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26 Abstract: Monitoring drought impacts in forest ecosystems is a complex process, because forest
27 ecosystems are composed of different species with heterogeneous structural compositions. Even
28 though forest drought status is a key control on the carbon cycle, very few indices exist to monitor

29 and predict forest drought stress. The Forest Drought Indicator (ForDRI) is a new monitoring tool
30 developed by the National Drought Mitigation Center (NDMC) to identify forest drought stress.

31 ForDRI integrates 12 types of data, including satellite, climate, evaporative demand, ground water,
32 and soil moisture, into a single hybrid index to estimate tree stress. The model uses Principal
33 Component Analysis (PCA) to determine the contribution of each input variable based on its
34 covariance in the historical records (2003-2017). A 15-year time series of 780 ForDRI maps at a
35 weekly interval were produced. The ForDRI values at a 12.5km spatial resolution were compared
36 with normalized weekly Bowen ratio data, a biophysically based indicator of stress, from nine
37 AmeriFlux sites. There were strong and significant correlations between Bowen ratio data and
38 ForDRI at sites that had experienced intense drought. In addition, tree ring annual increment data
39 at eight sites in four eastern U.S. national parks were compared with ForDRI values at the
40 corresponding sites. The correlation between ForDRI and tree ring increments at the selected eight
41 sites during the summer season ranged between 0.46 and 0.75. Generally, the correlation between
42 the ForDRI and normalized Bowen ratio or tree ring increment are reasonably good and indicate
43 the usefulness of the ForDRI model for estimating drought stress and providing decision support
44 on forest drought management.

45 Keywords: Forest monitoring; drought; time series satellite data; Bowen ratio; carbon flux

46

47 1. Introduction
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48 Drought has multiple direct and indirect impacts on forests. High evaporative demand from
49  high temperature and low humidity, in isolation and especially when combined with limited soil
50  moisture supply, can induce plant water stress. To reduce water loss and prevent the development
91  of excessively low water potentials, water-stressed plants typically close stomata. This can lead to
52 carbon stress, reduced growth, and greater susceptibility to insects and disease. Under extreme
53  conditions drought sress can result in depleted carbon reserves, loss of hydraulic function, and
54 mortality [1].

55 Monitoring drought impacts in forest ecosystems is complex because forest ecosystems are
56  composed of different species with heterogeneous structural compositions [2]. In a given ecosystem,
57  different tree species can also physiologically respond differently to drought stress [3, 4, 5, 6]. Extreme
58  and intense droughts can induce irreversible growth and vigor loss resulting in tree death [7, 8, 9, 10],
59  which may lead to accumulation of fuel in a forest and increased fire danger. Drought conditions can
60 also result in decreases in forest Live Fuel Moisture Content (LFMC), the mass of water contained
61  within living vegetation in relation to the dry mass. LFMC has been identified as a factor relating to
62 fire ignition, behavior, and severity [11].

63 Traditionally, climate-based drought indices such as the Keetch-Byram Drought Index (KBDI)
64  or satellite-based indices have separately been used to monitor drought. In this study, these two
65  complementary approaches for monitoring forest drought have been combined.

66 The climate-based drought monitoring approach [12, 13, 14, 15, 16, 17, 18] characterizes forest
67  drought status indirectly (i.e., the climate-based drought indices indicate moisture deficit, but do not
68  show levels of physiological stress or damage in forests). Thus, most climate-based indices (e.g.,
69  KBDI) infer impacts of the climatic parameters (e.g., rainfall and temperature) rather than measure
70  changes in forest condition directly.

71 The remote sensing drought monitoring approach [19, 20, 21, 22, 23, 24] enables a near-real-time
72 monitoring of forest condition at high resolution. However, an approach based on reflectance values
73 also has limits [21]. Remote sensing data alone are insufficient to demonstrate that drought is the
74 causal agent of a particular change in reflectance values. In addition to this, remote sensing of forest
75  drought and its interpretations can be complex due to technical aspects of the sensor technologies
76  and interconnections of underlying ecological processes in forested areas [25]. There is a need for an
77  integrated wide-area drought monitoring system that focuses specifically on drought stress in
78  forested ecosystems [26]. Most forests in the eastern U.S. are composed of different tree species with
79  different levels of drought tolerance, which makes monitoring forest drought challenging when
80  solely using climatic or satellite data. The use of both climate- and satellite-based data are powerful
81  sources for both depicting and describing drought conditions and impacts. However, they could be
82  more powerful when merged together.

83 In this study, we present the Forest Drought Response Index (ForDRI), a new ‘hybrid” drought
84  tool developed to monitor and assess forest drought conditions through the integration of satellite-
85  based observations of vegetation conditions, evapotranspiration (ET) estimates from satellite, root-
86  zone soil moisture (satellite-estimated or modeled), climate-based drought indices, and biophysical
87  characteristics of the environment. These input variables are combined based on their contribution
88  (weight) determined by covariance (principal component analysis) to provide the ForDRI value at
89  each grid point. The overarching goal of ForDRI research is to develop an integrated forest drought
90  monitoring tool for decision makers using satellite, climate, and biophysical parameters to address
91  the need and challenges of forest drought monitoring on the order of weeks to months and years.
92 The main objective of this study is to identify and monitor drought impacts on forests to help
93  users, such as the U.S. Drought Monitor (USDM) map authors (drought experts), in characterizing
94 drought across forested areas of the U.S. The USDM map is used by policy makers (e.g., legislative
95 and congressional offices, state forestry commissions); water supply managers; irrigation
96  associations; agricultural trade organizations; public land managers; federal, state and local fire
97 managers; and others in the U.S. [27, 28]. However, trees are likely to be more resilient to water
98  limitation than annual plants due to their generally deeper roots and woody stems.
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99 To develop the ForDRI model, we used climatic, satellite, and biophysical data for the eastern
100  US. (east of 100°W) at a weekly timestep. Forests in the eastern U.S. experience occasional drought,
101  but they tend to be shorter and more random than the seasonal droughts of the West [29]. To evaluate
102  the ForDRI model, we needed a measure of forest physiological stress measured over many years at
103  a variety of sites sufficient to capture a number of significant drought events. One approach was to
104  evaluate ForDRI by assessing forest water stress using sensible and latent heat (evapotranspiration)
105  flux data measured at AmeriFlux network sites to calculate an integrated Bowen ratio. Another way
106  to evaluate ForDRI was by comparison with estimates of forest growth. It is well known that drought
107  isaprimary limit on tree growth and its effects can be seen in tree ring increments [30]. Thus, we also
108  carried out comparisons of ForDRI predictions with published tree ring chronologies using the 30-
109  year tree ring chronologies sampled and analyzed from the Mid Atlantic region forests by Elmore et

110 al [31].
111 2. Materials and Methods

112 2.1. Study area

113 The study area for the experimental analysis is the eastern U.S. (Figure 1). The predominant land
114 cover in this region is forest cover consisting of more than 80 tree species [32]. Figure 1 shows the
115  study area and the forest type groups based on the national forest type dataset produced by the
116  United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Remote
117  Sensing Applications Center (RSAC). The national forest type dataset was created by modeling
118  several biophysical layers, including digital elevation models (DEM), Moderate Resolution
119  Spectroradiometer (MODIS) multi-date composites, vegetation indices and vegetation continuous
120 fields, class summaries from the 1992 National Land Cover Dataset (NLCD), various ecologic zones,
121  and summarized PRISM climate data [33]. The national forest types were classified into 28 groups to
122  portray broad distribution patterns of forest cover in the U.S. [32, 34]. Our study area includes 16
123 major forest type groups (Figure 1).
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124
125  Figure 1. Study area for the Forest Drought Response Index (ForDRI). The map shows the

126 major forest group types in the study area based on the USFS National Forest Type dataset
127 [33].

128  2.1.1. Forest group type coverage by climate region

129 The study area was divided into Central, East North-Central, Northeastern, and Southeastern
130  forest/climate regions [33] (Figure 1). The Oak/Hickory (38%), Loblolly/Shortleaf Pine (17%), and
131  Maple/Beech/Birch (15%) forest type groups dominate the study area. However, each forest/climatic
132  region has its own characteristic and areal extent of forest group types as well as species composition.
133  For example, the highest percent area coverage of the Northeast Climate Region is the
134 Maple/Beech/Birch Group (about 66%), followed by the Oak/Hickory Group (about 22%). In contrast,
135  the highest percent cover of the forest group in the Southeast Climate Region is the Oak/Hickory
136  Group (about 40%), followed by Loblolly/Shortleaf Pine Group (about 28%). Detailed information
137  and the data for the U.S. is available at USDA’s Forest Service website at [33].

138  2.2. Data used in ForDRI model development
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139 The ForDRI model includes water cycle variables (precipitation, temperature, evaporation, soil
140  moisture, and vapor pressure deficit) that influence short- and long-term drought conditions that
141  are combined with satellite-derived vegetation reflectances (NDVI) that characterize forest

142 condition. The input variables are described in additional detail below.

143 2.2.1. MODIS-based Normalized Difference Vegetation Index (NDVI)

144 The Normalized Difference Vegetation Index (NDVI) information at 250-meter (m) spatial
145  resolution is based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by
146  the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The
147  MODIS-based 7-day data from 2003-2017 were acquired from USGS [35] and resampled to a Tkm
148  grid, and each dataset was standardized (Z-score) to be consistent with the other input variables. This
149  dataset can be accessed at USGS Earth Explorer [35].

150  2.2.2. Standardized Precipitation Index (SPI)

151 The SPI was calculated to quantify the precipitation anomaly for three specified time-scales
152 (previous 12, 24, and 60 months) based on the long-term precipitation record over that specific time
153  interval [11, 36]. Since the SPI values are calculated by fitting the long-term record of precipitation
154 over a specific time step to a probability distribution to standardize the values, we have used these
155  three SPI values to represent different time scales of the rainfall conditions that would affect forest
156  health. The three SPIs are selected to represent the long-term precipitation impact (from 1 year to 5
157  years) on tree stress. The rainfall data used to generate the time series of SPI were obtained from
158  Applied Climate Information System (ACIS) meteorological stations data across the study region. We
159  used the available daily long-term record of each station to generate SPI at 12-, 24-, and 60-month
160  aggregate periods and interpolated to produce 1km resolution SPI maps.

161  2.2.3.Standardized Precipitation Evapotranspiration Index (SPEI)

162 Unlike the SPI, which depends only on rainfall, the SPEI is designed to take into account both
163  precipitation and temperature. The time series of the SPEI were generated based on daily rainfall and
164  temperature data acquired from ACIS meteorological stations data. The SPEI were generated at 24-
165  and 60- month aggregate periods and interpolated to 12.5km spatial resolution. With the temperature
166  input, potential evapotranspiration (PET) is calculated and a historical time series of the simple water
167  balance (precipitation — PET) is used in determining drought. Thus, the SPEI captures the main
168  impact of increased temperatures on water demand [37]. Two specified time periods of SPEI historical
169  records (i.e., previous 24 and 60 months) that represent the temperature impact on water demand
170  (rainfall) were used in building the ForDRI model to monitor forest drought response.

171  2.2.4. Evaporative Demand Drought Index (EDDI)

172 The EDDI indicates the anomalous condition of the atmospheric evaporative demand (also
173 known as "the thirst of the atmosphere") for a given location and across a time period of interest [38,
174  39]. The EDDI is expressed as atmospheric evaporative demand (Eo) anomalies. The Eo is calculated
175 using the Penman-Monteith FAO56 reference evapotranspiration formulation driven by
176  temperature, humidity, wind speed, and incoming solar radiation from the North American Land
177  Data Assimilation System datasets (NLDAS-2). EDDI is multi-scalar (i.e., captures drying dynamics
178  that themselves operate at different timescales). We combined 12-month aggregated EDDI values
179  with the other variables to monitor evaporative demand during forest drought.

180  2.2.5. Ground Water Storage (GWS)

181 GWS anomalies are calculated from Gravity Recovery and Climate Experiment (GRACE)
182  observations [40, 41]. Data from the Global Land Data Assimilation System (GLDAS), including
183  Terrestrial Water Storage (TWS), Root Zone Soil Moisture (RZSM) at 1-meter depth, and Snow Water
184  Equivalence (SWE), were used to convert GRACE observations into a series of GWS anomalies (i.e.,
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185 GWS =TWS - RZSM - SWE). NASA provided the data (2003 to 2017) at 12.5km resolution for the
186  U.S. The ground water product at 1 meter depth represents deeper soil condition that can be accessed
187 by longer rooted tree species. The global GRACE data (2003-2020) is also available online by NASA
188  GSFC Hydrological Sciences Laboratory at NASA GESDISC data archive [42].

189  2.2.6. Palmer Drought Severity Index (PDSI) and Palmer Z Index (PZI)

190 The PDSI has been one of the most widely used climate-based drought indices in the U.S. [43].
191  The PDSI is calculated based on a simple supply-and-demand model of a water balance equation
192  using historical records of precipitation and temperature as well as available water-holding capacity
193  of the soil at a given location [13, 14]. The PDSI is calculated using a combination of current and
194  previous climatic conditions. In contrast to the PDSI, the Palmer Z-Index (PZI) corresponds to
195  monthly drought conditions with no memory of previous monthly deficits or surpluses [13, 14]. Thus,
196  in this study, we have used the PDSI and 60-month PZI historical datasets to represent the short- and
197  long-term drought conditions that impact forests.

198  2.2.7. Noah Soil Moisture (SM)

199 The Noah soil moisture dataset used in this study is produced using a land surface model that
200  forms a component of the GLDAS [44, 45, 46]. The Noah soil moisture represents shallow soil depth
201  conditions that can be accessed by short rooted species. Compared to other NLDAS-2 soil moisture
202  products (e.g., VIC), Noah soil moisture shows the best performance in simulating shallow depth soil
203 moisture [47]. The Noah model uses a four-layered soil description with a 10-cm thick top layer and
204 takesinto account the fractions of sand and clay. Soil moisture dynamics of the top layer are governed
205 by infiltration, surface and sub-surface runoff, gradient diffusion, gravity, and evapotranspiration
206  [48]. The model was forced by combination of NOAA/GLDAS atmospheric analysis fields, spatially
207  and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation
208 (CMAP) fields, and observation-based downward shortwave and longwave radiation fields derived
209  using a method of the Air Force Weather Agency’s Agricultural Meteorological system [42]. The
210  historical data (available since 2000) has a 25km resolution (resampled to 1 km for combining with
211  other model inputs). This dataset is also available as NOAA’s NLDAS Drought Monitor Soil Moisture
212 [49].

213 2.2.8. Vapor Pressure Deficit

214 The vapor pressure deficit (VPD) represents the amount of water vapor deficit between the
215  actual water vapor pressure in the air and vapor pressure when the air is saturated at a given
216  temperature [50]. The VPD is one of the critical variables that controls photosynthesis and water use
217  efficiency of plants. The photosynthetic rates in leaves and canopies is inversely proportional to the
218 atmospheric VPD [51]. Thus, it is important for forest ecosystem structure and function [52]. Average
219  daily VPD data using the PRISM model at 4km resolution were retrieved from the PRISM Climate
220  Group, Oregon State University [53, 54, 55].

221  2.2.9. National Forest Groups and Types

222 The national forest types and forest groups geospatial dataset (1km spatial resolution) used in
223  this study was created by the USFS Forest Inventory and Analysis (FIA) program and the Remote
224 Sensing Applications Center (RSAC) to show the extent, distribution, and forest type composition of
225  the nation’s forests. The dataset was created by modeling forest type from FIA plot data as a function
226  of more than 100 geospatially continuous predictor layers. This process results in a view of forest
227  type distribution in greater detail than is possible with the FIA plot data alone. The ForDRI model is
228  calculated for forest areas based on this national forest type dataset acquired from the USDA Forest
229  Service [33].

230  2.2.10. Bowen ratio data to compare with ForDRI at nine AmeriFlux sites
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231 Plant water stress is typically characterized by the water potential (y), which represents the
232  tension in the water column and reflects the balance of free energy between atmospheric demand and
233 soil water supply, modulated by leaf stomatal and hydraulic resistances [56]. Plant water potentials
234  can be measured via pressure chamber [57] or in-situ hygrometer [58], but long-term observations
235  across a range of sites are not available.

236 Energy balance considerations mean that net radiation (Rx) at a forest site is balanced by the
237  energy of sensible heat (H) and evaporation (AE) plus any change in storage (S):

238

239 R,=H+IE+S (1)

240

241 The change in energy storage associated with ground or canopy heat flux is small compared to

242 the other terms and averages over time to zero. Evaporation from a canopy in energy terms (W m2)
243  is described by the Penman-Monteith equation [59]:

_ ARp=S)tcppdega
244 M = e (t*galss) @
245
246 where R: and S are as above, . is the vapor pressure deficit, g« and gs are boundary layer and

247 stomatal conductances to water vapor, and A, ¢y, p, and y are thermodynamic parameters that are
248  weak functions of temperature. The stomatal conductance, gs, plays an important but not unique role
249  inlimiting AE. If AE is reduced because of a change in conductance, then H (and to a lesser extent, S)
250  will rise because of energy balance considerations. This makes the Bowen ratio (), defined as H/AE,
251  especially sensitive to changes in conductance. Stomatal conductance in turn is a function of incoming
252  solar radiation, the vapor pressure deficit (3¢), temperature, (internal) CO2 concentration, and water
253  stress (y) [60, 61]. During drought, higher temperatures and increased vapor pressure deficits can
254  combine with soil water stress to severely limit ¢s and increase H at the expense of AE.

255 We assessed forest water stress by using sensible (H) and latent heat (AE, evaporation) flux data
256  measured at AmeriFlux network sites to calculate an integrated Bowen ratio (3):

257

258 Bi=E 3)

259

260 Measured 30-minute H and AE fluxes (no gap filled values) were summed over 7 days, when

261  both were >50 W m?2. The 7-day integration period was chosen to match the weekly timestep of
262  ForDRI The Bowen ratio in this context thus represents the weekly partitioning of the site net
263  radiation. When a tree canopy is fully developed and water is passing through foliage on its way to
264 the atmosphere, AE is generally greater than H, and f<1. When water stress occurs, evaporation from
265  a canopy is limited by stomatal closure and potentially, reduced foliage area. These limits result in
266  more of the incoming energy being converted to sensible heat causing the Bowen ratio to increase.
267 Sensible (H) and latent (AE) heat data from nine forested AmeriFlux eddy covariance sites in the
268  eastern U.S. were used to calculate the weekly Bowen ratio (/). These represented all forested sites
269  in the eastern U.S. with 12 or more years of H and LE data (Table 1). Because there are seasonal as
270  well as site-to-site variations in 3 we normalized weekly, log-transformed integrated Bowen ratios
271  (logy, B;) by their standard deviations (o) from the weekly mean over the full record (log,, 3, where
272  a negative value indicates a higher than average A and more drought-stressed conditions). This
273  normalization (also referred to as a Z-score) occurs for each week of the growing season and helps
274  highlight unusual behavior in the weekly S, values consistently across sites.

275

276 Z-score(B;) = wfw @

277

278 This normalization also means that in a long enough record there is a direct, probabilistic

279  interpretation of values based on characteristics of the normal distribution (e.g., a 2o result has a
280  single-tailed probability of ~2.27%, a 3c result has P<0.2%, etc.).
281
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282  Table 1. Characteristics of AmeriFlux sites used in this analysis. DBF indicates deciduous broadleaf
283 forest, ENF indicates evergreen needle-leaf forest, and MF indicates mixed forest. In the

284  Koppen climate classification, Cfa = humid subtropical climate, Dfa = hot-summer humid continental
285  climate, and Dfb = warm-summer humid continental climate.

) Elev. ) MAT | MAP Site ref.
Site Id Name Lat. | Long. Veg. [Climate Start| End
(m) (C) [ (mm)
Bartlett Experimental [63]
US-Bar 44.0646|-71.2881| 272 | DBF [ Dfb | 5.61 | 1246 | 2004 | 2017
Forest
US- [Howland Forest (main [64]
45.2041]-68.7402| 60 | ENF [ Dfb | 5.27 | 1070 | 1996 | 2018
Hol |[tower)
US- [Morgan Monroe State [5]
39.3232(-86.4131| 275 | DBF | Cfa | 10.85 | 1032 | 1999 | 2020
MMS |Forest
us- . . . [73]
MO Missouri Ozark Site  [38.7441| -92.2 (219 |DBF| Cfa | 12.11 | 986 | 2004 | 2017
z
uUs- . [65]
NC2 NC Loblolly Plantation| 35.803 |-76.6685( 5 [ ENF| Cfa | 16.6 | 1320 | 2005 | 2019
US-SIt |Silas Little Forest 39.9138(-74.596 | 30 | DBF | Dfa | 11.04 | 1138 | 2005 | 2017 | [74, 66]
Sylvania Wilderness [67]
US-SyvA 46.242 |-89.3477(540 (| MF | Dfb | 3.81 | 826 | 2001 | 2020
rea
US- |Univ. of Mich. [68]

o . 45.5598|-84.7138( 234 | DBF | Dfb | 5.83 | 803 | 2000 | 2019
UMB |Biological Station

Us- 69
\Willow Creek 45.8059]-90.0799| 520 | DBF [ Dfb | 4.02 | 787 | 1998 | 2020 169]

286  2.2.11. Tree Ring data for evaluation

287 Landsat-based Phenology and Tree Ring data (1984-2013) for Eastern US Forests were acquired
288  for evaluation of ForDRI from the Oak Ridge National Laboratory Distributed Active Archive Center
289  (ORNL DAAC). This dataset provides a 30-year record of forest phenology and annual tree ring data
290 at several selected forested sites in the eastern U.S. [31]. These selected sites are located in four
291  national parks —Harpers Ferry National Historical Park (HAFE), Prince William Forest Park (PRWI),
292  Great Smoky Mountains National Park (GRSM), and Catoctin Mountain Park (CATO). Details of
293  sample preparation and dendrochronological analyses are presented in [62]. We have used eight sites
294 from the four parks (two sites per park) to compare tree ring increment with ForDRI values during
295  the summer season (June to September).

296  2.3. Methods

297  2.3.1. ForDRI model development

298 To develop a proof-of-concept ForDRI model, we used 12 selected variables (described above)
299  that contribute to forest drought (Figure 2). The input variables include MODIS-based NDV],
300  GRACE-based ground water storage, three SPI timescales (i.e., 12-, 24-, and 60-month SPI), two SPEIs
301 (i.e., 12- and 24-month SPEI), PDSI, PZI, Noah soil moisture, 12-month EDDI, and VPD. To determine
302  the contribution of each input variables objectively, we have used the principal component analysis
303  (PCA) method. Using the PCA approach, the weights of each variable are determined based on their
304  historical data and the covariance of all input variables (Figure 2; Step 2). This approach helps in
305  limiting the redundant information that could influence the combined ForDRI model. In addition,
306  the PCA-based process is automatic (using scripts), which allow us to produce a separate model for
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307  each week in a year using several inputs at a higher spatial resolution [70, 71]. Figure 2 shows the
308  method and steps to develop the ForDRI model and the process of producing maps for the forest
309  regions. The process includes seven steps from data processing to product dissemination. As shown
310  in Figure 2, the main seven steps are (i) standardizing all the input variables to be consistent in
311  combining them, (ii) determining the percent contribution (weight) of each input variable based on
312  the covariance of the variables using the PCA method, (iii) multiplying each input variable with the
313  proportion (weight) determined by PCA, (iv) adding the weighted input variables and standardizing
314 the output using long historical records, (v) generating the ForDRI maps for the selected forest
315  regions (we generated the ForDRI maps for the four forest regions of the eastern U.S. to demonstrate
316  and evaluate ForDRI, Figure 3), (vi) evaluating the ForDRI maps using tree ring increment
317 (dendrology) data and forest flux data (i.e., Bowen Ratio), and (vii) disseminating the ForDRI maps.
318  In this study, Steps 1 to 5 (Figure 2) were used. For Step 4, the historical data were used in hindsight
319  as “Near-real Time data” to demonstrate the ForDRI model’s capability. The last step (i.e., Step 6,
320  Internet portal for data access and distribution) is the potential delivery of the operational ForDRI
321  maps to the public in the future. An operational ForDRI model is planned to be developed after
322  expanding the model to the western U.S. and evaluating the final national ForDRI model for the
323  continental U.S. (CONUS).

324
Forest Drought Response Index (ForDRI) Method
Input Data |
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326  Figure 2. Conceptual method and steps to develop the Forest Drought Response Index (ForDRI).

327  2.3.2. ForDRI maps for selected drought years

328 Historical ForDRI maps (780 maps at a weekly interval) were produced from 2003 to 2017. The
329  same weeks (ending August 12) in 2007, 2008, 2010, and 2012 (Figure 3(a)-(d)) are shown below to
330  demonstrate and evaluate the ForDRI model and products. The selection of these drought years were
331  based upon the general long-term drought conditions of the eastern U.S. depicted by the USDM
332  (Figure 4). Even though 2010 was not a drought year over most parts of the U.S., the Northeastern
333  region had experienced drought, as shown in Figure 3(c).
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Figure 3. Example of the Forest Drought Response Index (ForDRI), showing maps of eastern U.S.
Forest Service regions for week 32 (August 12) for selected years: (a) 2007, (b) 2008, (c) 2010, and (d)

2012.
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339  Figure 4. The U.S. Drought Monitor (USDM) maps for mid-August: (a) 2007, (b) 2008, (c) 2010 and

340  (d) 2012 for qualitative comparisons.

341  2.3.3. Evaluation method/approaches for ForDRI (both qualitative and quantitative approaches)

342 The ForDRI model evaluation was done using three methods: (i) qualitatively comparing the
343  spatial patterns and intensity of the drought conditions depicted on the U.S. Drought Monitor
344  (USDM) maps during selected drought years, (ii) quantitatively identifying the correlation between
345 a normalized (Z-score) Bowen Ratio at selected sites and ForDRI values across the eastern U.S., and
346  (iii) evaluating the ForDRI using tree ring data (i.e., tree ring increment). The USDM is a hybrid
347  product, developed using several sources of ground observation and remote-sensed data including
348  the SPI, PDSI, NDV]I, streamflow values, and other drought indicators used by the agriculture, forest,
349  and water management sectors as well as expert feedback from regional and national climatologists.

350  3.Results

351  3.1. Comparison of ForDRI with U.S. Drought Monitor (USDM)
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352 The drought intensity estimates of ForDRI broadly agree with those for the same time period
353  produced by the USDM (compare Figures 3 and 4). Note that ForDRI masks out non-forested (e.g.,
354 agricultural, rangelands, water, and urban) lands that are a focus of the USDM. In mid-August 2007
355  (Panel “a”), for example, both reach their most severe categories in Alabama-Tennessee and both
356  capture intense drought west of Lake Superior. Details of the patterns differ because of differences
357  in inputs and weighting. In mid-August 2008, for example, ForDRI indicates forest drought stress
358  stretching well into Virginia while the USDM localizes the worst effects in a smaller region (Panel
359  “b”). Both products agree that only mild drought is present in mid-August 2010 (Panel “c”).
360  However, ForDRI does not indicate stress for forests in northern Louisiana while the USDM at that
361  time is indicating short-term (e.g., agricultural) impacts are present. The extreme drought across
362  much of the Midwest in August of 2012 [72] is clearly visible in both products (Figures 3d and 4d).

363  3.2. Evaluating ForDRI with Bowen Ratio

364 Figure 5 shows the time-series comparison of the historical records of Bowen Ratio at nine
365  AmeriFlux sites and ForDRI. During the assessment period, two of the flux tower sites, Morgan
366  Monroe (“MMS”, Monroe County, Indiana) and the Missouri Ozarks (“MOz”, Boone County,
367  Missouri) experienced “Exceptional” (D4) drought as defined by the U.S. Drought Monitor (Table 2).
368  The North Carolina Pine site (“NC2”, Washington County) experienced “Extreme” (D3) drought,
369  while four sites experienced at least one “Severe” (D2) drought (Table 2). Two sites experienced at
370  most “Moderate” (D1) growing season drought in the period between 2003 and 2017. Both Willow
371 Creek (“WCr”) and the Sylvania Wilderness (“Syv”) sites experienced D3 events in the period
372  between 2007 and 2010 or 2011 when they were offline (no observations available).

373 The Midwest drought of 2012 is easily seen in the normalized Bowen ratio flux data from both
374  the MMS and MOz sites, and is well captured by the ForDRI model (Figure 5). The 2012 drought
375  reached D4 at both sites in August, and both model and data reached a minimum during this event.
376  The normalized Bowen ratio reached -2.89c at the MOz site and -3.26c at MMS, consistent with
377  single-tailed probabilities of <1% and <0.1%, indicating the severity of the drought. At both sites the
378  ForDRI model output is significantly correlated over the entire assessment period with the
379  normalized Bowen ratio data (Z-score f) (P<0.001, r=0.56 at Morgan Monroe and r=0.76 at the
380  Missouri site). A late-summer D2 event at Morgan Monroe in 2010 is also well resolved in both the
381 data and by ForDR], as is a late summer D1 event in 2007 at both sites. However, a drought classified
382  asD2 by the USDM at the Missouri Ozarks site in 2006 is less clear in the Bowen ratio data and ForDRI
383  model. The ForDRI model and normalized Bowen ratio flux data disagree noticeably at Morgan
384  Monroe in 2014 and at the Missouri Ozarks site in 2015. In both cases, the data suggest ~1c drier than
385  normal conditions (higher Bowen ratios) while ForDRI indicated wetter than normal. This may be
386  related to tree mortality attributable to 2012 drought that occurred in subsequent years; this delayed
387  effect of drought [73] might complicate the Bowen ratio comparison.
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389  Figure 5. Comparison of the historical records of ForDRI values and normalized Bowen Ratio (Z-
390  Score ) at nine AmeriFlux sites that include Bartlett Experimental Forest (Bar), Howland Forest
391  (Hol), Morgan Monroe State Forest (MMS), Missouri Ozark Site (MOz), North Carolina pine forest
392  (NC2), Silas Little Forest (Slt), Sylvania Wilderness Area (Syv), Univ. of Mich. Biological Station
393  (UMB), and Willow Creek (WCr).

394

395 The ForDRI model and Z-score S, are also well-correlated (P<0.001, »=0.73) at a North Carolina
396  pine forest (NC2) site (Figure 5). The NC2 flux site experienced D2 in the fall of 2007 which worsened
397  to D3 in the spring of 2008. This site also experienced a D2 drought throughout the summer of 2011.
398  All of these events and their relative severity are clearly identified in both ForDRI and the normalized
399  Bowen ratio.

400 The Silas Little Forest (Slt) in the New Jersey Pine Barrens is characterized by sandy soils with
401  low water holding capacity and drought-tolerant species. The record drought in this time period was
402  September 2010, when the USDM classified Burlington County as D2 for several weeks. The
403  normalized Bowen ratio shows this as a -2¢ event and ForDRI identifies it as the most extreme in the
404  interval (Figure 4a). However, model and data disagree sharply at this site in the early spring of 2007
405  when ForDRI was indicating normal moisture conditions while the Z-score S, showed this as an
406  extreme stress departure of -2.85c. ForDRI and the normalized Bowen ratio then came into better
407  agreement as the growing season progressed. The difference can be accounted for by a gypsy moth
408  caterpillar (Lymantria dispar L.) outbreak that removed most foliage from the forest in spring of 2007
409  [74]. Following the peak of herbivory in mid-June, a second, partial leaf-out occurred and resulted in
410  a canopy with roughly half of the normal summer leaf area [74]. A secondary, lesser defoliation
411  occurred at Silas Little in 2008. With little or no foliage, evaporation was severely constrained, and
412  thisresulted in most of the incoming energy being converted to sensible heat and a high Bowen ratio.
413 ForDRI identified the 2007-2009 drought at Willow Creek and the Sylvania Wilderness that
414 reached D3 when flux data were not available, as well as lesser events. The normalized Bowen ratio
415  data (Z-score ) reached a minimum of -2c at lesser (D2) events at these sites. However, ForDRI and
416  Z-score B, were not significantly correlated at either site over the full data record (Willow Creek,
417 r=0.10, p=0.23; Sylvania r=0.12, p=0.19). At UMB, the USDM reached D2 in 2005 and 2007, but these
418  periods were poorly resolved by both ForDRI and Z-score /3. Both Howland and Bartlett recorded
419  only minor (D1) events during the assessment period, and ForDRI and Z-score S, were not

420  significantly correlated at these sites.
421
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Table 2. Historic drought at AmeriFlux sites during the ForDRI assessment period based on the U.S.

Drought Monitor.
Site County State Year Dates Intensity
June 26 — Sept 4 D2
2012 July 17 — Aug 28 D3
MMS Monroe Indiana July 24 — Aug 7 D4
2010 | Sept 21 — November 23 D2
2007 Aug 21 — Oct 26 D2
June 19 - Oct 9 D2
2018
Aug 7-0ct 2 D3
July 3 —end of year D2
MOz Boone Missouri 2012 July 17 — Oct 16 D3
Aug 14 — Aug 28 D4
2006 Aug 8 — Aug 22 D2
2007 Aug 21 - Oct 16 D1
May 31 — Aug 23 D2
2011 Y J
Nov 20 — Mar 4 2012 D2
. North Jan 1 - Aug 26 D2
NC2 | Washington .
Carolina 2008 | Jan 29 — Feb 12, Aug 26 D3
(one week)
2007 Sept 4 — Oct 23 D2
2010 Sept 7 — Sept 28 D2
Slt Burlington | New Jersey June, Gypsy moth
2007 none
outbreak
2011 Mar 29 — Apr 26 D1
2010 April 6 — Aug 17 D1
UMB | Cheboygan Michigan 2007 Aug 28 — Sept 4 D2
2005 July 19 — Aug 16 D2
2003 | Jan 7 — April 1, Sept 23 D1
June 1-29 D3
*2010
April 13 — Aug 17 D2
*2009 Sept 22 — Oct 20 D2
Syv Gogebic Michigan | *2008 | Aug 26 — May 12, 2009 D1
Aug 14 — Sep 4 D3
*2007
July 10 — Oct 16 D2
2006 July 11 — July 25 D2
2012 Oct9-23 D2
*2010 April 13— June 22 D2
WCr Price Wisconsin Aug 4-18 D3
*2009
Jan — Aug 25 D2
*2008 Oct 21 — end of year D2
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*2007 Sept 12-18 D2

2005 Sept 6 — Oct 4 D2

Mar 18 — 25, July 22 —
2003 | July 29, Sept 2 — end of D1
year

2016 Nov 15 — Dec 20 D2

Hol Penobscot Maine  |2016/17| Sept27 —Feb7, 2017 D1

2010 Aug 10 — Sept 28 D1

Bar Carrol New. 2016/17| Sept27 —Feb7,2017 D1

Hampshire
* means data not available from flux site for that specific period.
424 3.3. Evaluating ForDRI with tree ring increments

425 Tree ring increment (TRI) data from eight sites were used to assess ForDRI values at the four

426 national parks (i.e., HAFE, PRWI, GRSM, and CATO). To analyze the correlation of the ForDRI and
427  TRI, two sites from each national park were selected (Figure 6). Three species including American
428  tulip tree (Liriodendron tulipifera), northern red oak (Quercus rubra), and white oak (Quercus alba) were
429 selected for tree ring increment data analysis. Niinemets and Valladares [75] considered Liriodendron
430  tulipifera and Quercus rubra moderately susceptible to drought and Quercus alba moderately tolerant
431  [76]. At each of the selected park sites, the individual tree ID and species type are shown in Figure 6.
432 Figure 7a shows the correlation between annual tree-ring increment data and ForDRI weekly
433  values during the summer season (June to September). The ForDRI values at a weekly interval were
434  compared with the tree ring annual data at each site between 2003 and 2017 to identify the best period
435  to monitor drought stress on trees using the ForDRI model. The results showed that four sites at
436  GRSM and PRWI have higher correlations (between 0.61 and 0.82) with ForDRI during all weeks of
437  summer (Figure 7a) than the other park sites. The correlation peaked when compared with ForDRI
438  values from mid-August. Tree ring increment at the two CATO sites also showed relatively good
439  correlation (0.35<r<0.73) with ForDRI. At this site, the highest correlation (0.73) was found in July.
440  Tree ring increments recorded at two HAFE sites showed relatively lower correlations (0.22<r<0.63)
441  with ForDRI. This could be because the dominant tree species in the park (oak) are drought-tolerant.
442  In addition, differences in the strength of these relationships may depend upon tree site specifics
443  (ridgetop vs valley), soils, or other factors. In addition, the frequency and intensity of drought at these
444 four national historic parks over this relatively short interval were not identical. Generally, however,
445  the comparison revealed that the ForDRI values showed reasonable correlation with the tree ring
446  increment, so ForDRI maps may help decision-makers monitor tree drought stress in these parks.
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448  Figure 6. Locations of the tree ring sites and their species types at the selected four national historical
449  parks. The table in the lower left side of the figure shows the species type of each individual tree,
450  indicating the tree species: Quercus alba (QUAL), Liriodendron tulipifera (LITU), and Quercus rubra

451  (QURU).
452
453 Figure 7b shows the maximum, minimum, and average correlation between ForDRI and tree

454  ring increment data at eight sites of the four national parks in the eastern U.S. during the summer
455  season (June to September). The correlation between ForDRI and tree ring increments at the selected
456  eight sites during summer ranged between 0.46 (minimum) and 0.78 (maximum). The two GRSM
457  sites had higher average correlations (0.75 and 0.78) than the PRWI (0.73 and 0.75), or other sites.
458  Using average summer values of ForDRI accounted for over half the variance in tree ring increment
459  at the GRSM and PRWI sites. Correlations may have been strongest at these two sites because they
460  were impacted by the 2008 Southeast drought (Figure 3b) while the CATO and HAFE sites were not.
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Correlation of ForDRI and Tree Ring Increment at Eight Sites in the Four National Parks
of Eastern United States (HAFE, CATO, GRSM, and PRWI)
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461

462  Figure 7(a). Time series correlation of ForDRI and tree ring increment data during summer season
463  (June to September) at eight sites across four national parks in the eastern U.S.

Correlation of ForDRI and Tree Ring Increment Data During Summer Season (June to
September) at Eight Sites of Four National Parks in the eastern United States
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464

465  Figure 7(b). Maximum, minimum, and average correlation of ForDRI and tree ring increment (TRI)
466  data at eight sites during summer season (June to September) at four parks in the eastern United

467  States.
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468 4. Discussion

469 The ForDRI model reaches minimum values at the same times as the normalized Bowen ratio
470  (Z-score of f), a relative measure of physiological water stress. Both of these measures reach
471  minimum values at times when the USDM suggests these forested sites experienced extreme (D3) or
472  exceptional drought (D4) . Overall, ForDRI was significantly correlated with the normalized Bowen
473  ratio. At the site level, this correlation was significant at 4 of the 9 sites and can account for over half
474  the variance in the flux-derived quantity. At the sites with lesser (e.g. D2) events in the record, both
475  the normalized Bowen ratio measurements and ForDRI tend to reach at least local minima during
476  the drought event(s) but the correlation between these indicators across the entire time period drops.
477  This lack of correlation at these sites is to be expected when there is little or no drought stress signal
478  tomeasure. We would expect that other factors such as herbivory and other causes of foliage loss are
479  contributing “noise” to the signals during these non-drought periods and that ForDRI and the
480  normalized Bowen ratio are differentially sensitive to these other factors (the “noise” is uncorrelated).
481  Asmentioned earlier, stomatal conductance and f are sensitive to a number of factors in addition to
482  plant (or soil) water stress. These include solar radiation, temperature, and vapor pressure deficit.
483  When significant droughts are absent at a site during the comparison periods (e.g., Bartlett Forest),
484  our normalization scheme will highlight this other variation and magnify disagreement with ForDRL
485  Bowen ratio data from the Silas Little Forest supports this argument. In 2007, Bowen ratio values at
486  Silas Little Forest reached a minimum, indicating extreme physiological stress, while ForDRI
487  suggested no stress was present. Researchers at the forest, however, report that insects had consumed
488  almost all of the canopy foliage at this time [74]. Without foliage to transpire water, incoming energy
489  was converted to sensible heat and /3 soared. The stress was real; it just was not caused by drought.
490  Even so, lesser droughts (D2) are easily visible in the normalized Bowen ratio record.

491 Tree ring increment data were similarly significantly correlated with ForDRI, with higher
492  correlations evident at sites that had experienced more significant drought. The long timespan of
493  developing intense drought (drought serial autocorrelation) was observed in the correlation of
494  annual ring increment with ForDRI estimates across the summer.

495 A multiyear pattern of drought stress is clearly visible in ForDRI and the normalized Bowen
496  ratio at a number of sites, and critically, in all those that reached D3 or D4. This is an important result
497  asitimplies that serious forest drought, the kind that we are most concerned about, takes a long time
498  to develop. It also indicates that ForDRI has a certain capacity to predict the likelihood of extreme
499  (D3) or exceptional drought (D4) prior to, or early in, the growing season. Extreme or exceptional
500  drought conditions seem very unlikely to develop if ForDRI is indicating average or wetter than
501  average conditions at the beginning of the growing season. Conversely, seasons with enhanced
502  likelihood of significant forest drought stress can also be identified. This suggests the possibility of
503  forecasting potential drought maximum severity at the beginning of the growing season, which
504  would be useful to fire managers and many others.

505 5. Conclusions

506 We have described ForDRI, a new and non-subjective indicator of forest drought. Weekly values
507  of ForDRI have been calculated since 2003, and in that period, these values readily identify extreme
508  (D3) or exceptional (D4) drought in several research forests. Severe (D2) and less intense droughts
509  are also identified, but at a lower probability of success. A novel and independent measure of forest
510  water stress calculated from forest flux-tower data, weekly, log-transformed integrated Bowen ratios
511  (logy Bi) transformed to Z-scores from the weekly mean over the full record, similarly identifies
512  extreme drought periods over the same record. At the sites that have experienced extreme or
513  exceptional drought, these measures are significantly correlated, providing strong evidence for the
514 utility of ForDRL

515 The tree ring analysis also showed that the ForDRI values are correlated at the eight sites of the
516  four national parks in the eastern U.S., indicating the drought/water stress impact on tree growth
517  during the drought years. The results showed the potential usefulness of the ForDRI tool for decision
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518  making to monitor drought stress on trees in the eastern U.S. and suggest the model can be readily
519  expanded to other parts of the continental U.S.
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