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Black hole’s quasinormal frequencies are basically the complex numbers which provide information
about the relaxation of perturbations and depend on the characteristics of the spacetime and types
of perturbations. In this paper, we evaluate the quasinormal modes of Hayward black hole in
Einstein Gauss-Bonnet gravity, Hayward black hole in anti-de Sitter space (AdS) spacetime, and
4-dimensional black hole in Einstein-Lovelock gravity. By utilizing the WKB resonance technique,
we examine the quasinormal modes frequencies ω by shifting the charge parameter Q (it is also
identified with the cosmological constant), circular harmonic index l, and mass of scalar field m. We
also study the relaxation rate for those black holes and find out that the relaxation rate increases
with increasing values of Q. We observe that real and imaginary components of the quasinormal
modes are not linear functions as similar to Reisnner Nordström-AdS. For large values of charge,
quasinormal ringing becomes slower to settle down to thermal equilibrium and hence the frequency
of the oscillation becomes smaller.

I. INTRODUCTION

In the last few decades, there has been a growing interest in quasinormal modes (QNMs) of black holes (BHs);
especially after the detection of the gravitational waves by the LIGO scientists [1], this interest is further increased.
The quasinormal ringing influences the most of the phenomenon about the BHs including the perturbation dynamics.
In fact, QNMs are unique fingerprints aimed at directly identifying the BH entity. Detection of the QNMs is expected
to be perceived during the gravitational wave observations in the near future. To obtain more information from
the signals of gravitational waves, it is very important to know how the QNMs act for the parameters of BHs in
various models. The theory of QNMs of compact objects from both the mathematical and astrophysical points of
view was considerably discussed in the literature (see for example [2, 3] and references therein). Some researchers
have generalized the effects of dark matter and dark energy on QNMs and some have developed the investigation
of QNMs of various type of black holes in lower/higher dimensional spacetimes [4–14]. It is also worth noting that
QNMs of BHs in AdS space (when the black hole is immersed in an expanding universe) have been recently studied
[15].

Singularity of the BH is a recognized as trouble in a general relativity (GR). At the singular point, it means
that flow will be divergent, so it implies that all the material physics laws come up short at that point. Bardeen
[3, 16] proposed a regular spacetime with a horizon and without singularity. But the physical source associated with
Bardeen’s solution was clarified much later, when Ayon-Beato and Garcia [17] interpreted it as the gravitational field
of a nonlinear magnetic monopole of self gravitating magnetic field. Such BHs in general are known as regular BHs.
Their metrics and curvature are all regular everywhere.

Hayward [18] also derived regular spacetimes, which describe the formation of a (locally defined) BH from an
initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The
static region of a Hayward BH is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large
radius and behaving as a cosmological constant at small radius. Hayward BH has attracted extraordinary attention
in innumerable studies, like QNM of the Hayward BH proposed by Lin et al. [19]. Furthermore, thin-shell wormhole
construction from the Hayward (regular) BH [20] and their detailed stability analysis [21], and strong deflection
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gravitational lensing [22] by a modified Hayward BH [23] are also studied. The Hayward’s metric was also considered
as a particle accelerator [24].

Our main goal in this study is to study the QNMs for Hayward BH in Einstein-Gauss-Bonnet (EGB) gravity, in
AdS spacetime, and in Einstein-Lovelock (EL) gravity. The discontinuance directed toward GR without any problem
acquired by taking α → 0, where α is the parameter that deals with the distinction between GR and Einstein GB
gravity. The QNM for BHs in EGB has been considered in [25] and [26], for scalar and tensor modes, separately, and
its solidness criteria has been generalized. Likewise, one can have an option to concentrate how the existence of the
GB term will adjust the spectra of emanation created by EL theory, inside a BH, as contrasted and a similar system
leads to GR. QNMs are conditional on fulfilling the boundary conditions: purely ingoing waves at the event horizon
and outgoing waves at spatial infinity [27].

This paper is organized as follows: In Sec. II, we briefly introduce the QNMs. Section III is devoted to Hayward
BH of EGB gravity with their spacetime structure. We also represent the relevant computations and graphs. In Sec.
IV, we compute the scalar QNM of Hayward BH in AdS spacetime. In Sec. V, we make similar QNM computations
for the Hayward BHs in 4D EL gravity. At long last, in Sec. VI, we present our conclusions.

II. INTRODUCTION OF QNMS

QNMs have significant role in many aspects, for example, these modes help us to find hidden information of BHs.
By evaluating the QNMs, one can easily find out more accurate information of mass, charge, and other parameters of
BHs. The oscillation frequency is determined by real part of frequencies while the imaginary part find out the decay
rate at which each mode is damped. Moreover, the QNMs frequencies of AdS BHs have an interpretation in the dual
conformal field theory.

In this section, we evaluate the complex frequencies related with QNM of BH by discussing the oscillations of a
scalar field. The equation for perturbations is given by [28]-[30]

1

|g|
∂u

(√
|g|∂uR

)
= 0, (1)

where g is determinant of the metric. This general perturbation equation is known as Klein-Gordon wave equation.
The explicit radial form of this master equation can be written as

f(r)2R′′(r) + f ′(r)f(r)R′(r) + UR(r) = 0, (2)

where prime ( ′ ) denotes derivative w.r.t coordinate r and U = ω2 − V .
The tortoise coordinate (r∗) can be defined in differential form as

dr∗ =
dr

f (r)
, (3)

we can get the Schrödinger-like equation as follows

d2R

dr∗
+ (ω2 − V )R = 0, (4)

where the effective potential V can be written as [31]

V = f(r0)

(
3r0f

′(r0)

2r2
0

+
3f(r0)

4r2
0

+
l(l + 2)

r2
0

)
. (5)

The general form of complex frequencies is given by ω = ωr − iωi, which leads to real and imaginary parts. However,
QNMs must satisfy the following boundary conditions:

R = {e
−iωr∗, r→ru(r∗→−∞)

e
iωr∗, r→∞(r∗→∞) , (6)

these boundary conditions are associated with 1D Shrödinger like wave equation. Furthermore, in eikonal regime
l ≫ 1, for quasinormal resonance frequencies of scalar field perturbation, the WKB resonance condition is defined as
[33]

η0√
2η

(2)
0

= −i
(
n+

1

2

)
+O

(
1

l

)
, (7)
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where n is overtone number

η0 = ω2 − V (r = r0) , (8)

η
(2)
0 =

d2η[r(r∗)]

dr2
∗

. (9)

Analytical solution of Eq. (7) with real and imaginary parts regarding quasinormal resonance leads to following

ω2 − klf(r0)
r20

f (r0)
√

2V
′′
0

= −i
(
n+

1

2

)
, (10)

where l represents the spherical harmonic index and known as orbital angular momentum. The real part of quasinormal
resonance modes for BH can be obtained as

ωR =

√
klf (r0)

r0
, (11)

the real and imaginary parts of quasinormal resonance modes can be obtained by using ω = ωR − iωI , whşch yields
as

2ωIωR =

(
n+

1

2

)
f (r0)

√
2V
′′
0 . (12)

From Eqs.(11) and (12), one can write the imaginary part of quasinormal resonance frequencies as follows

ωI =
(2n+ 1) r0

√
f (r0)V

′′
0

4
√
kl

. (13)

III. HAYWARD BH IN EINSTEIN GB GRAVITY

We start by taking an exact spherically symmetric regular BH with minimal coupling and nonlinear electrodynamics
[34, 35]. In this session, we will focus on QNMs of Hayward-like BH with regular center in 5D EGB gravity. This BH
solution has the following static and spherically symmetric metric [36]:

ds2 = −f (r) dt2 + (f (r))
−1
dr2 + r2dΩ2

3, (14)

where dΩ2
3 = dθ2 + sin2 θ(dφ2 + sin2 φdψ2) is the metric in 3D hypersurface having volume V3. The metric function

f(r) is given by

f(r) = 1 +
r2

4α

(
1 +

√
1 +

8αm

e4 + r4

)
. (15)

Here, m is a constant of integration associated with the Arnowitt-Deser-Misner (ADM) mass of the BH. From Eqs.
(5) and (15), the effective potential of Hayward BH in EGB gravity can be obtained as follow

V0 =
1

4r2
0

[(
ξr2

0

4α
+ 1

)(
4kl −

24mr5
0

(ξ − 1) (r4
0 + e4) 2

+
3ξr2

0

4α
+

3ξr0

α
+ 3

)]
, (16)

where in this equation

ξ = 1 +

√
1 +

8αm

r4
0 + e4

,

and kl = l(l+ 2). Now by using the definition of quasinormal resonance mode discussed in previous section, Eqs. (11)
and (15) help us to evaluate the real part of the quasinormal frequencies:

ωR =
1

r0

[
kl

(
1 +

r2
0

4α

(
1 +

√
1 +

8αm

e4 + r4
0

))] 1
2

. (17)
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Substituting the values of Eqs. (15) and (16) in (13), the imaginary part of the quasinormal frequencies can be
obtained as

ωI =

(2n+ 1) r0

[(
1 +

r20
4α

(
1 +

√
1 + 8αm

e4+r40

))
V
′′

0

] 1
2

4
√
kl

. (18)

where

V
′′

0 =
48ηmr5

0(11(e4 + 6αm) + 5r4
0)

(e4 + r4
0)2(e4 + 8αm+ r4

0)2
+ (12mr8

0(η3(e4 + r4
0) + η2(e4 + r4

0)

− 2αm))(αη3(e4 + r4
0)4)−1 + (96ηmr9

0(2r4
0(e4 − 4αm)− 3(e8 + 16αe4

× m+ 80α2m2) + 5r8
0))((e4 + r4

0)3(e4 + 8αm+ r4
0)3)−1 +

3(η + 1)

2αr3
0

+
16η(2l2 + 4l + 3)mr6

0(e4 + 6αm+ r4
0)

(e4 + r4
0)2(e4 + 8αm+ r4

0)2
− 768ηmr13

0 (e4 + 5αm+ r4
0)

(e4 + r4
0)3(e4 + 8αm+ r4

0)3

+
3(4l2 + 8l + 3)

2r4
0

− 48mr0

η(e4 + r4
0)2
− 6(2l2 + 4l + 3)mr2

0

η(e4 + r4
0)2

+
3(η2 + 2η + 1)

32α2

− 60(η + 1)mr3
0

αη(e4 + r4
0)2

+
12mr7

0

α(e4 + r4
0)4(e4 + 8αm+ r4

0)3

(
16r8

0

(
e8(η + 1) + αe4

× (5η + 14)m+ r4
0(2e4(η + 1) + α(5η + 14)m) + 48α2m2 + (η + 1)r8

0

)
− 4r4

0

(
e12(η + 1) + 1536α3m3 − 3(η + 1)r12

0 + 20αe8(η + 2)m+ 8α2e4

× (15η + 56)m2 − r8
0(5e4(η + 1) + 16αm) + r4

0(−e8(η + 1) + 4αe4(5η

+ 6)m+ 8α2(15η + 32)m2)

)
+

(
17(e8(η + 1) + 2αe4(3η + 8)m+ 64α2

× m2) + 9(η + 1)r8
0 + 2r4

0(13e4(η + 1) + α(51η + 104)m)

))
,

and

η =

√
e4 + 8αm+ r4

0

e4 + r4
0

.

We can get the effective potential’s maximum value at the following point

r0 =
1√
3

(
m− 2α−

(λ+
√
λ2 + 4(3e4 − (m− 2α))3)2 + 22/3(3e4 − (m− 2α)2)

3
√

2(λ+
√
λ2 + 4(3e4 − (m− 2α))3)

) 1
2

(19)

where

λ = −18e4(4α+m) + 12α2m+ 2(m− 2α)2.

A. Wavelike of Hayward BH in EGB gravity

We rewrite the wavelike Eq. (7) without imposing the stationary limit R ∼ e−iωt.

∂2R

∂t2
− ∂2R

∂r2
∗

+ V R = 0

Following this, here we will provide a complete evolution graph (Figure 7) of the Hayward BH in EGB gravity from
a single master equation.
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FIG. 1: Effective potential V vs r0 for 5D
EGB-Hayward BH. We set m = 20, α =
0.08 and l = 100.
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FIG. 2: Effective potential V vs e for 5D
EGB-Hayward BH. We set m = 10 and
l = 100.
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FIG. 3: Real part of quasinormal frequen-
cies ωR of 5D EGB-Hayward BH vs r0.
We set l = 100, α = 0.8 and m = 0.5.
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FIG. 4: Imaginary part of the quasinormal
frequencies ωI vs e. We set l = 100 and
m = 0.5.
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FIG. 5: Plot of effective potential V of 5D
EGB-Hayward BH vs r∗. We set α = 0.8,
l = 100 e = 0.8 m = 0.5.
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FIG. 6: 2. The relaxation rate for 5D
EGB-Hayward BH against e with M = 1.

Harmonic index number Overtone QNMs frequencies using first order WKB method

n = 0 261.786 − 1.205i

l=90 n = 1 265.319 − 3.615i

n = 2 266.319 − 6.025i

n = 0 275.396 − 1.205i

l=95 n = 1 279.061 − 3.614i

n = 2 280.061 − 6.023i

n = 0 289.006 − 1.204i

l=100 n = 1 292.802 − 3.612i

n = 2 293.802 − 6.019i

TABLE I: QNMs frequencies using first order WKB method of Hayward BH in Einstein GB gravity. We set α = 0.8 and
m = 0.5.
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FIG. 7: The plot R of 5D EGB-Hayward BH. We set α = 0.8, l = 100 e = 0.8 m = 0.5.

In Figure 1 we analyze the impact of magnetic charge e on the effective potential of 5D EGB-Hayward BH.
The shape of different trajectories seems alike for increasing values of magnetic charge. The important aspect of
trajectories is that the extreme point of effective potential remains same and trajectories decreases with increasing
values of magnetic charge of BH which is similar with RN-BH [43]. Figure 2 demonstrates the impact of coupling
constant α on the effective potential of BH. The extreme point of the effective potential decreases with increasing
values of coupling constant α for fixed mass. Figure 3 and Figure 4 demonstrate the real and the imaginary parts of
the QNM frequencies of BH. We observe that real and the imaginary components are not linear functions of r0 similar
to RN-AdS [43]. As e and α increases the real and imaginary components decreases. The AdS/CFT correspondence
suggest that for large e, quasinormal ringing becomes slower to settle down to thermal equilibrium and also, the
frequency of the oscillation becomes smaller. Our results are very much consistent with literature work [42]. Figure
5 demonstrates the behavior of the effective potential versus the tortoise coordinater. The effective potential decreases
with increasing values of tortoise coordinate r∗ with fixed electric charge, coupling constant and mass of 5D BH in
Einstein GB gravity. Figure 6 shows the relaxation time of the 5D EGB-Hayward BH in terms of the reduced charge
of the BH. The relaxation rate is increasing function of charge of the BH. We also observed that the relaxation time
increases with increasing values of parameter α.

In Figure 7 one can get a time-domain 3-dimensional profile of the perturbation. When looking at Figure 7 a
natural question is to which value of the quasinormal frequency is calculated, we solve numerically through finite
difference method. For finite values of −r∗ and r∗ and smaller α and m we obtain the stable region of hyperbolic
equation.

IV. HAYWARD BH IN ADS SPACETIME

In this session, we consider Hayward-AdS BH by introducing a new order variable, the potential conjugate of
magnetic charge Qm in view of the non-linearly coupled electromagnetic field. The static spherically symmetric
solution is given by [37, 38]

ds2 = −f (r) dt2 + (f (r))
−1
dr2 + r2dΩ2, (20)

where dΩ2 = dθ2 + sin2 θdφ2. In AdS background the metric function f(r) has the form

f(r) =
r2

l2
+ 1− 2MS

r
− 2α−1g3ru−1

gu + ru
, (21)

where MS represents the Schwarzschild mass and g denotes the integration constant which is related to magnetic
charge and it is defined as

Qm =
g2

√
2α
. (22)
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By taking cosmological constant as thermodynamical pressure P = − Λ
8π = 3

8πl2 , the Hayward BH solution in AdS for
u = 3, leads to

f(r) =
8

3
πPr2 + 1− 2MS

r
− 27/4r2Q

3/2
m√

α
((√

2αQm
)

3/2 + r3
) . (23)

The effective potential for 4D Hayward BH in AdS spacetime is given by [41]

V = f(r0)

(
f ′(r0)

r0
+
l(l + 1)

r2
0

)
. (24)

From Eqs.(23) and (24), the effective potential of the considered BH takes the form

V = (
8

3
πPr2

0 + 1− 2 23/4r2
0Q

3/2
m√

α(23/4(
√
αQm)3/2 + r3

0)
− 2MS

r0
)

1

r0

(
l(l + 1)

r0

+
2MS

r2
0

+
16

3
πPr0 −

4 23/4r0Q
3/2
m√

α(23/4(
√
αQm)3/2 + r3

0)
+ (6 23/4r4

0Q
3/2
m )

× (
√
α(23/4(

√
αQm)3/2 + r3

0)2)−1

)
.

The real part of QNM frequency ωR for 4D Hayward BH in AdS spacetime turns out to be

ωR =
1

r0

[
l(l + 1)

(
8

3
πPr2

0 + 1− 2 23/4r2
0Q

3/2
m√

α
(
23/4 (

√
αQm) 3/2 + r3

0

) − 2MS

r0

)] 1
2

. (25)

Moreover, one can find the imaginary part of QNM frequency ωI as follows

ωI =
r0

√
V
′′
0

2
√

2kl

[
8

3
πPr2

0 + 1− 2MS

r0
− 27/4r2

0Q
3/2
m

√
α
((√

2αQm
)3/2

+ r3
0

)] 1
2

, (26)

where kl = l(l + 1), l is angular momentum parameter, r0 represents radii of outer event horizon and V
′′

0 denotes
the second order derivative of effective potential of the Hayward BH in AdS Spacetime.

A. Wavelike of Hayward BH in AdS spacetime

We rewrite the wavelike Eq.(7) without imposing the stationary limit R ∼ e−iωt.

∂2R

∂t2
+ V R =

∂2R

∂r2
∗

Here V = f(r0)
(
f ′(r0)
r0

+ l(l+1)
r20

)
and f(r0) is the metric function od Hayward BH in AdS spacetime. Following this,

we will provide a complete evolution graph of Hayward BH in AdS spacetime from a single master equation.
Figures 8, 9 demonstrate the behavior of effective potential with fixed/constant boundaries (at the infinity and

event horizon), it reaches to maximum value at some intermediate values of r0. The behavior of graph becomes
monotonically decreasing after reaching to maximum value and vise versa, which is a different from the 5D BHs [46].
The impact of magnetic charge on the effective potential is important for larger values of r0 while the influence of
mass is significant for smaller r0. Figure 10, 11 show the impact of charge and mass on the real part of quasinormal
frequencies ωR of Hayward AdS BH. For increasing values of charge and mass trajectories of ωR decreases. As magnetic
charge Qm increases, a linear relation with r0 no longer holds. We observe that as magnetic charge increases, ωR
decreases. According to AdS spacetime correspondence, it means for large Qm, it decreases for quasinormal to
settle down. Figure 12, 13 show the impact of charge and angular momentum parameter on the imaginary part of
quasinormal frequencies ωR of Hayward AdS BH. As the magnetic charge and angular momentum parameter increases
the trajectories of imaginary part of quasinormal frequencies ωR of Hayward AdS BH decreases. Now we can make
a sense in Figures 14, 15, where we can analyze that, for the 4D self-possessed system, the second derivative of
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FIG. 8: The behavior of effective potential
V of Hayward AdS BH in terms of r0. We
set α = 0.8, P = 0.5, MS = 0.5 and l = 2.
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FIG. 9: The behavior of effective potential
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set α = 0.08, P = 0.5, Qm = 12 and l = 2.
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l = 2.

the V0 increases for increasing values of Qm, it reaches to its maximum value then it decreases for higher values of
r0. While for increasing values of Ms the trajectories decreases and show the alternating increasing and decreasing
behavior against Qm. These results are very close to Zhang, M. et al. paper [43]. Figure 16 shows the relaxation
time of the 5D EGB-Hayward BH in terms of the reduced charge of the BH. The relaxation rate decreases and then
increases for higher values of charge of the BH. We also observed that the relaxation time increases with increasing
values of parameter l.

In Figure 17 for Hayward BH in AdS spacetime, one can get a time-domain 3-dimensional profile of the perturba-
tion. We find the value of the quasinormal frequencies numerically through finite difference method. For finite values
of −r∗ and r∗ and smaller Ms and P we obtain the stable region of hyperbolic equation.
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FIG. 12: The imaginary part of quasinor-
mal frequencies ωI of Hayward AdS BH
vs r0. We set α = 0.8, P = 0.5, MS = 0.5
and l = 2.
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FIG. 13: The imaginary part of quasinor-
mal frequencies ωI of Hayward AdS BH in
terms of Qm. We set α = 0.8, P = 0.8,
MS = 0.5.
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FIG. 14: The behavior of V ′′0 in terms of
r0. We set α = 0.8, P = 0.5, MS = 0.5
and l = 2.
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FIG. 15: The behavior of V ′′0 in terms of
Qm. We set α = 0.8, P = 0.8 and l = 2.
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FIG. 16: Plot of relaxation rate for Hayward AdS BH against Qm with M=1.

V. BH IN 4D EL GRAVITY

Glavan and Lin recently formulated 4D EGB theory of gravity which is different from the pure Einstein theory [44].
In this session we study QNM to BHs in 4D EL theory with cosmological constant Λ (either negative or positive) [39].
The general form of D-dimensional static as well as maximally symmetric metric is given by

ds2 = −f (r) dt2 + (f (r))
−1
dr2 + r2γijdx

idxj , (27)

Harmonic index number Overtone QNMs frequencies using first order WKB method

n = 0 5.32383 − 0.99597i

l = 3 n = 1 6.32383 − 2.98793i

n = 2 7.32383 − 4.97989i

n = 0 6.02639 − 0.67421i

l = 4 n = 1 7.02639 − 2.02265i

n = 2 8.02639 − 3.37109i

n = 0 6.72753 − 0.29855i

l = 5 n = 1 7.72753 − 0.89566i

n = 2 8.72753 − 1.29278i

TABLE II: QNMs frequencies using first order WKB method of Hayward BH in AdS spacetime. We set α = 0.8, P = 0.5,
r0 = 1.27 and MS = 0.5 .
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FIG. 17: The plot R for Hayward AdS BH. Set M=1.

where dΩ2
n is (n = D− 2)-dimensional and constant curvature space with κ = 1 represents spherically symmetric BH

solution. For D = 4, we have two branches of f(r) as [40]

f(r) = 1− r2

2α̃2

(
−1 +−

√
1 + 4α̃2

(
2M

r3
− Q2

r4
+

Λ

3

))
. (28)

The (+) sign branch is perturbative in α̃2 and for (−) sign f(r)→∞ when α̃2 → 0. From Eqs.(24) and (28), one can
the determined the effective potential of BH as

V =

(
1− λr2

0

2α̃2

)(
kl
r2
0

− λ

α̃2
+

2
(
3Mr0 − 2Q2

)
(λ+ 1)r4

0

)
, (29)

where

λ = −1 +

[
1 + α̃2

(
4Λ

3
−

4
(
Q2 − 2Mr0

)
r4
0

)] 1
2

. (30)

The real part of QNM frequency ωR for the considered BH becomes

ωR =
1

r0

[
kl

(
1− r2

0

2α̃2

(
− 1 +

√
4α̃2

(
1 +

Λ

3
+

2M

r3
0

− Q2

r4
0

)))] 1
2

, (31)

The imaginary part of QNM frequency ωI for this case turns out to be

ωI =

√
2V
′′
0 r0

[
1− r20

2α̃2

(
−1 +

√
1 + 4α̃2

(
2M
r30
− Q2

r40
+ Λ

3

))] 1
2

4
√
kl

. (32)

A. Wavelike of BH in 4D EL Gravity

We rewrite the wavelike Eq.(7) without imposing the stationary limit R ∼ e−iωt.

∂2R

∂t2
=
∂2R

∂r2
∗
− V R (33)

Here V =
(

1− λr20
2α̃2

)(
kl
r20
− λ

α̃2
+

2(3Mr0−2Q2)
(λ+1)r40

)
. Using this, we will provide a complete evolution graph of BH in 4D

Einstein-Lovelock gravity from a single master equation.
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FIG. 18: The effective potential V ver-
sus r0 for BH in Einstein-Lovelock grav-
ity. We use α̃2 = 0.8, Λ = −0.2, M = 0.5
and l = 2.
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FIG. 19: The variation of ωR versus r0 for
BH in Einstein-Lovelock gravity. We use
α̃2 = 0.8, Λ = −0.5, M = 12 and l = 2.
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FIG. 20: The variation of ωR versus Q
for BH in EL gravity. We use α̃2 = 0.8,
Λ = 0.05 and l = 2.
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FIG. 21: The variation of V
′′
0 versus r0

for BH in EL gravity. We use α̃2 = 0.8,
Λ = 0.05, M = 0.5 and l = 20.

From Eq.(29), one can see that V depends upon BH charge, l and Λ (negative cosmological constant) and parameter
α̃2, we study the dependence of V on these parameters, since the QNMs are decided by the V . The behavior of V
against r0 for some estimation of Q, Λ, α̃2 and mass M is plotted in Figure 18 [47]. The plot shows different behaviors
of Q on the effective potential as compare to Hayward AdS BH. In Figures 19, 20 the real part of quasinormal
frequencies increases with increasing values of electric charge Q. When Λ is small, the oscillation of massless scalar
field increases rapidly and becomes gradually slower as electric charge increases with positive cosmological constant.
In Figure 21 for the 4D composed system, the second derivative of V0 at the peak point increases with increasing
values of parameter Q and the value starts to decrease when BH reaches to extreme point, the behavior of graph is
similar with the RN-BH. In Figure 22 the imaginary part of quasinormal frequencies ωI increases and then decreases
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FIG. 22: The variation of ωI versus r0 for
BH in Einstein-Lovelock gravity. We use
α̃2 = 0.8, Λ = 0.5, M = 0.5 and l = 2.
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FIG. 23: The variation of V versus r∗ for
BH in Einstein-Lovelock gravity. We use
α̃2 = 0.4, Λ = 0.5, M = 0.5 and l = 2.
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FIG. 24: The plot R for BH in 4D Einstein-Lovelock gravity. We use α̃2 = 0.4, Λ = 0.5, M = 0.5 and l = 2.

Harmonic index number Overtone QNMs frequencies using first order WKB method

n = 0 1.35141 − 0.16281i

l = 2 n = 1 2.35141 − 0.48845i

n = 2 3.35141 − 0.81409i

n = 0 1.70407 − 0.16164i

l = 3 n = 1 2.70407 − 0.48492i

n = 2 3.70407 − 0.80821i

n = 0 2.05445 − 0.16117i

l = 4 n = 1 3.05445 − 0.48351i

n = 2 4.05445 − 0.48351i

TABLE III: QNMs frequencies using first order WKB method of BH in 4D EL gravity. We set α̃2 = 0.8, Λ = 0.05, r0 = 2 and
Q = 1.5.

for different values of electric charge. For the increasing values of r0, the corresponding electric charge increases and
ωI reaches to the maximum value [42]. Figure 23 shows the behavior V with increasing r0 for different values of Q.

In Figure 24 one can get a time-domain 3-dimensional profile of the perturbation. We find the value of the
quasinormal frequencies numerically through finite difference method. For finite values of −r∗ and r∗ and smaller
cosmological constant and P we obtain the stable region of hyperbolic equation of BH in 4D EL gravity studied in
Eq.(33).

The data presented in in Eqs.(17), (18), (22), (23), (27) and (28) does not accept one to see that the Schwarzschild
limit can be reproduced as the mode together with smallest p is rather far from the specific BHs. The correctness of
our results is also indicated by ”the convergence” obtained these numerical values for the complex frequencies at first
order WKB method. This is a important ωR > ωI well known condition is satisfied for every value in the table. That
is presented in table I, II and in table III.

VI. CONCLUSION

We have discussed the QNMs for Hayward BH in EGB gravity, in AdS spacetime, and in 4D EL gravity. By
employing the WKB technique, we examined the massless scalar QNMs for static regular BHs. The dynamical
development of the QNMs are also examined for various estimations of angular momentum and other parameters. We
also find out the relaxation rate for the considered BHs and observed that relaxation rate increases with increasing
values of charge.

For the case of Hayward BH in EGB gravity, the extreme point of effective potential remains same and trajectories
decreases with increasing values of magnetic charge of BH which is similar with RN-BH [43]. Similar to RN-AdS
BH, we observed that real and the imaginary components for Hayward BH in EGB gravity are not linear functions
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of r0. The AdS/CFT correspondence suggests that for large e, quasinormal ringing becomes slower to settle down to
thermal equilibrium and the frequency of the oscillation gets smaller.

For Hayward BH in AdS spacetime, the effective potential becomes monotonically decreasing function after reaching
to maximum value which is different from the above case also the impact of magnetic charge on the effective potential
is important for larger values of r0. For increasing values of charge and mass, the trajectories of ωR decreases. As
magnetic charge Qm increases, linear relation with r0 no longer holds. As the magnetic charge and angular momentum
parameter increases, the trajectories of imaginary part of quasinormal frequencies ωR of Hayward AdS BH decreases.

The behavior of V against r0 for BH in 4D EL gravity is quiet similar to Hayward BH in AdS spacetime but the
influence of charge becomes negligible for higher values of r0. The real part of quasinormal frequencies increases
with increasing values of electric charge Q while the imaginary part of quasinormal frequencies ωI increases and then
decreases for different values of electric charge.

Since the stationary BH solutions in modified gravity theories have become significant as they can provide a platform
to test them through astrophysical observations, in the near future, we plan to generalize our current study to the
rotating regular BHs and reveal the effect of the rotation on their QNMs.
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