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Abstract: Information theory provides robust measures of multivariable interdependence, but1

classically does little to characterize the multivariable relationships it detects. The Partial2

Information Decomposition (PID) characterizes the mutual information between variables by3

decomposing it into unique, redundant, and synergistic components. This has been usefully4

applied, particularly in neuroscience, but there is currently no generally accepted method for5

its computation. Independently, the Information Delta framework characterizes non-pairwise6

dependencies in genetic datasets. This framework has developed an intuitive geometric7

interpretation for how discrete functions encode information, but lacks some important8

generalizations. This paper shows that the PID and Delta frameworks are largely equivalent.9

We equate their key expressions, allowing for results in one framework to apply towards open10

questions in the other. For example, we find that the approach of Bertschinger et al. is useful for11

the open Information Delta question of how to deal with linkage disequilibrium. We also show how12

PID solutions can be mapped onto the space of delta measures. Using Bertschinger et al. as an13

example solution, we identify a specific plane in delta-space on which this approach’s optimization14

is constrained, and compute it for all possible three-variable discrete functions of a three-letter15

alphabet. This yields a clear geometric picture of how a given solution decomposes information.16

Keywords: Partial Information Decomposition; Information Delta; Synergy; Co-Information;17

Non-Pairwise Dependence18

1. Introduction19

The variables in complex biological data frequently have nonlinear and non-pairwise20

dependency relationships. Understanding the functions and/or dysfunctions of biological systems21

requires understanding these complex interactions. How can we reliably detect interdependence22

within a set of variables, and how can we distinguish simple, pairwise dependencies from those23

which are fundamentally multivariable?24

An analytical approach formulated by Williams and Beer frames these questions in terms of25

the Partial Information Decomposition (PID) [? ]. The PID proposes to decompose the mutual26

information between a pair of source variables x and y and a target variable z, I({x, y}, z), into four27

non-negative components:28

I(x, z) = Ux + R

I(y, z) = Uy + R

I({x, y}, z) = Ux + Uy + R + S

(1)
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The constituent terms proposed are: the unique informations, Ux and Uy, which represent the29

amounts of information about z encoded by x alone and by y alone; the redundant information, R,30

which is the information about z encoded redundantly by both x and y; and the synergistic information31

S, which is the information about z contained in neither x or y individually, but encoded by x and32

y taken together. An illustration of this decomposition, the associated governing equations, and33

examples characterizing each type of information are all shown in Figure ??.34
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Figure 1. (A) Visualization of the Information Decomposition (adapted from [? ]) and its governing
equations. The system is underdetermined. (B) Sample binary datasets which contain only one type
of information. For (i), where z = x, x contains all information about z and y is irrelevant, such Ux

is equal to the total information and all other terms are zero. For (ii), where z = x = y, x and y are
always identical and thus the information is fully redundant. For (iii), where z is the XOR function of
x and y, both x and y are independent of z, but fully determine its value when taken jointly.

The problem with this approach is that its governing equations form an underdetermined35

system, with only three equations relating the four components. To actually calculate the36

decomposition, an additional assumption must be made to provide an additional equation. Williams37

and Beer proposed a method for the calculation of R in their original paper, but this has since been38

shown to have some undesirable properties [? ]. Much of the subsequent work in this domain has39

consisted of attempts to define new relationships or formulae to calculate the components, as well as40

critiques of these proposed measures [? ]. Of particular note is the approach of [? ], which requires41

solving an optimization problem over a space Q of probability distributions, but is rigorous in that it42

directly follows from reasonable assumptions about the unique information. However, it is unclear43

how to sensibly generalize this and other approaches to larger numbers of variables. Nonetheless,44

there has been considerable interest in using the PID approach to gather insights from real datasets,45

particularly within the neuroscience community [? ? ? ? ].46

Independently, an alternative approach to many of these same questions has been formulated47

focusing on devising new information theory-based measures of multivariable dependency. In48

genetics, non-pairwise epistatic effects are often crucially important in determining complex49

phenotypes, but traditional methods are sensitive only to pairwise relationships; thus there is50

particular interest in methods to identify the existence of synergistic dependencies within genetic51

datasets. Galas et al. [? ? ] quantified the non-pairwise information between genetic loci and52

phenotype data with the Delta measure, ∆(x, y; z). Briefly, given a set of variables {x, y, z}, ∆(x, y; z)53

quantifies the change in co-information when considering the variables {x, y, z} as opposed to only54

{x, y} (we hereafter denote ∆(x, y; z) as ∆z, ∆(y, z; x) as ∆x, and so on). In its simplest application, the55

magnitudes of {∆x, ∆y, ∆z} can be used to detect and quantify non-pairwise interactions.56
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Recent work has shown that the delta values encode considerable additional information57

about the dependency. Sakhanenko et al. [? ] defined the normalized delta measures ~δ =58

(δx, δy, δz),which define an "information space", and considered the δ-values of all possible discrete59

functions z = f (x, y). Fully mapping the specific example set of functions where {x, y, z} are all60

discrete variables with 3 possible values, they found that the 19,683 possible functional relationships61

z = f (x, y) mapped onto a highly-structured plane in the space of normalized deltas (as shown in62

Figure ??). Different regions of this plane corresponded to qualitatively different types of functional63

relationships; in particular, completely pairwise functions such as z = x and completely non-pairwise64

functions such as z = XOR(x, y) were mapped onto the extremes of the plane (see Figure ??). Since65

discrete variables such as these occur naturally in genetics, this suggests that relationships between66

genetic variables may be usefully characterized by their ~δ-coordinates, with useful intuitive value.67

The difficulty of this in practice is that the coordinates are constrained to this plane only when x and68

y are statistically independent, which is not the case in many real datasets, e.g., in genetic datasets in69

the presence of linkage disequilibrium.70
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Figure 2. A geometric interpretation of the Information Deltas, as developed in [? ]. (A) Consider
functions where each variable has an alphabet size of three possible values. There are 19,683 possible
functions f (x, y). If the variables x and y are independent, these functions map onto 105 unique points
(function families) within a plane in δ-space. (B) Sample functions and their mappings onto δ-space.
Functions with a full pairwise dependence on x or y map to opposite lower corners, whereas the
fully-synergistic XOR is mapped to the uppermost corner.

In this paper, we show that the Partial Information Decomposition approach and Information71

Delta approach are largely equivalent, since their component variables can be directly related. The72

~δ-coordinates can be written explicitly in terms of PID components, which leads us to an intuitive73

understanding of how ~δ-space encodes PID information by casting them into a geometric context.74

We then show that the sets of probability distributions, Q, used by Bertschinger can be mapped75

onto low-dimensional manifolds in ~δ-space, which intersect with the ~δ-plane. This realization thus76

yields a low-dimensional geometric interpretation of this optimization problem, and we compute the77

solution for all possible three-variable discrete functions of alphabet size three. Code to replicate these78

computations and the associated figures is freely available at https://github.com/kunert/deltaPID.79

This approach is theoretically useful for the Delta information framework, since it factors out x, y80

dependence in the data, thereby accounting for linkage disequilibrium between genetic variables.81

We suggest an approach for the analysis of genetic datasets which would return both the closest82

discrete function underlying the data and its PID in the Bertschinger solution, and which would83

require no further optimization after the initial construction of a solution library. Though we use84
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the Bertschinger solution as an example, our derived relationship between the frameworks is general85

and can be used to yield an immediate geometric comparison of how each solution decomposes86

information.87

2. Background88

2.1. Interaction Information and Multi-Information89

An important body of background work, which served as a foundation for both the Information
Decomposition and Information Delta approaches, involves the Interaction Information, I I. For three
variables, the recursion relation is

I I(x, y, z) = I I(x, y|z)− I I(x, y) (2)

As reflected by the notation, I I can be thought of as a multivariable extension of the mutual90

information [? ]. It is important to note that the interaction information is symmetric under91

permutation of variables, and thus it cannot be a direct measure of information, but rather expresses92

a kind of measure of the total information shared between all variables.93

Unlike the mutual information, however, the interaction information can assume negative94

values. What does it mean for the interaction information to be negative? It was once common to95

interpret I > 0 as implying a synergistic interaction, and I < 0 as implying a redundant interaction96

between the variables. As detailed in [? ] and discussed in the following sections, this interpretation97

is mistaken. Interactions can be both partly synergistic and partly redundant, and the interaction98

information indicates the balance of these components.99

For a set of variables νn = {x1, ..., xn}, I I can be defined as [? ]:100

I I(νn) = − ∑
τi⊆νn

(−1)|νn |−|τi |H(τi) (3)

where |νn| is the total number of variables in the set, and the sum is over all possible subsets101

τi (where |τi| is the total number of variables in each subset). H(τi) is the joint entropy between102

the variables in subset τi. The interaction information, I I, is very similar to a measure called the103

co-information, CI [? ]. These measures differ only by their sign: for an even number of variables104

they are identical (e.g., I I(x, y) = CI(x, y)), and for an odd number of variables they are of opposite105

sign.106

CI(νn) = − ∑
τi⊆νn

(−1)|τi |H(τi) = (−1)|νn | I I(νn) (4)

An additional, useful measure is the “multi-information”, Ω, introduced by Watanabe [? ],107

sometimes called the “total correlation”, which represents the sum of all dependencies of variables108

and is zero only if all variables are independent. For n variables S = xi it is defined as:109

Ω(S) =
n

∑
i=1

H(xi)− H(x1, . . . xn) (5)

2.2. Information Decomposition110

Consider a pair of “source variables” x,y which determine the value of a “target variable” z.
Assume that we can measure the mutual information each source carries about a target, I(x, z) and
I(y, z) (which we abbreviate as Ixz and Iyz), as well as the mutual information between the joint
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distribution of {x, y} and z, I({x, y}, z) (which we abbreviate as I(xy)z. These mutual informations
can be written in terms of the entropies (which we abbreviate using subscripts, e.g., H(x, y) ≡ Hxy):

Ixz = Hx + Hz − Hxz

Iyz = Hy + Hz − Hyz

I(xy)z = Hxy + Hz − Hxyz

(6)

These mutual informations can be decomposed into components which measure how much of each
“type” of information they contain, as follows:

I(xy)z = Ux + Uy + R + S

Ixz = Ux + R

Iyz = Uy + R

(7)

where Ux and Uy are the unique informations, R is the redundant information, and S is the111

synergistic information, as described previously in Section ??. This is an underdetermined system112

which requires an additional equation for the variables to render it solvable. Many of the current113

and previous efforts to define such an equation (for example, several proposals on how to directly114

compute the value of R from data), as well as the limitations of those efforts, have been nicely115

summarized in [? ].116

A rigorous solution to this problem came from Bertschinger et al. [? ], who proposed that the117

unique information be approximated as:118

Ũx = min
q∈Q

I(y, z|x) (8)

Let Ψ be the set of all joint probability distributions of x, y, and z. Then we define Q as the set119

of all distributions, q, that have the same marginal probability distributions p(x, z) and p(y, z) as our120

dataset. That is,121

Q = {q ∈ Ψ|q(x, y) = p(x, y) ∧ q(y, z) = p(y, z)} (9)

Note that in [? ], this set of probability distributions is denoted as ∆P, which we change here to122

Q to avoid notational confusion with the information deltas. Similarly, its elements are indicated by123

Q in the original paper. Here we indicate the distributions, elements of the set Q, by a lowercase q for124

consistency with our notation for probability distributions.125

Put another way, we consider all possible probability distributions that maintain the marginals126

p(x, z) and p(y, z) implied by our data. The relationship between x and y (p(x, y), and consequently127

the joint distribution p(x, y, z)) is allowed to vary. The minimization criterion is perhaps more128

intuitive when written, equivalently, as:129

Ũx = min
q∈Q

I(y, z|x) = min
q∈Q

[I I(x, y, z)− I I(y, z)] (10)

Thus the unique information Ũx can be thought of as the smallest possible increase in the130

interaction information when the variable x is added to the set {y, z}. For example, if there exists131

a probability distribution in Q for which I I(y, z) = I I(x, y, z), then the addition of x adds no unique132

information about z and Ũx . The core assumption of this approach is that the unique and redundant133

informations depend simply upon the marginal distributions p(x, z) and p(y, z). Compared to other134

approaches, this is particularly rigorous, as the result follows directly from this assumption without135

any ad-hoc assumptions for how the components are related.136
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2.3. Information Deltas and their Geometry137

Consider a set of three variables νn = {x, y, z}. Using Equation ??, we can write the
co-information in terms of the entropies:

CI(x, y, z) = Hx + Hy + Hz − Hxy − Hxz − Hyz + Hxyz (11)

The differential interaction information ∆z is the change in the interaction information when a given
variable z is added to the set. From the recursion relations for I I and CI:

∆z(νn) = CI(x, y, z)− CI(x, y) = −I(x, y|z) (12)

These measures can be normalized by the multi-information for the three variables, Ω(x, y, z)
(which we abbreviate as Ωxyz), which by Equation ?? we can write in terms of the entropies as:

Ωxyz = Hx + Hy + Hz − Hxyz (13)

The normalized measures are then:

δx = −∆x/Ωxyz, δy = −∆y/Ωxyz, δz = −∆z/Ωxyz (14)

If z is a function of x and y, and if x and y are i.i.d., then ~δ = (δx, δy, δz) lies within a highly138

structured plane, where different regions of the plane correspond to qualitatively different types of139

interactions. Figure ?? shows the mapping of all possible functions onto this highly structured plane.140

The normalized deltas can be expressed as:

δx = 1−
Ixy + Ixz

Ωxyz
=
−Hx + Hxy + Hxz − Hxyz

Ωxyz

δy = 1−
Ixy + Iyz

Ωxyz
=
−Hy + Hxy + Hyz − Hxyz

Ωxyz

δz = 1−
Ixz + Iyz

Ωxyz
=
−Hz + Hxz + Hyz − Hxyz

Ωxyz

(15)

The normalized deltas can also be written in terms of joint mutual informations, as follows:

δx =
1

Ωxyz
(−Hx + Hxy + Hxz − Hxyz)

=
1

Ωxyz
(−Hx + Hxy + Hxz − Hxyz + (Hx + Hy + Hz − Hxyz)−Ωxyz)

=
1

Ωxyz
(Hy + Hz + Hxy + Hxz − 2Hxyz −Ωxyz)

=
1

Ωxyz
((Hz + Hxy − Hxyz) + (Hy + Hxz − Hxyz)−Ωxyz)

=
I(xy)z + I(xz)y

Ωxyz
− 1

(16)

We can write all normalized deltas in this form:141
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δx =
I(xy)z + I(xz)y

Ωxyz
− 1

δy =
I(xy)z + I(yz)x

Ωxyz
− 1

δz =
I(xz)y + I(yz)x

Ωxyz
− 1

(17)

By inverting previous equations, we can then write:

I(xy)z =
Ωxyz

2
(δx + δy − δz + 1) (18a)

Ixz =
Ωxyz

2
(−δx − δz + δy + 1) (18b)

Iyz =
Ωxyz

2
(−δy − δz + δx + 1) (18c)

Specifically, Equation Set ?? can be inverted to yield Equation ??, and Equation Set ?? can be inverted142

to yield Equations ?? and ??.143

3. PID mapped into Information Deltas144

3.1. Information Decomposition in Terms of Deltas145

With Equations ?? and ??, we can equate the expressions for the mutual informations in their146

delta and information decomposition forms:147

Ωxyz

2
(+δx + δy − δz + 1) = R + Ux + Uy + S

Ωxyz

2
(−δx + δy − δz + 1) = R + Ux

Ωxyz

2
(+δx − δy − δz + 1) = R + Uy

(19)

From the above relations we can derive:

S− R =
Ωxyz

2
(δx + δy + δz − 1) (20)

In other words, the difference between the synergy and the redundancy increases as we get farther
from the origin in δ-space. Also:

Ux −Uy = Ωxyz(δy − δx) (21)

so the distance from the diagonal in the (δx, δy)-plane is proportional to the difference between the148

unique informations. These striking relationships are visualized in Figure ??.149
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Figure 3. As shown in Equations 23 and 24, the δ-space encodes the balance of synergy/redundancy
along one diagonal, and the balance of unique information in each source along the other.

3.2. Relationship between Diagonal and Interaction Information150

Considering again Equation ?? and using Equation ??, we can write:

S− R =
Ωxyz

2
(δx + δy + δz − 1)

= −1
2
(∆x + ∆y + ∆z + Ωxyz)

= −1
2
((Hx − Hxy − Hxz + Hxyz) + (Hy − Hxy − Hyz + Hxyz)

+ (Hz − Hxz − Hyz + Hxyz) + (Hx + Hy + Hz − Hxyz))

= −(Hx + Hy + Hz − Hxy − Hxz − Hyz + Hxyz)

= I I(x, y, z)

(22)

where I I(x, y, z) is the interaction information between the variables. This replicates the important151

result that I I(x, y, z) = S− R from the original Williams and Beer paper [? ].152

3.3. The Function Plane153

When the variables are related by a discrete function (as defined in [? ]), and x and y are i.i.d.,
the function will lie on a plane defined by:

δz = δx + δy − 1 (23)

Thus the distance d of a coordinate above the plane is given by

d = δz − δx − δy + 1 = −(δx + δy − δz + 1) + 2 (24)

And so from Equation ??:
Ω
2
(2− d) = R + Ux + Uy + S (25)

4. Solving the PID on the Function Plane154

4.1. Transforming Probability Tensors within Q155

As noted previously, there is no generally accepted solution for completing and computing the156

set of PID equations. Our results connecting the PID to the information deltas have therefore, up157

to this point, been agnostic on this question. All equations in the previous section follow from the158

basic PID formulation, and the delta coordinate equations. This means they are true for any putative159
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solution, but also brings us no closer to an actual solution to the PID problem; we can still only160

compute the differences between PID components. We therefore now extend our analysis by utilizing161

the solution of Bertschinger et al. [? ] to fully compute the PID for the functions in Figure ??. We wish162

to emphasize, however, that the following approach could be used equally well to gain a geometric163

interpretation of any alternate solution to the PID.164

Consider a probability tensor for an alphabet size of N:

PN =


 p111 · · · p1N1

...
. . .

...
pN11 · · · pNN1

 , ... ,

 p11N · · · p1NN
...

. . .
...

pN1N · · · pNNN


 (26)

What transformations are permissible that will keep the distribution within the set Q (as defined165

in Equation ??)? Note that we can obtain the marginal distributions simply by summing over the166

appropriate tensor index. For example, summing along the first index yields the marginal distribution167

p(y, z). To stay in Q, then, we require that the sums along the first and second indices both remain168

constant.169

For an alphabet size of N = 2, we can parameterize the set of all possible transformations quite170

simply:171

P2 =

[[
p111 + α p121 − α

p211 − α p221 + α

]
,

[
p111 + β p121 − β

p211 − β p221 + β

]]
(27)

All possible changes to each layer of the tensor can be captured with a single parameter. For172

example, increasing p111 will require that p121 and p211 be decreased by the same amount, as the row173

and column sums must remain constant (which, in turn, determines p221). Each layer can be modified174

independently, and thus the second layer has an independent parameter.175

For a given probability tensor with N = 2, then, the probability tensor for any distribution176

in Q can be fully parameterized with two parameters, and thus the corresponding coordinates177

in delta-space are at most two-dimensional. In practice, we find that N = 2 functions have178

delta-coordinates that are restricted to a one-dimensional manifold.179

Consider, for example, the AND function:

P2 =

[[
1 1
1 0

]
,

[
0 0
0 1

]]
(28)

We can describe all possible perturbations which remain in Q by the parameterization:180

P2 =

[[
1/4 + α 1/4− α

1/4− α 0 + α

]
,

[
0 + β 0− β

0− β 1/4 + β

]]
(29)

However, it can be seen that we must have β = 0, as all probabilities must remain in the range181

p ∈ [0, 1]. The parameter α, on the other hand, can fall within the range α ∈ [0, 1/4]. Since all182

possible perturbations can be captured by varying a single parameter, Q must therefore be mapped183

to a one-dimensional manifold in δ-space.184

The layers of a probability tensor become significantly harder to parameterize for N = 3.
Consider a single layer of a probability tensor:p111 p121 p131

p211 p221 p231

p311 p321 p331

 ≡
a b c

e d f
g h i

 (30)
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The permissible transformations to this layer can be parameterized by: a + α b + β c− α− β

e + γ d + δ f − γ− δ

g− α− γ h− β− δ i + α + β + γ + δ

 (31)

subject to the constraints that: 

0 ≤ (a + α) ≤ 1

0 ≤ (b + β) ≤ 1

0 ≤ (e + γ) ≤ 1

0 ≤ (d + δ) ≤ 1

0 ≤ (c− α− β) ≤ 1

0 ≤ ( f − γ− δ) ≤ 1

0 ≤ (g− α− γ) ≤ 1

0 ≤ (h− β− δ) ≤ 1

0 ≤ (i + α + β + γ + δ) ≤ 1

(32)

Clearly, these relations are too complicated to lend any immediate insight into the problem.185

However, it is a simple matter to use the above inequalities to calculate permissible values of186

parameters (α, β, γ, δ) and to plot out the corresponding delta coordinates. This is done for187

randomly-generated sample functions in Figure ??. In this case, the delta coordinates have a complex188

distribution but are nonetheless restricted to a plane in delta-space.189

Figure 4. An example mapping of the Bertschinger set Q to δ-space for a randomly-chosen function
f . A set Q consists of all probability distributions p(x, y, z) that share the same marginal distributions
p(x, z) and p(y, z). Each Q maps onto a set of points with a complex distribution, but which is
constrained to a simple plane in δ-space.
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4.2. δ-Coordinates in Q are Always Restricted to a Plane190

In the N = 2 case, delta-coordinates were parameterized by a single variable such that they191

must be restricted onto a line. In the N = 3 example, they appear restricted onto a plane. Will192

larger alphabets map Q onto a three-dimensional volume? If not, is it possible to get a non-planar193

two-dimensional manifold, or are coordinates always restricted to a plane? We will now prove that194

Q is always constrained to a plane, regardless of the alphabet size.195

Lemma 1. In any set Q as defined previously, the following entropies remain constant: all individual entropies196

Hx, Hy and Hz; the joint, 2-variable entropies containing z, namely Hxz and Hyz. The only entropies which197

vary within a particular Q then are Hxy and Hxyz.198

Proof. The definition of Q preserves the marginal distributions by construction. Hxz and Hyz being199

constant is a trivial consequence of holding p(x, z) and p(y, z) constant, which is the condition200

defining Q. From these constant marginal distributions, we can calculate the distributions p(x), p(y)201

and p(z), which are therefore also constant, as are their corresponding entropies.202

Only two entropic quantities vary between the different distributions in Q. By considering just203

their effect on the delta coordinates, we can now show the following:204

Theorem 1. In any set Q of distributions with equal marginal distributions p(x, z) and p(y, z), the205

delta-coordinates (δx, δy, δz) will be restricted to a plane. This is true for any alphabet size.206

Proof. We begin by making several notational definitions to simplify the algebra which follows, first
from the joint entropies which vary within Q:

d ≡ Hxyz − Hxy

h ≡ Hxyz

We then define quantities which collect the constant entropy terms:

c1 ≡ Hx + Hy + Hz

c2 ≡ −Hx + Hxz

c3 ≡ −Hy + Hyz

c4 ≡ −Hz + Hxz + Hyz

In terms of these quantities we can now write the normalized delta coordinates as follows:

δx =
c2 − d
c1 − h

δy =
c3 − d
c1 − h

δz =
c4 − h
c1 − h

Solving for d in the δx and δy equations yields:

δy(c1 − h)− c3 = δx(c1 − h)− c2

And the δz equation allows us to solve for h:

h =
c4 − c1δz

1− δz
=⇒ (c1 − h) =

c1 − c4

1− δz
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Plugging this into the equation above yields an equation which simplifies to:

(c1 − c4)(δx − δy) + (c3 − c2)(1− δz) = 0 (33)

Since c1, c2, c3 and c4 are all constant over Q, this defines a plane in δx, δy, δz space.207

Equation ?? not only shows that the points in Q are bound to a plane, but it also implies that this208

plane always contains the line defined by δx = δy and δz = 1. Therefore for any function in Figure ??,209

we can trivially compute the plane in which the corresponding Q is contained.210

Figure 5. The same function’s Q mapped onto δ-space as in Figure ??, viewed from a different angle.
Q is constrained to a plane in δ-space. This plane, highlighted in red, contains the δ-coordinates of the
function f (indicated by the red dot) as well as the line(δx = δy, δz = 1) (indicated by the solid red
line).

4.3. PID Calculation for all Functions211

For the set of probability distributions Q, Bertschinger et al. [? ] provide the following estimators212

for the PID components:213

Ũx = min
q∈Q

Ωxyzδy

Ũy = min
q∈Q

Ωxyzδx

R̃ = max
q∈Q

CI(x, y, z)

S̃ = I(xy)z −min
q∈Q

I(xy)z

(34)

If we numerically compute the set Q for a given function f (i.e., by generating a distribution such214

as the one shown in Figure ?? via the parameterization of Equation ??), these estimators are trivially215
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consistent. Figure ?? shows the computed values of the PID components for all of the functions shown216

in Figure ??. There is a clear geometric interpretation here: Functions in the lower left/right corners217

consist almost entirely of Ũx and Ũy, respectively. Functions approaching the top corner become218

increasingly synergistic with a higher proportion of S. Functions are most redundant towards the219

lower center of the plane, though no single function is primarily R.220

Figure 6. All functions z = f (x, y) (with alphabet sizes of 3) mapped onto a plane in δ-space, as in
Figure ??. Each function is colored by the fraction of the total information in each PID component.
There is a clear geometric structure to the decomposition which matches the previously discussed
intuition about δ-space.

5. Conclusion221

The key overall result of this paper is that the PID problem can be mapped directly into the the222

previously defined “information landscape” represented by the “delta space” of [? ]. This theoretical223

framework is simple and has a geometric interpretation which is well worked out previously. The224

simple set of relations between the frameworks, as explicated in Equation ?? and visualized in Figure225

??, anticipates a much deeper set of geometric constraints.226

We build upon this general relationship using the solution of Bertschinger et al. [? ]. Using227

this solution, we parameterize the permissible transformations to a discrete function to numerically228

generate the distribution set Q, and prove in Theorem ?? that this set is mapped onto a plane in229

delta-space. The optimization problem defined by this approach is cast in terms of our variables230

in Equation ??, and the various extrema can be extracted directly from our parameterization and231

mapping procedure. Code which replicates these computations and generates the figures within this232

paper is freely available at https://github.com/kunert/deltaPID.233
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These results suggest the following approach for computation of the PID components, if using234

the solution from [? ], and given the added assumption that there is some function z = f (x, y) which235

best approximates the relationship between variables. The steps are these:236

1. Construct a library (set) of distributions {Q1, Q2, . . . , QN} for all functions, fi(x, y). Specifically,237

record the δ-coordinates spanned by each distribution (e.g., as plotted in Figure ??) along with238

the corresponding function and its PID component values.239

2. For a set of variables in data for which we wish to find the decomposition, compute its240

δ-coordinates and then match them to the closest Qi. This will then immediately yield the241

corresponding function and PID components.242

If this approach proves to be practical, it would have several clear advantages. First, the243

computational cost of the library construction would only need to be done once, and not need to244

be repeated for any subsequent analysis. The cost of the library construction is itself quite tractable245

(for example, exactly this computation was done to generate Figure ??). Second, this solves an246

open problem in the use of Information Deltas for which the source variables are not independent,247

for example, in applications to genetics in the presence of linkage disequilibrium. Specifically, this248

approach relaxes the common assumption in [? ] that x and y must be statistically independent.249

The practical application of this approach to data analysis requires further development, which is250

beyond the scope of this paper. Specifically, the actual data will contain noise such that the computed251

δ-coordinates will not lie perfectly within any distribution of Q set. The naïve approach of simply252

taking the closest Qi may therefore be insufficient in general. Future work should characterize the253

response of δ-coordinates to various levels of noise within the data, to enable the computation of254

p(Qi|~δ, α) (i.e. the probability that variables belong to the set Qi given their observed coordinates ~δ255

and some noise level α).256

Future work should also consider additional solutions to the PID problem beyond the solution257

of [? ] considered here. All equations in Section ?? are general and agnostic to the precise solution258

used for the actual PID computation, and it should be straightforward to generate figures similar259

to Figure ?? for different solutions to show how they differ in mapping information components260

onto the function plane. This will provide interpretable geometric comparisons between solutions261

and also immediately highlight all functions for which results substantially disagree. We consider262

this task to be beyond the scope of this paper, as we do not wish to take a stance on which PID263

solution is most "correct", but rather wish to unify the PID problem with the delta framework more264

generally. However, we anticipate that this direct comparison of how different solutions map the265

information content of discrete functions will provide a powerful visual tool for understanding the266

differing consequences of putative solutions, and thus our unification of these frameworks will be267

useful in resolving the open question of how best to compute the PID.268

Supplementary Materials: Code for computing the results and reproducing figures within this paper is available269

at https://github.com/kunert/deltaPID270
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PID Partial Information Decomposition
II Interaction Information
CI Co-Information
Ux Unique Information in x
Uy Unique Information in y
R Redundant Information
S Synergistic Information
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