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1 Abstract: The small satellite market continues to grow year after year. A compound annual growth
= rate of 17% is estimated during the period between 2020 and 2025. Low-cost satellites can send a vast
s amount of images to be post-processed at the ground to improve the quality and extract detailed
« information. In this domain lies the resolution enhancement task, where a low-resolution image
s is converted to a higher resolution automatically. Deep learning approaches to Super-Resolution
o (SR) reached the state-of-the-art in multiple benchmarks; however, most of them were studied in
7 a single-frame fashion. With satellite imagery, multi-frame images can be obtained at different
e conditions giving the possibility to add more information per image and improve the final analysis.
o In this context, we developed and applied to the PROBA-V dataset of multi-frame satellite images
1o amodel that recently topped the European Space Agency’s Multi-frame Super Resolution (MFSR)
1 competition. The model is based on proven methods that worked on 2D images tweaked to work
1= on 3D: the Wide Activation Super Resolution (WDSR) family. We show that with a simple 3D CNN
1z residual architecture with WDSR blocks and a frame permutation technique as data augmentation
12 better scores can be achieved than with more complex models. Moreover, the model requires few
15 hardware resources, both for training and evaluation, so it can be applied directly from a personal
1 laptop.

»  Keywords: multi-frame super resolution; wide activation super resolution; 3D convolutional neural
1= network, deep learning

s 1. Introduction

-

0 In the past, the satellite market was reserved for a few companies and governments, which had
a1 the capacity (technical and monetary) to build and deploy large machinery in space, and the data
=2 obtained afterwards was used just by only a few research teams worldwide. Today, there is a growing
= interest, both social and commercial, in the deployment of small, low-cost satellites. A compound
2« annual growth rate of 17% has been estimated for the small satellite market (forecast from 2020 to 2025)
= [1]. This expansion brings with it new challenges because of the vast amount of new data available.
26 For example, satellite images are being used in many different fields to accomplish a wide spectrum of
2z tasks. To name a few, Xu et al. [2] investigated vegetation growth trends over time, Martinez et al. [3]
2s  tracked tree growth through soil moisture monitoring, Ricker et al. [4] studied Arctic ice growth decay
20 and Liu et al. [5] developed a technique to extract deep features from high-resolution images for scene

N

s classification.

31 But as satellites get more affordable and smaller, data quality cannot always be maintained; a
2 trade-off must be found between price and quality. A case of study is high resolution (HR) images.
s They are not easy to obtain, or fast enough to transfer, and need costly and massive platforms as
s« opposed to small, rapidly deployed, low-cost satellites that can provide viable services at the cost of
s lowering quality [6]. Image quality restrictions are common due to degradation and compression in the
s imaging process [7]. Notwithstanding, many tasks can be solved in post-processing steps, improving

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing
https://doi.org/10.20944/preprints202009.0678.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2020 d0i:10.20944/preprints202009.0678.v1

2 0f 8

sz the quality once the data arrives on earth. Hence the importance of image resolution enhancement
ss techniques that can take advantage of the huge and growing amount of information available from
3o small satellites.

40 The problem of super-resolution (SR) is not new. It has been widely studied in different contexts
a  taking multiple approaches. Specifically, to improve the resolution of satellite images, one common
«2 approach is the use of discrete wavelet transforms (DWTs), in which the input image is decomposed
4 into different sub-bands and then combined to generate a new resolution through the use of inverse
s« DWTs [8], [9], [10]. In recent years, as deep learning applications explode in every computer-vision
4+ task, convolutional neural networks methods began to dominate the problem of SR. However, most
s of them focus on single-image super resolution (SISR) [11], [12], [13] and do not take advantage of
4z the temporal information inherent to multiframe tasks. MFSR has been studied in video; for example
s Sajjadi et al. [14] proposed a framework that uses the previously inferred HR estimate to super-resolve
4 the subsequent frame, Jo et al. [15] created an end-to-end deep neural network that generates dynamic
so upsampling filters and a residual image avoiding explicit motion compensation, and Kim et al. [16]
s1  presented 3DSRnet, a framework that maintains the temporal depth of spatio-temporal feature maps
s2 to capture nonlinear characteristics between low and high resolution frames.

53 In this technical note we present a technique that takes as a strong baseline Kim et al. [16] 3DSRnet
s« framework, but adapted for satellite image MFSR and replacing 3DCNN blocks with wide activation
ss  blocks [17]. This method core is a 3D wide activation residual network that was fully trained and
ss tested on the PROBA-V dataset [18] on a low-specifications home laptop computer with only 4GB of
sz GPU memory. Despite being low on resources and based on a simple architecture, this method topped
ss Kelvin’s ESA challenge in February 2020 [19].

so 2. Materials and Methods

eo 2.1. Image data-set

61 In this work we used the set of images from the vegetation observation satellite PROBA-V of the
s European Space Agency (ESA) [18] provided in the context of the ESA’s super resolution competition
es  PROBA-V, which took place between 01.11.2018 and 31.05.2019 [20].

6s The PROBA-V sensors can cover 90% of the globe every day with a resolution of 300 meters (low
es resolution). Every 5 days they can provide images of 100 meters resolution (high resolution). With this
es in mind, the objective of the challenge is to build the 100m resolution images from multiple images of
ez higher frequency of 300m resolution. It should be noted that the images provided for this challenge
es were not artificially degraded. As a common practice in super resolution developments, usually a high
e resolution image is artificially degraded and this is used as the low resolution starting point. In this
7 case all the images are original, both the low and high resolution ones [20].

7z 2.1.1. Data-set characteristics

72 As described in Mértens et al. [18], the data-set used for both training and testing is composed as
»s  follows:

za o 1160 images from 74 hand-selected regions were collected at different points in time
s o  Divided in two spectral bands: RED with 594 images and NIR with 566. A radiometrically and

76 geometrically corrected Top-of-Atmosphere reflectance in Plate Carre projection was used for
77 both bands.
s o  LRsizeis 128 x 128, HR size is 384 x 384 and both have a bit-depth of 14 bits but saved as 16-bit
79 png format.

o o Each scene has a range of LR images (from a minimum of 9 to a maximum of 30) and one HR
81 image.

=2 o Foreach LR and HR image there is a mask that indicates which pixels can be reliably used for
83 reconstruction.
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sa  2.2. Network architecture
85 The proposed 3DWDSRnet method for super resolution is based on a patch-based 3D-CNN
ss architecture that allows multiple image inputs to be scaled into a single higher resolution image.
o7 The problem being investigated is very similar to video SR, where the resolution of a single video

ss frame is enhanced using the information from the surrounding frames. In a given sliding time window,
s video frames usually refer to a single scene but with subtle changes between each other. Thus, this
%0 temporal information can benefit resolution scaling more than single-image approaches [16]. The
o PROBA-V data set has multiple frames per location which can have shifts of up to one pixel. This
2 evokes a similarity with the frames of a video and their possible variations and that is why we decided
s to investigate this path.
0a Our work takes as a strong baseline the framework proposed by Kim et al. [16] for video
s super-resolution: 3DSRnet. They use a 3D-CNN that takes five low-resolution input frames and seeks
s to increase the resolution of the middle frame. The network is a two-way residual network. The main
oz path acts as a feature extractor from the chaining of multiple 3D convolutional layers that preserves the
os temporal depth. For the last layers, a depth reduction is performed to obtain the final 2D HR residual.
ss Meanwhile, the second path takes the middle frame and applies a bicubic scaling. A Pixel Shuffle [21]

10 reshapes the residual output of the main path, which is then added to the output of the secondary path

101 Obtained by this means the final HR frame (Figure 1).

102 Our approach differs from the original 3DSRnet in two main aspects (compare Figure 1 and 2):

103 e Convolutional layers are replaced by 3D WDSR blocks
108 e Bicubic upsampling is replaced by 2D WDSR blocks.

Pixel
3D Conv Layers Shuffle
[ +— HR frame
Low-res frames
Bicubic
upsampling

Figure 1. Original 3DSRnet: All low resolution input frames are fed into the main 3D Conv path to
predict the residuals for the middle frame. The results of the paths are added up to obtain the final HR
frame.
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Figure 2. 3DWDSRnet: All low-resolution input frames are fed into the main WDSR Conv 3D path to
predict the scene’s residuals.The average of the frames is used as input to the WDSR 2D Convs path.
The results of both paths are added together to obtain the final RH frame. Soft yellow highlights the
differences with the original 3DSRnet blocks.

105 2.2.1. WDSR blocks

106 Yu et al. [17] describe WDSR blocks as residual blocks with the capability to increase the final
17 accuracy of a SISR task. They demonstrate that a feature expansion using a 1x1 Conv before the
1s  ReLU activation, followed by a feature factorization given by a 1x1 Conv and a 3x3 Conv keeps more
s information and even lowers the number of total parameters used (Figure 3). This residual block was
10 named WDSR-b. In our study we expand the notion of WDSR-b block from 2D to 3D and replace
a1 every single 3D Conv from 3DSRnet with it. To do so, we simply change kernel sizes from 1x1 to 1x1x1
12 and from 3x3 to 3x3x3. Everything else remains exactly the same. The implementation of the WDSR
us  block was based on Krasser’s github code [22].

1x1 Conv. RelLU 1x1 Conv. 3x3 Conv.

Figure 3. 2D-WDSR-b block. The residual block is composed of a 1x1 Conv to expand features before
ReLU activation. After activation a 1x1 Conv followed by a 3x3 Conv are applied. 3D-WDSR-b used by
our method follows the same approach but taking into account the time dimension.

ua  2.3. Preprocessing and Data Augmentation

115 The preprocessing steps were performed as follows:

116 1. Register all frames from each image to the corresponding first frame using
117 masked_registered_translation function from scikit-image [23].

118 2. Remove images where all of their frames had more than 15% dirty pixels.

110 3. Select K best frames (from cleanest to dirtiest, k=7).

120 4. Extract 16 patches per image.

121 5. Remove instances where the HR target patch had more than 15% dirty pixels.

122 To make the training more robust to the pixel shifts and differences between frames, a frame-basis
123 data-augmentation was performed. For each patch, 6 new patches were added to the training set. Each
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124 Of them with a random frame permutations. A similar augmentation technique can be found in Rifat et
125 al. [24]. The impact of patches and data augmentation by frame permutation can be seen in Section 3.

126 2.4. Training

127 The training was performed on a low-end laptop GPU GTX1050 with 4GB of memory. First, the
122 model was trained on NIR band until no more improvements were found (156 epochs). Then, RED
120 band was trained over the NIR band pretrained model (61 epochs). This two-step model training was
130 based on Molini et al. [25] where they found it increased the final accuracy.

131 We used NAdam optimizer with a learning rate of 5e-5, patch size of 34 with a stride of 32,
132 and a batch size of 32 patches. The main path was composed of 8 3DWDSR-b blocks before the
133 time dimension reduction. As regularization it is important to note that common techniques such as
13 Batch Normalization do not work well in SR problems ([26], [27]). We used Weight Normalization as
135 recommended by Yu et al. [17].

136 2.4.1. Quality metric and loss function

137 Meértes et al. [18] proposed the quality metric clean Peak Signal-to-Noise Ratio (cPSNR) that takes
13¢  into account the pixel shifts between frames and is applicable for images which only have partial
130 information (dirty pixels). Basically, cPSNR ignores masked pixels (due to wrong pixels, clouds, etc.)
10 and takes into account all possible pixel shifts within frames to calculate the final metric. Inspired
1 by cPSRN, Molini et al. [25] propose cMSE, a modified mean square error to use as loss functions.
12 Since SR prediction and HR target could be shifted, the loss embeds a shift correction. To do so, SR
13 is cropped at the center by d pixels (defined by the maximum expected shift between images) and
1as  all possible patches shifts HR;, , are extracted from the target HR image. Thereafter, all possible MSE
s scores are calculated for each HR,,», patch and the minimum score is taken.

146 We found that this loss works quite well for the problem but based on Zhao et al. [28] we follow
147 their recommendation to use Mean Absolute Error loss (MAE) as a substitute. Mathematically, cMAE
s is defined as follows:

Nu,o

Y |HRu,0 — (SRerop + b)|

i=1

149 L= min
u,0€(0,2d] Nu,z;

150 where N, , is the total number of clean pixels in 1, v crop and b is the brightness bias corrections.
151 Figure 4 shows how the loss is calculated taking into account all possible pixel shifts.

Original HR frame Predicted SR frame

v L = minuv cMAE

Figure 4. cMAE. For each possible pixel shift u,v the cMAE is calculated between cropped SR and
HRy» patch. In this example figure, the maximum possible shift is 1 (both horizontally and vertically),
s0 9 patches are extracted for each possible combination. PROBA-V dataset has a maximum of 3 pixel
shift, so 49 combinations are needed to calculate the final loss.
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152 3. Results
Table 1. Scores obtained in the Kelvins ESA’s competition public leaderboard (Feb 2020). Scores are
normalized by baseline, less is better.
Method Patch Frames Loss Normalization Score  Memory requirement
DeepSUM 96x96 (bicubic) 9 cMSE Instance 0.94745 +++
HighResnet 64x64 16 cMSE Batch 0.94774 ++
3DWDSRnet (ours) 34x34 5 cMAE Weight 0.97933 +
3DWDSRnet (ours) 34x34 (aug) 5 cMAE Weight 0.96422 +
3DWDSRnet (ours) 34x34 (aug) 7 cMAE Weight 0.94625 +
153 3.1. Comparisons
154 We compare 3DWDSRnet to top methods at the moment the investigation was performed

15 (February 2020): DeepSUM [25] and HighResnet [24] (1) . It is worth noting that Kelvin ESA
1ss Competition is still open to teams that want to try their solution in a post-mortem leaderboard.
157 As the code of BDWDSRnet is open to use, modify and share, a github repository [29] was provided.
1se  There are teams that at the time of writing this technical note has built upon it and are still improving
15 the metrics [30].

160 Description of compared methods in Table 1:

161 o DeepSUM.: it performs a bicubic upsampling of images before feeding the network. When usin
P p p ping g ) g

162 this approach higher specifications are needed because of increasing memory cost making it
163 impossible to train in a low-specifications equipment.

168 o Highres-net: this method upscales after fusion, so memory usage is reduced. However, they still
165 need 16 frames and 64x64 patches to reach the best score. Scores are improved by averaging the
166 outputs of two pretrained networks.

167 ¢ 3DWDSRnet: our method follows Highres-net approach of upscaling after fusion but achieves
168 similar scores using less than half of the image frames (7) and half size patch size (34x34).
169 Moreover, there is no need of averaging two methods to obtain these results.

170 4. Discussion

e The results address some interesting insights about the common methods used in MFSR. It is
172 shown that not always the more complex and memory consumption architectures are indeed the best
173 ones. Sometimes a simple model but with the correct parameters performs better. For example, in our
172 method, increasing frames from 5 to 7 shows an increased performance (1). Moreover, tweaking the
175 data outside the neural network can improve the metrics even more. A simple method such as frame
176 permutation for data augmentation shows a consistent growth in the score.

177 This makes us wonder if the money and work hours invested in designing the architecture of new
17e  neural networks as a general problem-solving approach is always a good choice. We point out, instead,
170 the need to develop, in addition, algorithms optimized for every need. The latter could be used by
1.0 teams or individuals with less hardware resources. The access of third world countries to the latest
11 advances in hardware is not always possible, so in order to democratize the access to Al worldwide,
12 more research should be done on accessible but equally efficient models.

183 This technical note serves as a base to continue improving the 3DWDSRnet method. Some possible
1es  directions to explore are:

185 o Further investigate data augmentation methods to take benefits of multiple frames such as more
186 interesting permutations, insert of pixel variations simulating clouds, and changes in image color,
187 brightness, contrast, etc.

188 e Ensemble results from multiple models as done in Highres-net [24].

189 o Try different patch sizes and see how this affects the performance.
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103 Abbreviations

10a  The following abbreviations are used in this manuscript:

SR Super Resolution

MISR  Multi-image Super Resolution

MFSR  Multi-frame Super Resolution

CNN Convolutional Neural Network
16 Conv  Convolutional

Al Artifitial Intelligence

MAE Mean Absolute Error

MSE Mean Square Error

cPSNR  clean Peak Signal-to-Noise Ratio
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