

1 Article

2 **Forest Drought Response Index (ForDRI): a new
3 combined model to monitor forest drought in the
4 eastern United States**

5 Tsegaye Tadesse^{1*}, David Y. Hollinger², Yared A. Bayissa¹, Mark Svoboda¹, Brian Fuchs¹, Beichen
6 Zhang¹, Getachew Demissie¹, Brian D. Wardlow³, Gil Bohrer⁴, Kenneth L. Clark⁵, Ankur R. Desai⁶,
7 Lianhong Gu⁷, Asko Noormets⁸, Kimberly A. Novick⁹, and Andrew D. Richardson^{10,11}

8
9 1 National Drought Mitigation Center, University of Nebraska-Lincoln, Lincoln, NE, USA
10 2 USDA Forest Service, Northern Research Station, Durham, NH, USA
11 3 Center for Advanced Land Management Information Technologies, School of Natural Resources University
12 of Nebraska-Lincoln, Lincoln, NE, USA.
13 4 Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH,
14 USA
15 5 USDA Forest Service, Northern Research Station, New Lisbon, NJ, USA
16 6 Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
17 7 Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak
18 Ridge, TN, USA
19 8 Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
20 9 O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
21 10 School of Informatics, Computing & Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
22 11 Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
23
24 * Correspondence: ttadesse2@unl.edu; Tel.: +1-402-472-3383
25

26 **Abstract:** Monitoring drought impacts in forest ecosystems is a complex process, because forest
27 ecosystems are composed of different species with heterogeneous structural compositions. Even
28 though forest drought status is a key control on the carbon cycle, very few indices exist to monitor
29 and predict forest drought stress. The Forest Drought Indicator (ForDRI) is a new monitoring tool
30 developed by the National Drought Mitigation Center (NDMC) to identify forest drought stress.
31 ForDRI integrates 12 types of data, including satellite, climate, evaporative demand, ground water,
32 and soil moisture, into a single hybrid index to estimate tree stress. The model uses Principal
33 Component Analysis (PCA) to determine the contribution of each input variable based on its
34 covariance in the historical records (2003–2017). A 15-year time series of 780 ForDRI maps at a
35 weekly interval were produced. The ForDRI values at a 12.5km spatial resolution were compared
36 with normalized weekly Bowen ratio data, a biophysically based indicator of stress, from nine
37 AmeriFlux sites. There were strong and significant correlations between Bowen ratio data and
38 ForDRI at sites that had experienced intense drought. In addition, tree ring annual increment data
39 at eight sites in four eastern U.S. national parks were compared with ForDRI values at the
40 corresponding sites. The correlation between ForDRI and tree ring increments at the selected eight
41 sites during the summer season ranged between 0.46 and 0.75. Generally, the correlation between
42 the ForDRI and normalized Bowen ratio or tree ring increment are reasonably good and indicate
43 the usefulness of the ForDRI model for estimating drought stress and providing decision support
44 on forest drought management.

45 **Keywords:** Forest monitoring; drought; time series satellite data; Bowen ratio; carbon flux
46

47 **1. Introduction**

48 Drought has multiple direct and indirect impacts on forests. High evaporative demand from
49 high temperature and low humidity, in isolation and especially when combined with limited soil
50 moisture supply, can induce plant water stress. To reduce water loss and prevent the development
51 of excessively low water potentials, water-stressed plants typically close stomata. This can lead to
52 carbon stress, reduced growth, and greater susceptibility to insects and disease. Under extreme
53 conditions drought stress can result in depleted carbon reserves, loss of hydraulic function, and
54 mortality [1].

55 Monitoring drought impacts in forest ecosystems is complex because forest ecosystems are
56 composed of different species with heterogeneous structural compositions [2]. In a given ecosystem,
57 different tree species can also physiologically respond differently to drought stress [3, 4, 5, 6]. Extreme
58 and intense droughts can induce irreversible growth and vigor loss resulting in tree death [7, 8, 9, 10],
59 which may lead to accumulation of fuel in a forest and increased fire danger. Drought conditions can
60 also result in decreases in forest Live Fuel Moisture Content (LFMC), the mass of water contained
61 within living vegetation in relation to the dry mass. LFMC has been identified as a factor relating to
62 fire ignition, behavior, and severity [11].

63 Traditionally, climate-based drought indices such as the Keetch-Byram Drought Index (KBDI)
64 or satellite-based indices have separately been used to monitor drought. In this study, these two
65 complementary approaches for monitoring forest drought have been combined.

66 The climate-based drought monitoring approach [12, 13, 14, 15, 16, 17, 18] characterizes forest
67 drought status indirectly (i.e., the climate-based drought indices indicate moisture deficit, but do not
68 show levels of physiological stress or damage in forests). Thus, most climate-based indices (e.g.,
69 KBDI) infer impacts of the climatic parameters (e.g., rainfall and temperature) rather than measure
70 changes in forest condition directly.

71 The remote sensing drought monitoring approach [19, 20, 21, 22, 23, 24] enables a near-real-time
72 monitoring of forest condition at high resolution. However, an approach based on reflectance values
73 also has limits [21]. Remote sensing data alone are insufficient to demonstrate that drought is the
74 causal agent of a particular change in reflectance values. In addition to this, remote sensing of forest
75 drought and its interpretations can be complex due to technical aspects of the sensor technologies
76 and interconnections of underlying ecological processes in forested areas [25]. There is a need for an
77 integrated wide-area drought monitoring system that focuses specifically on drought stress in
78 forested ecosystems [26]. Most forests in the eastern U.S. are composed of different tree species with
79 different levels of drought tolerance, which makes monitoring forest drought challenging when
80 solely using climatic or satellite data. The use of both climate- and satellite-based data are powerful
81 sources for both depicting and describing drought conditions and impacts. However, they could be
82 more powerful when merged together.

83 In this study, we present the Forest Drought Response Index (ForDRI), a new 'hybrid' drought
84 tool developed to monitor and assess forest drought conditions through the integration of satellite-
85 based observations of vegetation conditions, evapotranspiration (ET) estimates from satellite, root-
86 zone soil moisture (satellite-estimated or modeled), climate-based drought indices, and biophysical
87 characteristics of the environment. These input variables are combined based on their contribution
88 (weight) determined by covariance (principal component analysis) to provide the ForDRI value at
89 each grid point. The overarching goal of ForDRI research is to develop an integrated forest drought
90 monitoring tool for decision makers using satellite, climate, and biophysical parameters to address
91 the need and challenges of forest drought monitoring on the order of weeks to months and years.

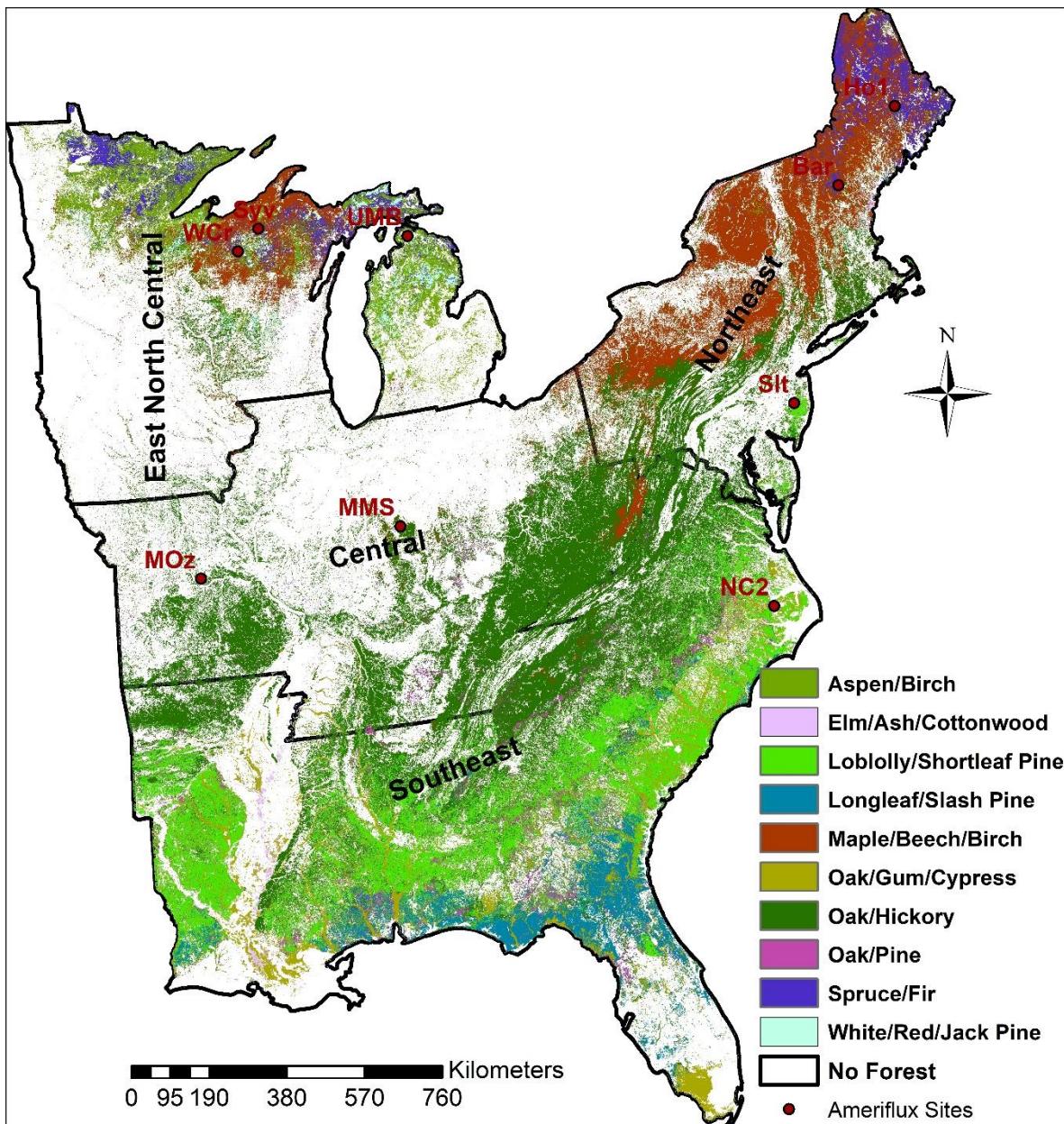
92 The main objective of this study is to identify and monitor drought impacts on forests to help
93 users, such as the U.S. Drought Monitor (USDM) map authors (drought experts), in characterizing
94 drought across forested areas of the U.S. The USDM map is used by policy makers (e.g., legislative
95 and congressional offices, state forestry commissions); water supply managers; irrigation
96 associations; agricultural trade organizations; public land managers; federal, state and local fire
97 managers; and others in the U.S. [27, 28]. However, trees are likely to be more resilient to water
98 limitation than annual plants due to their generally deeper roots and woody stems.

99 To develop the ForDRI model, we used climatic, satellite, and biophysical data for the eastern
100 U.S. (east of 100°W) at a weekly timestep. Forests in the eastern U.S. experience occasional drought,
101 but they tend to be shorter and more random than the seasonal droughts of the West [29]. To evaluate
102 the ForDRI model, we needed a measure of forest physiological stress measured over many years at
103 a variety of sites sufficient to capture a number of significant drought events. One approach was to
104 evaluate ForDRI by assessing forest water stress using sensible and latent heat (evapotranspiration)
105 flux data measured at AmeriFlux network sites to calculate an integrated Bowen ratio. Another way
106 to evaluate ForDRI was by comparison with estimates of forest growth. It is well known that drought
107 is a primary limit on tree growth and its effects can be seen in tree ring increments [30]. Thus, we also
108 carried out comparisons of ForDRI predictions with published tree ring chronologies using the 30-
109 year tree ring chronologies sampled and analyzed from the Mid Atlantic region forests by Elmore et
110 al. [31].

111 2. Materials and Methods

112 2.1. Study area

113 The study area for the experimental analysis is the eastern U.S. (Figure 1). The predominant land
114 cover in this region is forest cover consisting of more than 80 tree species [32]. Figure 1 shows the
115 study area and the forest type groups based on the national forest type dataset produced by the
116 United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Remote
117 Sensing Applications Center (RSAC). The national forest type dataset was created by modeling
118 several biophysical layers, including digital elevation models (DEM), Moderate Resolution
119 Spectroradiometer (MODIS) multi-date composites, vegetation indices and vegetation continuous
120 fields, class summaries from the 1992 National Land Cover Dataset (NLCD), various ecologic zones,
121 and summarized PRISM climate data [33]. The national forest types were classified into 28 groups to
122 portray broad distribution patterns of forest cover in the U.S. [32, 34]. Our study area includes 16
123 major forest type groups (Figure 1).



124

125 **Figure 1.** Study area for the Forest Drought Response Index (ForDRI). The map shows the
 126 major forest group types in the study area based on the USFS National Forest Type dataset
 127 [33].

128 2.1.1. Forest group type coverage by climate region

129 The study area was divided into Central, East North-Central, Northeastern, and Southeastern
 130 forest/climate regions [33] (Figure 1). The Oak/Hickory (38%), Loblolly/Shortleaf Pine (17%), and
 131 Maple/Beech/Birch (15%) forest type groups dominate the study area. However, each forest/climatic
 132 region has its own characteristic and areal extent of forest group types as well as species composition.
 133 For example, the highest percent area coverage of the Northeast Climate Region is the
 134 Maple/Beech/Birch Group (about 66%), followed by the Oak/Hickory Group (about 22%). In contrast,
 135 the highest percent cover of the forest group in the Southeast Climate Region is the Oak/Hickory
 136 Group (about 40%), followed by Loblolly/Shortleaf Pine Group (about 28%). Detailed information
 137 and the data for the U.S. is available at USDA's Forest Service website at [33].

138 2.2. Data used in ForDRI model development

139 The ForDRI model includes water cycle variables (precipitation, temperature, evaporation, soil
140 moisture, and vapor pressure deficit) that influence short- and long-term drought conditions that
141 are combined with satellite-derived vegetation reflectances (NDVI) that characterize forest
142 condition. The input variables are described in additional detail below.

143 2.2.1. MODIS-based Normalized Difference Vegetation Index (NDVI)

144 The Normalized Difference Vegetation Index (NDVI) information at 250-meter (m) spatial
145 resolution is based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by
146 the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The
147 MODIS-based 7-day data from 2003-2017 were acquired from USGS [35] and resampled to a 1km
148 grid, and each dataset was standardized (Z-score) to be consistent with the other input variables. This
149 dataset can be accessed at USGS Earth Explorer [35].

150 2.2.2. Standardized Precipitation Index (SPI)

151 The SPI was calculated to quantify the precipitation anomaly for three specified time-scales
152 (previous 12, 24, and 60 months) based on the long-term precipitation record over that specific time
153 interval [11, 36]. Since the SPI values are calculated by fitting the long-term record of precipitation
154 over a specific time step to a probability distribution to standardize the values, we have used these
155 three SPI values to represent different time scales of the rainfall conditions that would affect forest
156 health. The three SPIs are selected to represent the long-term precipitation impact (from 1 year to 5
157 years) on tree stress. The rainfall data used to generate the time series of SPI were obtained from
158 Applied Climate Information System (ACIS) meteorological stations data across the study region. We
159 used the available daily long-term record of each station to generate SPI at 12-, 24-, and 60-month
160 aggregate periods and interpolated to produce 1km resolution SPI maps.

161 2.2.3. Standardized Precipitation Evapotranspiration Index (SPEI)

162 Unlike the SPI, which depends only on rainfall, the SPEI is designed to take into account both
163 precipitation and temperature. The time series of the SPEI were generated based on daily rainfall and
164 temperature data acquired from ACIS meteorological stations data. The SPEI were generated at 24-
165 and 60- month aggregate periods and interpolated to 12.5km spatial resolution. With the temperature
166 input, potential evapotranspiration (PET) is calculated and a historical time series of the simple water
167 balance (precipitation – PET) is used in determining drought. Thus, the SPEI captures the main
168 impact of increased temperatures on water demand [37]. Two specified time periods of SPEI historical
169 records (i.e., previous 24 and 60 months) that represent the temperature impact on water demand
170 (rainfall) were used in building the ForDRI model to monitor forest drought response.

171 2.2.4. Evaporative Demand Drought Index (EDDI)

172 The EDDI indicates the anomalous condition of the atmospheric evaporative demand (also
173 known as "the thirst of the atmosphere") for a given location and across a time period of interest [38,
174 39]. The EDDI is expressed as atmospheric evaporative demand (Eo) anomalies. The Eo is calculated
175 using the Penman-Monteith FAO56 reference evapotranspiration formulation driven by
176 temperature, humidity, wind speed, and incoming solar radiation from the North American Land
177 Data Assimilation System datasets (NLDAS-2). EDDI is multi-scalar (i.e., captures drying dynamics
178 that themselves operate at different timescales). We combined 12-month aggregated EDDI values
179 with the other variables to monitor evaporative demand during forest drought.

180 2.2.5. Ground Water Storage (GWS)

181 GWS anomalies are calculated from Gravity Recovery and Climate Experiment (GRACE)
182 observations [40, 41]. Data from the Global Land Data Assimilation System (GLDAS), including
183 Terrestrial Water Storage (TWS), Root Zone Soil Moisture (RZSM) at 1-meter depth, and Snow Water
184 Equivalence (SWE), were used to convert GRACE observations into a series of GWS anomalies (i.e.,

185 GWS = TWS – RZSM – SWE). NASA provided the data (2003 to 2017) at 12.5km resolution for the
186 U.S. The ground water product at 1 meter depth represents deeper soil condition that can be accessed
187 by longer rooted tree species. The global GRACE data (2003-2020) is also available online by NASA
188 GSFC Hydrological Sciences Laboratory at NASA GESDISC data archive [42].

189 2.2.6. Palmer Drought Severity Index (PDSI) and Palmer Z Index (PZI)

190 The PDSI has been one of the most widely used climate-based drought indices in the U.S. [43].
191 The PDSI is calculated based on a simple supply-and-demand model of a water balance equation
192 using historical records of precipitation and temperature as well as available water-holding capacity
193 of the soil at a given location [13, 14]. The PDSI is calculated using a combination of current and
194 previous climatic conditions. In contrast to the PDSI, the Palmer Z-Index (PZI) corresponds to
195 monthly drought conditions with no memory of previous monthly deficits or surpluses [13, 14]. Thus,
196 in this study, we have used the PDSI and 60-month PZI historical datasets to represent the short- and
197 long-term drought conditions that impact forests.

198 2.2.7. Noah Soil Moisture (SM)

199 The Noah soil moisture dataset used in this study is produced using a land surface model that
200 forms a component of the GLDAS [44, 45, 46]. The Noah soil moisture represents shallow soil depth
201 conditions that can be accessed by short rooted species. Compared to other NLDAS-2 soil moisture
202 products (e.g., VIC), Noah soil moisture shows the best performance in simulating shallow depth soil
203 moisture [47]. The Noah model uses a four-layered soil description with a 10-cm thick top layer and
204 takes into account the fractions of sand and clay. Soil moisture dynamics of the top layer are governed
205 by infiltration, surface and sub-surface runoff, gradient diffusion, gravity, and evapotranspiration
206 [48]. The model was forced by combination of NOAA/GLDAS atmospheric analysis fields, spatially
207 and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation
208 (CMAP) fields, and observation-based downward shortwave and longwave radiation fields derived
209 using a method of the Air Force Weather Agency's Agricultural Meteorological system [42]. The
210 historical data (available since 2000) has a 25km resolution (resampled to 1 km for combining with
211 other model inputs). This dataset is also available as NOAA's NLDAS Drought Monitor Soil Moisture
212 [49].

213 2.2.8. Vapor Pressure Deficit

214 The vapor pressure deficit (VPD) represents the amount of water vapor deficit between the
215 actual water vapor pressure in the air and vapor pressure when the air is saturated at a given
216 temperature [50]. The VPD is one of the critical variables that controls photosynthesis and water use
217 efficiency of plants. The photosynthetic rates in leaves and canopies is inversely proportional to the
218 atmospheric VPD [51]. Thus, it is important for forest ecosystem structure and function [52]. Average
219 daily VPD data using the PRISM model at 4km resolution were retrieved from the PRISM Climate
220 Group, Oregon State University [53, 54, 55].

221 2.2.9. National Forest Groups and Types

222 The national forest types and forest groups geospatial dataset (1km spatial resolution) used in
223 this study was created by the USFS Forest Inventory and Analysis (FIA) program and the Remote
224 Sensing Applications Center (RSAC) to show the extent, distribution, and forest type composition of
225 the nation's forests. The dataset was created by modeling forest type from FIA plot data as a function
226 of more than 100 geospatially continuous predictor layers. This process results in a view of forest
227 type distribution in greater detail than is possible with the FIA plot data alone. The ForDRI model is
228 calculated for forest areas based on this national forest type dataset acquired from the USDA Forest
229 Service [33].

230 2.2.10. Bowen ratio data to compare with ForDRI at nine AmeriFlux sites

231 Plant water stress is typically characterized by the water potential (ψ), which represents the
 232 tension in the water column and reflects the balance of free energy between atmospheric demand and
 233 soil water supply, modulated by leaf stomatal and hydraulic resistances [56]. Plant water potentials
 234 can be measured via pressure chamber [57] or in-situ hygrometer [58], but long-term observations
 235 across a range of sites are not available.

236 Energy balance considerations mean that net radiation (R_n) at a forest site is balanced by the
 237 energy of sensible heat (H) and evaporation (λE) plus any change in storage (S):
 238

$$239 \quad R_n = H + \lambda E + S \quad (1)$$

240

241 The change in energy storage associated with ground or canopy heat flux is small compared to
 242 the other terms and averages over time to zero. Evaporation from a canopy in energy terms (W m^{-2})
 243 is described by the Penman-Monteith equation [59]:
 244

$$\lambda E = \frac{\Delta(R_n - S) + c_p \rho \delta_e g_a}{\Delta + \gamma(1 + g_a/g_s)} \quad (2)$$

245

246 where R_n and S are as above, δ_e is the vapor pressure deficit, g_a and g_s are boundary layer and
 247 stomatal conductances to water vapor, and Δ , c_p , ρ , and γ are thermodynamic parameters that are
 248 weak functions of temperature. The stomatal conductance, g_s , plays an important but not unique role
 249 in limiting λE . If λE is reduced because of a change in conductance, then H (and to a lesser extent, S)
 250 will rise because of energy balance considerations. This makes the Bowen ratio (β), defined as $H/\lambda E$,
 251 especially sensitive to changes in conductance. Stomatal conductance in turn is a function of incoming
 252 solar radiation, the vapor pressure deficit (δ_e), temperature, (internal) CO₂ concentration, and water
 253 stress (ψ) [60, 61]. During drought, higher temperatures and increased vapor pressure deficits can
 254 combine with soil water stress to severely limit g_s and increase H at the expense of λE .

255 We assessed forest water stress by using sensible (H) and latent heat (λE , evaporation) flux data
 256 measured at AmeriFlux network sites to calculate an integrated Bowen ratio (β):
 257

$$258 \quad \beta_i = \frac{\sum H}{\sum \lambda E} \quad (3)$$

259

260 Measured 30-minute H and λE fluxes (no gap filled values) were summed over 7 days, when
 261 both were $>50 \text{ W m}^{-2}$. The 7-day integration period was chosen to match the weekly timestep of
 262 ForDRI. The Bowen ratio in this context thus represents the weekly partitioning of the site net
 263 radiation. When a tree canopy is fully developed and water is passing through foliage on its way to
 264 the atmosphere, λE is generally greater than H , and $\beta < 1$. When water stress occurs, evaporation from
 265 a canopy is limited by stomatal closure and potentially, reduced foliage area. These limits result in
 266 more of the incoming energy being converted to sensible heat causing the Bowen ratio to increase.
 267

268 Sensible (H) and latent (λE) heat data from nine forested AmeriFlux eddy covariance sites in the
 269 eastern U.S. were used to calculate the weekly Bowen ratio (β_i). These represented all forested sites
 270 in the eastern U.S. with 12 or more years of H and λE data (Table 1). Because there are seasonal as
 271 well as site-to-site variations in β , we normalized weekly, log-transformed integrated Bowen ratios
 272 ($\log_{10} \beta_i$) by their standard deviations (σ) from the weekly mean over the full record ($\overline{\log_{10} \beta_i}$, where
 273 a negative value indicates a higher than average β_i and more drought-stressed conditions). This
 274 normalization (also referred to as a Z-score) occurs for each week of the growing season and helps
 275 highlight unusual behavior in the weekly β_i values consistently across sites.
 276

$$276 \quad Z\text{-score}(\beta_i) = \frac{\overline{\log_{10} \beta_i} - \log_{10} \beta_i}{\sigma} \quad (4)$$

277

278 This normalization also means that in a long enough record there is a direct, probabilistic
 279 interpretation of values based on characteristics of the normal distribution (e.g., a 2σ result has a
 280 single-tailed probability of $\sim 2.27\%$, a 3σ result has $P < 0.2\%$, etc.).
 281

282 Table 1. Characteristics of AmeriFlux sites used in this analysis. DBF indicates deciduous broadleaf
 283 forest, ENF indicates evergreen needle-leaf forest, and MF indicates mixed forest. In the
 284 Köppen climate classification, Cfa = humid subtropical climate, Dfa = hot-summer humid continental
 285 climate, and Dfb = warm-summer humid continental climate.

Site Id	Name	Lat.	Long.	Elev. (m)	Veg.	Climate	MAT (°C)	MAP (mm)	Start	End	Site ref.
US-Bar	Bartlett Experimental Forest	44.0646	-71.2881	272	DBF	Dfb	5.61	1246	2004	2017	[63]
US-Ho1	Howland Forest (main tower)	45.2041	-68.7402	60	ENF	Dfb	5.27	1070	1996	2018	[64]
US-MMS	Morgan Monroe State Forest	39.3232	-86.4131	275	DBF	Cfa	10.85	1032	1999	2020	[5]
US-MOz	Missouri Ozark Site	38.7441	-92.2	219	DBF	Cfa	12.11	986	2004	2017	[73]
US-NC2	NC Loblolly Plantation	35.803	-76.6685	5	ENF	Cfa	16.6	1320	2005	2019	[65]
US-Slt	Silas Little Forest	39.9138	-74.596	30	DBF	Dfa	11.04	1138	2005	2017	[74, 66]
US-Syv	Sylvania Wilderness Area	46.242	-89.3477	540	MF	Dfb	3.81	826	2001	2020	[67]
US-UMB	Univ. of Mich. Biological Station	45.5598	-84.7138	234	DBF	Dfb	5.83	803	2000	2019	[68]
US-WCr	Willow Creek	45.8059	-90.0799	520	DBF	Dfb	4.02	787	1998	2020	[69]

286 2.2.11. Tree Ring data for evaluation

287 Landsat-based Phenology and Tree Ring data (1984-2013) for Eastern US Forests were acquired
 288 for evaluation of ForDRI from the Oak Ridge National Laboratory Distributed Active Archive Center
 289 (ORNL DAAC). This dataset provides a 30-year record of forest phenology and annual tree ring data
 290 at several selected forested sites in the eastern U.S. [31]. These selected sites are located in four
 291 national parks –Harpers Ferry National Historical Park (HAFE), Prince William Forest Park (PRWI),
 292 Great Smoky Mountains National Park (GRSM), and Catoctin Mountain Park (CATO). Details of
 293 sample preparation and dendrochronological analyses are presented in [62]. We have used eight sites
 294 from the four parks (two sites per park) to compare tree ring increment with ForDRI values during
 295 the summer season (June to September).

296 2.3. Methods

297 2.3.1. ForDRI model development

298 To develop a proof-of-concept ForDRI model, we used 12 selected variables (described above)
 299 that contribute to forest drought (Figure 2). The input variables include MODIS-based NDVI,
 300 GRACE-based ground water storage, three SPI timescales (i.e., 12-, 24-, and 60-month SPI), two SPEIs
 301 (i.e., 12- and 24-month SPEI), PDSI, PZI, Noah soil moisture, 12-month EDDI, and VPD. To determine
 302 the contribution of each input variables objectively, we have used the principal component analysis
 303 (PCA) method. Using the PCA approach, the weights of each variable are determined based on their
 304 historical data and the covariance of all input variables (Figure 2; Step 2). This approach helps in
 305 limiting the redundant information that could influence the combined ForDRI model. In addition,
 306 the PCA-based process is automatic (using scripts), which allow us to produce a separate model for

each week in a year using several inputs at a higher spatial resolution [70, 71]. Figure 2 shows the method and steps to develop the ForDRI model and the process of producing maps for the forest regions. The process includes seven steps from data processing to product dissemination. As shown in Figure 2, the main seven steps are (i) standardizing all the input variables to be consistent in combining them, (ii) determining the percent contribution (weight) of each input variable based on the covariance of the variables using the PCA method, (iii) multiplying each input variable with the proportion (weight) determined by PCA, (iv) adding the weighted input variables and standardizing the output using long historical records, (v) generating the ForDRI maps for the selected forest regions (we generated the ForDRI maps for the four forest regions of the eastern U.S. to demonstrate and evaluate ForDRI, Figure 3), (vi) evaluating the ForDRI maps using tree ring increment (dendrology) data and forest flux data (i.e., Bowen Ratio), and (vii) disseminating the ForDRI maps. In this study, Steps 1 to 5 (Figure 2) were used. For Step 4, the historical data were used in hindsight as “Near-real Time data” to demonstrate the ForDRI model’s capability. The last step (i.e., Step 6, Internet portal for data access and distribution) is the potential delivery of the operational ForDRI maps to the public in the future. An operational ForDRI model is planned to be developed after expanding the model to the western U.S. and evaluating the final national ForDRI model for the continental U.S. (CONUS).

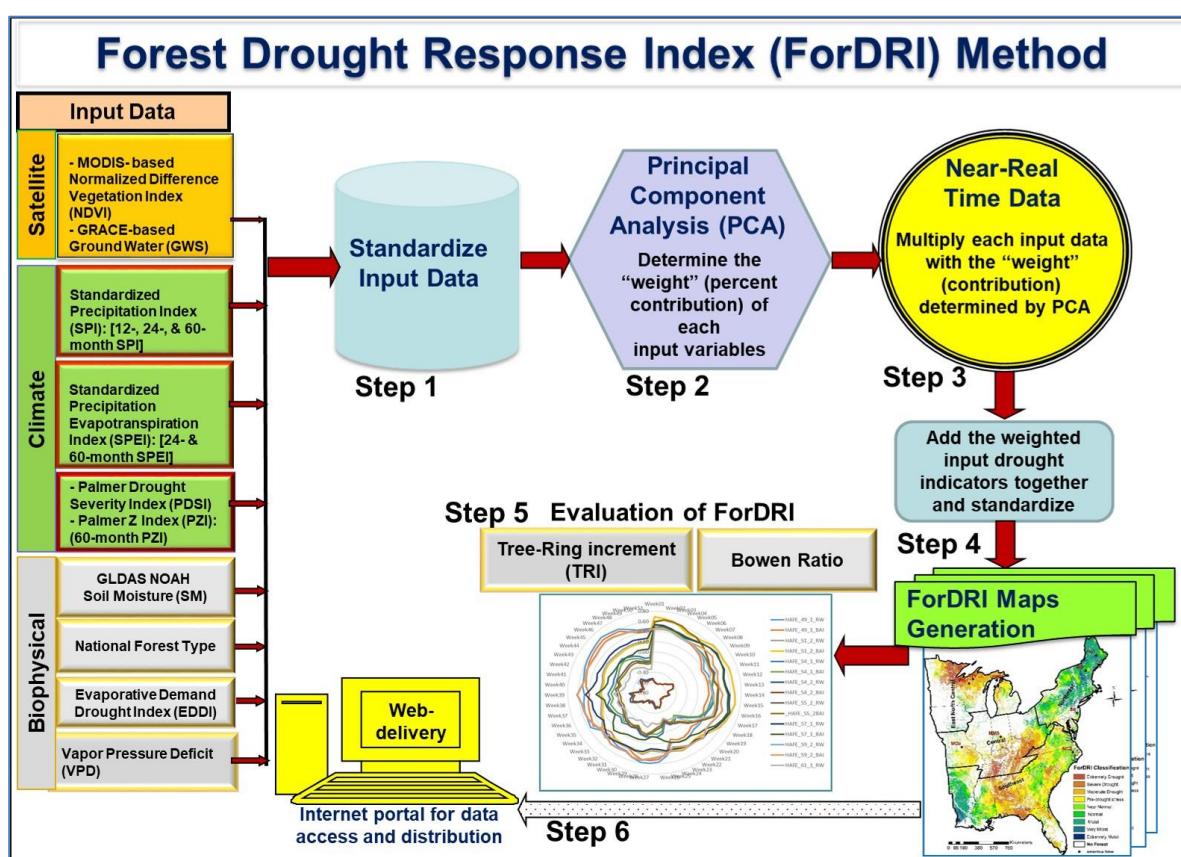
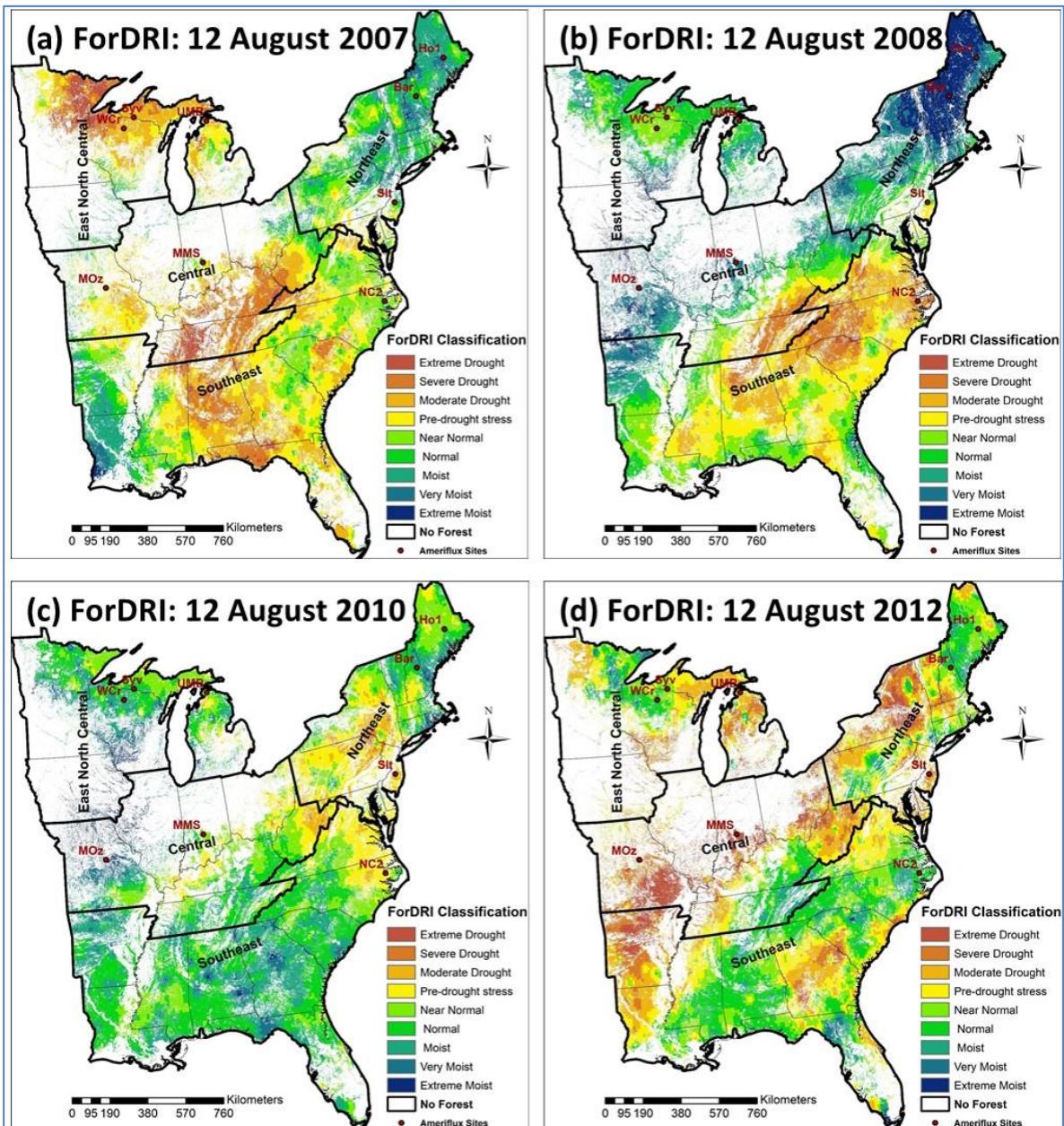


Figure 2. Conceptual method and steps to develop the Forest Drought Response Index (ForDRI).

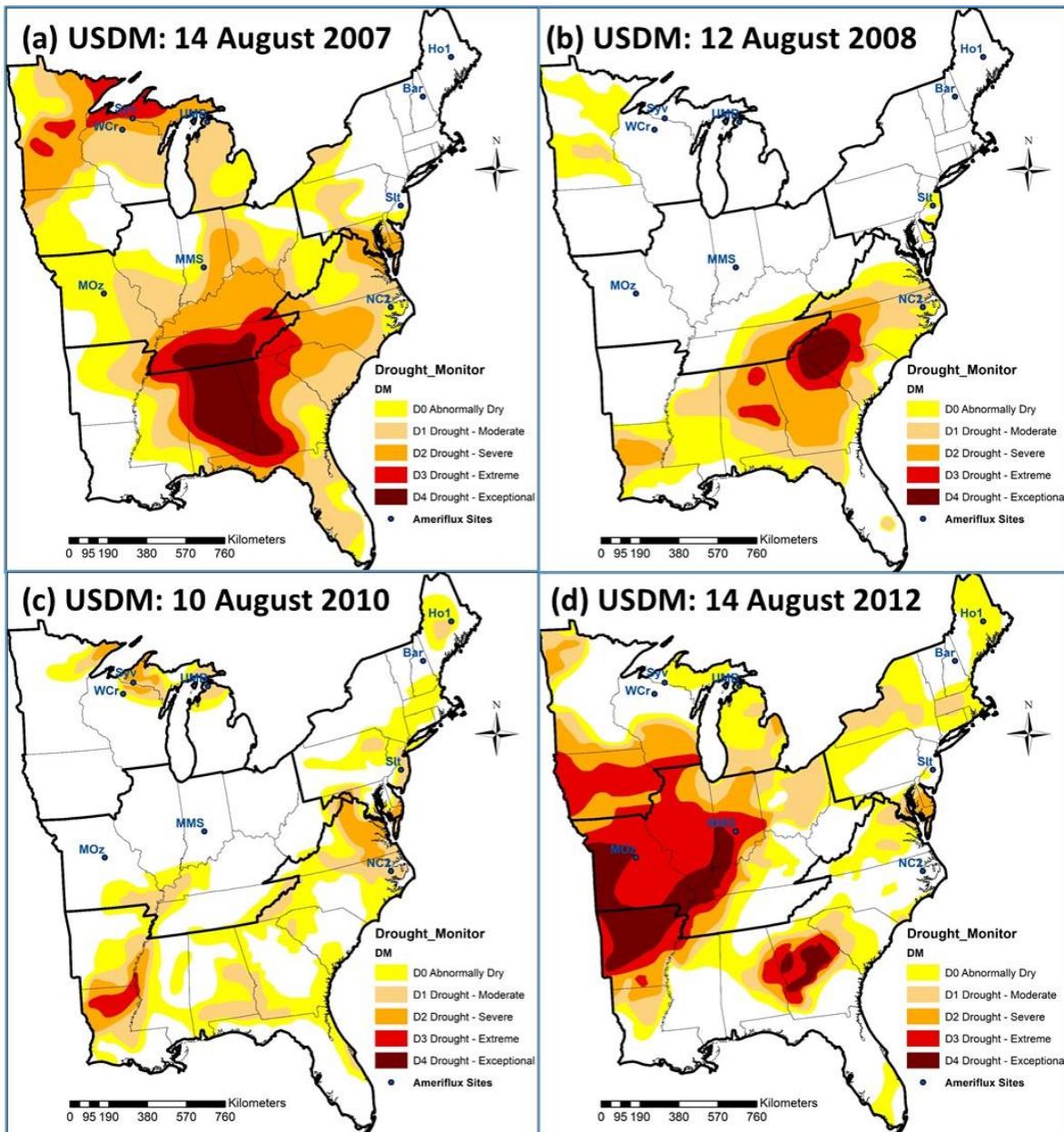
2.3.2. ForDRI maps for selected drought years

Historical ForDRI maps (780 maps at a weekly interval) were produced from 2003 to 2017. The same weeks (ending August 12) in 2007, 2008, 2010, and 2012 (Figure 3(a)-(d)) are shown below to demonstrate and evaluate the ForDRI model and products. The selection of these drought years were based upon the general long-term drought conditions of the eastern U.S. depicted by the USDM (Figure 4). Even though 2010 was not a drought year over most parts of the U.S., the Northeastern region had experienced drought, as shown in Figure 3(c).



334
335
336
337

Figure 3. Example of the Forest Drought Response Index (ForDRI), showing maps of eastern U.S. Forest Service regions for week 32 (August 12) for selected years: (a) 2007, (b) 2008, (c) 2010, and (d) 2012.



338
339 **Figure 4.** The U.S. Drought Monitor (USDM) maps for mid-August: (a) 2007, (b) 2008, (c) 2010 and
340 (d) 2012 for qualitative comparisons.

341 2.3.3. Evaluation method/approaches for ForDRI (both qualitative and quantitative approaches)

342 The ForDRI model evaluation was done using three methods: (i) qualitatively comparing the
343 spatial patterns and intensity of the drought conditions depicted on the U.S. Drought Monitor
344 (USDM) maps during selected drought years, (ii) quantitatively identifying the correlation between
345 a normalized (Z-score) Bowen Ratio at selected sites and ForDRI values across the eastern U.S., and
346 (iii) evaluating the ForDRI using tree ring data (i.e., tree ring increment). The USDM is a hybrid
347 product, developed using several sources of ground observation and remote-sensed data including
348 the SPI, PDSI, NDVI, streamflow values, and other drought indicators used by the agriculture, forest,
349 and water management sectors as well as expert feedback from regional and national climatologists.

350 **3. Results**

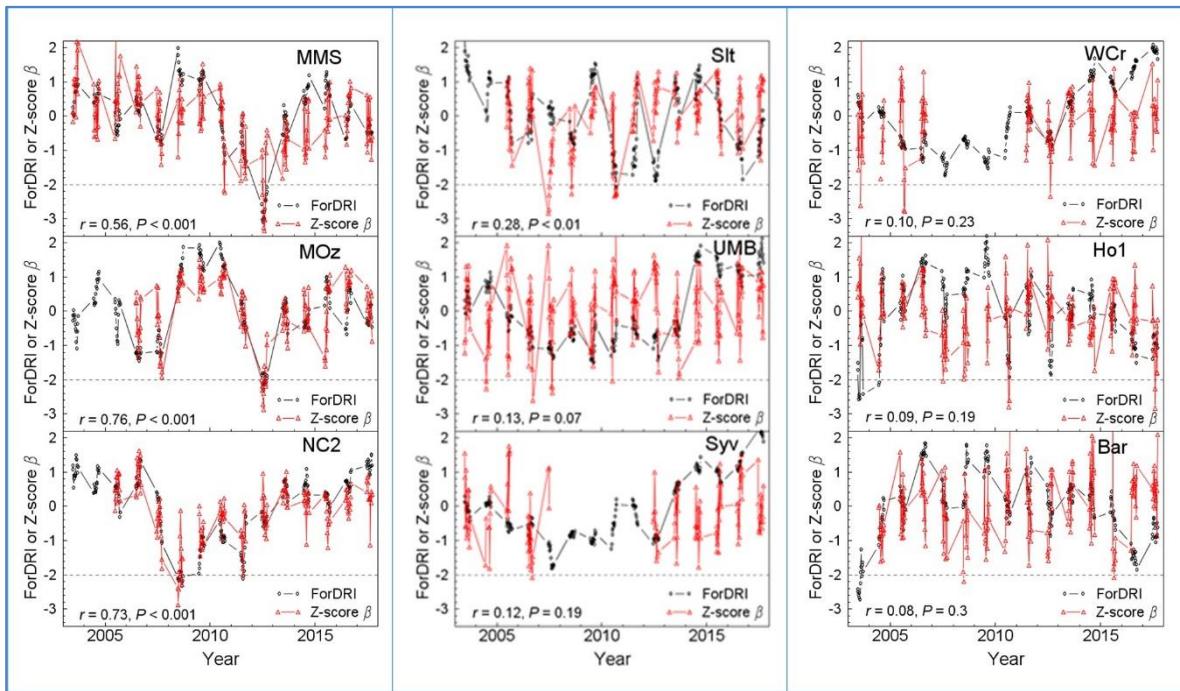
351 *3.1. Comparison of ForDRI with U.S. Drought Monitor (USDM)*

352 The drought intensity estimates of ForDRI broadly agree with those for the same time period
353 produced by the USDM (compare Figures 3 and 4). Note that ForDRI masks out non-forested (e.g.,
354 agricultural, rangelands, water, and urban) lands that are a focus of the USDM. In mid-August 2007
355 (Panel "a"), for example, both reach their most severe categories in Alabama-Tennessee and both
356 capture intense drought west of Lake Superior. Details of the patterns differ because of differences
357 in inputs and weighting. In mid-August 2008, for example, ForDRI indicates forest drought stress
358 stretching well into Virginia while the USDM localizes the worst effects in a smaller region (Panel
359 "b"). Both products agree that only mild drought is present in mid-August 2010 (Panel "c").
360 However, ForDRI does not indicate stress for forests in northern Louisiana while the USDM at that
361 time is indicating short-term (e.g., agricultural) impacts are present. The extreme drought across
362 much of the Midwest in August of 2012 [72] is clearly visible in both products (Figures 3d and 4d).

363 *3.2. Evaluating ForDRI with Bowen Ratio*

364 Figure 5 shows the time-series comparison of the historical records of Bowen Ratio at nine
365 AmeriFlux sites and ForDRI. During the assessment period, two of the flux tower sites, Morgan
366 Monroe ("MMS", Monroe County, Indiana) and the Missouri Ozarks ("MOz", Boone County,
367 Missouri) experienced "Exceptional" (D4) drought as defined by the U.S. Drought Monitor (Table 2).
368 The North Carolina Pine site ("NC2", Washington County) experienced "Extreme" (D3) drought,
369 while four sites experienced at least one "Severe" (D2) drought (Table 2). Two sites experienced at
370 most "Moderate" (D1) growing season drought in the period between 2003 and 2017. Both Willow
371 Creek ("WCr") and the Sylvania Wilderness ("Syy") sites experienced D3 events in the period
372 between 2007 and 2010 or 2011 when they were offline (no observations available).

373 The Midwest drought of 2012 is easily seen in the normalized Bowen ratio flux data from both
374 the MMS and MOz sites, and is well captured by the ForDRI model (Figure 5). The 2012 drought
375 reached D4 at both sites in August, and both model and data reached a minimum during this event.
376 The normalized Bowen ratio reached -2.89σ at the MOz site and -3.26σ at MMS, consistent with
377 single-tailed probabilities of $<1\%$ and $<0.1\%$, indicating the severity of the drought. At both sites the
378 ForDRI model output is significantly correlated over the entire assessment period with the
379 normalized Bowen ratio data (Z-score β_i) ($P<0.001$, $r=0.56$ at Morgan Monroe and $r=0.76$ at the
380 Missouri site). A late-summer D2 event at Morgan Monroe in 2010 is also well resolved in both the
381 data and by ForDRI, as is a late summer D1 event in 2007 at both sites. However, a drought classified
382 as D2 by the USDM at the Missouri Ozarks site in 2006 is less clear in the Bowen ratio data and ForDRI
383 model. The ForDRI model and normalized Bowen ratio flux data disagree noticeably at Morgan
384 Monroe in 2014 and at the Missouri Ozarks site in 2015. In both cases, the data suggest $\sim 1\sigma$ drier than
385 normal conditions (higher Bowen ratios) while ForDRI indicated wetter than normal. This may be
386 related to tree mortality attributable to 2012 drought that occurred in subsequent years; this delayed
387 effect of drought [73] might complicate the Bowen ratio comparison.



388
 389 **Figure 5.** Comparison of the historical records of ForDRI values and normalized Bowen Ratio (Z-
 390 Score β_i) at nine AmeriFlux sites that include Bartlett Experimental Forest (Bar), Howland Forest
 391 (Ho1), Morgan Monroe State Forest (MMS), Missouri Ozark Site (MOz), North Carolina pine forest
 392 (NC2), Silas Little Forest (Slt), Sylvan Wilderness Area (Syv), Univ. of Mich. Biological Station
 393 (UMB), and Willow Creek (WCr).

394
 395 The ForDRI model and Z-score β_i are also well-correlated ($P<0.001$, $r=0.73$) at a North Carolina
 396 pine forest (NC2) site (Figure 5). The NC2 flux site experienced D2 in the fall of 2007 which worsened
 397 to D3 in the spring of 2008. This site also experienced a D2 drought throughout the summer of 2011.
 398 All of these events and their relative severity are clearly identified in both ForDRI and the normalized
 399 Bowen ratio.

400
 401 The Silas Little Forest (Slt) in the New Jersey Pine Barrens is characterized by sandy soils with
 402 low water holding capacity and drought-tolerant species. The record drought in this time period was
 403 September 2010, when the USDM classified Burlington County as D2 for several weeks. The
 404 normalized Bowen ratio shows this as a -2σ event and ForDRI identifies it as the most extreme in the
 405 interval (Figure 4a). However, model and data disagree sharply at this site in the early spring of 2007
 406 when ForDRI was indicating normal moisture conditions while the Z-score β_i showed this as an
 407 extreme stress departure of -2.85σ . ForDRI and the normalized Bowen ratio then came into better
 408 agreement as the growing season progressed. The difference can be accounted for by a gypsy moth
 409 caterpillar (*Lymantria dispar* L.) outbreak that removed most foliage from the forest in spring of 2007
 410 [74]. Following the peak of herbivory in mid-June, a second, partial leaf-out occurred and resulted in
 411 a canopy with roughly half of the normal summer leaf area [74]. A secondary, lesser defoliation
 412 occurred at Silas Little in 2008. With little or no foliage, evaporation was severely constrained, and
 413 this resulted in most of the incoming energy being converted to sensible heat and a high Bowen ratio.

414
 415 ForDRI identified the 2007-2009 drought at Willow Creek and the Sylvan Wilderness that
 416 reached D3 when flux data were not available, as well as lesser events. The normalized Bowen ratio
 417 data (Z-score β_i) reached a minimum of -2σ at lesser (D2) events at these sites. However, ForDRI and
 418 Z-score β_i were not significantly correlated at either site over the full data record (Willow Creek,
 419 $r=0.10$, $p=0.23$; Sylvan $r=0.12$, $p=0.19$). At UMB, the USDM reached D2 in 2005 and 2007, but these
 420 periods were poorly resolved by both ForDRI and Z-score β_i . Both Howland and Bartlett recorded
 421 only minor (D1) events during the assessment period, and ForDRI and Z-score β_i were not
 422 significantly correlated at these sites.

422 **Table 2.** Historic drought at AmeriFlux sites during the ForDRI assessment period based on the U.S.
 423 Drought Monitor.

Site	County	State	Year	Dates	Intensity
MMS	Monroe	Indiana	2012	June 26 – Sept 4	D2
				July 17 – Aug 28	D3
				July 24 – Aug 7	D4
			2010	Sept 21 – November 23	D2
			2007	Aug 21 – Oct 26	D2
MOz	Boone	Missouri	2018	June 19 – Oct 9	D2
				Aug 7 – Oct 2	D3
			2012	July 3 – end of year	D2
				July 17 – Oct 16	D3
				Aug 14 – Aug 28	D4
			2006	Aug 8 – Aug 22	D2
			2007	Aug 21 – Oct 16	D1
NC2	Washington	North Carolina	2011	May 31 – Aug 23	D2
				Nov 20 – Mar 4 2012	D2
			2008	Jan 1 – Aug 26	D2
				Jan 29 – Feb 12, Aug 26 (one week)	D3
			2007	Sept 4 – Oct 23	D2
Slt	Burlington	New Jersey	2010	Sept 7 – Sept 28	D2
			2007	June, Gypsy moth outbreak	none
UMB	Cheboygan	Michigan	2011	Mar 29 – Apr 26	D1
			2010	April 6 – Aug 17	D1
			2007	Aug 28 – Sept 4	D2
			2005	July 19 – Aug 16	D2
			2003	Jan 7 – April 1, Sept 23	D1
Syv	Gogebic	Michigan	*2010	June 1 – 29	D3
				April 13 – Aug 17	D2
			*2009	Sept 22 – Oct 20	D2
			*2008	Aug 26 – May 12, 2009	D1
			*2007	Aug 14 – Sep 4	D3
				July 10 – Oct 16	D2
			2006	July 11 – July 25	D2
WCr	Price	Wisconsin	2012	Oct 9 – 23	D2
			*2010	April 13 – June 22	D2
			*2009	Aug 4-18	D3
				Jan – Aug 25	D2
			*2008	Oct 21 – end of year	D2

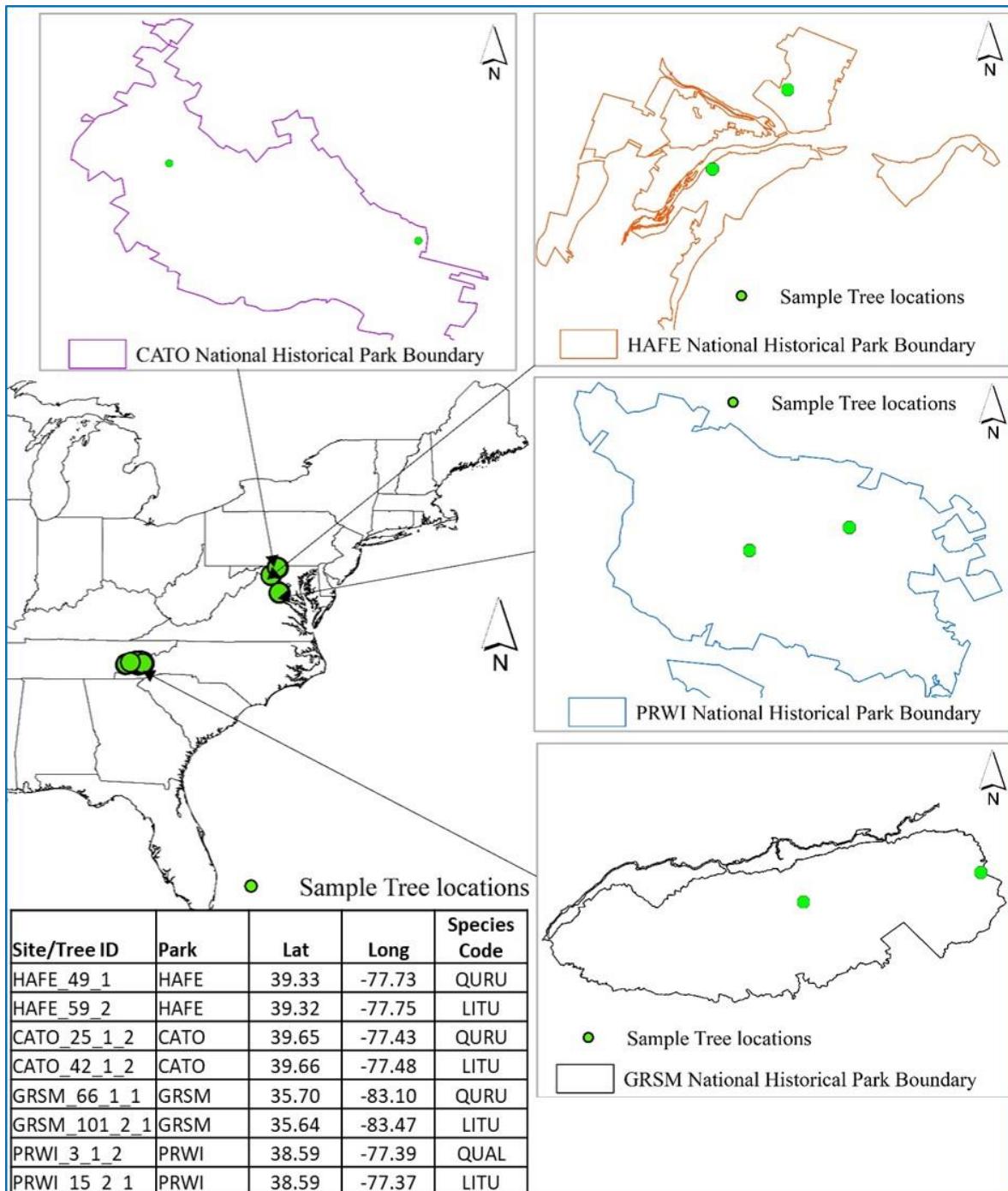
			*2007	Sept 12-18	D2
			2005	Sept 6 – Oct 4	D2
			2003	Mar 18 – 25, July 22 – July 29, Sept 2 – end of year	D1
Ho1	Penobscot	Maine	2016	Nov 15 – Dec 20	D2
			2016/17	Sept 27 – Feb 7, 2017	D1
			2010	Aug 10 – Sept 28	D1
Bar	Carrol	New Hampshire	2016/17	Sept 27 – Feb 7, 2017	D1

* means data not available from flux site for that specific period.

424 3.3. Evaluating ForDRI with tree ring increments

425 Tree ring increment (TRI) data from eight sites were used to assess ForDRI values at the four
 426 national parks (i.e., HAFE, PRWI, GRSM, and CATO). To analyze the correlation of the ForDRI and
 427 TRI, two sites from each national park were selected (Figure 6). Three species including American
 428 tulip tree (*Liriodendron tulipifera*), northern red oak (*Quercus rubra*), and white oak (*Quercus alba*) were
 429 selected for tree ring increment data analysis. Niinemets and Valladares [75] considered *Liriodendron*
 430 *tulipifera* and *Quercus rubra* moderately susceptible to drought and *Quercus alba* moderately tolerant
 431 [76]. At each of the selected park sites, the individual tree ID and species type are shown in Figure 6.

432 Figure 7a shows the correlation between annual tree-ring increment data and ForDRI weekly
 433 values during the summer season (June to September). The ForDRI values at a weekly interval were
 434 compared with the tree ring annual data at each site between 2003 and 2017 to identify the best period
 435 to monitor drought stress on trees using the ForDRI model. The results showed that four sites at
 436 GRSM and PRWI have higher correlations (between 0.61 and 0.82) with ForDRI during all weeks of
 437 summer (Figure 7a) than the other park sites. The correlation peaked when compared with ForDRI
 438 values from mid-August. Tree ring increment at the two CATO sites also showed relatively good
 439 correlation ($0.35 < r < 0.73$) with ForDRI. At this site, the highest correlation (0.73) was found in July.
 440 Tree ring increments recorded at two HAFE sites showed relatively lower correlations ($0.22 < r < 0.63$)
 441 with ForDRI. This could be because the dominant tree species in the park (oak) are drought-tolerant.
 442 In addition, differences in the strength of these relationships may depend upon tree site specifics
 443 (ridgetop vs valley), soils, or other factors. In addition, the frequency and intensity of drought at these
 444 four national historic parks over this relatively short interval were not identical. Generally, however,
 445 the comparison revealed that the ForDRI values showed reasonable correlation with the tree ring
 446 increment, so ForDRI maps may help decision-makers monitor tree drought stress in these parks.



447

448

449

450

451

452

453

454

455

456

457

458

459

460

Figure 6. Locations of the tree ring sites and their species types at the selected four national historical parks. The table in the lower left side of the figure shows the species type of each individual tree, indicating the tree species: *Quercus alba* (QUAL), *Liriodendron tulipifera* (LITU), and *Quercus rubra* (QURU).

Figure 7b shows the maximum, minimum, and average correlation between ForDRI and tree ring increment data at eight sites of the four national parks in the eastern U.S. during the summer season (June to September). The correlation between ForDRI and tree ring increments at the selected eight sites during summer ranged between 0.46 (minimum) and 0.78 (maximum). The two GRSM sites had higher average correlations (0.75 and 0.78) than the PRWI (0.73 and 0.75), or other sites. Using average summer values of ForDRI accounted for over half the variance in tree ring increment at the GRSM and PRWI sites. Correlations may have been strongest at these two sites because they were impacted by the 2008 Southeast drought (Figure 3b) while the CATO and HAFE sites were not.

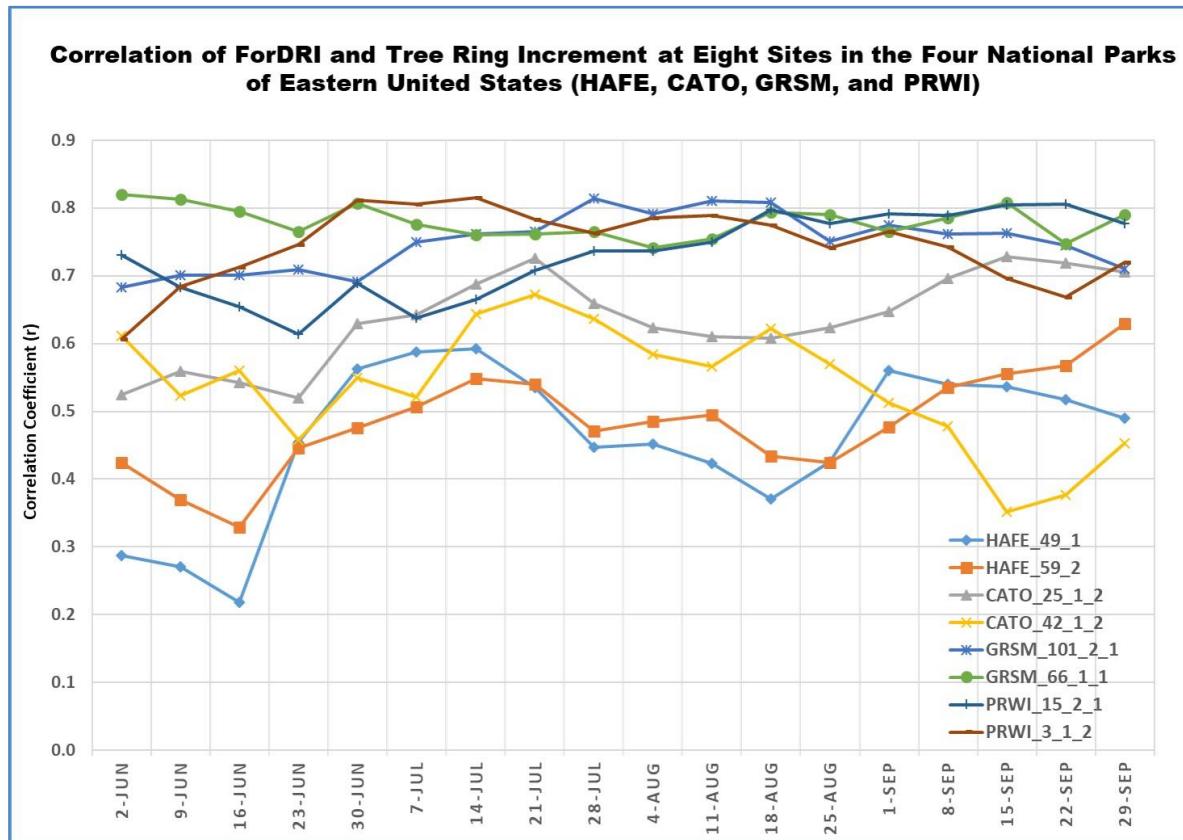
461
462
463

Figure 7(a). Time series correlation of ForDRI and tree ring increment data during summer season (June to September) at eight sites across four national parks in the eastern U.S.

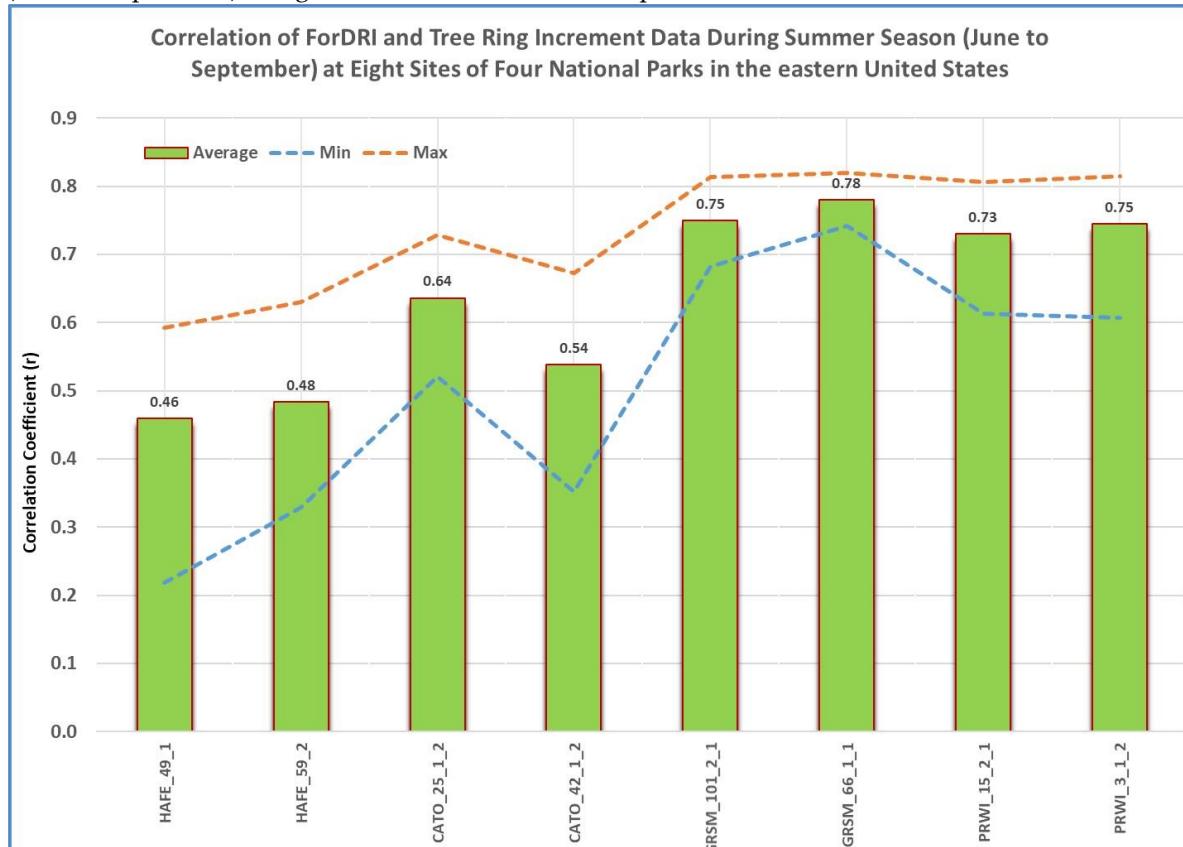
464
465
466
467

Figure 7(b). Maximum, minimum, and average correlation of ForDRI and tree ring increment (TRI) data at eight sites during summer season (June to September) at four parks in the eastern United States.

468 4. Discussion

469 The ForDRI model reaches minimum values at the same times as the normalized Bowen ratio
470 (Z-score of β_i), a relative measure of physiological water stress. Both of these measures reach
471 minimum values at times when the USDM suggests these forested sites experienced extreme (D3) or
472 exceptional drought (D4). Overall, ForDRI was significantly correlated with the normalized Bowen
473 ratio. At the site level, this correlation was significant at 4 of the 9 sites and can account for over half
474 the variance in the flux-derived quantity. At the sites with lesser (e.g. D2) events in the record, both
475 the normalized Bowen ratio measurements and ForDRI tend to reach at least local minima during
476 the drought event(s) but the correlation between these indicators across the entire time period drops.
477 This lack of correlation at these sites is to be expected when there is little or no drought stress signal
478 to measure. We would expect that other factors such as herbivory and other causes of foliage loss are
479 contributing "noise" to the signals during these non-drought periods and that ForDRI and the
480 normalized Bowen ratio are differentially sensitive to these other factors (the "noise" is uncorrelated).
481 As mentioned earlier, stomatal conductance and β are sensitive to a number of factors in addition to
482 plant (or soil) water stress. These include solar radiation, temperature, and vapor pressure deficit.
483 When significant droughts are absent at a site during the comparison periods (e.g., Bartlett Forest),
484 our normalization scheme will highlight this other variation and magnify disagreement with ForDRI.
485 Bowen ratio data from the Silas Little Forest supports this argument. In 2007, Bowen ratio values at
486 Silas Little Forest reached a minimum, indicating extreme physiological stress, while ForDRI
487 suggested no stress was present. Researchers at the forest, however, report that insects had consumed
488 almost all of the canopy foliage at this time [74]. Without foliage to transpire water, incoming energy
489 was converted to sensible heat and β soared. The stress was real; it just was not caused by drought.
490 Even so, lesser droughts (D2) are easily visible in the normalized Bowen ratio record.

491 Tree ring increment data were similarly significantly correlated with ForDRI, with higher
492 correlations evident at sites that had experienced more significant drought. The long timespan of
493 developing intense drought (drought serial autocorrelation) was observed in the correlation of
494 annual ring increment with ForDRI estimates across the summer.

495 A multiyear pattern of drought stress is clearly visible in ForDRI and the normalized Bowen
496 ratio at a number of sites, and critically, in all those that reached D3 or D4. This is an important result
497 as it implies that serious forest drought, the kind that we are most concerned about, takes a long time
498 to develop. It also indicates that ForDRI has a certain capacity to predict the likelihood of extreme
499 (D3) or exceptional drought (D4) prior to, or early in, the growing season. Extreme or exceptional
500 drought conditions seem very unlikely to develop if ForDRI is indicating average or wetter than
501 average conditions at the beginning of the growing season. Conversely, seasons with enhanced
502 likelihood of significant forest drought stress can also be identified. This suggests the possibility of
503 forecasting potential drought maximum severity at the beginning of the growing season, which
504 would be useful to fire managers and many others.

505 5. Conclusions

506 We have described ForDRI, a new and non-subjective indicator of forest drought. Weekly values
507 of ForDRI have been calculated since 2003, and in that period, these values readily identify extreme
508 (D3) or exceptional (D4) drought in several research forests. Severe (D2) and less intense droughts
509 are also identified, but at a lower probability of success. A novel and independent measure of forest
510 water stress calculated from forest flux-tower data, weekly, log-transformed integrated Bowen ratios
511 ($\log_{10} \beta_i$) transformed to Z-scores from the weekly mean over the full record, similarly identifies
512 extreme drought periods over the same record. At the sites that have experienced extreme or
513 exceptional drought, these measures are significantly correlated, providing strong evidence for the
514 utility of ForDRI.

515 The tree ring analysis also showed that the ForDRI values are correlated at the eight sites of the
516 four national parks in the eastern U.S., indicating the drought/water stress impact on tree growth
517 during the drought years. The results showed the potential usefulness of the ForDRI tool for decision

518 making to monitor drought stress on trees in the eastern U.S. and suggest the model can be readily
519 expanded to other parts of the continental U.S.

520

521 **Authors Contributions:** T.T., D.H., G.D., M.S., B.F., and B.W. conceived and designed the research; T.T., D.H.,
522 Y.B., and B.Z. performed the data collection; T.T., D.H., and Y.B. analyzed the results; T.T. and D.H. wrote the
523 original manuscript and T.T., D.H., Y.B., M.S., B.F., B.W., G.B., K.C., A.D., L.G., A.N., K.N., and A.R. validated,
524 revised and edited the manuscript.

525 **Funding:** This research was funded by USDA Cooperative Agreement, Federal Award Identification Number
526 58-0111-16-013.

527 **Acknowledgments:** The authors would like to thank the USDA, U.S. Forest Service, NASA, and USGS for
528 providing satellite and model products, and the Department of Energy AmeriFlux Network Management Project
529 for support of US-WCr, US-Syv, US-Ho1, US-NC2, US-MMF, and US-UMB. Research at US-Ho1, US-Bar, and
530 US-Slt is supported by the USDA Forest Service's Northern Research Station. The authors also thank Deborah
531 Wood of the NDMC for her editorial comments.

532 **Conflicts of Interest:** The authors declare no conflict of interest.

533 References

- 534 1. Manzoni, S., Katul, G., and Porporato, A., 2014. A dynamical system perspective on plant hydraulic failure. Water Resources Research 50(6): 5170-5183..
- 535 2. Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Cantero, A., Sánchez-Salguero, R., Sánchez-Miranda, A., Granda, E., Serra-Maluquer, X. and Ibáñez, R., 2018. Forest growth responses to drought at short-and long-term scales in Spain: squeezing the stress memory from tree rings. *Frontiers in Ecology and Evolution*, 6, pp. 1 - 11.
- 536 3. Yin, J. and Bauerle, T.L., 2017. A global analysis of plant recovery performance from water stress. *Oikos*, 126(10): 1377-1388.
- 537 4. Matheny, A.M., Fiorella, R.P., Bohrer, G., Poulsen, C.J., Morin, T.H., Wunderlich, A., Vogel, C.S. and Curtis, P.S., 2017. Contrasting strategies of hydraulic control in two codominant temperate tree species. *Ecohydrology*, 10(3): e1815.
- 538 5. Roman, D.T., Novick, K.A., Brzostek, E.R., Dragoni, D., Rahman, F. and Phillips, R.P., 2015. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. *Oecologia*, 179(3): 641-654.
- 539 6. Plaut, J.A., Yepez, E.A., Hill, J., Pangle, R., Sperry, J.S., Pockman, W.T. and Mcdowell, N.G., 2012. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. *Plant, Cell & Environment*, 35(9), pp.1601-1617.
- 540 7. Sanchez-Salguero, R., Camarero, J.J., Dobbertin, M., Fernández-Cancio, A., Vila-Cabrera, A., Manzanedo, R.D., Zavala, M.A. and Navarro-Cerrillo, R.M., 2013. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge *Pinus nigra* forests. *Forest Ecology and Management*, 310: 956-967.
- 541 8. Camarero, J.J., Gazol, A., Sanguesa-Barreda, G., Oliva, J. and Vicente-Serrano, S.M., 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. *Journal of Ecology*, 103(1): 44-57.
- 542 9. Cailleret, M., Jansen, S., Robert, E.M., Desoto, L., Aakala, T., Antos, J.A., Beikircher, B., Bigler, C., Bugmann, H., Caccianiga, M. and Čada, V., 2017. A synthesis of radial growth patterns preceding tree mortality. *Global Change Biology*, 23(4): 1675-1690.
- 543 10. Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E., Litvak, M.E., Brunsell, N.A., Peters, W., and van der Laan-Luijkx, I.T., 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. *Proc. Natl. Acad. Sci.* 113: 5880-5885, doi:10.1073/pnas.1519620113.
- 544 11. Ruffault, J., Martin-StPaul, N., Pimont, F. and Dupuy, J.L., 2018. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. *Agricultural and Forest Meteorology*, 262, pp.391-401.
- 545 12. McKee, T.B., 1995. Drought monitoring with multiple time scales. In *Proceedings of 9th Conference on Applied Climatology*, Boston, 1995.

569 13. Wells, N., Goddard, S. and Hayes, M.J., 2004. A self-calibrating Palmer drought severity index. *Journal of*
570 *Climate*, 17(12): 2335-2351.

571 14. Palmer, W.C., 1965. Meteorological drought (Vol. 30). Research Paper, No. 45, Washington, DC: US
572 Department of Commerce, Weather Bureau, 58 pp.

573 15. Keetch, J.J. and Byram, G.M., 1968. A drought index for forest fire control (Vol. 38). US Department of
574 Agriculture, Forest Service, Southeastern Forest Experiment Station.

575 16. Koch, F.H., Smith, W.D., and Coulston, J.W., 2013. An improved method for standardized mapping of
576 drought conditions. In: Potter, K.M., Conkling, B.L. (Eds.), *Forest Health Monitoring: National Status,*
577 *Trends, and Analysis 2010*. Gen. Tech. Rep. SRS-GTR-176. US Department of Agriculture, Forest Service,
578 Southern Research Station, Asheville, North Carolina, pp. 67-83.

579 17. Koch, F.H., Smith, W.D., and Coulston, J.W., 2014. Drought patterns in the conterminous United States and
580 Hawaii. In: Potter, K.M., Conkling, B.L. (Eds.), *Forest Health Monitoring: National Status, Trends, and*
581 *Analysis 2012*. Gen. Tech. Rep. SRS-GTR-198. US Department of Agriculture, Forest Service, Southern
582 Research Station, Asheville, North Carolina, pp. 49-72.

583 18. Koch, F.H., Smith, W.D., and Coulston, J.W., 2015. Drought patterns in the conterminous United States,
584 2012. In: Potter, K.M., Conkling, B.L. (Eds.), *Forest Health Monitoring: National Status, Trends, and*
585 *Analysis 2013*. Gen. Tech. Rep. SRS-GTR-207. US Department of Agriculture, Forest Service, Southern
586 Research Station, Asheville, North Carolina, pp. 55-69.

587 19. Saleska, S.R., Didan, K., Huete, A.R., and da Rocha, H.R., 2007. Amazon forests green-up during 2005
588 drought. *Science* 318, 612.

589 20. Anderson, M.C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J.R., and Kustas, W.P., 2011. Evaluation
590 of drought indices based on thermal remote sensing of evapotranspiration over the continental United
591 States. *J. Climate* 24, 2025-2044.

592 21. Asner, G.P. and Alencar, A., 2010. Drought impacts on the Amazon forest: the remote sensing perspective.
593 *New Phytologist*, 187(3): 569-578.

594 22. Pasho, E., Camarero, J.J., de Luis, M. and Vicente-Serrano, S.M. (2011). Impacts of drought at different time
595 scales on forest growth across a wide climatic gradient in north-eastern Spain. *Agricultural and Forest*
596 *Meteorology* 151(12): 1800-1811.

597 23. Samanta, A., Ganguly, S., and Myneni, R.B., 2011. MODIS enhanced vegetation index data do not show
598 greening of Amazon forests during the 2005 drought. *New Phytol.* 189, 11-15.

599 24. Zhang, Y., Peng, C., Li, W., Fang, X., Zhang, T., Zhu, Q., Chen, H., and Zhao, P., 2013. Monitoring and
600 estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using
601 remote-sensing data: recent progress and future challenges. *Environ. Rev.* 21, 103-115.

602 25. AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D. and Hain, C.R.,
603 2015. Remote sensing of drought: progress, challenges and opportunities. *Reviews of Geophysics*, 53(2):
604 452-480.

605 26. Norman, S. P., Koch, F. H., and Hargrove, W. W., 2016. Review of broad-scale drought monitoring of
606 forests: toward an integrated data mining approach. *Forest Ecology and Management* 380: 346-358.

607 27. Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M.,
608 Stooksbury, D. and Miskus, D., 2002. The drought monitor. *Bulletin of the American Meteorological Society*
609 83(8): 1181-1190.

610 28. NDMC, 2020. U.S. Drought Monitor, 2020. Available online <https://droughtmonitor.unl.edu/About.aspx>
611 (accessed on 03 September 2020).

612 29. Hanson, P.J. and Weltzin, J.F., 2000. Drought disturbance from climate change: response of United States
613 forests. *Science of the Total Environment* 262(3): 205-220.

614 30. Fritts, H., 2012. Tree rings and climate. Elsevier, pp.582.

615 31. Elmore, A.J., Nelson, D., Guinn, S.M. and Paulman, R., 2017. Landsat-based Phenology and Tree Ring
616 Characterization, Eastern US Forests, 1984-2013. ORNL DAAC, Oak Ridge, Tennessee, USA.
617 <https://doi.org/10.3334/ORNLDAA/1369>.

618 32. Iverson, L.R. and Prasad, A.M., 1998. Predicting abundance of 80 tree species following climate change in
619 the eastern United States. *Ecological Monographs* 68(4): 465-485.

620 33. USDA Forest Service, 2020. National Forest Type Dataset, Available online:
621 https://data.fs.usda.gov/geodata/rastergateway/forest_type/ (accessed on 03 September 2020).

622 34. Ruefenacht, B., Finco, M.V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A., Holden, G.R.,
623 Lister, A.J., Salajanu, D., Weyermann, D. and Winterberger, K., 2008. Conterminous US and Alaska forest
624 type mapping using forest inventory and analysis data. *Photogrammetric Engineering & Remote Sensing*,
625 74(11): 1379-1388.

626 35. USGS, 2020. EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Digital Object Identifier
627 (DOI) number: /10.5066/F7H41PNT). Available online at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-vegetation-monitoring-eros-moderate-resolution-imaging?qt-science_center_objects=0#qt-science_center_objects (accessed on 03 September 2020).

630 36. Edwards, D. C., and McKee, T. B. (1997) "Characteristics of 20th century drought in the United States at
631 multiple time scales," Climatology Report Number 97-2, Department of Atmospheric Science, Colorado
632 State University, Fort Collins.

633 37. Vicente-Serrano, S.M., Beguería, S. and López-Moreno, J.I., 2010. A multiscalar drought index sensitive to
634 global warming: the standardized precipitation evapotranspiration index. *Journal of Climate* 23(7): 1696-
635 1718.

636 38. Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M. and Hain, C., 2016. The
637 evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand.
638 *Journal of Hydrometeorology* 17(6): 1745-1761.

639 39. McEvoy, D.J., Huntington, J.L., Hobbins, M.T., Wood, A., Morton, C., Anderson, M. and Hain, C., 2016. The
640 evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators.
641 *Journal of Hydrometeorology*, 17(6): 1763-1779.

642 40. Bhanja, S.N., Mukherjee, A. and Rodell, M., 2020. Groundwater storage change detection from in situ and
643 GRACE-based estimates in major river basins across India. *Hydrological Sciences Journal* 65(4): 650-659.

644 41. Li, B., Rodell, M., Kumar, S., Beaudoin, H.K., Getirana, A., Zaitchik, B.F., de Goncalves, L.G., Cossetin, C.,
645 Bhanja, S., Mukherjee, A. and Tian, S., 2019. Global GRACE data assimilation for groundwater and drought
646 monitoring: advances and challenges. *Water Resources Research* 55(9): 7564-7586.

647 42. NASA GSFC Hydrological Sciences Laboratory - NASA GESDISC DATA ARCHIVE, 2020.
648 https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_CLSM025_DA1_D.2.2/ (accessed on 03
649 September 2020).

650 43. Keyantash, J. and Dracup, J.A., 2002. The quantification of drought: an evaluation of drought indices.
651 *Bulletin of the American Meteorological Society* 83(8): 1167-1180.

652 44. Nearing, G.S., Mocko, D.M., Peters-Lidard, C.D., Kumar, S.V. and Xia, Y., 2016. Benchmarking NLDAS-2
653 soil moisture and evapotranspiration to separate uncertainty contributions. *Journal of Hydrometeorology*,
654 17(3): 745-759.

655 45. Xia, Y., Hao, Z., Shi, C., Li, Y., Meng, J., Xu, T., Wu, X. and Zhang, B., 2019. Regional and global land data
656 assimilation systems: innovations, challenges, and prospects. *Journal of Meteorological Research* 33(2): 159-
657 189.

658 46. Kumar, S.V., Peters-Lidard, C.D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K.R., Xia, Y., Ek, M., Riggs, G.,
659 Livneh, B. and Cosh, M., 2014. Assimilation of remotely sensed soil moisture and snow depth retrievals for
660 drought estimation. *Journal of Hydrometeorology* 15(6): 2446-2469.

661 47. Cai, X., Yang, Z.L., Xia, Y., Huang, M., Wei, H., Leung, L.R. and Ek, M.B., 2014. Assessment of simulated
662 water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. *Journal of
663 Geophysical Research: Atmospheres* 119(24): 13-751.

664 48. Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A., Wagner, W., Van Dijk, A.I.J.M., McCabe, M.F. and
665 Evans, J.P., 2011. Developing an improved soil moisture dataset by blending passive and active microwave
666 satellite-based retrievals. *Hydrology and Earth System Sciences* 15(2): 425-436.

667 49. NOAA, 2020. NLDAS Drought Monitor Soil Moisture, available online
668 <https://www.emc.ncep.noaa.gov/mmb/nldas/drought/> (accessed on 03 September 2020).

669 50. Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z. and
670 Jain, A.K., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. *Science
671 Advances*: 5(8): eaax1396.

672 51. Fletcher, A.L., Sinclair, T.R. and Allen Jr, L.H., 2007. Transpiration responses to vapor pressure deficit in
673 well watered 'slow-wilting' and commercial soybean. *Environmental and Experimental Botany* 61(2): 145-
674 151.

675 52. Li, P., Oman, N., Chaubey, I., and Wei, X., 2017. Evaluation of Drought Implications on Ecosystem Services:
676 Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin. *International Journal*
677 of Environmental Research and Public Health

14(5): 496. <http://doi.org/10.3390/ijerph14050496>

678 53. Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, P.A.
679 2008. Physiographically-sensitive mapping of temperature and precipitation across the conterminous
680 United States. *International Journal of Climatology*, 28: 2031-2064.

681 54. Daly, C., J.I. Smith, and K.V. Olson. 2015. Mapping atmospheric moisture climatologies across the
682 conterminous United States. *PloS ONE* 10(10):e0141140. doi:10.1371/journal.pone.0141140.

683 55. PRISM Climate Group, Oregon State University, <http://prism.oregonstate.edu> (accessed on 1 July 2020).

684 56. Philip, J.R., 1966. Plant water relations: some physical aspects. *Annual Review of Plant Physiology* 17(1):
685 245-268.

686 57. Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A. and Hammel, H.T., 1965. Sap pressure in vascular
687 plants: negative hydrostatic pressure can be measured in plants. *Science* 148(3668): 339-346.

688 58. Baughn, J.W. and Tanner, C.B., 1976. Leaf Water Potential: Comparison of Pressure Chamber and in situ
689 Hygrometer on Five Herbaceous Species 1. *Crop science* 16(2): 181-184.

690 59. Monteith, J.L., 1965. Evaporation and environment. *Symposia of the society for experimental biology* 19:
691 205-234. Cambridge University Press, Cambridge.

692 60. Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance
693 found in canopies in the field. *Philosophical Transactions of the Royal Society of London. B, Biological*
694 *Sciences* 273(927): 593-610.

695 61. Cowan, I.R. and Farquhar, G.D., 1977. Stomatal function in relation to leaf metabolism and environment.
696 *Symposia of the Society for Experimental Biology* 31: 471-505.

697 62. Elmore, A. J., Nelson, D.M., and Craine, J.M. 2016. Earlier springs are causing reduced nitrogen availability
698 in North American eastern deciduous forests, *Nature Plants*. <http://dx.doi.org/10.1038/nplants.2016.133>.

699 63. Ouimet, A.P., Ollinger, S.V., Richardson, A.D., Hollinger, D.Y., Keenan, T.F., Lepine, L.C. and
700 Vadeboncoeur, M.A., 2018. Carbon fluxes and interannual drivers in a temperate forest ecosystem assessed
701 through comparison of top-down and bottom-up approaches. *Agricultural and Forest Meteorology* 256:
702 420-430.

703 64. Hollinger, D.Y., Aber, J., Dail, B., Davidson, E.A., Goltz, S.M., Hughes, H., Leclerc, M.Y., Lee, J.T.,
704 Richardson, A.D., Rodrigues, C. and Scott, N.A., 2004. Spatial and temporal variability in forest-
705 atmosphere CO₂ exchange. *Global Change Biology* 10(10): 1689-1706.

706 65. Noormets, A., Gavazzi, M.J., McNulty, S.G., DOME, J.C., Sun, G.E., King, J.S. and Chen, J., 2010. Response
707 of carbon fluxes to drought in a coastal plain loblolly pine forest. *Global Change Biology* 16(1): 272-287.

708 66. Clark, K.L., Renninger, H.J., Skowronski, N., Gallagher, M. and Schäfer, K.V., 2018. Decadal-scale reduction
709 in forest net ecosystem production following insect defoliation contrasts with short-term impacts of
710 prescribed fires. *Forests*, 9(3): 145.

711 67. Desai, A.R., Bolstad, P.V., Cook, B.D., Davis, K.J. and Carey, E.V., 2005. Comparing net ecosystem exchange
712 of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. *Agricultural and*
713 *Forest Meteorology*, 128(1-2): 33-55.

714 68. Gough, C.M., Vogel, C.S., Schmid, H.P., Su, H.B. and Curtis, P.S., 2008. Multi-year convergence of biometric
715 and meteorological estimates of forest carbon storage. *agricultural and forest meteorology* 148(2): 158-170.

716 69. Cook, B.D., Davis, K.J., Wang, W., Desai, A., Berger, B.W., Teclaw, R.M., Martin, J.G., Bolstad, P.V., Bakwin,
717 P.S., Yi, C. and Heilman, W., 2004. Carbon exchange and venting anomalies in an upland deciduous forest
718 in northern Wisconsin, USA. *Agricultural and Forest Meteorology*, 126(3-4): 271-295.

719 70. Elmore, A. J., Nelson, D.M., and Craine, J.M. 2016. Earlier springs are causing reduced nitrogen availability in North American
720 eastern deciduous forests, *Nature Plants*. <http://dx.doi.org/10.1038/nplants.2016.133>.

721 71. Kulkarni, S.S., Wardlow, B.D., Bayissa, Y.A., Tadesse, T., Svoboda, M.D. and Gedam, S.S., 2020. Developing
722 a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring
723 over Marathwada, India. *Remote Sensing* 12(13): 2091.

724 72. Bayissa, Y.A., Tadesse, T., Svoboda, M., Wardlow, B., Poulsen, C., Swigart, J. and Van Andel, S.J., 2019.
725 Developing a satellite-based combined drought indicator to monitor agricultural drought: a case study for
726 Ethiopia. *GIScience & Remote Sensing* 56(5): 718-748.

727 72. Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E.,
728 Litvak, M.E., Brunsell, N.A. and Peters, W., 2016. Warm spring reduced carbon cycle impact of the 2012 US
729 summer drought. *Proceedings of the National Academy of Sciences* 113(21): 5880-5885.

730 73. Gu, L., Pallardy, S.G., Hosman, K.P. and Sun, Y., 2015. Drought-influenced mortality of tree species with
731 different predawn leaf water dynamics in a decade-long study of a central US forest. *Biogeosciences* 12(10):
732 2831-2845.

733 74. Clark, K.L., Skowronski, N., Gallagher, M., Renninger, H. and Schäfer, K., 2012. Effects of invasive insects
734 and fire on forest energy exchange and evapotranspiration in the New Jersey pinelands. *Agricultural and*
735 *Forest Meteorology* 166, 50-61.

736 75. Niinemets, Ü. and Valladares, F., 2006. Tolerance to shade, drought, and waterlogging of temperate
737 Northern Hemisphere trees and shrubs. *Ecological monographs*, 76(4): 521-547.

738 76. Abrams, M.D., 1990. Adaptations and responses to drought in *Quercus* species of North America. *Tree*
739 *physiology* 7(1-2-3-4): 227-238.

740