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—————————————————————

Abstract

We investigate, whereas the SU(4)/SU(2) model, is viable for describing strong inter-
actions. The existing problems of confinement and asymptotic freedom, two phenomena
that can not be described by the SU(3) model, might indicate that we need something
”larger” than the SU(3)model. The considered coset SU(4)/SU(2) or the Stiefel manifold
V2(C4) contains an su(3) algebra, plus additional degrees of freedom that resembes the
Feddev-Poppov concept. The richer structure of this coset, give us enough room, to seek
for new phenomena, as its dimensionality is 12. The consideration of the SU(4)/SU(2)
model flavors firstly the unification of nuclear fields (strong and weak) in an SU(4) model.
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2 Introduction

Undoubtedly, the SU(3)model for describing strong nuclear interactions (QCD) is one
of the big discoveries of the 20th century in theoretical physics. Its significance in the
understanding of particle’s interactions and properties is well known in the area of physics.
On the other hand, it can not explain us two significant phenomena

1. Confinement

2. Asymptotic freedom

These two phenomena, are essential in our final effort to understand strong inter-
actions or achieve unification. In our oppinion, there is also a third problem, less
popular than the other two, that the SU(3) model can not fulfill

3. All the particles described in Standard Model (SM), fermions or bosons, interact
with Higg’s field, except gluons.

This way, gluons remain massless. Even quarks, that are the fermions associated with
strong interactions and are trapped inside hadrons, they interact with Higg’s field. In
addition, there is a phenomenological belief in physics, that infinite range interactions (as
alectromagnetic) give massless bosons, while short range interactions (as weak interac-
tions), give massive bosons. Strong interactions are also short range interactions, which
means that we should anticipate massive gluons. But, if someone will try to establish the
interaction of gluons with Higg’s field, he should consider a triplet Higg’s field, where in
such case we would have even bigger problems. At this point, we would like to consider
two critical questions in order to investigate the above mentioned problems.

Do we need something larger than SU(3)?

Do we need something different structurally, than usual unitary groups as SU(3), that it
will still reminds us somehow SU(3) and its properties, but it will also gives us enough

room?

3Department of Physics, University of Athens, Panepistimiopolis, 15771 Athens, Greece
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The second question could leads us to a third more general question

Are in general, unitary groups i.e U(1), SU(2), SU(3) enough and capable to describe
mathematically, as symmetry groups, the interactions or are they some approximations

that should be modified to a new but relevant mathematical scheme?

In order to investigate these questions, it is necessary to be reffered to the Faddeev-
Popov’s [2],[3],[4] and Gribov’s concepts [5],[6],[7],[8]. It is evident, that there is a gap
between classical Yang-Mills theories and their quantisation as concerned the non abelian
case. F-P tried to solve the quantisation problem by adding degrees of freedom, which
where adentified as ghost fields. Especially, F-P methods interveve in the fuctional in-
tegral, by lifting the usual detrminant to F-P’s determinant that automatically drive us
to add new fields. But the existence of Gribov’s copies means that that F-P methods
for quantising non abelian gauge theories is still incomplete. An extensive presentation
about F-P and Gribov copies can be found in [1]. Several attempts and modifications
gave been considered on these paths, but the problem of Gribov copies, still remains open
today and the existence of F-P ghosts tell us that we have failed to formulate a quantum
theory with properly fixed physical degrees of freedom [1].

3 Searching for cantidates, cosets and spheres

We will try to investigate possible answers to the three above mentioned questions by
searching for clues in new mathematical structures that they would be consistent to the
standard context. Let us begin with some equivalences such as U(1) ' S1 and SU(2) ' S3

where S1 and S3 are the 1-dimensional and 3-dimensional spheres respectively. In this
spirit the SM can be described as

U(1)× SU(2)× SU(3) ' S1 × S3 × S5 × SU(2) ' S1 × (S3)2 × S5 (1)

We can see that there is a peculiar connection between unitary groups and spheres.
Moreover, all the spheres that are presented in Eq. (1) are of odd dimensions. Let us
consider, instead of the product of spheres in Eq. (1), a new form as

S1 × S3 × S5 × S7 (2)

which is a very attractive form and it comes as the product of odd dimensional spheres
with power 1. Then, this product can be transformed back to unitary groups as

S1 × S3 × S5 × S7 ' U(1)× SU(2)× SU(4)

SU(2)
(3)

where in this form, instead of the group SU(3), we have in its place the coset SU(4)
SU(2) . The

big question is

Has Eq. (3) the chance to describe SM ?
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• Eq. (1): Describes SM but SU(3) fails to give answers about confinment, asymptotic
freedom and gluons do not interact with Higg’s field. It is very simple and beautiful if
the starting point are unitary groups
• Eq. (3):It is very simple and mathematically beautiful if the starting point are spheres
and not unitary groups. Moreover, the coset is ”larger” than SU(3) as it contains the
necessary su(3) algebra in order to describe our well known gluons (as we shall see further)
plus more information. As a result the coset give us room in order to describe new
phenomena. In addition, the coset can intaract with a C4 double doublet Higg’s field.
It is clear, in that case, that we expect that the coset could describe strong interactions.
This model, firsrly flavors the unification of nuclear fields described by the symmetry
group SU(4) (compact group) and afterwards the unification of nuclear fields with the
electromagnetic one, in a model described by U(4) (not compact a problem that will be
investigated further)

4 Cosets and Stiefel maniflods

It is necessary to try and imagine how a coset looks. We can imagine a coset as a three
region structure, a ”main building”, a ”yard” and outside the ”yard” where in the ”main
building” lies the main algebra (in this case the su(3) algebra). Another picture is to
imagine the coset as an egg, where we have the yellow part and the white part. Cosets
mathematically are related with orbit space (as Gribov copies) and can be also seen from
the point of view of Stiefel manifolds as a homogeneous space for the action of a classical
group.
Definition : The Stiefel manifold Vk(Fn) is the set of all orthonormal frames in Fn or the
homogeneous space for the action of a classical group in a natural manner. For F = Cn

it is isomorphical to

Vk(C
n) =

SU(n)

SU(n− k)
(4)

and the dimension is

Vk(C
n) = 2nk − k2 (5)

In addition cosets are deeply connected with Maurer-Cartan form and equation, where
Maurer-Cartan form plays an important role in Cartan’s method of moving frames. We
must recall the connection of BRST symmetry to the Maurer-Cartan connection. The

coset SU(4)
SU(2) breaks as

SU(4)

SU(3)
× SU(3)

SU(2)
' S7 × S5 (6)

as S7 is the isotropy group of SU(4)
SU(3) and S5 is the isotropy group of SU(3)

SU(2) . In addition

all these cosets have simple structure. Specifically, for the cosets we could also write

1. SU(4) acts transitively on S7 ,with isotropy group SU(3)

4
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2. SU(4) acts transitively on S5 via double covering SU(4) → S0(6) with isotropy
group under the coverimg of the preimage of SO(5), which can be identified with
Sp(2)

3. SU(3) acts transitively on S5, with isotropy group SU(2)

4. S7×S5 is the homogeneous space of SU(4),with isotropy group Sp(2)∩ SU(3)=SU(2)

→ SU(4)
SU(2) → S7 × S5

5. S1: Abelian Lie group structure U(1); the circle group. Topologically equivalent to
the real projective line, RP 1. Parallelizable. SO(2) ' U(1).

6. S3:Parallelizable, principal U(1)-bundle over the 2-sphere, Lie group structure Sp(1),
where also Sp(1) ' SU(2) ' Spin(3)

7. S5:Principal U(1)-bundle over CP 2 equivalent with SU(3)/SU(2) where

CP 2 =
SU(3)

S(U(2)× U(1)
(7)

8. S7: Topological quasigroup structure as the set of unit octonions. Principal Sp(1)-
bundle over S4. Equivalent to SU(4)/SU(3)

9. U(4) is the only unitary group that can be written as the product of odd dimensional
spheres with power 1

The coset SU(4)/SU(2) has a dimension of 12, which break into the product of
SU(4)/SU(3) of dimension 7 and SU(3)/SU(2) of dimension 5. It is clear that S7 can
be connected with gluons as it is linked with an octonionic strtucture. But, we can see
all the above mentioned about spheres and cosets from the point of view of generators.

5 Working with generators

In order to procced further with the generators of the coset SU(4)
SU(2 , we should start with

SU(4)). The generators of SU(4) are λi, i = 1, 2, ...16. From these 15 matrices, in order
to procced with the coset, we must exclude the matrices [λ1, λ2, λ3] and the coset will
have

SU(4)

SU(2
→ [λ4, λ5, ..., λ15] (8)

We break λ8 and λ15 as

λ8 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 = λ
′

8 + λ
′′

8

λ15 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −2

+


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 = λ
′

15 + λ
′′

15

5
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Then [λ6, λ7, λ
′

8] consist an su(2) algebra as

[λ6, λ7, λ
′

8]→
(
0

su(2)

)
and [λ6, λ7, λ

′

8, λ11, λ12, λ13, λ14, λ
′

15] consist an su(3) algebra as

[λ6, λ7, λ
′

8, λ11, λ12, λ13, λ14, λ
′

15]→
(
0

su(3)

)
As concerned the existence of λ

′

8, λ
′′

8 , λ
′

15, λ
′′

15, either we can keep as above mentioned,
where λ

′′

8 , λ
′′

15) will be additional auxiliary fields or by the beginning we can change basis
for [λ3, λ8, λ15]→ [λ

′

3, λ
′

8, λ
′

15], where the new basis will be expressed as linear combination
of the components of the old basis. Furthermore, using appropriate coefficients, we can
double the su(2) algebra and form an su(2)× su(3) algebra. As concerned, the rest
generators of the coset that do not participate in the su(3) algebra i.e [λ4, λ5, λ9, λ10], we
have 4 auxiliary fields . In the case that we include λ

′′

8 , λ
′′

15 that must be interoretated
In F-P concept there are additional degrees of freedom that do not count as natural .
But, in our case these 4 additional ”fields” seem quite natural. As we do not have the
chance to ”look into” hadrons, there is room to consider that there exist 8 gluons plus
new additional bosons that we will call them as residual gluons. An interesting point of
this analysis, is that we can have a fresh look, as it comes from the spheres. The full
coset has 12 dimensions as

SU(4)

SU(2)
' S7 × S5 −→ 12→ 7 + 5 (9)

If we analyse these dimensions, the 12 generators will break as follows
• Some of the generators of the su(3) algebra that represent gluons, would be assigned to
S7 and some others to S5

• Some of the remaining generators that do not produce the su(3) algebra and represent
the auxiliary fields would be assigned to S7 and some others to S5

As a consequence we face two possible interpretations
a) If the algebra su(3) represents gluons, then there are two types of gluons, the ones that
comes from S7 and the others to S5, with differences among them.
b)The gluons are same among them, but ”come” as a linear combination of two different
field arising from S7 and S5

Which case is valid, will tell us how to treat the coupling constants.
The interesting point, apart from the existence of the su(3) algebra that it is used to

represent gluons, is the existence of the extra generators λ4, λ5, λ9, λ10 plus the auxiliary
generators λ

′′

8 , λ
′′

15. We will assign fileds to these generators as

λ4 → ϕ1 λ5 → ϕ2 λ9 → χ1 λ10 → χ2 λ
′′

8 → ω1 λ
′′

15 → ω2 (10)
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Those 4+2 generators, all together do not form any particular algebra, but they have
some interesting properties as

1. ϕ1 = iϕ2 χ1 = iχ2

2. the pairs ϕ1, ϕ2 and χ1, χ2 are Grassmann numbers (variables), while the pair ω1, ω2

are not

3. the pairs ϕ1, ω1 and ϕ2, ω1 and χ1, ω2 and χ2, ω2 are also Grassmann numbers

4. the triplets ϕ1, ϕ2, ω1 and χ1, χ2, ω2 are also Grassmann numbers

5. there exist S1, S2 matrices that transmutes ϕ1, ϕ2 and χ1, χ2 to ω1, ω2 respectively.
This property explains why ω1, ω2 will be assigned to auxiliary fields as

S1ϕ1 = ω1 S2χ1 = ω2 (11)

iS1ϕ2 = ω1 iS2χ2 = ω2 (12)

with

S1 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 S2 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


Those properties, form a BRST type symmetry. The extra fields ϕ1, ϕ2, χ1, χ2 reminds us
the F-P concept, except the fact that these fields are not come up from the quantisation
problem and fixing of the determinant, but rather they come naturally from the structure
of the coset’s symmetry and vice-versa. Moreover, as we will see, they are no longer ghost
fields. In addition, the coset direct us to a Cartan-Maurer type connection, which direct
us to a BRST type symmetry. Even, Gribov’s copies, which are deeply connected with
gauge orbits, they can be better understood and handled, under the shelter of the concept
of the coset.

6 Discussion

6.1 Bosons

The problem that must be solved, is the interpretation of the extra fields. As far as at this
part, we have two type of fields, our ordinary Gµ fields (associated with the su(3) algebra
inside the coset) that we will still interpretate as gluons, the extra fields ϕ1, ϕ2, χ1, χ2

and the ω1, ω2 auxiliary ones. Let us interpretate the extra fields ϕ1, ϕ2, χ1, χ2 as new
bosons that we will call them as residual gluons. In our oppinion, these residual gluons,
are deeply connected with the residual nuclear field and the mechanism under pions are
created. Our current picture in the usual context of physics, is that pions (among with rho
and omega mesons) mediate as carriers between hadrons. This picture might indicate the
existence of extra bosons (apart from gluons) In addition,these residual gluons could play a
fundamental role in the forming and disquisition of mesons and hadrons. Especially, as the
residual strong fields occurs by the exchange of spinless pions, those virtual mesons possess
a fundamental role along all the other known mesons. We could imagine a picture, where
our usual gluons ”live” in the ”central building” and the residual gluons in the ”yard” as
the coset dictates. Our usual gluons are responsible for the strong interactions, while the
residual ones are responsible for the residual nuclear field. But, at the same time gluons
and residual gluons are interacting. Those two fields are imprisoned in the structure
defined by the coset and this is the reason why the combined field behaves differently
(hadronic prison) than the weak nuclear and the electromagnetic fields. Followingly, we
should investigate, how the above mentioned picture, will affect the unification. As,
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S1 × S3 × S5 × S7 ' U(4) '' SU(4)× U(1) (13)

we can see that the model flavors firstly the unification of strong with weak nuclear
field in a unified nuclear field described by 12+3=15 bosons and afterwards this unified
nuclear field will be unified with the electromagnetic one. Moreover, logic might indicate
that we will have one massless boson (photon) and 15 massive bosons, which follows the
phenomenological rule that short range fields correspond to massive bosons. Nevertheless,
this question (about which bosons are massive and which are not) could be answered
only by solving for the eigenvalues. As SU(4) is a compact group, we should be able
to find the coupling constants of the nuclear fields. At the same time. as U(4) is not
a compact group, the coupling constant for the electromagnetic field could be found by
a flip-flop mechanism or as a free parameter of the model. In the current context of
physics, we are used to symbolise the coupling constant of electromagnetic fields as g1
(U(1)), of weak nuclear as g2 (SU(2)) and of strong nuclear as g3 (SU(3)). In order to
avoid any misunderstandings, we will keep the current coupling constants symbols for
electromagnetic and weak nuclear field, but we will use different symbols for the coupling
constants assigned to SU(3), SU(4) as

k3 7→ SU(3) k4 7→ SU(4) (14)

In this spirit, the coset will have a combined constant as

SU(4)

SU(2)
' SU(4)

SU(3)
× SU(3)

SU(2)
(15)

k4
g2
|7→ k4

k3
| +k3

g2
| (16)

The question is if our well known coupling constant g3 corresponds to
k4
g2

or if g3 comes

after a part of the mixture of the coupling constants
k4
k3

and
k3
g2

. In the second case,

the fields that correspond to the su(3) algebra produced by the mixture of the fileds
will be assigned the g3 coupling constant. In each case, if our consideration is valid and
assume that all the coupling constants involved are decreasing, the quotient under certain
constraints, could increase, expaining this way the asyptotic freedom phenomenon. In

this spirit, a new covariant derivative should be formed to be connected to the coset SU(4)
SU(2)

as

Dµ = ∂µ − iGµ − i[ , ] (17)

where in the Lie bracket, we should find the auxiliary fields in order to close the su(4)
algebra, in the form [Ri, Rj ] or [∂i, Sj ] where Ri are the extra fields assigned as resid-
ual gluon fields and auxiliary fields. The Lie bracket, automatically suggests that the
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propagator connected to the covariant derivative, will be affected by the extra fields (we
can found a similarity with Gribov and Faddeev–Popov ghost theories). All the above
mentioned analysis, leads to a prediction of our approach, that we should consider a ϕ ∈
C4 model, where this field is not anymore an ad-hoc consideration but ruther is indicated
by the geometry, where ϕ will be written as

ϕ =


ϕ1 + iϕ2

ϕ3 + iϕ4

ϕ5 + iϕ6

ϕ7 + iϕ8


This C4 model, allows the strong nuclear field to fully participate in the Higg’s mechanism.
In addition, the quatraplet Higg’s field ϕ, can be seen as ”doublet doublet”. In this sense,
if in the well known C2 G. W. S model we consider the field ϕ as

ϕ =

(
ϕ+

ϕo

)
where we denote this way the ”charged” and ”neutral ” part, in the C4 model, we should
incude new symbols to denote whereas the components of the C4 field interacts ”charged”
or ”netral” in the sense of the strong nuclear ”charge”. In the case of the full covariant
derivative, including nuclear and electromagnetic fields, there will be a full hypercharge
Q

′
with Q

′
ϕ = 0 derived from the combination [I, T3, T8, T15], which will break as

Q
′
ϕ→ Qϕ+Q

′′
ϕ (18)

where Q is the usual hypercharge and Q
′′

the hypercahrge corresponded to the coset.

6.2 Fermions

The choice of a quatraplet field, automatically means for the case of fermions, that we
have to consider a unified fermion quatraplet as

f =


li
νi
ui
di


x

→

(
li
νi

)
L(

ui
di

)
B

where i = 1, 2, 3 as l1,2,3 = (e, µ, τ), n1,2,3 = (νe, νµ, ντ ), ui = (up, charm, top), di =

down, strange, bottom) and x is a new partivle number that unifies L and B. Moreover, in

this spirit, we will be able to reduce the existing particle numbners (Q,T3, I3, S, C,B
′
, T, L,B)

to just six, which seems logical, due to the fact that there are six ”charges” in SM, one for

elecrtomagnetism, 2 ”charges” for weak nuclear and three ”charges” for strong nuclear

9
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field. Six ”charges” means six particle numbers. These three particle numbers can be

seen as

up→ A

charm→ B −→ T3 ↑
top→ C

down→ A

strange→ B −→ T3 ↓
bottom→ C

e→ A

µ→ B −→ T3 ↑
τ → C

νe → A

νµ → B −→ T3 ↓
ντ → C

where A, B, C are new particle numbers, and the quarks and leptons are distinguished
by L, B. But as x unifies L, B, we just need six particle numbers as

(
Q,A,B,C, T3, x

)
7 Concusion

We have investigated QCD, confinment and asyptotic freedom,with a new prespective,
in order to find something richer than the SU(3), which is the symmtry group that we
currently use to describe strong interactions. We have considered the coset SU(4)/SU(2)
which can give us very important properties, that in oup oppinion, could serve us to make
a big step in understanding strong interactions and the missing properties of confinment
and asyptotic freedom. But, this manuscript is just the beginning of such an enterprise,
as a lot of steps must be fulfilled in order to have a positive answer as

1. An exact covariant derivative compatible with the concept of coset is needed

2. Using this covariant derivative, we should proceed in detail with the unification
scheme of nuclear fields, the calculation of their coupling constants and the calcu-
lation of the fields eigenvalues

3. We should present the fields propagations of gluons and residual gluons

10
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