(w) = HFNKw—G(w; a, bir g) and Fmin{Xl,Xz}(w) =1- HSNKW—G (ZU,‘ a, bil g)r
i=1 i=1

respectively. If Xj ~ NKw-G(a, b]' +b3,8); j = 1,2, then the coefficient of correlation between X; and
Xz is
_} 4hkwc (Q(u)x,5a,b1,8) Fnkw-c (Q(u)xy;a,b0 +b3,8) — 1 if x1 < xp
Q(”)Xl,Xz - . . ; (32)
4Fnkw-G (Q(u)x,;a,b1 +b3,8) Fnkw-G (Q(u)x,5a,b2,8) =1 if x1 > xp.

The BvNKw-G family has a singular part along the line x; = x, with weight bs(b; + by + b3) !,
whereas on x; # xp with weight (by + by)(by + by + b3) ™!, the BYNKw-G family has an absolute
continuous part. Assume J; = Sx,(x;) where Xj ~ NKw-G(a, b + bs, ¢); j = 1,2, the jrf of the
proposed family can be derive by utilizing copula of the Marshall-Olkin model as follows

Sx,, %, (X1, %2, Y) = 5%7715;42 max (6;',6,2), for0 < 1,7 < 1,

bs
bj+b3 .
h (x1,x,Y) = Lapgtn) Figures 8, 9 and 10 show the jpdf, jhrf, and jrf for different values of
X1,Xp \ A1, A2, SX1,X2(x1’x2;Y)- g ’ jpdat, ] ’ ]

the BVINKw-Weibull (BvNKwW) parameters.

where 7; = Using (28) and (30), the joint hrf (jhrf) can be easily reported by using

300001
150000
20000
100000
10000+
500001
o I

Figure 8. The surface plots of the jpdf, jhrf and the jrf of the BNKwW model fora = 0.6,b1 = 4,b, =4,
b3 =4,0 =0.6and f =29.
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Figure 9. The surface plots of the jpdf, jhrf and the jrf of the BNKwW model fora = 1.6,b; =2,b, =2,
b3 =2,a=16and p=29.

Figure 10. The surface plots of the jpdf, jhrf and the jrf of the BVNKwW model for a = 0.8,b; =
15,bp =1.5,b3 = 1.5, =09 and = 1.9.

6.1. The MLE for the BUNKw-G family

In this section, the unknown BvNKw-G family parameters are estimated by using the MLE
approach. Assume (x11, x21), (X12, ¥22), . . ., (X1p, X2p) is a sample of size p from the BYNKw-G family
where Ay = {x1; < x2i}, A2 = {x1; > 22}, A3 = {x1; = x2i = xi}, ps = |As|;s = 1,2,3 and
|A| = p = p1+ p2 + p3. Using (30), the likelihood function /(Y) can be reported as

P1 P2
(Y) = T nkw-c (x1i8,b1,8) fnkw-G (%268, b2 + b3,8) T | fukw-c (x1i;a, b1 + b3, )
i=1 i=1

b3 )Ps P3
X G (x05;a, by, — G (x;;a,b1 + by + b3, C). 33
kw-G (%2 26)(b1+bz+b3 EfNKWG(z 1+ b2 +03,8) (33)

Through the differentiation of the term ¢ (Y) = log I(Y) with respect to a, by, by, b3 and ¢, and equating
the result equations by zeros, we get the non-linear normal equations. An iterative procedure like
Newton-Raphson technique is required to solve them numerically.

7. Empirical illustrations of BYNKwW model

In this Section, the flexibility of the BNKwW model are discussed by using application to real
data. This data is reported in [55], and it represents the failure times of a parallel system constituted
by two identical motors in days. The fitted bivariate models are compared utilizing some statistical
criteria, namely, —¢, AIC, CAIC, BIC and HQIC. To fit the marginals of the BVNKwW model, the
K-S with its P-value are utilized. The BPNKwW model is utilized to analyze this data comparing
with other bivariate distributions like: bivariate generalized power Weibull (BvGPW), bivariate
exponentiated Weibull (BVEW), bivariate Weibull (BvW), bivariate generalized exponential (BvGEx),
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Table 5. The —¢, K-S and p-values for X;, X, and max(X1, Xp).
\ X, | X | max(Xq, X3)
Model ‘ —L K-S P-value ‘ —L K-S P-value ‘ —L K-S P-value

NKwW ‘ 100.2890 0.2376  0.2614 ‘102.9142 0.0902  0.9956 ‘101.1965 0.1372  0.8871

bivariate exponential (BvEx), and bivariate generalized linear failure rate (BvGLFR) distributions.
At first, the marginals X;, X, and max(Xj, Xp) are fitted separately on this data. The MLEs of
the parameters (a,b, «, B) of the corresponding NKwW distribution for X, X, and max(X3, X;) are
(60.5030, 732.6059, 0.9694, 0.17440), (1.8182, 84.4223, 0.0019, 0.9434) and (27.8306, 263.4773, 0.4649,
0.2626), respectively. The —¢, K-S, P-value for the marginals are reported in Table 5.

Table 5 lists that the NKwW model fits the real data for the marginals. Figures 11, 12 and 13 show
the fitted pdf, cdf and probability-probability (pp) plots, which support our empirical results in Table

5.
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Figure 11. The fitted pdfs plots for X;, X, and max(Xy, Xp).
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Figure 12. The estimated cdfs for X7, X, and max(Xy, X3).
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Figure 13. The pp plots for X7, X and max(Xy, X5).

Figure 14 shows the box and TTT plots for the X;, X, and max(Xj, X). Furthermore, the same
Figure shows the scatter plot for the motors data.

max(X1,X2)
1
08 0
L
300 350

250

200

13
o
SR $ 8809090909090 S — Xt
=1 | { =
L ——  max(X1,X2)

T T T T T T
08 1.0

X:
L
T(im)
04 06
L L

150

100

0.0
L

T T T T T
100 150 200 250 300

100 4
150 4
200 -
250 -
300 -
350 -
o
o
o
1
o
IS
o
@

i l:l:l
Figure 14. The (a) box-plot, (b) TTT plot and (c) scatter plot for the marginals.

From the previous results, it is noted that the BVNKwW model may be used to analyze and
discuss the real data herin. The MLEs, —¢, AIC, CAIC, BIC and HQIC values for the BPNKwW model
and some competitive models are listed in Table 6. From Table 6, it is observed that the BVNKwW
distribution provides a better fit as compared to other competitive models.

8. Concluding remarks

In this paper, a new Kumaraswamy-G family of distributions is introduced from a new
generator W[G(x)] = 1 — G(x)®™) for T € (0,1), which can serve as an alternative to well-known
Kumaraswamy-G family (pioneered in 2011) and other classes of distributions. The proposed
generator W[G(-)] adopted here involves a different function of the cumulative function instead
of existing generator which is only based on G(x). In literature, beta-G, Kw-G, Mc-G and TL-G
families have been introduced from the existing generator G(x) for bounded unit interval. So, similar
G-families can be developed from our proposed generator 1 — G(x)G(*). We obtain some structural
properties of this new Kumaraswamy-G family, and also study some properties of the special model
called the new Kumaraswamy-Weibull (NKwW) distribution. We compare this distribution with the
well-known generalized Weibull models (Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull,
exponentiated-generalized Weibull, gamma-Weibul, odd log-logistic-Weibull, Marshall-Olkin-Weibull,
transmuted-Weibull and Weibull) using six popular GoF test-statistics. We find that the new
distribution provides better estimates and minimum GoF-tests values. Thus, the NKwW distribution
outperforms the above described competitive models on the basis of numerical and graphical analysis.
Similarly, the BPNKwW distribution is introduced, and then compared with other well-known bivariate
models such as bivariate generalized power Weibull, bivariate exponentiated Weibull, bivariate Weibull,
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Table 6. The MLEs with its (SE) and goodness of fit measures for Motors Data.
Model
Statistic BYNKwW | BvGPW | BvVEW | BvW | BvGEx | BvEx | BvGLFR
) 1.6395 0.0291 0.5203 0.0389 0.0137 - 6.99 x 10>
(0.0651) (0.0557) | (0.0511) | (0.0158) | (0.0023) - (1.09 x 107°)
by 3.1333 15591 | 30.1381 | 02004 | 24541 | 0.0023 04171
(0.2364) (3.0428) | (9.6756) | (0.0511) | (1.0189) | (0.0005) | (9.71 x 10~7)
by 3.3989 1.8581 241351 | 0.2383 2.8803 0.0021 0.4864
(0.1896) (3.6787) | (7.6763) | (0.0513) | (1.1158) | (0.0005) | (1.05x 107)
by 4.2869 3.7191 61.8051 | 0.3381 6.0641 0.0051 1.0188
(0.0985) (7.2630) | (6.3779) | (0.0622) | (1.8113) | (0.0009) | (1.33 x 107°)
Q 0.0008 0.0291 0.5203 0.0389 0.0137 - 6.99 x 10>
(0.0001) (0.0557) | (0.0511) | (0.0158) | (0.0023) - (1.09 x 107°)
B 1.2532 - - - - - -
(0.3421) - - - - - -
—L 2111711 | 431.7909 | 339.2656 | 422.9532 | 335.2312 | 355.7323 331.7681
AIC 434.3422 | 8715818 | 688.5312 | 853.9064 | 678.4624 | 717.4646 673.5362
CAIC 4419786 | 874.6587 | 693.5312 | 856.9833 | 681.5393 | 719.1789 678.5362
BIC 439.6844 | 875.14328 | 692.9831 | 857.4679 | 682.0239 | 720.1357 677.9881
HQIC 435.0788 | 872.0729 | 689.1451 | 854.3975 | 678.9535 | 717.8329 674.1501

bivariate generalized exponential, bivariate exponential, and bivariate generalized linear failure rate
distributions. The results of popular goodness-of-fit statistics showed that our proposed bivariate
model is better as compared to other well-known bivariate models. We expect that this new family
will be able to attract readers and applied statisticians.

Appendix A

The R script to generate NKwW variates is given below:

n=20; alpha=1; beta=1.5; a=2.5;b=2.5;
f=function(x,alpha,beta,a,b)

{
g=alpha*beta*x~(beta-1))*exp(-alpha*x~{betal})
G=1-exp(-alpha*xx~{betal})
F=1-(1-(1-(1-G)~®~a)"b

D =axbxgx(1-G)~G*x(1-(1-G)~G)~(a-1))
*((G)/(1-G) -Llog(1-G) ) *(1-(1-(1-G)~G) ~a) ~(b-1)
return(D)

};

F=function(x,alpha,beta,a,b)

{

g=alpha*beta*x~(beta-1))*exp(-alpha* x~{betal})
G=1-exp(-alpha*x~{betal})

F=1-(1-(1-(1-G)"G)~a)"b

D =axbxg*(1-G) ~G*(1-(1-G)~G)~(a-1))*((G)/(1-G) -Llog(1-G))
*(1-(1-(1-G)~G)~a) "~ (b-1)

return(d)

3

u=runif(n,0,1);


https://doi.org/10.20944/preprints202009.0713.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2020 doi:10.20944/preprints202009.0713.v1

25 of 27

x=rep(0,n);

for(i in 1:n)

{

x0=1

xnew=x0- ((F(x0,alpha,beta,a,b)-uli])/f (x0,alpha,beta,a,b))
while(abs(xnew-x0) > 0.0001)

{

x0=xnew

xnew=x0- ((F(x0,alpha,beta,a,b)-uli])/f(x0,alpha,beta,a,b))
}

x[i]=xnew

}

print (x)
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