

1 Article

2 **Mechanochemical synthesis and structure of the**
3 **tetrahydrate and mesoporous anhydrous**
4 **metforminium(2+)-N,N'-1,4-phenylenedioxalamic**
5 **acid cocrystal salt: the role of hydrogen bonding and**
6 **n→π* charge assisted interactions**

7 **Sayuri Chong-Canto** ¹, **Efrén V. García-Báez** ¹, **Francisco J. Martínez-Martínez** ², **Angel A.**
8 **Ramos-Organillo** ², **Itzia I. Padilla-Martínez** ^{1*}

9 ¹ Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional-UPIBI, Av.
10 Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México, C.P. 07340, Mexico;
11 anothersayuri2341@gmail.com (S.C.-C); ipadillamar@ipn.mx (I.I.P.-M.); egarcia@ipn.mx (E.V.G.-B.).

12 ² Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400,
13 Coquimatlán, Colima, Mexico; fjmartin@ucol.mx (F.J.M.-M.); aaramos@ucol.mx (A.A.R.-O.)

14 * Correspondence: ipadillamar@ipn.mx; Tel.: +52-555-729-6000 (ext. 56324)

15 Received: date; Accepted: date; Published: date


16 **Abstract:** A new cocrystal salt of metformin, an antidiabetic drug, and N,N'-(1,4-phenylene)dioxalamic acid, was synthesized by mechanochemical synthesis, purified by crystallization from solution and characterized by single X-ray crystallography. The structure revealed a salt-type cocrystal composed of one dicationic metformin unit, two monoanionic units of the acid and four water molecules namely H₂Mf(HpOXA)₂·4H₂O. X-ray powder, IR, ¹³C-CPMAS, thermal and BET adsorption-desorption analyses were performed to elucidate the structure of the molecular and supramolecular structure of the anhydrous microcrystalline mesoporous solid H₂Mf(HpOXA)₂. The results suggest that their structures, conformation and hydrogen bonding schemes are very similar between them. To the best of our knowledge, the selective formation of the monoanion HpOXA⁻, as well as its structure in the solid, is herein reported for the first time. Regular O(δ-)···C(δ+), O(δ-)···N⁺ and bifacial O(δ-)···C(δ+)···O(δ-) of n→π* charge-assisted interactions are herein described in H₂MfA cocrystal salts which could be responsible of the interactions of metformin in biologic systems. The results, support the participation of n→π* charge-assisted interactions independently, and not just as a short contact imposed by the geometric constraint due to the hydrogen bonding patterns.

17 **Keywords:** metformin cocrystal, mechanochemical synthesis, dicationic metformin, water
18 channels, pi-interactions, mesoporous anhydrate.

19 **1. Introduction**

20 Cocrystallization has become a growing discipline of interest in pharmaceutical sciences, since
21 it has been demonstrated its application to modify the physical-chemical properties of known drugs
22 [1]. Metformin-HCl (HMfCl) is an oral anti-hyperglycemic drug, worldwide used for the treatment
23 of non-insulin dependent diabetes mellitus. It improves glucose tolerance lowering plasma glucose
24 levels and glycated hemoglobin, particularly in overweight and obese patients. Metformin is one of
25 the most frequently small molecules used to prepare combined drugs such as Segluromet
26 (metformin-ertugliflozin), Metaglip (metformin-glipizide) and Glucovance (metformin-glyburide).
27 These are examples of the fourteen combinations approved by FDA [2], some of them have been

44 characterized by monocrystal X-ray diffraction such as metformin-glimepiride [3] and
45 metformin-salicylic acid [4]. Due to its pharmaceutical importance, there is a great interest in
46 metformin cocrystals, that has led to several patents related to the formation of organic salts,
47 compiled elsewhere [5].

48 In addition, the structure and electronic structural details on metformin and its cocrystals has
49 been recently summarized, in the context of biguanide compounds [6]. Metformin is a privileged
50 small molecule; it possesses conformational flexibility and is capable to form strong hydrogen
51 bonding interactions which will determine its structure and activity in biological processes.
52 Metformin hydrochloride is known to crystallize in two conformational polymorphs namely A [7]
53 and B [8]. The $\text{Me}_2\text{N}-\text{C}-\text{N}-\text{C}$ backbone adopts the U conformation in the thermodynamic phase
54 A (Me_2NCNC torsion angle value of 53.7°), whereas the form of an S backbone is observed in the
55 metastable polymorph B (Me_2NCNC torsion angle value of 129.1°). The calculated minima are near
56 50° and 160° , respectively [9].

57 On the other hand, oxalamic or oxamic acids are the amide-carboxylic acid derivatives of the
58 oxalic acid. They have been recognized because of their high potential in crystal engineering and
59 molecular recognition due to their bifunctionality [10]. As far as and
60 $\text{N},\text{N}'-(1,4\text{-phenylene})\text{dioxalamic}$ acid (H_2pOXA) is concerned and its 1,3-isomer (H_2mOXA), they
61 were first reported in the mid 70's [11, 12] as antiallergic agents as well as anti-inflammatory
62 compounds [13]. More recently, both have attracted interest as coordinating ligands for metals [14,
63 15]. Theoretical studies and experimental work [16] have demonstrated the high flexibility of the
64 oxalic acid derivatives. Both oxalyl carbonyls are usually in anti disposition [17] but they less
65 frequently adopt the syn disposition, induced by steric constraints [18, 19] or by coordination with
66 metals in the form of carboxylates [14].

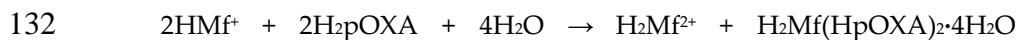
67 Finally, mechanochemical synthesis consists of the application of mechanical energy to induce a
68 chemical reaction, its use and applications have been recently reviewed [20]. Liquid-assisted
69 grinding (LAG) makes use of some drops of solvent to provide greater molecular mobility in the
70 course of the milling procedure. Even though the liquid does not play the role of solvent, it can be
71 incorporated into the crystal network to form solvates or not.

72 Herein we report, the LAG method to synthesize the tetrahydrate and anhydrate of the
73 antidiabetic drug metformin and $\text{N},\text{N}'-(1,4\text{-phenylene})\text{dioxalamic}$ acid. Their molecular and
74 supramolecular structures were analyzed in the context of the interactions of metformin in biologic
75 systems.

76 2. Materials and Methods

77 Materials and crystal synthesis. Metformin hydrochloride (HMfCl) was isolated from
78 commercial sources: 10 tablets of 500 mg were grinded and suspended in 150 mL of ethyl alcohol
79 (96%), the mixture was boiled under stirring for 10 min or until complete dissolution. The hot
80 solution was filtered; crystals of HMfCl were obtained after cooling to room temperature to obtain
81 2.5 g of a white solid, which was analyzed by IR, NMR and single crystal X-ray diffraction,
82 corresponding to the crystal structure reported by Hariharan [7]. The
83 $\text{N},\text{N}'-(1,4\text{-phenylene})\text{dioxalamic}$ acid double hydrate ($\text{H}_2\text{pOXA}\cdot 2\text{W}$, W = water) was obtained as
84 reported elsewhere [14]. Single crystals of $\text{N},\text{N}'-(1,4\text{-phenylene})\text{dioxalamate}$ of di-(metformin
85 diammonium) tetrahydrate ($\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$) were synthesized starting from 0.060 g (0.350
86 mmol) of HMfCl and 100 mg (0.347 mmol) $\text{H}_2\text{pOXA}\cdot 2\text{W}$ which were grinded with a pestle in a
87 mortar with the aid of few drops of water for 33-45 min until a homogeneous paste was formed. This
88 mass was suspended in 40 mL of water and boiled under stirring until a clear solution appeared. The
89 solution was left to stand at room temperature and after two days, 0.113 g (0.16 mmol) of beige
90 crystals suitable for X-ray analysis were obtained in 92% yield. Similar results were obtained using
91 1:2 stoichiometric amounts of HMfCl (0.030 mg) to $\text{H}_2\text{pOXA}\cdot 2\text{W}$ (100 mg) to obtain 0.120 g (0.17
92 mmol) of $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ in 98% yield. Microcrystalline powder of $\text{H}_2\text{Mf}(\text{HpOXA})_2$ was
93 obtained from single crystals of $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ after drying at 100 °C for 2 h in an air oven.

94 Instrumental. IR spectra were recorded neat at 25 °C using a Perkin Elmer Spectrum GX series
95 with FT system spectrophotometer using the ATR device. ^{13}C -CPMAS spectra were recorded on a
96 Bruker Avance DPX-400 (101 MHz). The following conditions were applied: spectral width 30.242
97 kHz, acquisition time 33.8 ms, contact time 2000 ms, rotation rate 8 kHz, relaxation delay 5 s, and up
98 to 256 scans for each spectrum were collected. Room temperature X-ray powder diffraction data
99 were collected on a PAN Analytical X'Pert PRO diffractometer with Cu K α 1 radiation ($\lambda = 1.5405 \text{ \AA}$,
100 45 kV, 40 mA) or on a D8 Focus Bruker AXS instrument using Cu K α 1 radiation ($\lambda = 1.542 \text{ \AA}$, 35 kV,
101 25 mA). Texture analysis of $\text{H}_2\text{Mf}(\text{HpOXA})_2$ was performed using 0.0408 g of sample in an
102 ASAP-2050 Xtended Pressure Sorption Analyzer of Micromeritics using liquid nitrogen. DSC and
103 TG measurements were performed in a Q2000 equipment and a Thermobalance Q5000 IR,
104 respectively, of TA instruments. In both cases, approximately 3.0-5.0 mg of sample was used and a
105 gradient of 5.00 °C/min from room temperature to 350 °C under air flux of 25 mL/min in an open
106 (TG) or pin-holed panels (DSC).


107 X-Ray structure determination. General crystallographic data for $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ has been
108 deposited in the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication
109 number 1874280. Single crystal X-ray diffraction data was collected on an Agilent SuperNova (dual
110 source) diffractometer using graphite-monochromatic Mo ($\lambda = 0.71073 \text{ \AA}$) K α radiation; data
111 collection, cell refinement and data reduction were accomplished using CrysAlisPro software [21].
112 The structure was solved by direct methods using the SHELXS-97 program [22] of the WINGX
113 package [23]. The final refinement was performed by full-matrix least-squares methods using the
114 SHELX97 program [22]. The H atoms on C, N, and O were geometrically positioned and treated as
115 riding atoms with: C-H 0.93-0.98 \AA , Uiso(H) = 1.2 eq(C) for aromatic carbon atoms or 1.5 eq(C) for
116 methyl carbon atoms; O-H = 0.82 \AA , Uiso(H) = 1.5 eq(O); N-H = 0.86 \AA , Uiso(H) = 1.2 eq(N). Platon
117 [24] and Mercury [25] were used to prepare the material for publication.

118 Crystal Data for $2(\text{C}_{10}\text{H}_7\text{N}_2\text{O}_6) \cdot (\text{C}_4\text{H}_{13}\text{N}_5) \cdot 4(\text{H}_2\text{O})$, ($\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$), M = 705.61 g/mol;
119 triclinic, space group P-1, a = 8.1357 (11), b = 13.8594 (18), c = 14.4846 (13) \AA , $\alpha = 109.963$ (10)°, $\beta =$
120 92.453 (9)°, $\gamma = 95.863$ (11)°, V = 1521.8 \AA^3 , Z = 2, T = 293 K, $\mu(\text{MoK}\alpha) = 0.71073 \text{ \AA}$, Dcalc = 1.540 g/cm³,
121 10559 reflections measured ($3.0^\circ \leq 2\Theta \leq 52.57^\circ$), 5942 unique (Rint = 0.027, Rsigma = 0.034) which
122 were used in all calculations. The final R1 was 0.047 ($I > 2\sigma(I)$) and wR2 was 0.1400 (all data).

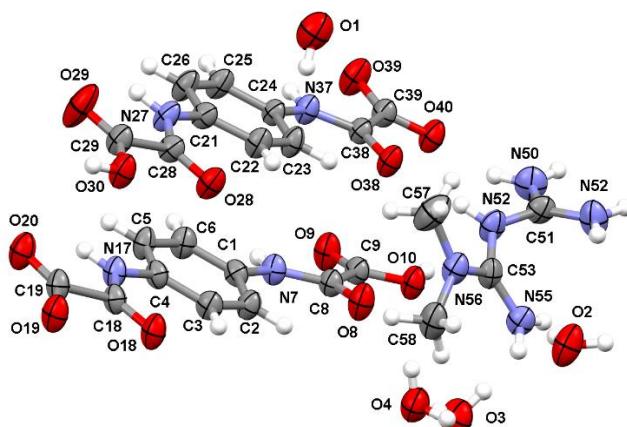
123 3. Results and discussion


124 3.1. Synthesis

125 Microcrystalline solid phase of *N,N'*-(1,4-phenylene)dioxalamate of di-(metformin
126 diammonium) tetrahydrate ($\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$) were synthesized using water-assisted grinding
127 procedure. Two stoichiometric proportions were used of HMfCl/H₂pOXA: 1:1 and 1:2. In both cases,
128 the reaction was monitored to completion by comparing the XRPD patterns of the mixtures to the
129 pristine HMfCl, Figure 1. Single crystals of $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ cocrystal salt were obtained by
130 recrystallization from hot water of either of the two grinded mixtures. The reaction is quantitative
131 based on the stoichiometry of the following reaction:

133 The proton of one carboxylic acid group of H₂pOXA is transferred to the remaining basic
134 nitrogen site of HMfCl molecule to form the H₂Mf²⁺ dication and the monoanion of
135 *N,N'*-(1,4-phenylene)dioxalamic acid (HpOXA⁻), which crystallize from the aqueous solution as
136 H₂Mf(HpOXA)₂·4W cocrystal salt. Therefore, even when it can be obtained by milling procedure in
137 the solid state, the crystallization step from aqueous solution is required in order to eliminate the
138 remaining H₂MfCl₂ byproduct.

139 Microcrystalline powder of $\text{H}_2\text{Mf}(\text{HpOXA})_2$ was obtained from single crystals of
140 H₂Mf(HpOXA)₂·4W after drying at 100 °C for 2 h in an air oven.

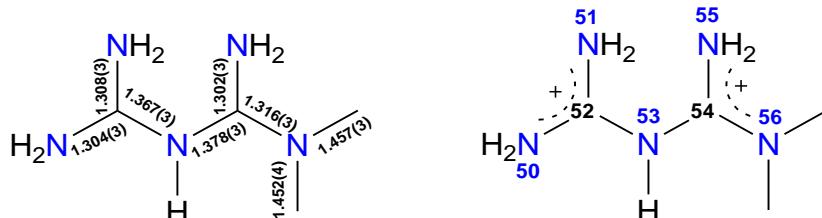


141

142 **Figure 1.** XRPD patterns of: (a) pristine HMfCl, (b) $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ cocrystal salt (experimental),
 143 (c) mechanochemical synthesis in 1:1 proportion of HMfCl/H₂pOXA and (d) mechanochemical
 144 synthesis in 1:2 proportion of HMfCl/H₂pOXA.

145 *3.2. The molecular and supramolecular structure of $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$.*

146 The cocrystal salt $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ crystallizes in the triclinic system, space group *P*-1 with
 147 one, two and four independent units of H_2Mf^{2+} , HpOXA^- and H_2O in the asymmetric unit,
 148 respectively, and whose molecular structure is depicted in Figure 2.


149

150 **Figure 2.** Molecular structure of the cocrystal salt $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ showing the atom labelling
 151 scheme. Displacement ellipsoids are drawn at the 50% probability level.

152 The oxalyl fragments COCO are almost planar, with a mean O—C—C—O angle of 179.3(6)°.
 153 However, small differences can be noted between the oxalamic acid NCOCO₂H and oxalamate
 154 fragments, NCOCO₂⁻. The NCOCO₂H endings are located slightly out of plane of the corresponding
 155 benzene ring, the maximum deviations from planarity are presented by N7C8O8C9O9O10H10 and
 156 N27C28O28C29O29O30H30 fragments with torsion angles of 16.08(5)° and 9.83(6)° from the C1-C6
 157 and C21-C26 rings, respectively. Instead, the oxalamate counterparts NCOCO₂⁻ are almost coplanar
 158 to the corresponding benzene ring: 3.50(6)° for N17C18O18C19O19O20 and 5.02(6)° for

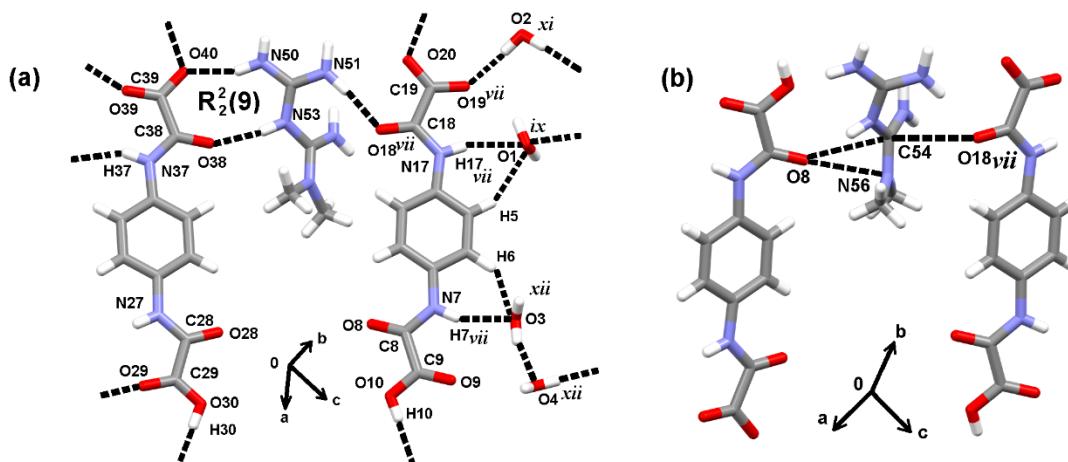
159 N37C38O38C239O39O40. It is worth to note that NCOCO₂H and NCOCO₂⁻ arms are in *syn*
 160 disposition between each other (*sp-sp* conformation). It is worth to mention that this conformation
 161 has not been observed among organic cocrystals of H₂pOXA but is commonly attained by
 162 coordination to metals [26]. The calculated conformational landscape of 1,4-phenylen dioxalyls
 163 predicts a very small difference in energy between planar *ap-sp* and *sp-sp* conformers of 0.26–0.28 kcal
 164 mol⁻¹, in favor of the former, and an interconversion energy of only 4.80 kcal mol⁻¹ [16]. Then, the
 165 *sp-sp* conformation exhibited by the HpOXA⁻ moiety is explained because of the stabilization given
 166 by hydrogen bonding with metformin that provides the energy to overcome the rotational barrier.

167 The C(sp²)—N(sp²) bond lengths of the metformin dication moiety range from 1.302(3) to
 168 1.378(3) Å. In fact, the bond lengths of C52 and C54 with the terminal nitrogen atoms are shorter,
 169 whereas the corresponding bond lengths with the bridge N53 atom are longer, than those bonds
 170 observed in monocationic metformin (1.333–1.341 Å) [27]. These last bond lengths have values close
 171 to those observed in five membered heterocycles involving pyrrolic nitrogen (≈ 1.37 Å) [28]. In
 172 agreement, the proposed delocalized structure is depicted in Figure 3. Selected bond lengths and
 173 torsion angles are listed in Table 1. In H₂Mf(HpOXA)₂·4W, the two planar guanidinium halves
 174 N53C54N55N56 and N53C52N51N50, are twisted by 55.67(9)[°] and the NMe₂ group is located
 175 opposite to the C(NH₂)₂ group (N56C54N53C52 torsion angle value of 148.8(2)[°]).

176
177

178 **Figure 3.** Bond lengths in Å (left) and delocalized structure of the dicationic metformin H₂Mf²⁺ (right)
179 showing the atom numbering scheme.

180 In the cocrystal salt H₂Mf(HpOXA)₂·4W, the metforminium moiety adopts the S backbone
 181 conformation which has been reported as the most stable owing to the decreased van der Waals
 182 repulsion, greater π-electron delocalization and intramolecular hydrogen bonding [9]. The structure
 183 of metformin in the cocrystal salt H₂Mf(HpOXA)₂·4W is very similar to that observed in the
 184 monohydrates of dicationic 1:1 salts of formula H₂MfA·H₂O (A = oxalate, sulfate) [29] supporting
 185 that the anions slightly influence the structure of *N,N*-dimethylbiguanidinium moiety.


186 **Table 1.** Selected bond lengths and torsion angles of the cocrystal salt H₂Mf(HpOXA)₂·4W.

HpOXA ⁻ moiety			
Atoms	Bond Lengths/Å	Atoms	Bond Lengths/Å
C8—C9	1.534(3)	C18—C19	1.556(3)
C28—C29	1.542(3)	C38—C39	1.550(3)
Torsion angles/°		Torsion angles/°	
C2—C1—N7—C8	-16.7(4)	C3—C4—N17—C18	-2.7(4)
O8—C8—N7—C1	1.5(4)	O8—C8—C9—O9	-179.7(2)
O18—C18—N17—C4	1.1(4)	O18—C18—C19—O19	177.0(2)
C22—C21—N27—C28	-11.1(4)	C23—C24—C25—C26	-1.1(3)
O28—C28—N27—C21	2.4(4)	O28—C28—C29—O29	-178.8(2)
O28—C28—N27—C21	2.4(4)	O28—C28—C29—O29	-178.8(2)
O38—C38—N37—C24	4.8(4)	O38—C38—C39—O39	-171.6(2)
H ₂ Mf ²⁺ moiety			
Atoms	Bond Lengths/Å	Atoms	Bond Lengths/Å
N50—C52	1.304(3)	N51—C52	1.308(3)

N53—C52	1.367(3)	N53—C54	1.378(3)
N55—C54	1.302(3)	N56—C54	1.316(3)
N56—C58	1.457(3)	N56—C57	1.452(4)
Torsion angle/°			
N56—C54—N53—C52			148.8(2)

187

188 The H_2Mf^{2+} and both HpOXA^- moieties are attached to each other through N53—H53···O38 and
 189 N50—H50A···O40 which lead to $R_{2}^2(9)$ hydrogen bonding ring motif and N51—H51B···O18 hydrogen
 190 bonding interactions. Four water molecules, forming amide···water interactions of bifurcated type in
 191 $R_{1}^1(6)$ ring motif ($\text{Nn—Hn···Om···Hp—Cp}$; $\text{n} = 7, 17$; $\text{m} = 3, 1$; $\text{p} = 6, 5$), water···carboxylate (O2—
 192 H2B···O19[—]) and water···water (O3—H3A···O4) hydrogen bonding interactions, complete this basic
 193 repetition unit, Figure 4(a). A duplex is formed by an inversion center of symmetry linked by
 194 N55—H55B···O28 hydrogen bonding, Figure 5(b), $n\rightarrow\pi^*$ charge assisted interactions between
 195 O8···C54···O18, O8···N56, Figure 4(b) and several CO···CO interactions of sheared parallel type [30].
 196 The geometric parameters associated to these interactions are listed in Table 2. Double strands are
 197 generated through acid···carboxylate (On—Hn···Om^- ; $\text{n} = 10, 30$; $\text{m} = 40, 20$) and N50—H50B···O9
 198 hydrogen bonding, Figure 5(a). Whereas the second dimension is developed by water··· HpOXA^-
 199 interactions (On—Hn···Om^- ; $\text{n} = 2, 4$; $\text{m} = 39, 29$), N37—H37···O1 and N55—H55A···O2, to form double
 200 layers within the (1 1 -1) plane, Figure 5(b). A view, along the perpendicular direction to this plane,
 201 let us to note two well-defined regions of metformin and water, Figure 4(c). The distance between
 202 two HpOXA^- chains is longer in the metformin region than in the water region, in order to
 203 accommodate the NMe₂ group, with mean values of 7.4(3) Å and 4.1(3) Å, respectively (distances
 204 measured between benzene ring edges). Finally, water molecules link the bilayers to develop the
 205 third dimension along the [0 1 1] direction (N27—H27···O2, N50—H50B···O4, N51—H51A···O4, O1—
 206 H1A···O3, O1—H1B···O19, O3—H3B···O39, O4—H4A···O8 and O4—H4A···O10). The water molecules
 207 labelled as H₂O1 (W1), H₂O3 (W3) and H₂O4 (W4) form an open cluster, but together with H₂O2
 208 (W2) are located in isolated pockets of the crystal lattice. The geometric parameters associated with
 209 intermolecular hydrogen bonding are listed in Table 3.

210

211 **Figure 4.** (a) Basic repetition unit of the cocrystal salt $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ and atom labelling scheme.
 212 (b) $n\rightarrow\pi^*$ charge-assisted interactions between O8···C54···O18 and O8···N56 that contribute to form
 213 the duplex by an inversion center of symmetry. See Tables 2 and 3 for symmetry codes.

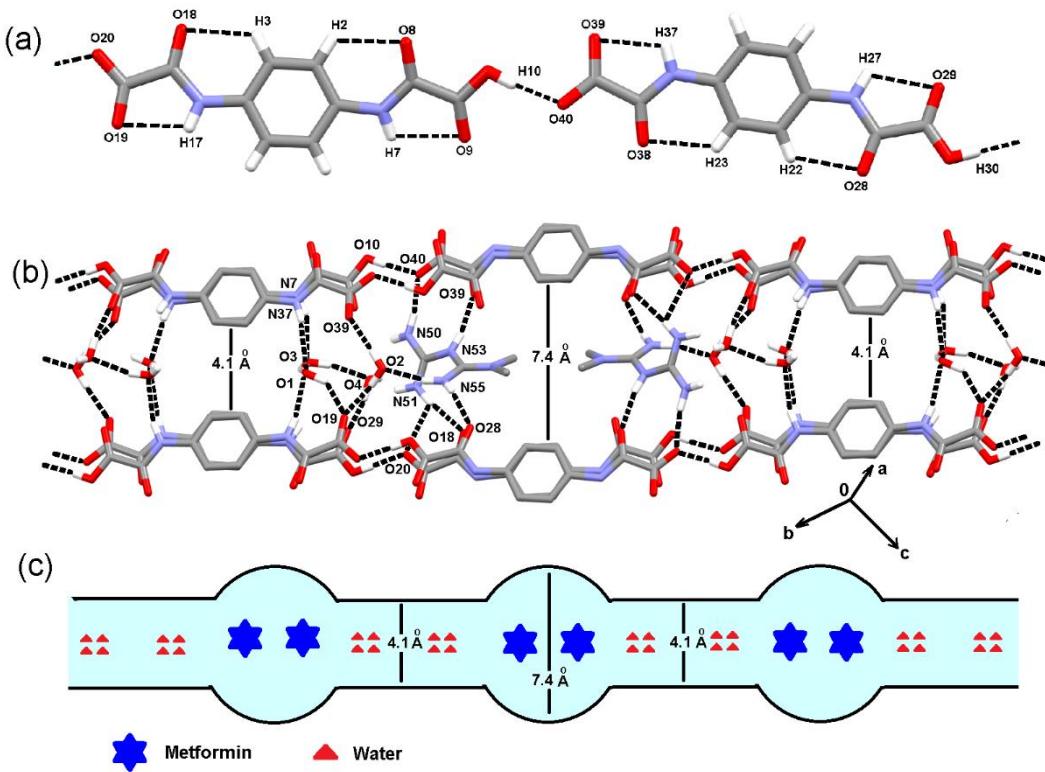

214

Table 2. Geometric parameters of CO···A interactions (A = CO, N) in $\text{H}_2\text{Mf}(\text{HpOXA})\cdot 4\text{W}$.

C—O···A	C—O/Å	O···A/Å	C—O···A/°
C38—O38···C9	1.219(2)	3.083(3)	89.0(2)
C38—O38···C8	1.219(2)	3.075(3)	102.1(2)
C29—O30···C19	1.264(3)	3.198(3)	97.4(2)

215

C8—O8···C54	1.222(2)	3.142(3)	133.4(2)
C8—O8···N56	1.222(2)	3.003(3)	143.6(2)
C18—O18 ^{vii} ···C54	1.222(3)	3.109(3)	131.8(2)

(vii) $-x+1, -y+1, -z+1$

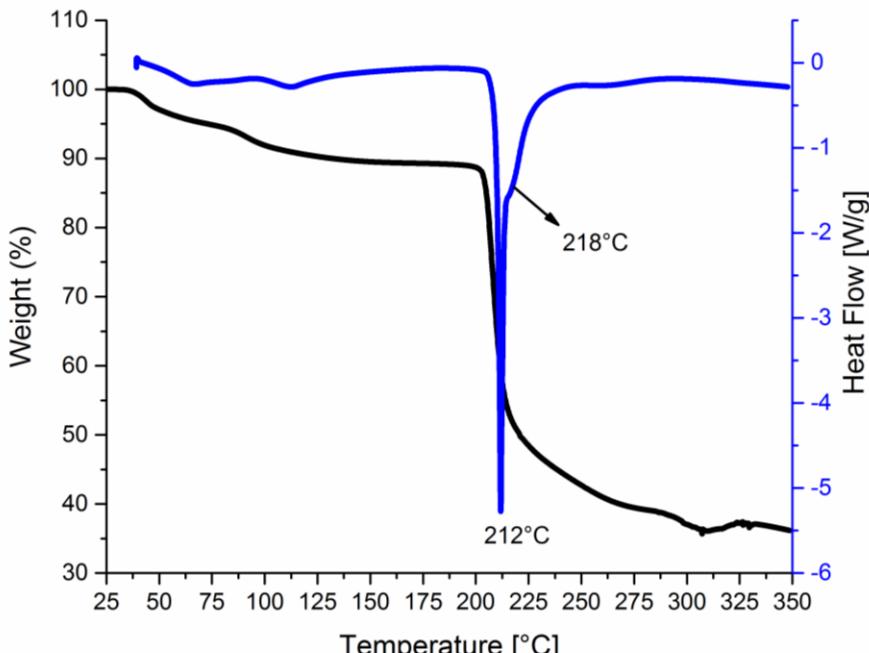
216

217 **Figure 5.** (a) Acid···carboxylate hydrogen bonding between the two units of HpOXA⁻. (b) Double
218 strands of H₂Mf(HpOXA)₂·4W propagating along the (1 1 -1) plane. (c) Pictorial representation of
219 H₂Mf(HpOXA)₂·4W where metformin diammonium and water pockets are highlighted.

220

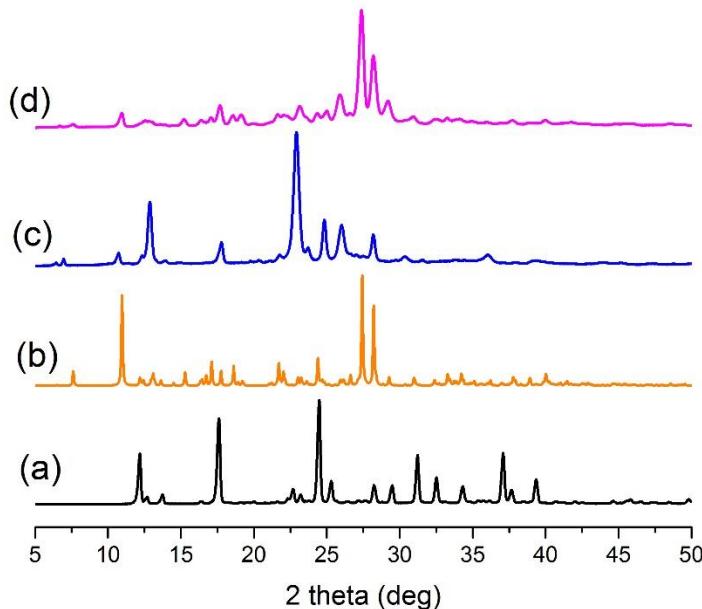
Table 3. Intermolecular hydrogen bonding geometric parameters of H₂Mf(HpOXA)₂·4W.

D—H···A	D—H/Å	H···A/Å	D···A/Å	D—H···A/°
C5—H5···O1 ⁱ	0.93	2.62	3.438 (3)	147
C6—H6···O3 ⁱⁱ	0.93	2.48	3.217 (3)	136
N7—H7···O3 ⁱⁱ	0.86	2.17	2.991 (2)	159
N17—H17···O1 ⁱ	0.86	2.37	3.208 (3)	166
N27—H27···O2 ⁱⁱⁱ	0.86	2.58	3.154 (3)	125
N37—H37···O1 ^{iv}	0.86	2.49	3.185 (3)	139
N50—H50B···O40	0.86	2.02	2.820 (3)	154
N50—H50A···O4 ^v	0.86	2.27	2.999 (3)	143
N50—H50A···O9 ^{vi}	0.86	2.37	2.982 (2)	129
N51—H51A···O4 ^v	0.86	2.20	2.947 (3)	145
N51—H51B···O18 ^{vii}	0.86	2.10	2.918 (2)	159
N53—H53···O38	0.86	2.00	2.843 (2)	168
N55—H55A···O2	0.86	1.92	2.730 (2)	157
N55—H55B···O28 ^{vii}	0.86	2.05	2.832 (2)	151
O1—H1A···O3 ^{vii}	0.85	2.15	2.985 (3)	169
O1—H1B···O19 ⁱ	0.85	2.33	2.998 (3)	136
O2—H2A···O39 ^{vi}	0.85	1.89	2.742 (2)	177


O2—H2B···O19 ^{viii}	0.85	1.93	2.760 (2)	166
O3—H3A···O4	0.85	1.93	2.760 (3)	167
O3—H3B···O39 ^{vi}	0.85	2.16	2.982 (3)	161
O4—H4A···O8	0.85	2.00	2.773 (3)	151
O4—H4A···O10	0.85	2.64	3.145 (2)	120
O4—H4B···O29 ^{ix}	0.85	1.80	2.611 (3)	160
O10—H10···O40 ^{vi}	0.82	1.72	2.5362 (19)	176
O30—H30···O20 ^x	0.82	1.66	2.477 (2)	177

221 Symmetry codes: (i) $-x+1, -y, -z+1$; (ii) $-x+1, -y+1, -z$; (iii) $x, y-1, z$; (iv) $x, y, z-1$; (v) $x-1, y, z$; (vi) $-x, -y+1, -z$; (vii) $-x+1, -y+1, -z+1$; (viii) $x-1, y+1, z$; (ix) $x, y+1, z$; (x) $-x+2, -y, -z+1$; (xi) $-x, 2-y, 1-z$; (xii) $x, y, 1+z$.

223 *3.3. The synthesis, molecular and supramolecular structures of $H_2Mf(HpOXA)_2$ anhydrate.*


224 Several techniques such as IR and ^{13}C -CPMAS spectroscopies, X-ray powder diffraction
225 (XRPD), as well as thermal and BET-adsorption analyses were performed in order to elucidate the
226 molecular and supramolecular structure of the microcrystalline anhydrate of formula
227 $H_2Mf(HpOXA)_2$.

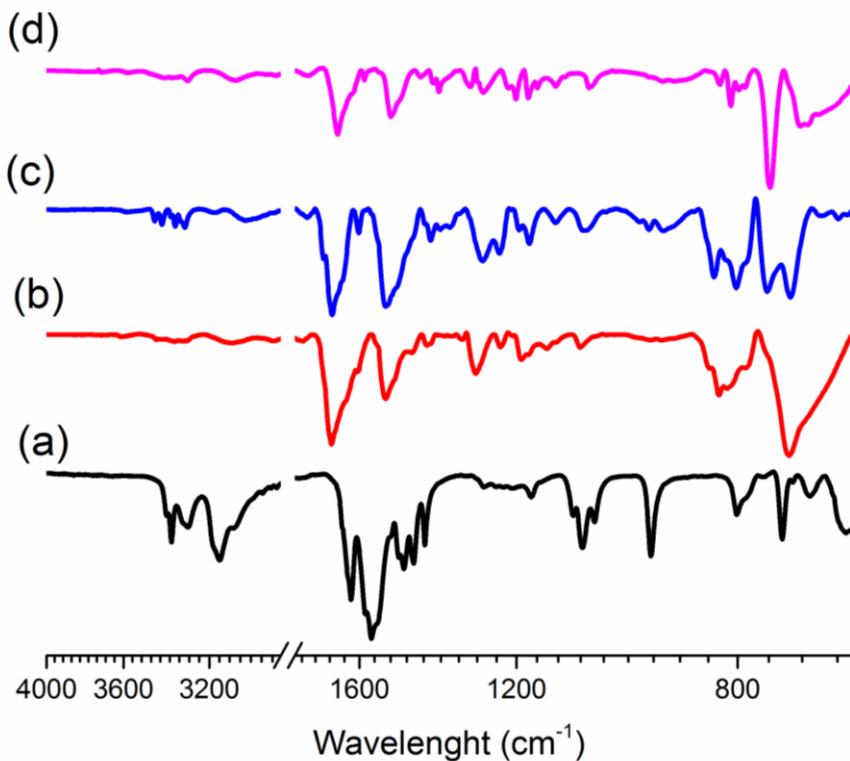
228 The cocrystal $H_2Mf(HpOXA)_2 \cdot 4W$ exhibits a sequence of two weight losses at peak
229 temperatures of 65 °C and 113 °C as endothermic processes, that correspond to the release of one
230 (exp. 2.6%, calcd. 2.7%) and three water molecules (exp. 7.8%, calcd. 8.1%) per formula unit,
231 respectively, Figure 6. The remaining solid is stable between 150 and 200 °C and decomposes at a
232 peak temperature of 212-214 °C, releasing the equivalent to 53% of the initial mass, Figure 5. Thus, a
233 new microcrystalline phase of composition $H_2Mf(HpOXA)_2$ was obtained after air drying at 100 °C,
234 this anhydrate rehydrates into the original tetrahydrate under 100% RH at 40 °C. The XRPD patterns
235 that confirm que crystallinity and change in the solid phases are shown in Figure 7.

236
237

Figure 6. Tg and DSC of $H_2Mf(HpOXA)_2 \cdot 4W$.

238

239 **Figure 7.** XRPD patterns of: (a) pristine HMfCl, (b) H₂Mf(HpOXA)₂·4W cocrystal salt simulated from
240 single crystal X-ray data, (c) H₂Mf(HpOXA)₂ microcrystalline powder and (d) after rehydration from
241 H₂Mf(HpOXA)₂.


242 A summary of the IR wavenumbers of H₂Mf(HpOXA)₂ tetrahydrate and anhydrate compared
243 to HMfCl are listed in Table 4 and the corresponding IR spectra are shown in Figure 8. The vC=O
244 stretching bands of the carboxylic acid and amide groups as well as the vC=N wavenumbers are red
245 shifted in comparison to the starting H₂pOXA·2W and HMfCl as a result of hydrogen bonding
246 interactions. As carboxylate group is concerned, it appears at 1524 cm⁻¹ in both
247 H₂Mf(HpOXA)₂·tetrahydrate and anhydrate, more red shifted than the reported value of 1540 cm⁻¹
248 for the K₂pOXA salt [14] in agreement with highly delocalized structure. It is worth to note that
249 dehydration, considerably clears the spectral window between 3500 to 3000 cm⁻¹ allowing the
250 observation of the vN-H bands of the metformin moiety, which are observed in pairs in the IR
251 spectrum of compound H₂Mf(HpOXA)₂, but the vN-H bands corresponding to the amide could not
252 be assigned with certainty.

253 **Table 4.** Stretching IR absorptions of solid powders of compounds H₂pOXA, HMfCl,
254 H₂Mf(HpOXA)₂·4W and H₂Mf(HpOXA)₂.

Comp.	Bond wavenumber (cm ⁻¹)			
	O—H	N—H	C=O	C=N
H ₂ pOXA·2W ^a	3488 (br), 3349 (br)	3335 (m), 3307 (m)	1733 (m), 1714 (m), 1681 (s), 1657 (s)	
HMfCl		3390 (sh), 3379 (m) 3298 (br), 3155 (m) 3095 (sh)		1624 (m), 1584 (sh), 1585 (s), 1550 (s)
H ₂ Mf(HpOXA) ₂ ·4W	3442 (br), 3102 (br)	3432 (br), 3358 (br), 3334 (w), 3317 (w)	1686 (vs), 1524 (vs, COO ⁻)	1672 (sh)
H ₂ Mf(HpOXA) ₂	3045 (br, m), 3180 (vw)	3445 (w), 3414 (w) 3372 (w), 3348 (w) 3329 (sh), 3309 (w)	1707 (sh), 1681 (s), 1524 (vs, COO ⁻)	1650 (sh), 1524 (sh) 1500 (vs)

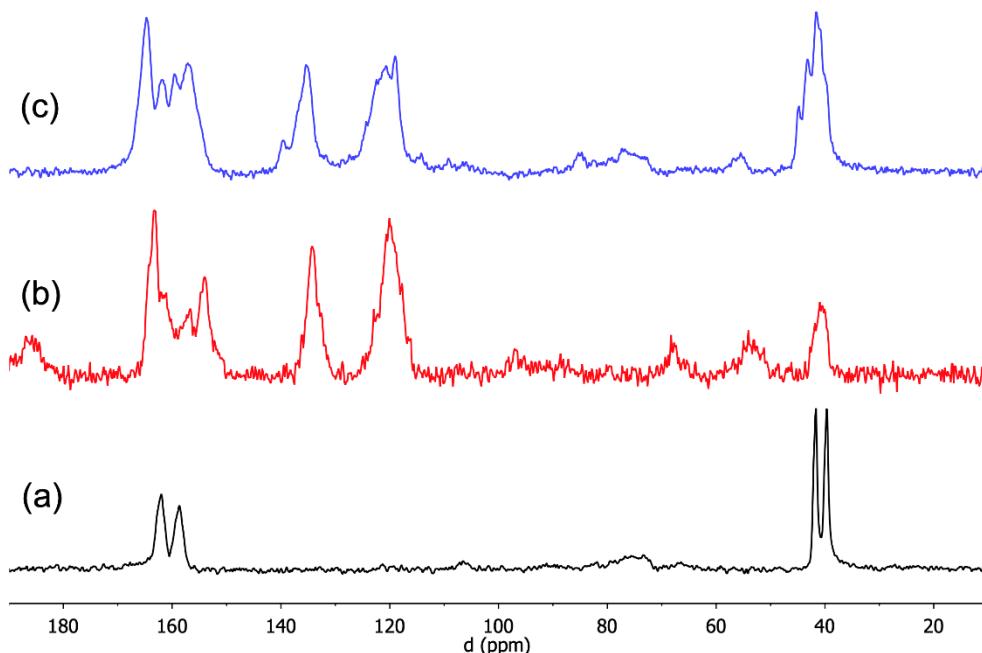
255

^a From reference [14]

256
257 **Figure 8.** IR spectra of: (a) metformin hydrochloride (HMfCl), (b) H₂Mf(HpOXA)₂·4W,
258 (c) H₂Mf(HpOXA)₂ and (d) H₂Mf(HpOXA)₂·4W after rehydration from H₂Mf(HpOXA)₂.

259 On the other hand, the ¹³C-CPMAS provides useful information regarding the molecular and
260 supramolecular structure. The chemical shift data are listed in Table 5 and spectra are depicted in
261 Figure 9. The chemical shift of the amide carbonyl (C8O) is sensitive to the change in the hydrogen
262 bonding environment, it is spread over 155-159 ppm range, in response to the hydrogen bonding
263 scheme in the crystal lattice of H₂Mf(HpOXA)₂·4W cocrystal. Whereas both COOH and COO⁻
264 groups appear as one signal slightly shifted by ~ 2 ppm to high frequencies compared to the starting
265 H₂pOXA·2W. This result is similar to that found in other carbonyls because of hydrogen bonding
266 [31]. The *sp-sp* disposition between both oxalyl groups, in relation to the phenyl plane, and the
267 presence of two independent molecules of HpOXA⁻ in the asymmetric unit, as well as hydrogen
268 bonding, have the effect to spread the CH signals of the benzene ring in the 121-118 ppm range. The
269 loss of water molecules opens the spectral window from 123 to 117 ppm and shifts the amide
270 carbonyl to low frequencies by ~ 2 ppm. The chemical shifts of the dicationic metformin moieties, in
271 both tetrahydrate and anhydrate cocrystals of (H₂Mf)(HpOXA)₂, are the same as those observed in
272 the monocationic HMfCl, except that the value of the carbon atom in the C(NH₂)NMe₂ fragment is
273 shifted by ~ 2 ppm to high frequencies, in agreement with increased delocalization and positive
274 charge (vide supra). The analysis of the vibrational spectra and ¹³C-CPMAS NMR data of
275 H₂Mf(HpOXA)₂·4W and its anhydrate suggests that their structures, conformation and hydrogen
276 bonding schemes of both cocrystals are very similar between them, with the exception of those
277 regions formerly occupied by water molecules. Rehydration experiments performed on the
278 H₂Mf(HpOXA)₂ anhydrate, which reversibly rehydrates to the tetrahydrate, support these findings.

279

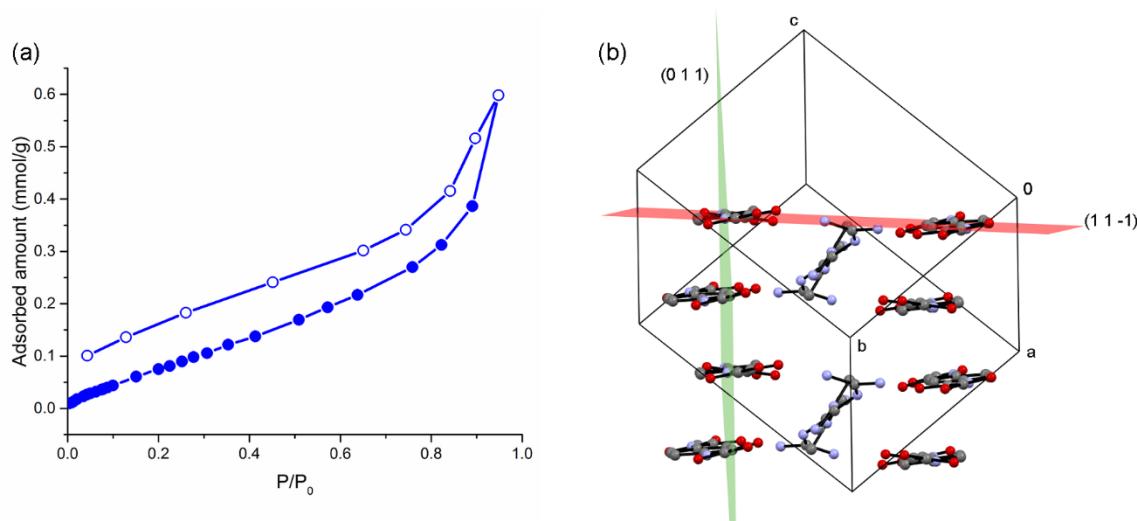

280

281

282

283
284**Table 5.** CPMAS and isotropic ^{13}C chemical shifts of H_2pOXA , HMfCl , $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ and $\text{H}_2\text{Mf}(\text{HpOXA})_2$.

Comp	C1	C2	C3	C8O	C9O	C52	C54	CH ₃
$\text{H}_2\text{pOXA}^{\text{a}}$	134.6	121.0	121.0	157.1	162.6			
HMfCl^{a}						158.9	159.6	37.9
HMfCl crystals						159	162	42, 40
$(\text{H}_2\text{Mf})(\text{HpOXA})_2\cdot 4\text{W}$	136 ^b	120	121 ^b	159 ^b	164 ^d	159	160	42, 40
	134, 132	118 ^c	120 ^c	155 ^b				
$(\text{H}_2\text{Mf})(\text{HpOXA})_2$	136	119, 118 ^b	123	157	164	159	160	42, 41
	134 ^c	117	120 ^c	154	163			


285 ^a in DMSO-d6 solution; ^b 2C; ^c 3C; ^d 4C

286

287
288**Figure 9.** ^{13}C -CPMAS (a) pristine HMfCl , (b) $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ cocrystal salt and (c) $\text{H}_2\text{Mf}(\text{HpOXA})_2$ microcrystalline powder.289
290
291
292
293
294
295
296
297
298
299
300
301

Rehydration experiments performed on the $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot$ anhydrate, which reversibly rehydrates to the tetrahydrate $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$, support the above findings. Furthermore, dehydration of $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$ can be associated with the role of water molecules in its crystal structure. As mentioned before, it occurred in two steps: one water molecule is lost at 65 °C followed by three more at 113 °C before decomposition. Judging by the number of hydrogen bonds and their strength, the water molecule labelled as W2 can be assigned to the first loss; it is forming strong hydrogen bonds with amide and metformin NH in the crystal as well as acting as a bridge between two HpOXA^- moieties of parallel chains, see Figure 5. Whereas, the water molecules labelled as W1, W3 and W4 form similar hydrogen bonds in number and nature as W2, but they are clustered together (*vide supra*) and therefore leaving the crystal lattice at higher temperature. The removal of all water molecules from the isolated pockets of $\text{H}_2\text{Mf}(\text{HpOXA})_2\cdot 4\text{W}$, results in a stable framework given by the ionic interactions of the H_2Mf^{2+} dication and two units of the HpOXA^- monoanion. This framework is stable and capable to rearrange in the presence of moisture, restoring the

302 microcrystalline lattice of the original tetrahydrate. A similar behavior has been observed in
 303 sitafloxacin hydrate [32]. The formation of microporous channels in the structure of $\text{H}_2\text{Mf}(\text{HpOXA})_2$
 304 was disregarded with a BET adsorption experiment, Figure 10(a), which resulted in type III
 305 isotherm, characteristic of mesoporous solids, with pore size of ~ 16 nm and surface area of $7.7 \text{ m}^2 \text{ g}^{-1}$.
 306 The formation of large pores is in agreement with the ordered water detach from the crystal
 307 structure, making available space along which water can diffuse in during rehydration. Thus, the
 308 main role of the water in the crystal lattice of $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ is proposed not only to
 309 compensate the excess of donors given by the metformin moiety, but also to provide the hydrogen
 310 bonding interactions to build the third dimension in the crystal lattice. The examination of the
 311 $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ crystal lattice allows us to propose that most of the original hydrogen bonding
 312 interactions as well as $n \rightarrow \pi^*$ charge-assisted interactions in the (0 1 1) plane are preserved after
 313 dehydration. Whereas the (1 1 -1) plane is weakened after water loss, to form the $\text{H}_2\text{Mf}(\text{HpOXA})_2$
 314 mesoporous solid phase, Figure 10(b).

315

316 **Figure 10.** (a) BET isotherm of $\text{H}_2\text{Mf}(\text{HpOXA})_2$, hollow squares for adsorption and solid circles for
 317 desorption. (b) View of the $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ planes, water molecules are omitted. The hydrogen
 318 bonding network is weakened in the (1 1 -1) plane, but hydrogen bonding and $n \rightarrow \pi^*$ charge-assisted
 319 interactions prevail in the (0 1 1) plane.

320 *3.4. The nature and structure of dicationic metformin in $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$ and $\text{H}_2\text{Mf}(\text{HpOXA})_2$ cocrystal
 321 salts.*

322 Metformin behaves as diprotic acid whose $\text{pK}_{\text{a}1}$ values are referred here as $\text{pK}_{\text{a}1}$ and $\text{pK}_{\text{a}2}$,
 323 corresponding to $\text{H}_2\text{Mf}^{2+}/\text{HMf}^+$ and HMf^+/Mf acid-base conversions, respectively. The reported pK_{a}
 324 values are spread over a wide range depending upon the experimental method of measurement [33].
 325 The $\text{pK}_{\text{a}1}$ and $\text{pK}_{\text{a}2}$ values are reported in between 0.7-3.1 and 11.5-15.3 intervals, respectively. The formation of the salt cocrystal $\text{H}_2\text{Mf}(\text{HpOXA})_2 \cdot 4\text{W}$, *vide supra*, is explained by the proton transfer
 326 from H_2pOXA , as the acid, to HMf^+ , as the base. The $\Delta\text{pK}_{\text{a}}$ rule establishes that ionized acid-base
 327 molecular complexes, in the solid phase, are observed exclusively for $\Delta\text{pK}_{\text{a}} > 4$ [34]. The $\Delta\text{pK}_{\text{a}}$ is the
 328 difference between the pK_{a} of the base and the pK_{a} of the acid. Therefore, the $\Delta\text{pK}_{\text{a}}$ rule lead us to
 329 estimate the $\text{pK}_{\text{a}1}$ value for the first deprotonation event of H_2pOXA in the -3.3 to -0.9 range,
 330 corresponding to a strong acid.

332 Furthermore, the protonation of the nitrogen bridge, in dicationic metformin, avoids the
 333 formation of the homodimer $R^2_2(8)$, raised by $\text{N}-\text{H} \cdots \text{N}$ interactions. This motif is frequently
 334 observed in the crystal structures of the monocationic metformin salts but absent in all dicationic
 335 known salts of metformin [6] including the tetrachlorocuprate [35]. Instead, a hydrogen bonding
 336 heterodimer $R^a_d(n)$ is formed in dicationic salts, with the participation of the anion group: $R^2_2(8)$ in
 337 the oxalic acid [29] and nitrate [36], $R^2_2(9)$ in squarate [37] and oxalamate monoacid (this work),

338 $R^{3_3}(12)$ motif in sulfate [29] and $R^{2_2}(16)$ in sulfonatocalix[4,5]arenes [38]. The conformation in the
 339 form of an S backbone and the strongest acid on the nitrogen bridge seems to favor the hetero- over
 340 the homo-association. At this point, it is worth to highlight the differences between
 341 metformin-carboxylate and metformin-oxalamate salts. The first forms the hydrogen bonding
 342 hetero-dimeric $R^{2_2}(8)$ motif, which has been found, in the crystal network of guanidinium-
 343 carboxylate synthons [9]. This dominant motif is absent in the oxalamate salt $H_2Mf(HpOXA)_2\cdot 4W$.
 344 Instead, the amide carbonyl of the $HpOXA^-$ moiety participates in the formation of the observed
 345 $R^{2_2}(9)$ motif and in the $n \rightarrow \pi^*$ charge-assisted interactions of mono-and bifacial type, herein
 346 described (see Table 2). Even weak in strength, the $n \rightarrow \pi^*$ interaction, also named as π -hole, has
 347 been found important for the stability of biomolecules and materials [39]. Because of the nature and
 348 bonding of the atoms involved, the carbonyl-guanidinium synthon $CO \cdots CN^+$, is similar to $CO \cdots CO$
 349 interactions [30], but charge assisted. This synthon as well as $H_2O \cdots CN^+$ synthon are present, even
 350 when not described in the original sources, in the crystal network of metformin dicationic salts of
 351 squarate and oxalate. The analogous synthon $SO \cdots CN$ was identified in the crystal network of the
 352 acesulfame [40] and also in sulfonatocalix[4,5]arene metformin dicationic salts, in this last in the
 353 bifacial fashion $SO \cdots CN^+ \cdots OS$. Selected geometric parameters are listed in Table 6, to support the
 354 above discussion.

355 **Table 6.** Geometric parameters of regular $O(\delta-) \cdots C(\delta+)$ and bifacial $O(\delta-) \cdots C(\delta+) \cdots O(\delta-)$ $n \rightarrow \pi^*$
 356 interactions reported in H_2MfA cocrystal salts (A = anion).

Cocrystal	$X-O \cdots C$	$XO \cdots C/\text{\AA}$	$X-O \cdots C/^\circ$	$O \cdots C \cdots O/^\circ$	$Me_2NCNC/^\circ$
$H_2Mf(HpOXA)_2$ (this work)	$CO \cdots C54$	3.142(3)	133.4(2)		148.8(2)
	$CO \cdots C54$	3.109(3)	131.8(2)	163.6(3)	
H_2Mf -squarate (1) ^a	$CO \cdots C$	3.212	148.0		-144.9
	$H_2O \cdots C$	3.156	167.5	136.3	
H_2Mf -squarate (2) ^a	$CO \cdots C$	2.988	87.9		143.3
	$CO \cdots C$	3.023	87.7		
H_2Mf -oxalate ^b	$CO \cdots C$	3.108	88.9		143.2
	$H_2O \cdots C$	3.152	158.3		
H_2Mf -sulfonatocalix[4,5]arenes ^c	$SO \cdots C$	2.938	132.2		41.4
	$SO \cdots C$	3.187	148.0	163.0	
H_2Mf -acesulfame ^d	$SO \cdots C$	3.130	128.1		141.6

357 ^a[37], ^b[29] ^c[38], ^d[40]

358 It has been revealed that the $n \rightarrow \pi^*$ interaction can modulate the overall structural motifs even
 359 in the presence of strong hydrogen bonding interactions [41]. The results herein described for
 360 recurrent $n \rightarrow \pi^*$ charge-assisted interactions of mono-and bifacial type, in dicationic metformin salts,
 361 support the existence of these interactions independently, and not just as a short contact imposed by
 362 the geometric constraint due to the hydrogen bonding patterns. This $O(\delta-) \cdots C(\delta+)$ and $O(\delta-) \cdots N^+$
 363 could be responsible of the interactions of metformin in biologic systems.

364 4. Conclusions

365 The $H_2Mf(HpOXA)_2\cdot 4W$ framework is given by ionic interactions of the H_2Mf^{2+} dication and
 366 two units of the $HpOXA^-$ monoanion. The inherent flexibility of both components is lost by the
 367 strong hydrogen bonding and $n \rightarrow \pi^*$ charge-assisted interactions between both moieties whereas the
 368 main role of the water molecules is to equilibrate the number of hydrogen acceptors in the crystal
 369 network. The vacant pockets left behind after water removal are preserved in the $H_2Mf(HpOXA)_2$
 370 anhydrate, whose crystal network is stable and capable to rearrange in the presence of moisture to
 371 restore the microcrystalline lattice of the original tetrahydrate under proper conditions.

372 The formation of the salt cocrystal $H_2Mf(HpOXA)_2\cdot 4W$ implies the proton transfer from
 373 H_2pOXA , as the acid, to HMf^+ , as the base. The first deprotonation event of H_2pOXA was estimated

374 in the -3.3 to -0.9 range, corresponding to a medium strength acid. The structure of metformin in the
375 1:2 cocrystal salt $H_2Mf(HpOXA)_2 \cdot 4W$ is very similar to that observed in the monohydrates of the two
376 other known dicationic 1:1 salts of formula $(H_2Mf)A \cdot H_2O$ (A = oxalate, sulfate). The conformation in
377 the form of an S backbone and the strongest acid on the nitrogen bridge seems to favor the hetero-
378 over the homo-association, therefore dicationic metformin is prone to hydrogen bonding with
379 anions to form hetero $R^{ad}(n)$ motifs. The *syn* conformation adopted by the
380 N,N' -(1,4-phenylene)dioxalamic acid is uncommon among organic cocrystals but only attained by
381 coordination to metals. The amide carbonyl of the $HpOXA^-$ moiety participates in the formation of
382 the observed $R^{22}(9)$ motif and in the $n \rightarrow \pi^*$ charge-assisted interactions of mono-and bifacial type.

383 **Author Contributions:** Conceptualization, I.I.P.-M. and F.J.M.-M.; methodology, S.C.-C., A.A.R.-O.; formal
384 analysis, S.C.-C. and E.V.G.-B.; writing—original draft preparation, S.C.-C., F.J.M.-M. and I.I.P.-M.;
385 writing—review and editing and funding acquisition, I.I.P.-M. All authors have read and agreed to the
386 published version of the manuscript.

387 **Funding:** This research was funded by CONACYT, grant number 255354 and Secretaría de Investigación
388 Posgrado del Instituto Politécnico Nacional, grant number 20170504.

389 **Acknowledgments:** This work was supported by CONACYT Grant 255354, SIP-IPN Grant 20170504 (Secretaría
390 de Investigación y Posgrado del Instituto Politécnico Nacional), CONACYT' "Red Tematica de Química
391 Supramolecular" Grant 271884. CGIC-UC (Coordinación General de Investigación Científica de la Universidad
392 de Colima) and PROMEP-SEP. S.C.-C. thanks CONACYT for fellowship and I.I.P.-M. thanks Dr. Susana
393 Rojas-Lima of UAEH for the access to the X-ray diffractometer.

394 **Conflicts of Interest:** The authors declare no competing financial interest.

395 **Orcid:**

396 Itzia I. Padilla-Martínez: 0000-0002-9645-2049

397 Efrén V. García-Báez: 0000-0003-0920-7385

398 Francisco J. Martínez-Martínez: 0000-0001-6951-9837

399 Sayuri Chong Canto: 0000-0001-5411-0748

400 Angel Ramos Organillo: 0000-0002-9690-608X

401 **References**

1. Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. *Drug Discovery Today* **2008**, *13*, 441-446.
2. Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A Survey of the Structures of US FDA Approved Combination Drugs. *J. Med. Chem.* **2019**, *62*, 4265-4311.
3. Bian, X.; Jiang, L.; Gan, Z.; Zhang, L.; Cai, L.; Hu, X. A Glimepiride-Metformin Multidrug Crystal: Synthesis, Crystal Structure Analysis, and Physicochemical Properties. *Molecules* **2019**, *24* 3786.
4. Bhatt, J.A.; Bahl, D.; Morris, K.; Stevens, L.L.; Haware, R.V. Structure-mechanics and improved tabling performance of the drug-drug cocrystal metformin-salicylic acid. *Eur J Pharm Biopharm* **2020**, *153*, 23-35.
5. Plata-Vargas, E.; de la Cruz-Hernández, C.; Dorazco-González, A.; Fuentes-Noriega, I.; Morales-Morales, D.; Germán-Acacio, J.M. Synthesis of Metforminium Succinate by Melting. Crystal Structure, Thermal, Spectroscopic and Dissolution Properties. *J. Mex. Chem. Soc.* **2017**, *61*, 197-204.
6. Kathuria, D.; Bankar, A.A.; Bharatam, P.V. What's in a structure? The story of biguanides. *Molecular Structure* **2018**, *1152*, 61-78.
7. Hariharan, M.; Rajan, S.S.; Srinivasan, R. Structure if metformin hydrochloride. *Acta Cryst.* **1989**, *C45*, 911-913.
8. Childs, S.L.; Chyall, L.J.; Dunlap, J.T.; Coates, D.A.; Stahly, B.C.; Stahly, G.P. A Metastable Polymorph of Metformin Hydrochloride: Isolation and Characterization Using Capillary Crystallization and Thermal Microscopy Techniques. *Cryst. Growth Des.* **2004**, *4*, 441-449.
9. Nanubolu, J.B.; Sridhar, B.; Ravikumar, K.; Sawant, K.D.; Naik, T.A.; Patkar, L.N.; Cherukuvada, S.; Sreedhar, B. Polymorphism in metformin embonate salt - recurrence of dimeric and tetrameric guanidinium-carboxylate synthons. *CrystEngComm* **2013**, *15*, 4448-4464.

423 10. González-González, J.S.; Martínez-Martínez, F.J.; García-Báez E.V.; Cruz, A.; Morín-Sánchez, L.M.;
424 Rojas-Lima, S.; Padilla-Martínez, I.I. Molecular Complexes of Diethyl N,N'-1,3-Phenyldioxalamate and
425 Resorcinols: Conformational Switching through Intramolecular Three-Centered Hydrogen-Bonding.
426 *Cryst. Growth Des.* **2014**, *14*, 628-642.

427 11. Hall, C.M.; Wright, J.B. Antiallergic phenylenedioxamic acids. *Ger. Offen.* **1974**, DE 2362409 A1 19740627.

428 12. Wright, J.B.; Hall, C.M.; Johnson, H.G.J. N,N'-(phenylene)dioxamic acids and their esters as antiallergy
429 agents. *Med. Chem.* **1978**, *21*, 930-935.

430 13. Petyunin, G.P. Synthesis and pharmacological activity of phenylenedioxamic acids.
431 *Khimiko-Farmatsevticheskii Zhurnal* **1986**, *20*, 827-830.

432 14. Oliveira, W.X.C.; Pinheiro, C.B.; da Costa, M.M.; Fontes, A.P.S.; Nunes, W.C.; Lloret, F.; Julve, M.; Pereira,
433 C.L.M. Crystal Engineering Applied to Modulate the Structure and Magnetic Properties of Oxamate
434 Complexes Containing the [Cu(bpc)]⁺ Cation. *Cryst. Growth Des.* **2016**, *16*, 4094-4107.

435 15. Lisnard, L.; Chamoreau, L.-M.; Li, Y.; Journaux, Y. Solvothermal Synthesis of Oxamate-Based Helicate:
436 Temperature Dependence of the Hydrogen Bond Structuring in the Solid. *Cryst. Growth Des.* **2012**, *12*,
437 4955-4962.

438 16. Ramírez-Milanés, E.G.; Martínez-Martínez, F.J.; Magaña-Vergara, N.E.; Rojas Lima, S.;
439 Avendaño-Jiménez, Y.A.; García-Báez, E.V.; Morín-Sánchez, L.M.; Padilla-Martínez, I.I. Positional
440 isomerism and steric effects in the self-assemblies of phenylene bis-monothiooxalamides. *Cryst. Growth
441 Des.* **2017**, *17*, 2513-2528.

442 17. Gómez-Castro, C.Z.; Padilla-Martínez, I.I.; García-Báez, E.V.; Castrejón-Flores, J.L.; Peraza-Campos, A.L.;
443 Martínez-Martínez, F.J. Solid state structure and solution thermodynamics of the three-centered hydrogen
444 bond (O···H···O) using N-(2-benzoylphenyl) oxaryl derivatives as model compounds. *Molecules* **2014**, *19*,
445 14446-14460.

446 18. Cabrera-Pérez, L.C.; García-Báez, E.V.; Franco-Hernández, M.O.; Martínez-Martínez, F.J.;
447 Padilla-Martínez, I.I. Carbonyl-carbonyl interactions and amide π -stacking as the directing motifs of the
448 supramolecular assembly of ethyl N-(2-acetylphenyl)-oxalamate in a synperiplanar conformation. *Acta
449 Cryst.* **2015**, *C71*, 381-385.

450 19. Martin, S.; Beitia, J.I.; Ugalde, M.; Vitoria, P.; Cortes, R. Diethyl N,N'-o-phenylenedioxamate. *Acta
451 Crystallographica, E: Structure Reports Online* **2002**, *58*, o913-o915.

452 20. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett,
453 G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steedk, J. W.;
454 Waddelli, D. C. Mechanochemistry: opportunities for new and cleaner synthesis. *Chem. Soc. Rev.* **2012**, *41*,
455 413-447.

456 21. CrysAlis PRO, Agilent Technologies: Yarnton, UK, **2012**.

457 22. Sheldrick, G.M. A short History of SHELX. *Acta Cryst.* **2007**, *A64*, 112-122.

458 23. Farrugia, L.J., WinGX and ORTEP for windows: An update. *J. Appl. Cryst.* **2012**, *45*, 849-854.

459 24. Spek, A.L., Structure validation in chemical crystallography. *Acta Cryst.* **2009**, *D65*, 148-155.

460 25. Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, V.;
461 Taylor, R.; van de Streek, J.; Wood, P.A., Mercury CSD 2.0 - New Features for the Visualization and
462 Investigation of Crystal Structures. *J. Appl. Cryst.* **2008**, *41*, 466-470.

463 26. Pardo, E.; Cangussu, D.; Lescouezec, R.; Journaux, Y.; Pasan, J.; Delgado, F.S.; Ruiz-Pérez, C.; Ruiz-García,
464 R.; Cano, J.; Julve, M.; Lloret, F., Molecular-Programmed Self-Assembly of Homo- and Heterometallic
465 Tetranuclear Coordination Compounds: Synthesis, Crystal Structures, and Magnetic Properties of
466 Rack-Type CuII2MII2 Complexes (M = Cu and Ni) with Tetranucleating Phenylenedioxamato Bridging
467 Ligands. *Inorganic Chemistry* **2009**, *48*, 4661-4673.

468 27. Devi, R.N.; Jelsch, C.; Israel, S.; Aubert, E.; Anzline, C.; Hosamani, A.A., Charge density analysis of
469 metformin chloride, a biguanide anti-hyperglycemic agent. *Acta Cryst.* **2017**, *B73*, 10-22.

470 28. Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R., Tables of bond lengths
471 determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. *J. Chem. Soc.,
472 Perkin Trans. 2* **1987**, *12*, S1-S19.

473 29. Lu, L.P.; Zhang, H.M.; Feng, S.S.; Zhu, M.L. Two N,N-dimethylbiguanidium salts displaying double
474 hydrogen bonds to the counter-ions. *Acta Cryst.* **2004**, *C60*, o740-o743.

475 30. Allen, F. H.; Baalham, C. A.; Lommersse, J. P. M.; Raithby, P. R. Carbonyl-Carbonyl Interactions can be
476 Competitive with Hydrogen Bonds. *Acta Cryst.* **1998**, *B54*, 320-329.

477 31. Kashid, S.M.; Sayan, B. Experimental Determination of the Electrostatic Nature of Carbonyl
478 Hydrogen-Bonding Interactions Using IR-NMR Correlations. *J. Phys. Chem. Lett.* **2014**, *5*, 3211–3215.

479 32. Suzuki, T.; Araki, T.; Kitaoka, H.; Terada, K. Characterization of Non-stoichiometric Hydration and the
480 Dehydration Behavior of Sitaflloxacin Hydrate. *Chem. Pharm. Bull.* **2012**, *60*, 45–55.

481 33. Langmaier, J.; Pižl, M.; Samec, Z.; Záliž, S. Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion
482 Transfer Voltammetry and DFT Calculations. *Journal of Physical Chemistry A* **2016**, *120*, 7344–7350.

483 34. Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. *CrystEngComm* **2012**, *14*, 6362–6365.

484 35. Lemoine, P.; Tomas, A. Tétrachlorocuprate(II) de metformine. *Acta Cryst.* **1994**, *C50*, 1437–1439.

485 36. Fridrichová, M.; Císařová, I.; Němec, I. 1,1-Dimethylbiguanidium(2+) dinitrate. *Acta Cryst.* **2012**, *E68*, o18–
486 o19.

487 37. Šerb, M.D.; Kalf, I.; Englert, U. Biguanide and squaric acid as pH-dependent building blocks in crystal
488 engineering. *CrystEngComm* **2014**, *16*, 10631–10639.

489 38. Guo, D.S.; Zhang, H.Q.; Ding, F.; Liu, Y. Thermodynamic origins of selective binding affinity between
490 *p*-sulfonatocalix[4,5]arenes with biguanidiniums. *Org. Biomol. Chem.* **2012**, *10*, 1527–1536.

491 39. Bauzá, A.; Mooibroek, T.J.; Frontera, A. The Bright Future of Unconventional s/p-Hole Interactions.
492 *ChemPhysChem* **2015**, *16*, 2496–2517.

493 40. Wang, C.; Hu, S.; Sun, C.C. Expedited development of a high dose orally disintegrating metformin tablet
494 enabled by sweet salt formation with acesulfame. *Int. J. Pharmaceutics* **2017**, *532*, 435–443.

495 41. Singh, S. K.; Das, A. The n- π^* interaction: a rapidly emerging non-covalent interaction. *Phys. Chem. Chem.
496 Phys.* **2015**, *17*, 9596–9612.

497