

Technical Note

Satellite Image Multi-Frame Super-Resolution using 3D Wide-Activation Neural Networks

Francisco Dorr ¹

¹ Independent, José María Paz 745 12, Florida, 1602, Buenos Aires, Argentina; fdorr@dc.uba.ar

Abstract: The small satellite market continues to grow year after year. A compound annual growth rate of 17% is estimated during the period between 2020 and 2025. Low-cost satellites can send a vast amount of images to be post-processed at the ground to improve the quality and extract detailed information. In this domain lies the resolution enhancement task, where a low-resolution image is converted to a higher resolution automatically. Deep learning approaches to Super-Resolution (SR) reached the state-of-the-art in multiple benchmarks; however, most of them were studied in a single-frame fashion. With satellite imagery, multi-frame images can be obtained at different conditions giving the possibility to add more information per image and improve the final analysis. In this context, we developed and applied to the PROBA-V dataset of multi-frame satellite images a model that recently topped the European Space Agency's Multi-frame Super Resolution (MFSR) competition. The model is based on proven methods that worked on 2D images tweaked to work on 3D: the Wide Activation Super Resolution (WDSR) family. We show that with a simple 3D CNN residual architecture with WDSR blocks and a frame permutation technique as data augmentation better scores can be achieved than with more complex models. Moreover, the model requires few hardware resources, both for training and evaluation, so it can be applied directly from a personal laptop.

Keywords: multi-frame super resolution; wide activation super resolution; 3D convolutional neural network, deep learning

1. Introduction

In the past, the satellite market was reserved for a few companies and governments, which had the capacity (technical and monetary) to build and deploy large machinery in space, and the data obtained afterwards was used just by only a few research teams worldwide. Today, there is a growing interest, both social and commercial, in the deployment of small, low-cost satellites. A compound annual growth rate of 17% has been estimated for the small satellite market (forecast from 2020 to 2025) [1]. This expansion brings with it new challenges because of the vast amount of new data available. For example, satellite images are being used in many different fields to accomplish a wide spectrum of tasks. To name a few, Xu et al. [2] investigated vegetation growth trends over time, Martinez et al. [3] tracked tree growth through soil moisture monitoring, Ricker et al. [4] studied Arctic ice growth decay and Liu et al. [5] developed a technique to extract deep features from high-resolution images for scene classification.

But as satellites get more affordable and smaller, data quality cannot always be maintained; a trade-off must be found between price and quality. A case of study is high resolution (HR) images. They are not easy to obtain, or fast enough to transfer, and need costly and massive platforms as opposed to small, rapidly deployed, low-cost satellites that can provide viable services at the cost of lowering quality [6]. Image quality restrictions are common due to degradation and compression in the imaging process [7]. Notwithstanding, many tasks can be solved in post-processing steps, improving

37 the quality once the data arrives on earth. Hence the importance of image resolution enhancement
38 techniques that can take advantage of the huge and growing amount of information available from
39 small satellites.

40 The problem of super-resolution (SR) is not new. It has been widely studied in different contexts
41 taking multiple approaches. Specifically, to improve the resolution of satellite images, one common
42 approach is the use of discrete wavelet transforms (DWTs), in which the input image is decomposed
43 into different sub-bands and then combined to generate a new resolution through the use of inverse
44 DWTs [8], [9], [10]. In recent years, as deep learning applications explode in every computer-vision
45 task, convolutional neural networks methods began to dominate the problem of SR. However, most
46 of them focus on single-image super resolution (SISR) [11], [12], [13] and do not take advantage of
47 the temporal information inherent to multiframe tasks. MFSR has been studied in video; for example
48 Sajjadi et al. [14] proposed a framework that uses the previously inferred HR estimate to super-resolve
49 the subsequent frame, Jo et al. [15] created an end-to-end deep neural network that generates dynamic
50 upsampling filters and a residual image avoiding explicit motion compensation, and Kim et al. [16]
51 presented 3DSRnet, a framework that maintains the temporal depth of spatio-temporal feature maps
52 to capture nonlinear characteristics between low and high resolution frames.

53 In this technical note we present a technique that takes as a strong baseline Kim et al. [16] 3DSRnet
54 framework, but adapted for satellite image MFSR and replacing 3DCNN blocks with wide activation
55 blocks [17]. This method core is a 3D wide activation residual network that was fully trained and
56 tested on the PROBA-V dataset [18] on a low-specifications home laptop computer with only 4GB of
57 GPU memory. Despite being low on resources and based on a simple architecture, this method topped
58 Kelvin's ESA challenge in February 2020 [19].

59 2. Materials and Methods

60 2.1. Image data-set

61 In this work we used the set of images from the vegetation observation satellite PROBA-V of the
62 European Space Agency (ESA) [18] provided in the context of the ESA's super resolution competition
63 PROBA-V, which took place between 01.11.2018 and 31.05.2019 [20].

64 The PROBA-V sensors can cover 90% of the globe every day with a resolution of 300 meters (low
65 resolution). Every 5 days they can provide images of 100 meters resolution (high resolution). With this
66 in mind, the objective of the challenge is to build the 100m resolution images from multiple images of
67 higher frequency of 300m resolution. It should be noted that the images provided for this challenge
68 were not artificially degraded. As a common practice in super resolution developments, usually a high
69 resolution image is artificially degraded and this is used as the low resolution starting point. In this
70 case all the images are original, both the low and high resolution ones [20].

71 2.1.1. Data-set characteristics

72 As described in Märtens et al. [18], the data-set used for both training and testing is composed as
73 follows:

- 74 • 1160 images from 74 hand-selected regions were collected at different points in time
- 75 • Divided in two spectral bands: RED with 594 images and NIR with 566. A radiometrically and
76 geometrically corrected Top-of-Atmosphere reflectance in Plate Carré projection was used for
77 both bands.
- 78 • LR size is 128 x 128, HR size is 384 x 384 and both have a bit-depth of 14 bits but saved as 16-bit
79 png format.
- 80 • Each scene has a range of LR images (from a minimum of 9 to a maximum of 30) and one HR
81 image.
- 82 • For each LR and HR image there is a mask that indicates which pixels can be reliably used for
83 reconstruction.

84 2.2. Network architecture

85 The proposed 3DWDSRnet method for super resolution is based on a patch-based 3D-CNN
 86 architecture that allows multiple image inputs to be scaled into a single higher resolution image.

87 The problem being investigated is very similar to video SR, where the resolution of a single video
 88 frame is enhanced using the information from the surrounding frames. In a given sliding time window,
 89 video frames usually refer to a single scene but with subtle changes between each other. Thus, this
 90 temporal information can benefit resolution scaling more than single-image approaches [16]. The
 91 PROBA-V data set has multiple frames per location which can have shifts of up to one pixel. This
 92 evokes a similarity with the frames of a video and their possible variations and that is why we decided
 93 to investigate this path.

94 Our work takes as a strong baseline the framework proposed by Kim et al. [16] for video
 95 super-resolution: 3DSRnet. They use a 3D-CNN that takes five low-resolution input frames and seeks
 96 to increase the resolution of the middle frame. The network is a two-way residual network. The main
 97 path acts as a feature extractor from the chaining of multiple 3D convolutional layers that preserves the
 98 temporal depth. For the last layers, a depth reduction is performed to obtain the final 2D HR residual.
 99 Meanwhile, the second path takes the middle frame and applies a bicubic scaling. A Pixel Shuffle [21]
 100 reshapes the residual output of the main path, which is then added to the output of the secondary path
 101 obtained by this means the final HR frame (Figure 1).

102 Our approach differs from the original 3DSRnet in two main aspects (compare Figure 1 and 2):

103

- Convolutional layers are replaced by 3D WDSR blocks
- Bicubic upsampling is replaced by 2D WDSR blocks.

104

Figure 1. Original 3DSRnet: All low resolution input frames are fed into the main 3D Conv path to predict the residuals for the middle frame. The results of the paths are added up to obtain the final HR frame.

Figure 2. 3DWDSRnet: All low-resolution input frames are fed into the main WDSR Conv 3D path to predict the scene's residuals. The average of the frames is used as input to the WDSR 2D Convs path. The results of both paths are added together to obtain the final RH frame. Soft yellow highlights the differences with the original 3DSRnet blocks.

105 2.2.1. WDSR blocks

106 Yu et al. [17] describe WDSR blocks as residual blocks with the capability to increase the final
 107 accuracy of a SISR task. They demonstrate that a feature expansion using a 1x1 Conv before the
 108 ReLU activation, followed by a feature factorization given by a 1x1 Conv and a 3x3 Conv keeps more
 109 information and even lowers the number of total parameters used (Figure 3). This residual block was
 110 named WDSR-b. In our study we expand the notion of WDSR-b block from 2D to 3D and replace
 111 every single 3D Conv from 3DSRnet with it. To do so, we simply change kernel sizes from 1x1 to 1x1x1
 112 and from 3x3 to 3x3x3. Everything else remains exactly the same. The implementation of the WDSR
 113 block was based on Krasser's github code [22].

Figure 3. 2D-WDSR-b block. The residual block is composed of a 1x1 Conv to expand features before ReLU activation. After activation a 1x1 Conv followed by a 3x3 Conv are applied. 3D-WDSR-b used by our method follows the same approach but taking into account the time dimension.

114 2.3. Preprocessing and Data Augmentation

115 The preprocessing steps were performed as follows:

- 116 1. Register all frames from each image to the corresponding first frame using
 masked_registered_translation function from scikit-image [23].
- 117 2. Remove images where all of their frames had more than 15% dirty pixels.
- 118 3. Select K best frames (from cleanest to dirtiest, k=7).
- 119 4. Extract 16 patches per image.
- 120 5. Remove instances where the HR target patch had more than 15% dirty pixels.

122 To make the training more robust to the pixel shifts and differences between frames, a frame-basis
 123 data-augmentation was performed. For each patch, 6 new patches were added to the training set. Each

124 of them with a random frame permutations. A similar augmentation technique can be found in Rifat et
 125 al. [24]. The impact of patches and data augmentation by frame permutation can be seen in Section 3.

126 **2.4. Training**

127 The training was performed on a low-end laptop GPU GTX1050 with 4GB of memory. First, the
 128 model was trained on NIR band until no more improvements were found (156 epochs). Then, RED
 129 band was trained over the NIR band pretrained model (61 epochs). This two-step model training was
 130 based on Molini et al. [25] where they found it increased the final accuracy.

131 We used NAdam optimizer with a learning rate of 5e-5, patch size of 34 with a stride of 32,
 132 and a batch size of 32 patches. The main path was composed of 8 3DWDSR-b blocks before the
 133 time dimension reduction. As regularization it is important to note that common techniques such as
 134 Batch Normalization do not work well in SR problems ([26], [27]). We used Weight Normalization as
 135 recommended by Yu et al. [17].

136 **2.4.1. Quality metric and loss function**

137 Märtes et al. [18] proposed the quality metric clean Peak Signal-to-Noise Ratio (cPSNR) that takes
 138 into account the pixel shifts between frames and is applicable for images which only have partial
 139 information (dirty pixels). Basically, cPSNR ignores masked pixels (due to wrong pixels, clouds, etc.)
 140 and takes into account all possible pixel shifts within frames to calculate the final metric. Inspired
 141 by cPSRN, Molini et al. [25] propose cMSE, a modified mean square error to use as loss functions.
 142 Since SR prediction and HR target could be shifted, the loss embeds a shift correction. To do so, SR
 143 is cropped at the center by d pixels (defined by the maximum expected shift between images) and
 144 all possible patches shifts $HR_{u,v}$ are extracted from the target HR image. Thereafter, all possible MSE
 145 scores are calculated for each $HR_{u,v}$ patch and the minimum score is taken.

146 We found that this loss works quite well for the problem but based on Zhao et al. [28] we follow
 147 their recommendation to use Mean Absolute Error loss (MAE) as a substitute. Mathematically, cMAE
 148 is defined as follows:

$$149 L = \min_{u,v \in [0,2d]} \frac{\sum_{i=1}^{N_{u,v}} |HR_{u,v} - (SR_{crop} + b)|}{N_{u,v}}$$

150 where $N_{u,v}$ is the total number of clean pixels in u, v crop and b is the brightness bias corrections.
 151 Figure 4 shows how the loss is calculated taking into account all possible pixel shifts.

Figure 4. cMAE. For each possible pixel shift u,v the cMAE is calculated between cropped SR and $HR_{u,v}$ patch. In this example figure, the maximum possible shift is 1 (both horizontally and vertically), so 9 patches are extracted for each possible combination. PROBA-V dataset has a maximum of 3 pixel shift, so 49 combinations are needed to calculate the final loss.

152 **3. Results**

Table 1. Scores obtained in the Kelvins ESA's competition public leaderboard (Feb 2020). Scores are normalized by baseline, less is better.

Method	Patch	Frames	Loss	Normalization	Score	Memory requirement
DeepSUM	96x96 (bicubic)	9	cMSE	Instance	0.94745	+++
HighResnet	64x64	16	cMSE	Batch	0.94774	++
3DWDSRnet (ours)	34x34	5	cMAE	Weight	0.97933	+
3DWDSRnet (ours)	34x34 (aug)	5	cMAE	Weight	0.96422	+
3DWDSRnet (ours)	34x34 (aug)	7	cMAE	Weight	0.94625	+

153 *3.1. Comparisons*

154 We compare 3DWDSRnet to top methods at the moment the investigation was performed
 155 (February 2020): DeepSUM [25] and HighResnet [24] (1). It is worth noting that Kelvin ESA
 156 Competition is still open to teams that want to try their solution in a post-mortem leaderboard.
 157 As the code of 3DWDSRnet is open to use, modify and share, a github repository [29] was provided.
 158 There are teams that at the time of writing this technical note has built upon it and are still improving
 159 the metrics [30].

160 Description of compared methods in Table 1:

- 161 • **DeepSUM:** it performs a bicubic upsampling of images before feeding the network. When using
 162 this approach higher specifications are needed because of increasing memory cost making it
 163 impossible to train in a low-specifications equipment.
- 164 • **Highres-net:** this method upscales after fusion, so memory usage is reduced. However, they still
 165 need 16 frames and 64x64 patches to reach the best score. Scores are improved by averaging the
 166 outputs of two pretrained networks.
- 167 • **3DWDSRnet:** our method follows Highres-net approach of upscaling after fusion but achieves
 168 similar scores using less than half of the image frames (7) and half size patch size (34x34).
 169 Moreover, there is no need of averaging two methods to obtain these results.

170 **4. Discussion**

171 The results address some interesting insights about the common methods used in MFSR. It is
 172 shown that not always the more complex and memory consumption architectures are indeed the best
 173 ones. Sometimes a simple model but with the correct parameters performs better. For example, in our
 174 method, increasing frames from 5 to 7 shows an increased performance (1). Moreover, tweaking the
 175 data outside the neural network can improve the metrics even more. A simple method such as frame
 176 permutation for data augmentation shows a consistent growth in the score.

177 This makes us wonder if the money and work hours invested in designing the architecture of new
 178 neural networks as a general problem-solving approach is always a good choice. We point out, instead,
 179 the need to develop, in addition, algorithms optimized for every need. The latter could be used by
 180 teams or individuals with less hardware resources. The access of third world countries to the latest
 181 advances in hardware is not always possible, so in order to democratize the access to AI worldwide,
 182 more research should be done on accessible but equally efficient models.

183 This technical note serves as a base to continue improving the 3DWDSRnet method. Some possible
 184 directions to explore are:

- 185 • Further investigate data augmentation methods to take benefits of multiple frames such as more
 186 interesting permutations, insert of pixel variations simulating clouds, and changes in image color,
 187 brightness, contrast, etc.
- 188 • Ensemble results from multiple models as done in Highres-net [24].
- 189 • Try different patch sizes and see how this affects the performance.

190 **Funding:** This research received no external funding.

191 **Acknowledgments:** Joaquín Padilla Montani, Fernando G. Wirtz and Ricardo A. Dorr for general corrections.

192 **Conflicts of Interest:** The authors declare no conflict of interest.

193 Abbreviations

194 The following abbreviations are used in this manuscript:

195	SR	Super Resolution
	MISR	Multi-image Super Resolution
	MFSR	Multi-frame Super Resolution
	CNN	Convolutional Neural Network
196	Conv	Convolutional
	AI	Artificial Intelligence
	MAE	Mean Absolute Error
	MSE	Mean Square Error
	cPSNR	clean Peak Signal-to-Noise Ratio

197 References

1. Knuth, M.I. Small Satellite Market - Growth, Trends, and Forecast (2020 - 2025). Available online: <https://www.mordorintelligence.com/industry-reports/small-satellite-market> (accessed on 23 September 2020).
2. Xu, H.j.; Wang, X.p.; Yang, T.b. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. *Science of the Total Environment* **2017**, *579*, 1658–1674.
3. Martínez-Fernández, J.; Almendra-Martín, L.; de Luis, M.; González-Zamora, A.; Herrero-Jiménez, C. Tracking tree growth through satellite soil moisture monitoring: A case study of *Pinus halepensis* in Spain. *Remote Sensing of Environment* **2019**, *235*, 111422.
4. Ricker, R.; Hendricks, S.; Girard-Ardhuin, F.; Kaleschke, L.; Lique, C.; Tian-Kunze, X.; Nicolaus, M.; Krumpen, T. Satellite-observed drop of Arctic sea ice growth in winter 2015–2016. *Geophysical Research Letters* **2017**, *44*, 3236–3245.
5. Liu, Q.; Hang, R.; Song, H.; Li, Z. Learning multiscale deep features for high-resolution satellite image scene classification. *IEEE Transactions on Geoscience and Remote Sensing* **2017**, *56*, 117–126.
6. Sweeting, M. Modern small satellites-changing the economics of space. *Proceedings of the IEEE* **2018**, *106*, 343–361.
7. Luo, Y.; Zhou, L.; Wang, S.; Wang, Z. Video satellite imagery super resolution via convolutional neural networks. *IEEE Geoscience and Remote Sensing Letters* **2017**, *14*, 2398–2402.
8. Demirel, H.; Anbarjafari, G. Satellite image resolution enhancement using complex wavelet transform. *IEEE geoscience and remote sensing letters* **2009**, *7*, 123–126.
9. Demirel, H.; Anbarjafari, G. Discrete wavelet transform-based satellite image resolution enhancement. *IEEE transactions on geoscience and remote sensing* **2011**, *49*, 1997–2004.
10. Iqbal, M.Z.; Ghafoor, A.; Siddiqui, A.M. Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means. *IEEE geoscience and remote sensing letters* **2012**, *10*, 451–455.
11. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2472–2481.
12. Sun, W.; Chen, Z. Learned image downscaling for upscaling using content adaptive resampler. *IEEE Transactions on Image Processing* **2020**, *29*, 4027–4040.
13. Anwar, S.; Barnes, N. Densely residual laplacian super-resolution. *arXiv preprint arXiv:1906.12021* **2019**.
14. Sajjadi, M.S.; Vemulapalli, R.; Brown, M. Frame-recurrent video super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6626–6634.
15. Jo, Y.; Wug Oh, S.; Kang, J.; Joo Kim, S. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3224–3232.

231 16. Kim, S.Y.; Lim, J.; Na, T.; Kim, M. 3DSRnet: Video Super-resolution using 3D Convolutional Neural
232 Networks. *arXiv preprint arXiv:1812.09079* **2018**.

233 17. Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate
234 image super-resolution. *arXiv preprint arXiv:1808.08718* **2018**.

235 18. Märtens, M.; Izzo, D.; Krzic, A.; Cox, D. Super-resolution of PROBA-V images using convolutional neural
236 networks. *Astrodynamics* **2019**, *3*, 387–402.

237 19. Website, K.E.A.C.C. PROBA-V Super Resolution post mortem. Available online:
238 <https://kelvins.esa.int/proba-v-super-resolution-post-mortem/leaderboard> (accessed on 23 September
239 2020).

240 20. Website, K.E.A.C.C. PROBA-V Super Resolution Competition. Available online:
241 <https://kelvins.esa.int/proba-v-super-resolution> (accessed on 23 September 2020).

242 21. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single
243 image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings
244 of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1874–1883.

245 22. krasserm. Single Image Super-Resolution with EDSR, WDSR and SRGAN. Available online:
246 <https://github.com/krasserm/super-resolution> (accessed on 23 September 2020).

247 23. Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu,
248 T. scikit-image: image processing in Python. *PeerJ* **2014**, *2*, e453.

249 24. Rifat Arefin, M.; Michalski, V.; St-Charles, P.L.; Kalaitzis, A.; Kim, S.; Kahou, S.E.; Bengio, Y. Multi-Image
250 Super-Resolution for Remote Sensing Using Deep Recurrent Networks. Proceedings of the IEEE/CVF
251 Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 206–207.

252 25. Molini, A.B.; Valsesia, D.; Fracastoro, G.; Magli, E. DeepSUM: Deep neural network for Super-resolution of
253 Unregistered Multitemporal images. *IEEE Transactions on Geoscience and Remote Sensing* **2019**, *58*, 3644–3656.

254 26. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image
255 super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition
256 workshops, 2017, pp. 136–144.

257 27. Fan, Y.; Shi, H.; Yu, J.; Liu, D.; Han, W.; Yu, H.; Wang, Z.; Wang, X.; Huang, T.S. Balanced two-stage residual
258 networks for image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern
259 Recognition Workshops, 2017, pp. 161–168.

260 28. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for neural networks for image processing. *arXiv
261 preprint arXiv:1511.08861* **2015**.

262 29. Dorr, F. 3DWDSR: Multiframe Super Resolution Framework applied to PROBA-V challenge. Available
263 online: <https://github.com/frandorr/PROBA-V-3DWDSR> (accessed on 23 September 2020)., 2020.
264 doi:10.5281/zenodo.3634101.

265 30. Bajo, M. Multi-Frame Super Resolution of unregistered temporal images using WDSR nets.
266 Available online: <https://github.com/mmbajo/PROBA-V> (accessed on 23 September 2020)., 2020.
267 doi:10.5281/zenodo.3733116.

268 **Sample Availability:** Trained models and code public repository: <https://github.com/frandorr/PROBA-V-3DWDSR>