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Abstract: Monitoring drought impacts in forest ecosystems is a complex process, because forest 26 

ecosystems are composed of different species with heterogeneous structural compositions. Even 27 
though forest drought status is a key control on the carbon cycle, very few indices exist to monitor 28 
and predict forest drought stress. The Forest Drought Indicator (ForDRI) is a new monitoring tool 29 
developed by the National Drought Mitigation Center (NDMC) to identify forest drought stress. 30 
ForDRI integrates 12 types of data, including satellite, climate, evaporative demand, ground water, 31 
and soil moisture, into a single hybrid index to estimate tree stress. The model uses Principal 32 
Component Analysis (PCA) to determine the contribution of each input variable based on its 33 
covariance in the historical records (2003–2017). A 15-year time series of 780 ForDRI maps at a 34 
weekly interval were produced. The ForDRI values at a 12.5km spatial resolution were compared 35 
with normalized weekly Bowen ratio data, a biophysically based indicator of stress, from nine 36 
AmeriFlux sites. There were strong and significant correlations between Bowen ratio data and 37 
ForDRI at sites that had experienced intense drought. In addition, tree ring annual increment data 38 
at eight sites in four eastern U.S. national parks were compared with ForDRI values at the 39 
corresponding sites. The correlation between ForDRI and tree ring increments at the selected eight 40 
sites during the summer season ranged between 0.46 and 0.75. Generally, the correlation between 41 
the ForDRI and normalized Bowen ratio or tree ring increment are reasonably good and indicate 42 
the usefulness of the ForDRI model for estimating drought stress and providing decision support 43 
on forest drought management. 44 

Keywords: Forest monitoring; drought; time series satellite data; Bowen ratio; carbon flux  45 

 46 
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Drought has multiple direct and indirect impacts on forests. High evaporative demand from 48 
high temperature and low humidity, in isolation and especially when combined with limited soil 49 
moisture supply, can induce plant water stress. To reduce water loss and prevent the development 50 
of excessively low water potentials, water-stressed plants typically close stomata. This can lead to 51 
carbon stress, reduced growth, and greater susceptibility to insects and disease.  Under extreme 52 
conditions drought sress can result in depleted carbon reserves, loss of hydraulic function, and 53 
mortality [1].  54 

Monitoring drought impacts in forest ecosystems is complex because forest ecosystems are 55 
composed of different species with heterogeneous structural compositions [2]. In a given ecosystem, 56 
different tree species can also physiologically respond differently to drought stress [3, 4, 5, 6]. Extreme 57 
and intense droughts can induce irreversible growth and vigor loss resulting in tree death [7, 8, 9, 10], 58 
which may lead to accumulation of fuel in a forest and increased fire danger. Drought conditions can 59 
also result in decreases in forest Live Fuel Moisture Content (LFMC), the mass of water contained 60 
within living vegetation in relation to the dry mass. LFMC has been identified as a factor relating to 61 
fire ignition, behavior, and severity [11]. 62 

Traditionally, climate-based drought indices such as the Keetch-Byram Drought Index (KBDI) 63 
or satellite-based indices have separately been used to monitor drought. In this study, these two 64 
complementary approaches for monitoring forest drought have been combined.  65 

The climate-based drought monitoring approach [12, 13, 14, 15, 16, 17, 18] characterizes forest 66 
drought status indirectly (i.e., the climate-based drought indices indicate moisture deficit, but do not 67 
show levels of physiological stress or damage in forests). Thus, most climate-based indices (e.g., 68 
KBDI) infer impacts of the climatic parameters (e.g., rainfall and temperature) rather than measure 69 
changes in forest condition directly.  70 

The remote sensing drought monitoring approach [19, 20, 21, 22, 23, 24] enables a near-real-time 71 
monitoring of forest condition at high resolution. However, an approach based on reflectance values 72 
also has limits [21]. Remote sensing data alone are insufficient to demonstrate that drought is the 73 
causal agent of a particular change in reflectance values. In addition to this, remote sensing of forest 74 
drought and its interpretations can be complex due to technical aspects of the sensor technologies 75 
and interconnections of underlying ecological processes in forested areas [25]. There is a need for an 76 
integrated wide-area drought monitoring system that focuses specifically on drought stress in 77 
forested ecosystems [26]. Most forests in the eastern U.S. are composed of different tree species with 78 
different levels of drought tolerance, which makes monitoring forest drought challenging when 79 
solely using climatic or satellite data. The use of both climate- and satellite-based data are powerful 80 
sources for both depicting and describing drought conditions and impacts. However, they could be 81 
more powerful when merged together. 82 

In this study, we present the Forest Drought Response Index (ForDRI), a new ‘hybrid’ drought 83 
tool developed to monitor and assess forest drought conditions through the integration of satellite-84 
based observations of vegetation conditions, evapotranspiration (ET) estimates from satellite, root-85 
zone soil moisture (satellite-estimated or modeled), climate-based drought indices, and biophysical 86 
characteristics of the environment. These input variables are combined based on their contribution 87 
(weight) determined by covariance (principal component analysis) to provide the ForDRI value at 88 
each grid point. The overarching goal of ForDRI research is to develop an integrated forest drought 89 
monitoring tool for decision makers using satellite, climate, and biophysical parameters to address 90 
the need and challenges of forest drought monitoring on the order of weeks to months and years. 91 

The main objective of this study is to identify and monitor drought impacts on forests to help 92 
users, such as the U.S. Drought Monitor (USDM) map authors (drought experts), in characterizing 93 
drought across forested areas of the U.S. The USDM map is used by policy makers (e.g., legislative 94 
and congressional offices, state forestry commissions); water supply managers; irrigation 95 
associations; agricultural trade organizations; public land managers; federal, state and local fire 96 
managers; and others in the U.S. [27, 28]. However, trees are likely to be more resilient to water 97 
limitation than annual plants due to their generally deeper roots and woody stems.  98 
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To develop the ForDRI model, we used climatic, satellite, and biophysical data for the eastern 99 
U.S. (east of 100°W) at a weekly timestep. Forests in the eastern U.S. experience occasional drought, 100 
but they tend to be shorter and more random than the seasonal droughts of the West [29]. To evaluate 101 
the ForDRI model, we needed a measure of forest physiological stress measured over many years at 102 
a variety of sites sufficient to capture a number of significant drought events. One approach was to 103 
evaluate ForDRI by assessing forest water stress using sensible and latent heat (evapotranspiration) 104 
flux data measured at AmeriFlux network sites to calculate an integrated Bowen ratio. Another way 105 
to evaluate ForDRI was by comparison with estimates of forest growth. It is well known that drought 106 
is a primary limit on tree growth and its effects can be seen in tree ring increments [30]. Thus, we also 107 
carried out comparisons of ForDRI predictions with published tree ring chronologies using the 30-108 
year tree ring chronologies sampled and analyzed from the Mid Atlantic region forests by Elmore et 109 
al. [31].   110 

2. Materials and Methods  111 

2.1. Study area 112 

The study area for the experimental analysis is the eastern U.S. (Figure 1). The predominant land 113 

cover in this region is forest cover consisting of more than 80 tree species [32]. Figure 1 shows the 114 

study area and the forest type groups based on the national forest type dataset produced by the 115 

United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Remote 116 

Sensing Applications Center (RSAC). The national forest type dataset was created by modeling 117 

several biophysical layers, including digital elevation models (DEM), Moderate Resolution 118 

Spectroradiometer (MODIS) multi-date composites, vegetation indices and vegetation continuous 119 

fields, class summaries from the 1992 National Land Cover Dataset (NLCD), various ecologic zones, 120 

and summarized PRISM climate data [33]. The national forest types were classified into 28 groups to 121 

portray broad distribution patterns of forest cover in the U.S. [32, 34]. Our study area includes 16 122 

major forest type groups (Figure 1). 123 
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124 

Figure 1. Study area for the Forest Drought Response Index (ForDRI). The map shows the 125 

major forest group types in the study area based on the USFS National Forest Type dataset 126 

[33]. 127 

2.1.1. Forest group type coverage by climate region 128 

The study area was divided into Central, East North-Central, Northeastern, and Southeastern 129 
forest/climate regions [33] (Figure 1). The Oak/Hickory (38%), Loblolly/Shortleaf Pine (17%), and 130 
Maple/Beech/Birch (15%) forest type groups dominate the study area. However, each forest/climatic 131 
region has its own characteristic and areal extent of forest group types as well as species composition. 132 
For example, the highest percent area coverage of the Northeast Climate Region is the 133 
Maple/Beech/Birch Group (about 66%), followed by the Oak/Hickory Group (about 22%). In contrast, 134 
the highest percent cover of the forest group in the Southeast Climate Region is the Oak/Hickory 135 
Group (about 40%), followed by Loblolly/Shortleaf Pine Group (about 28%). Detailed information 136 
and the data for the U.S. is available at USDA’s Forest Service website at [33]. 137 

2.2. Data used in ForDRI model development 138 
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The ForDRI model includes water cycle variables (precipitation, temperature, evaporation, soil 139 
moisture, and vapor pressure deficit) that influence short- and long-term drought conditions that 140 
are combined with satellite-derived vegetation reflectances (NDVI) that characterize forest 141 
condition. The input variables are described in additional detail below. 142 

2.2.1. MODIS-based Normalized Difference Vegetation Index (NDVI)  143 

The Normalized Difference Vegetation Index (NDVI) information at 250-meter (m) spatial 144 
resolution is based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by 145 
the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The 146 
MODIS-based 7-day data from 2003-2017 were acquired from USGS [35] and resampled to a 1km 147 
grid, and each dataset was standardized (Z-score) to be consistent with the other input variables. This 148 
dataset can be accessed at USGS Earth Explorer [35]. 149 

2.2.2. Standardized Precipitation Index (SPI) 150 

The SPI was calculated to quantify the precipitation anomaly for three specified time-scales 151 
(previous 12, 24, and 60 months) based on the long-term precipitation record over that specific time 152 
interval [11, 36]. Since the SPI values are calculated by fitting the long-term record of precipitation 153 
over a specific time step to a probability distribution to standardize the values, we have used these 154 
three SPI values to represent different time scales of the rainfall conditions that would affect forest 155 
health. The three SPIs are selected to represent the long-term precipitation impact (from 1 year to 5 156 
years) on tree stress. The rainfall data used to generate the time series of SPI were obtained from 157 
Applied Climate Information System (ACIS) meteorological stations data across the study region. We 158 
used the available daily long-term record of each station to generate SPI at 12-, 24-, and 60-month 159 
aggregate periods and interpolated to produce 1km resolution SPI maps. 160 

2.2.3. Standardized Precipitation Evapotranspiration Index (SPEI) 161 

Unlike the SPI, which depends only on rainfall, the SPEI is designed to take into account both 162 
precipitation and temperature. The time series of the SPEI were generated based on daily rainfall and 163 
temperature data acquired from ACIS meteorological stations data. The SPEI were generated at 24- 164 
and 60- month aggregate periods and interpolated to 12.5km spatial resolution. With the temperature 165 
input, potential evapotranspiration (PET) is calculated and a historical time series of the simple water 166 
balance (precipitation – PET) is used in determining drought. Thus, the SPEI captures the main 167 
impact of increased temperatures on water demand [37]. Two specified time periods of SPEI historical 168 
records (i.e., previous 24 and 60 months) that represent the temperature impact on water demand 169 
(rainfall) were used in building the ForDRI model to monitor forest drought response.  170 

2.2.4. Evaporative Demand Drought Index (EDDI) 171 

The EDDI indicates the anomalous condition of the atmospheric evaporative demand (also 172 
known as "the thirst of the atmosphere") for a given location and across a time period of interest [38, 173 
39]. The EDDI is expressed as atmospheric evaporative demand (Eo) anomalies. The Eo is calculated 174 
using the Penman-Monteith FAO56 reference evapotranspiration formulation driven by 175 
temperature, humidity, wind speed, and incoming solar radiation from the North American Land 176 
Data Assimilation System datasets (NLDAS-2). EDDI is multi-scalar (i.e., captures drying dynamics 177 
that themselves operate at different timescales). We combined 12-month aggregated EDDI values 178 
with the other variables to monitor evaporative demand during forest drought.  179 

2.2.5. Ground Water Storage (GWS) 180 

GWS anomalies are calculated from Gravity Recovery and Climate Experiment (GRACE) 181 
observations [40, 41]. Data from the Global Land Data Assimilation System (GLDAS), including 182 
Terrestrial Water Storage (TWS), Root Zone Soil Moisture (RZSM) at 1-meter depth, and Snow Water 183 
Equivalence (SWE), were used to convert GRACE observations into a series of GWS anomalies (i.e., 184 
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GWS = TWS – RZSM – SWE). NASA provided the data (2003 to 2017) at 12.5km resolution for the 185 
U.S. The ground water product at 1 meter depth represents deeper soil condition that can be accessed 186 
by longer rooted tree species. The global GRACE data (2003-2020) is also available online by NASA 187 
GSFC Hydrological Sciences Laboratory at NASA GESDISC data archive [42]. 188 

2.2.6. Palmer Drought Severity Index (PDSI) and Palmer Z Index (PZI) 189 

The PDSI has been one of the most widely used climate-based drought indices in the U.S. [43]. 190 
The PDSI is calculated based on a simple supply-and-demand model of a water balance equation 191 
using historical records of precipitation and temperature as well as available water-holding capacity 192 
of the soil at a given location [13, 14]. The PDSI is calculated using a combination of current and 193 
previous climatic conditions. In contrast to the PDSI, the Palmer Z-Index (PZI) corresponds to 194 
monthly drought conditions with no memory of previous monthly deficits or surpluses [13, 14]. Thus, 195 
in this study, we have used the PDSI and 60-month PZI historical datasets to represent the short- and 196 
long-term drought conditions that impact forests. 197 

2.2.7. Noah Soil Moisture (SM) 198 

The Noah soil moisture dataset used in this study is produced using a land surface model that 199 
forms a component of the GLDAS [44, 45, 46]. The Noah soil moisture represents shallow soil depth 200 
conditions that can be accessed by short rooted species. Compared to other NLDAS-2 soil moisture 201 
products (e.g., VIC), Noah soil moisture shows the best performance in simulating shallow depth soil 202 
moisture [47]. The Noah model uses a four-layered soil description with a 10-cm thick top layer and 203 
takes into account the fractions of sand and clay. Soil moisture dynamics of the top layer are governed 204 
by infiltration, surface and sub-surface runoff, gradient diffusion, gravity, and evapotranspiration 205 
[48]. The model was forced by combination of NOAA/GLDAS atmospheric analysis fields, spatially 206 
and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation 207 
(CMAP) fields, and observation-based downward shortwave and longwave radiation fields derived 208 
using a method of the Air Force Weather Agency’s Agricultural Meteorological system [42]. The 209 
historical data (available since 2000) has a 25km resolution (resampled to 1 km for combining with 210 
other model inputs). This dataset is also available as NOAA’s NLDAS Drought Monitor Soil Moisture 211 
[49].  212 

2.2.8. Vapor Pressure Deficit 213 

The vapor pressure deficit (VPD) represents the amount of water vapor deficit between the 214 
actual water vapor pressure in the air and vapor pressure when the air is saturated at a given 215 
temperature [50]. The VPD is one of the critical variables that controls photosynthesis and water use 216 
efficiency of plants. The photosynthetic rates in leaves and canopies is inversely proportional to the 217 
atmospheric VPD [51]. Thus, it is important for forest ecosystem structure and function [52]. Average 218 
daily VPD data using the PRISM model at 4km resolution were retrieved from the PRISM Climate 219 
Group, Oregon State University [53, 54, 55]. 220 

2.2.9. National Forest Groups and Types 221 

The national forest types and forest groups geospatial dataset (1km spatial resolution) used in 222 
this study was created by the USFS Forest Inventory and Analysis (FIA) program and the Remote 223 
Sensing Applications Center (RSAC) to show the extent, distribution, and forest type composition of 224 
the nation’s forests. The dataset was created by modeling forest type from FIA plot data as a function 225 
of more than 100 geospatially continuous predictor layers. This process results in a view of forest 226 
type distribution in greater detail than is possible with the FIA plot data alone. The ForDRI model is 227 
calculated for forest areas based on this national forest type dataset acquired from the USDA Forest 228 
Service [33]. 229 

2.2.10. Bowen ratio data to compare with ForDRI at nine AmeriFlux sites 230 
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Plant water stress is typically characterized by the water potential (), which represents the 231 
tension in the water column and reflects the balance of free energy between atmospheric demand and 232 
soil water supply, modulated by leaf stomatal and hydraulic resistances [56]. Plant water potentials 233 
can be measured via pressure chamber [57] or in-situ hygrometer [58], but long-term observations 234 
across a range of sites are not available. 235 

Energy balance considerations mean that net radiation (Rn) at a forest site is balanced by the 236 
energy of sensible heat (H) and evaporation (E) plus any change in storage (S): 237 

 238 
 𝑅𝑛 = 𝐻 + 𝐸 + 𝑆 (1)  239 
 240 
The change in energy storage associated with ground or canopy heat flux is small compared to 241 

the other terms and averages over time to zero. Evaporation from a canopy in energy terms (W m-2) 242 
is described by the Penman-Monteith equation [59]:  243 

 𝐸 =
∆(𝑅𝑛−𝑆)+𝑐𝑝𝜌𝛿𝑒𝑔𝑎

∆+𝛾(1+𝑔𝑎 𝑔𝑠⁄ )
 (2)  244 

 245 
where Rn and S are as above, e is the vapor pressure deficit, ga and gs are boundary layer and 246 

stomatal conductances to water vapor, and , cp,  and  are thermodynamic parameters that are 247 
weak functions of temperature. The stomatal conductance, gs, plays an important but not unique role 248 
in limiting E. If E is reduced because of a change in conductance, then H (and to a lesser extent, S) 249 
will rise because of energy balance considerations. This makes the Bowen ratio (), defined as H/E, 250 
especially sensitive to changes in conductance. Stomatal conductance in turn is a function of incoming 251 
solar radiation, the vapor pressure deficit (e), temperature, (internal) CO2 concentration, and water 252 
stress () [60, 61]. During drought, higher temperatures and increased vapor pressure deficits can 253 
combine with soil water stress to severely limit gs and increase H at the expense of E.   254 

We assessed forest water stress by using sensible (H) and latent heat (E, evaporation) flux data 255 
measured at AmeriFlux network sites to calculate an integrated Bowen ratio (i): 256 

 257 

 𝛽𝑖 =
∑ 𝐻

∑ 𝐸
 (3) 258 

 259 
Measured 30-minute H and E fluxes (no gap filled values) were summed over 7 days, when 260 

both were >50 W m-2. The 7-day integration period was chosen to match the weekly timestep of 261 
ForDRI. The Bowen ratio in this context thus represents the weekly partitioning of the site net 262 
radiation. When a tree canopy is fully developed and water is passing through foliage on its way to 263 
the atmosphere, E is generally greater than H, and  <1. When water stress occurs, evaporation from 264 
a canopy is limited by stomatal closure and potentially, reduced foliage area. These limits result in 265 
more of the incoming energy being converted to sensible heat causing the Bowen ratio to increase.  266 

Sensible (H) and latent (E) heat data from nine forested AmeriFlux eddy covariance sites in the 267 
eastern U.S. were used to calculate the weekly Bowen ratio (). These represented all forested sites 268 
in the eastern U.S. with 12 or more years of H and E data (Table 1). Because there are seasonal as 269 
well as site-to-site variations in , we normalized weekly, log-transformed integrated Bowen ratios 270 
(log10 𝛽𝑖) by their standard deviations () from the weekly mean over the full record (log10 𝛽𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , where 271 
a negative value indicates a higher than average  and more drought-stressed conditions). This 272 
normalization (also referred to as a Z-score) occurs for each week of the growing season and helps 273 
highlight unusual behavior in the weekly  values consistently across sites. 274 

  275 

𝑍– 𝑠𝑐𝑜𝑟𝑒(𝛽𝑖) =  
log10 𝛽𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−log10 𝛽𝑖

𝜎
     (4) 276 

 277 
This normalization also means that in a long enough record there is a direct, probabilistic 278 

interpretation of values based on characteristics of the normal distribution (e.g., a 2 result has a 279 
single-tailed probability of ~2.27%, a 3 result has P<0.2%, etc.). 280 

 281 
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Table 1. Characteristics of AmeriFlux sites used in this analysis. DBF indicates deciduous broadleaf 282 
forest, ENF indicates evergreen needle-leaf forest, and MF indicates mixed forest. In the  283 
Köppen climate classification, Cfa = humid subtropical climate, Dfa = hot-summer humid continental 284 
climate, and Dfb = warm-summer humid continental climate. 285 

Site Id  Name  Lat.  Long. 
Elev. 

(m) 
Veg.  Climate  

MAT 

(°C)   
MAP 

(mm) 
Start End 

Site ref. 

US-Bar 
Bartlett Experimental 

Forest 
44.0646 -71.2881 272 DBF  Dfb  5.61 1246 2004 2017 

[63] 

US-

Ho1 
Howland Forest (main 

tower)  
45.2041 -68.7402 60 ENF  Dfb  5.27 1070 1996 2018 

[64] 

US-

MMS 
Morgan Monroe State 

Forest  
39.3232 -86.4131 275 DBF  Cfa  10.85 1032 1999 2020 

[5]  

US-

MOz 
Missouri Ozark Site  38.7441 -92.2 219 DBF  Cfa  12.11 986 2004 2017 

[73] 

US-

NC2 
NC Loblolly Plantation  35.803 -76.6685 5 ENF  Cfa  16.6 1320 2005 2019 

[65] 

US-Slt Silas Little Forest  39.9138 -74.596 30 DBF  Dfa  11.04 1138 2005 2017 [74, 66] 

US-Syv 
Sylvania Wilderness 

Area  
46.242 -89.3477 540 MF  Dfb  3.81 826 2001 2020 

[67] 

US-

UMB 
Univ. of Mich. 

Biological Station 
45.5598 -84.7138 234 DBF  Dfb  5.83 803 2000 2019 

[68] 

US-

WCr 
Willow Creek  45.8059 -90.0799 520 DBF  Dfb  4.02 787 1998 2020 

[69] 

2.2.11. Tree Ring data for evaluation 286 

Landsat-based Phenology and Tree Ring data (1984-2013) for Eastern US Forests were acquired 287 
for evaluation of ForDRI from the Oak Ridge National Laboratory Distributed Active Archive Center 288 
(ORNL DAAC). This dataset provides a 30-year record of forest phenology and annual tree ring data 289 
at several selected forested sites in the eastern U.S. [31]. These selected sites are located in four 290 
national parks —Harpers Ferry National Historical Park (HAFE), Prince William Forest Park (PRWI), 291 
Great Smoky Mountains National Park (GRSM), and Catoctin Mountain Park (CATO). Details of 292 
sample preparation and dendrochronological analyses are presented in [62]. We have used eight sites 293 
from the four parks (two sites per park) to compare tree ring increment with ForDRI values during 294 
the summer season (June to September). 295 

2.3. Methods 296 

2.3.1. ForDRI model development 297 

To develop a proof-of-concept ForDRI model, we used 12 selected variables (described above) 298 
that contribute to forest drought (Figure 2). The input variables include MODIS-based NDVI, 299 
GRACE-based ground water storage, three SPI timescales (i.e., 12-, 24-, and 60-month SPI), two SPEIs 300 
(i.e., 12- and 24-month SPEI), PDSI, PZI, Noah soil moisture, 12-month EDDI, and VPD. To determine 301 
the contribution of each input variables objectively, we have used the principal component analysis 302 
(PCA) method. Using the PCA approach, the weights of each variable are determined based on their 303 
historical data and the covariance of all input variables (Figure 2; Step 2). This approach helps in 304 
limiting the redundant information that could influence the combined ForDRI model. In addition, 305 
the PCA-based process is automatic (using scripts), which allow us to produce a separate model for 306 
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each week in a year using several inputs at a higher spatial resolution [70, 71]. Figure 2 shows the 307 
method and steps to develop the ForDRI model and the process of producing maps for the forest 308 
regions. The process includes seven steps from data processing to product dissemination. As shown 309 
in Figure 2, the main seven steps are (i) standardizing all the input variables to be consistent in 310 
combining them, (ii) determining the percent contribution (weight) of each input variable based on 311 
the covariance of the variables using the PCA method, (iii) multiplying each input variable with the 312 
proportion (weight) determined by PCA, (iv) adding the weighted input variables and standardizing 313 
the output using long historical records, (v) generating the ForDRI maps for the selected forest 314 
regions (we generated the ForDRI maps for the four forest regions of the eastern U.S. to demonstrate 315 
and evaluate ForDRI, Figure 3), (vi) evaluating the ForDRI maps using tree ring increment 316 
(dendrology) data and forest flux data (i.e., Bowen Ratio), and (vii) disseminating the ForDRI maps. 317 
In this study, Steps 1 to 5 (Figure 2) were used. For Step 4, the historical data were used in hindsight 318 
as “Near-real Time data” to demonstrate the ForDRI model’s capability. The last step (i.e., Step 6, 319 
Internet portal for data access and distribution) is the potential delivery of the operational ForDRI 320 
maps to the public in the future. An operational ForDRI model is planned to be developed after 321 
expanding the model to the western U.S. and evaluating the final national ForDRI model for the 322 
continental U.S. (CONUS). 323 
 324 

325 
Figure 2. Conceptual method and steps to develop the Forest Drought Response Index (ForDRI). 326 

2.3.2. ForDRI maps for selected drought years 327 

Historical ForDRI maps (780 maps at a weekly interval) were produced from 2003 to 2017. The 328 
same weeks (ending August 12) in 2007, 2008, 2010, and 2012 (Figure 3(a)-(d)) are shown below to 329 
demonstrate and evaluate the ForDRI model and products. The selection of these drought years were 330 
based upon the general long-term drought conditions of the eastern U.S. depicted by the USDM 331 
(Figure 4). Even though 2010 was not a drought year over most parts of the U.S., the Northeastern 332 
region had experienced drought, as shown in Figure 3(c).  333 
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334 
Figure 3. Example of the Forest Drought Response Index (ForDRI), showing maps of eastern U.S. 335 

Forest Service regions for week 32 (August 12) for selected years: (a) 2007, (b) 2008, (c) 2010, and (d) 336 
2012. 337 
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338 
Figure 4. The U.S. Drought Monitor (USDM) maps for mid-August: (a) 2007, (b) 2008, (c) 2010 and 339 
(d) 2012 for qualitative comparisons. 340 

2.3.3. Evaluation method/approaches for ForDRI (both qualitative and quantitative approaches) 341 

The ForDRI model evaluation was done using three methods: (i) qualitatively comparing the 342 
spatial patterns and intensity of the drought conditions depicted on the U.S. Drought Monitor 343 
(USDM) maps during selected drought years, (ii) quantitatively identifying the correlation between 344 
a normalized (Z-score) Bowen Ratio at selected sites and ForDRI values across the eastern U.S., and 345 
(iii) evaluating the ForDRI using tree ring data (i.e., tree ring increment). The USDM is a hybrid 346 
product, developed using several sources of ground observation and remote-sensed data including 347 
the SPI, PDSI, NDVI, streamflow values, and other drought indicators used by the agriculture, forest, 348 
and water management sectors as well as expert feedback from regional and national climatologists. 349 

3. Results 350 

3.1. Comparison of ForDRI with U.S. Drought Monitor (USDM)  351 
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The drought intensity estimates of ForDRI broadly agree with those for the same time period 352 
produced by the USDM (compare Figures 3 and 4). Note that ForDRI masks out non-forested (e.g., 353 
agricultural, rangelands, water, and urban) lands that are a focus of the USDM. In mid-August 2007 354 
(Panel “a”), for example, both reach their most severe categories in Alabama-Tennessee and both 355 
capture intense drought west of Lake Superior.  Details of the patterns differ because of differences 356 
in inputs and weighting. In mid-August 2008, for example, ForDRI indicates forest drought stress 357 
stretching well into Virginia while the USDM localizes the worst effects in a smaller region (Panel 358 
“b”). Both products agree that only mild drought is present in mid-August 2010 (Panel “c”). 359 
However, ForDRI does not indicate stress for forests in northern Louisiana while the USDM at that 360 
time is indicating short-term (e.g., agricultural) impacts are present. The extreme drought across 361 
much of the Midwest in August of 2012 [72] is clearly visible in both products (Figures 3d and 4d). 362 

3.2. Evaluating ForDRI with Bowen Ratio  363 

Figure 5 shows the time-series comparison of the historical records of Bowen Ratio at nine 364 
AmeriFlux sites and ForDRI. During the assessment period, two of the flux tower sites, Morgan 365 
Monroe (“MMS”, Monroe County, Indiana) and the Missouri Ozarks (“MOz”, Boone County, 366 
Missouri) experienced “Exceptional” (D4) drought as defined by the U.S. Drought Monitor (Table 2). 367 
The North Carolina Pine site (“NC2”, Washington County) experienced “Extreme” (D3) drought, 368 
while four sites experienced at least one “Severe” (D2) drought (Table 2). Two sites experienced at 369 
most “Moderate” (D1) growing season drought in the period between 2003 and 2017. Both Willow 370 
Creek (“WCr”) and the Sylvania Wilderness (“Syv”) sites experienced D3 events in the period 371 
between 2007 and 2010 or 2011 when they were offline (no observations available). 372 

The Midwest drought of 2012 is easily seen in the normalized Bowen ratio flux data from both 373 
the MMS and MOz sites, and is well captured by the ForDRI model (Figure 5). The 2012 drought 374 
reached D4 at both sites in August, and both model and data reached a minimum during this event. 375 
The normalized Bowen ratio reached -2.89 at the MOz site and -3.26 at MMS, consistent with 376 
single-tailed probabilities of <1% and <0.1%, indicating the severity of the drought. At both sites the 377 
ForDRI model output is significantly correlated over the entire assessment period with the 378 
normalized Bowen ratio data (Z-score ) (P<0.001, r=0.56 at Morgan Monroe and r=0.76 at the 379 
Missouri site). A late-summer D2 event at Morgan Monroe in 2010 is also well resolved in both the 380 
data and by ForDRI, as is a late summer D1 event in 2007 at both sites. However, a drought classified 381 
as D2 by the USDM at the Missouri Ozarks site in 2006 is less clear in the Bowen ratio data and ForDRI 382 
model. The ForDRI model and normalized Bowen ratio flux data disagree noticeably at Morgan 383 
Monroe in 2014 and at the Missouri Ozarks site in 2015. In both cases, the data suggest ~1 drier than 384 
normal conditions (higher Bowen ratios) while ForDRI indicated wetter than normal. This may be 385 
related to tree mortality attributable to 2012 drought that occurred in subsequent years; this delayed 386 
effect of drought [73] might complicate the Bowen ratio comparison. 387 
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388 
Figure 5. Comparison of the historical records of ForDRI values and normalized Bowen Ratio (Z-389 

Score  at nine AmeriFlux sites that include Bartlett Experimental Forest (Bar), Howland Forest 390 
(Ho1), Morgan Monroe State Forest (MMS), Missouri Ozark Site (MOz), North Carolina pine forest 391 
(NC2), Silas Little Forest (Slt), Sylvania Wilderness Area (Syv), Univ. of Mich. Biological Station 392 
(UMB), and Willow Creek (WCr). 393 

 394 
The ForDRI model and Z-score  are also well-correlated (P<0.001, r=0.73) at a North Carolina 395 

pine forest (NC2) site (Figure 5). The NC2 flux site experienced D2 in the fall of 2007 which worsened 396 
to D3 in the spring of 2008. This site also experienced a D2 drought throughout the summer of 2011. 397 
All of these events and their relative severity are clearly identified in both ForDRI and the normalized 398 
Bowen ratio.   399 

The Silas Little Forest (Slt) in the New Jersey Pine Barrens is characterized by sandy soils with 400 
low water holding capacity and drought-tolerant species. The record drought in this time period was 401 
September 2010, when the USDM classified Burlington County as D2 for several weeks. The 402 
normalized Bowen ratio shows this as a -2 event and ForDRI identifies it as the most extreme in the 403 
interval (Figure 4a). However, model and data disagree sharply at this site in the early spring of 2007 404 
when ForDRI was indicating normal moisture conditions while the Z-score showed this as an 405 
extreme stress departure of -2.85. ForDRI and the normalized Bowen ratio then came into better 406 
agreement as the growing season progressed. The difference can be accounted for by a gypsy moth 407 
caterpillar (Lymantria dispar L.) outbreak that removed most foliage from the forest in spring of 2007 408 
[74]. Following the peak of herbivory in mid-June, a second, partial leaf-out occurred and resulted in 409 
a canopy with roughly half of the normal summer leaf area [74]. A secondary, lesser defoliation 410 
occurred at Silas Little in 2008. With little or no foliage, evaporation was severely constrained, and 411 
this resulted in most of the incoming energy being converted to sensible heat and a high Bowen ratio.   412 

ForDRI identified the 2007-2009 drought at Willow Creek and the Sylvania Wilderness that 413 
reached D3 when flux data were not available, as well as lesser events. The normalized Bowen ratio 414 
data (Z-score ) reached a minimum of -2 at lesser (D2) events at these sites. However, ForDRI and 415 
Z-score were not significantly correlated at either site over the full data record (Willow Creek, 416 
r=0.10, p=0.23; Sylvania r=0.12, p=0.19). At UMB, the USDM reached D2 in 2005 and 2007, but these 417 
periods were poorly resolved by both ForDRI and Z-score  Both Howland and Bartlett recorded 418 
only minor (D1) events during the assessment period, and ForDRI and Z-score  were not 419 
significantly correlated at these sites. 420 

 421 
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Table 2. Historic drought at AmeriFlux sites during the ForDRI assessment period based on the U.S. 422 
Drought Monitor423 

Site County State Year Dates Intensity 

MMS Monroe Indiana 

2012 

June 26 – Sept 4 D2 

July 17 – Aug 28 D3 

July 24 – Aug 7 D4 

2010 Sept 21 – November 23 D2 

2007 Aug 21 – Oct 26 D2 

MOz Boone  Missouri  

2018 
June 19 – Oct 9 D2 

Aug 7 – Oct 2 D3 

2012 

July 3 – end of year D2 

July 17 – Oct 16 D3 

Aug 14 – Aug 28 D4 

2006 Aug 8 – Aug 22 D2 

2007 Aug 21 – Oct 16 D1 

NC2 Washington  
North 

Carolina 

2011 
May 31 – Aug 23 D2 

Nov 20 – Mar 4 2012 D2 

2008 

Jan 1 – Aug 26 D2 

Jan 29 – Feb 12, Aug 26 

(one week) 
D3 

2007 Sept 4 – Oct 23 D2 

Slt Burlington New Jersey 

2010 Sept 7 – Sept 28 D2 

2007 
June, Gypsy moth 

outbreak 
none 

UMB Cheboygan Michigan 

2011 Mar 29 – Apr 26 D1 

2010 April 6 – Aug 17 D1 

2007 Aug 28 – Sept 4 D2 

2005 July 19 – Aug 16 D2 

2003 Jan 7 – April 1, Sept 23 D1 

Syv Gogebic Michigan 

*2010  
June 1 – 29 D3 

April 13 – Aug 17 D2 

*2009  Sept 22 – Oct 20 D2 

*2008  Aug 26 – May 12, 2009 D1 

*2007  
Aug 14 – Sep 4 D3  

July 10 – Oct 16 D2 

2006 July 11 – July 25 D2 

WCr Price Wisconsin 

2012 Oct 9 – 23 D2 

*2010  April 13– June 22 D2 

*2009  
Aug 4-18 D3 

Jan – Aug 25 D2 

*2008  Oct 21 – end of year D2 
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*2007  Sept 12-18 D2 

2005 Sept 6 – Oct 4 D2 

2003 

Mar 18 – 25, July 22 – 

July 29, Sept 2 – end of 

year 

D1 

Ho1 Penobscot Maine 

2016 Nov 15 – Dec 20 D2 

2016/17 Sept 27 – Feb 7, 2017 D1 

2010 Aug 10 – Sept 28 D1 

Bar Carrol  
New 

Hampshire 
2016/17 Sept 27 – Feb 7, 2017 D1 

* means data not available from flux site for that specific period. 

3.3. Evaluating ForDRI with tree ring increments 424 

Tree ring increment (TRI) data from eight sites were used to assess ForDRI values at the four 425 
national parks (i.e., HAFE, PRWI, GRSM, and CATO). To analyze the correlation of the ForDRI and 426 
TRI, two sites from each national park were selected (Figure 6). Three species including American 427 
tulip tree (Liriodendron tulipifera), northern red oak (Quercus rubra), and white oak (Quercus alba) were 428 
selected for tree ring increment data analysis. Niinemets and Valladares [75] considered Liriodendron 429 
tulipifera and Quercus rubra moderately susceptible to drought and Quercus alba moderately tolerant 430 
[76]. At each of the selected park sites, the individual tree ID and species type are shown in Figure 6. 431 

Figure 7a shows the correlation between annual tree-ring increment data and ForDRI weekly 432 
values during the summer season (June to September). The ForDRI values at a weekly interval were 433 
compared with the tree ring annual data at each site between 2003 and 2017 to identify the best period 434 
to monitor drought stress on trees using the ForDRI model. The results showed that four sites at 435 
GRSM and PRWI have higher correlations (between 0.61 and 0.82) with ForDRI during all weeks of 436 
summer (Figure 7a) than the other park sites. The correlation peaked when compared with ForDRI 437 
values from mid-August. Tree ring increment at the two CATO sites also showed relatively good 438 
correlation (0.35<r<0.73) with ForDRI. At this site, the highest correlation (0.73) was found in July. 439 
Tree ring increments recorded at two HAFE sites showed relatively lower correlations (0.22<r<0.63) 440 
with ForDRI. This could be because the dominant tree species in the park (oak) are drought-tolerant. 441 
In addition, differences in the strength of these relationships may depend upon tree site specifics 442 
(ridgetop vs valley), soils, or other factors. In addition, the frequency and intensity of drought at these 443 
four national historic parks over this relatively short interval were not identical. Generally, however, 444 
the comparison revealed that the ForDRI values showed reasonable correlation with the tree ring 445 
increment, so ForDRI maps may help decision-makers monitor tree drought stress in these parks. 446 
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447 
Figure 6. Locations of the tree ring sites and their species types at the selected four national historical 448 

parks. The table in the lower left side of the figure shows the species type of each individual tree, 449 
indicating the tree species: Quercus alba (QUAL), Liriodendron tulipifera (LITU), and Quercus rubra 450 
(QURU). 451 
 452 

Figure 7b shows the maximum, minimum, and average correlation between ForDRI and tree 453 
ring increment data at eight sites of the four national parks in the eastern U.S. during the summer 454 
season (June to September). The correlation between ForDRI and tree ring increments at the selected 455 
eight sites during summer ranged between 0.46 (minimum) and 0.78 (maximum). The two GRSM 456 
sites had higher average correlations (0.75 and 0.78) than the PRWI (0.73 and 0.75), or other sites. 457 
Using average summer values of ForDRI accounted for over half the variance in tree ring increment 458 
at the GRSM and PRWI sites. Correlations may have been strongest at these two sites because they 459 
were impacted by the 2008 Southeast drought (Figure 3b) while the CATO and HAFE sites were not. 460 
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461 
Figure 7(a). Time series correlation of ForDRI and tree ring increment data during summer season 462 

(June to September) at eight sites across four national parks in the eastern U.S. 463 

464 
Figure 7(b). Maximum, minimum, and average correlation of ForDRI and tree ring increment (TRI) 465 

data at eight sites during summer season (June to September) at four parks in the eastern United 466 
States. 467 
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4. Discussion 468 

The ForDRI model reaches minimum values at the same times as the normalized Bowen ratio 469 
(Z-score of ), a relative measure of physiological water stress. Both of these measures reach 470 
minimum values at times when the USDM suggests these forested sites experienced extreme (D3) or 471 
exceptional drought (D4) . Overall, ForDRI was significantly correlated with the normalized Bowen 472 
ratio. At the site level, this correlation was significant at 4 of the 9 sites and can account for over half 473 
the variance in the flux-derived quantity. At the sites with lesser (e.g. D2) events in the record, both 474 
the normalized Bowen ratio measurements and ForDRI tend to reach at least local minima during 475 
the drought event(s) but the correlation between these indicators across the entire time period drops. 476 
This lack of correlation at these sites is to be expected when there is little or no drought stress signal 477 
to measure. We would expect that other factors such as herbivory and other causes of foliage loss are 478 
contributing “noise” to the signals during these non-drought periods and that ForDRI and the 479 
normalized Bowen ratio are differentially sensitive to these other factors (the “noise” is uncorrelated). 480 
As mentioned earlier, stomatal conductance and  are sensitive to a number of factors in addition to 481 
plant (or soil) water stress. These include solar radiation, temperature, and vapor pressure deficit. 482 
When significant droughts are absent at a site during the comparison periods (e.g., Bartlett Forest), 483 
our normalization scheme will highlight this other variation and magnify disagreement with ForDRI. 484 
Bowen ratio data from the Silas Little Forest supports this argument. In 2007, Bowen ratio values at 485 
Silas Little Forest reached a minimum, indicating extreme physiological stress, while ForDRI 486 
suggested no stress was present. Researchers at the forest, however, report that insects had consumed 487 
almost all of the canopy foliage at this time [74]. Without foliage to transpire water, incoming energy 488 
was converted to sensible heat and  soared. The stress was real; it just was not caused by drought. 489 
Even so, lesser droughts (D2) are easily visible in the normalized Bowen ratio record. 490 

Tree ring increment data were similarly significantly correlated with ForDRI, with higher 491 
correlations evident at sites that had experienced more significant drought.  The long timespan of 492 
developing intense drought (drought serial autocorrelation) was observed in the correlation of 493 
annual ring increment with ForDRI estimates across the summer.   494 

A multiyear pattern of drought stress is clearly visible in ForDRI and the normalized Bowen 495 
ratio at a number of sites, and critically, in all those that reached D3 or D4. This is an important result 496 
as it implies that serious forest drought, the kind that we are most concerned about, takes a long time 497 
to develop. It also indicates that ForDRI has a certain capacity to predict the likelihood of extreme 498 
(D3) or exceptional drought (D4) prior to, or early in, the growing season. Extreme or exceptional 499 
drought conditions seem very unlikely to develop if ForDRI is indicating average or wetter than 500 
average conditions at the beginning of the growing season. Conversely, seasons with enhanced 501 
likelihood of significant forest drought stress can also be identified. This suggests the possibility of 502 
forecasting potential drought maximum severity at the beginning of the growing season, which 503 
would be useful to fire managers and many others. 504 

5. Conclusions 505 

We have described ForDRI, a new and non-subjective indicator of forest drought. Weekly values 506 
of ForDRI have been calculated since 2003, and in that period, these values readily identify extreme 507 
(D3) or exceptional (D4) drought in several research forests. Severe (D2) and less intense droughts 508 
are also identified, but at a lower probability of success. A novel and independent measure of forest 509 
water stress calculated from forest flux-tower data, weekly, log-transformed integrated Bowen ratios 510 
(log10 𝛽𝑖) transformed to Z-scores from the weekly mean over the full record, similarly identifies 511 
extreme drought periods over the same record. At the sites that have experienced extreme or 512 
exceptional drought, these measures are significantly correlated, providing strong evidence for the 513 
utility of ForDRI. 514 

The tree ring analysis also showed that the ForDRI values are correlated at the eight sites of the 515 
four national parks in the eastern U.S., indicating the drought/water stress impact on tree growth 516 
during the drought years. The results showed the potential usefulness of the ForDRI tool for decision 517 
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making to monitor drought stress on trees in the eastern U.S. and suggest the model can be readily 518 
expanded to other parts of the continental U.S. 519 
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