

1 Article

2 **Identification of elite rapeseed drought-tolerant  
3 germplasm and candidate genes in a natural  
4 population of 265 accessions**5 Ali Shahzad<sup>1,†</sup>, Minchao Qian<sup>1,†</sup>, Bangyang Sun<sup>1</sup>, Umer Mahmood<sup>1</sup>, Shengting Li<sup>1</sup>, Yonghai Fan<sup>1</sup>,  
6 Wei Chang<sup>1</sup>, Lishi Dai<sup>1</sup>, Hong Zhu<sup>1</sup>, Jiana Li<sup>1,2,3</sup>, Cunmin Qu<sup>1,2,3,\*</sup>, Kun Lu<sup>1,2,3,4,\*</sup>7 <sup>1</sup> College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.8 <sup>2</sup> Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.9 <sup>3</sup> Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing  
10 400715, China.11 <sup>4</sup> College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China12 <sup>†</sup> These authors contributed equally to this paper as first authors.13 <sup>\*</sup> Correspondence: drlukun@swu.edu.cn (K.L); Tel.: +86-23-6825-0744; Fax: +86-23-6825-126414 **Abstract:** Rapeseed (*Brassica napus*) is one of the most important oil crops in the world; however,  
15 drought significantly curtails its growth and productivity. Identifying drought-tolerant germplasm  
16 is an efficient and low-cost strategy for addressing water shortages. Using water loss ratio (WLR) as  
17 an index of drought tolerance, we screened a panel of 265 *B. napus* lines. We identified eight low-  
18 WLR and six high-WLR accessions, which were regarded as drought-tolerant and drought-sensitive,  
19 respectively. Further validated these selected accessions at the seedling stage under drought-stress  
20 conditions. The drought-tolerant accessions had significantly greater fresh and dry weights under  
21 drought stress than the drought sensitive accessions. Using RT-qPCR, we showed that a set of  
22 previously reported drought-adaptive marker genes were expressed at higher levels in the drought-  
23 tolerant lines than in the drought-sensitive lines. These results indicated that the drought-tolerant  
24 genotypes could be identified from natural populations using WLR. Then, we performed a genome-  
25 wide association study to identify loci harboring single nucleotide polymorphisms (SNPs). A total  
26 of 139 SNPs were significantly associated with the WLR, of which chromosome A10 harbored the  
27 largest number. Furthermore, four putative candidate genes were selected by combining the SNP-  
28 WLR association results and transcriptional expression data with the changes in drought tolerance.  
29 Thus, we have identified two drought-tolerant *B. napus* cultivars and uncovered genome-wide  
30 variation differentiating *B. napus* lines related to WLR, in addition to providing insights for further  
31 research into WLR-related drought mechanisms.32 **Keywords:** GWAS, drought, rapeseed, water loss ratio

33

34 **1. Introduction**

35 Drought stress is one of the most prevalent and limiting abiotic factors impacting plants in many  
 36 regions of the world, especially in arid and semiarid areas, where it acutely restricts plant distribution  
 37 and crop production [1]. Drought has many destructive effects on plants, from the cellular to whole-  
 38 organism level, impacting cell membrane stability, hormone metabolism, enzyme activity, stomatal  
 39 regulation, transpiration efficiency, and the growth of various plant tissues [2–4]. Plants have evolved  
 40 many molecular and biochemical adaptive strategies that allow them to withstand the deleterious  
 41 effects of drought stress by regulating their metabolism and physiology. These strategies involve  
 42 stress signal transduction networks, stress-responsive gene expression, elevated abscisic acid (ABA)  
 43 levels, altered stomatal physiology, and the increased accumulation of osmoprotectants and  
 44 antioxidants [5]. An elevated ABA level under drought stress induces several molecular and cellular  
 45 responses, such as triggering stomatal closure and upregulating the expression of stress-related genes,  
 46 which collectively reduce transpirational water loss [6,7].

47 Transpirational water loss through the stomata is a key indicator of the level of drought tolerance  
 48 for a particular plant [8,9]. As water loss conservation patterns are conferred by variations in stomatal  
 49 density [10], leaf-level water management processes in plants under well-watered conditions have  
 50 been proposed as a useful indicator of drought tolerance [11]. Drought stress induces ABA  
 51 biosynthesis, which stimulates the generation of H<sub>2</sub>O<sub>2</sub> in guard cells via NADPH oxidase. The  
 52 generated H<sub>2</sub>O<sub>2</sub> plays a key role in stomatal closure by activating the plasma membrane calcium  
 53 channels [12,13]. ABA-induced stomatal closure and the concomitant reduction in transpiration rate  
 54 are influenced by many genes, such as *translationally controlled tumor protein* (*AtTCTP*), the  
 55 overexpression of which confers drought tolerance by enhancing ABA-mediated stomatal closure via  
 56 an interaction with microtubules that is enhanced by calcium binding [14]. Moreover, overexpression  
 57 of *abscisic acid, stress and ripening 5* (*ASR5*) in rice (*Oryza sativa*) improved drought tolerance by  
 58 regulating leaf water status. In addition to promoting ABA biosynthesis and H<sub>2</sub>O<sub>2</sub> accumulation,  
 59 *ASR5* functions as chaperone-like protein that helps activate drought-related proteins [15].

60 Natural variation is a sustainable and beneficial source of genotypic and phenotypic diversity  
 61 within plant species, and can offer useful traits for breeding. Natural variation is mostly quantitative  
 62 and is delineated by molecular polymorphisms at multiple loci and genes (multigenic), which can be  
 63 described as quantitative trait loci (QTLs) and quantitative trait genes, respectively. Genome-wide  
 64 association studies (GWAS), based on genetic linkage disequilibrium, are an efficient approach for  
 65 detecting important QTLs or genes underlying complex trait variations in a natural population [16],  
 66 taking advantage of both natural variation and ancient recombination events [17]. GWAS have been  
 67 successfully used in many crops, including in rice, wheat (*Triticum aestivum*), and barley (*Hordeum  
 68 vulgare*), to dissect the complex genetic basis of drought tolerance [18–20]. Rapeseed (*Brassica napus*)  
 69 is a globally important source of vegetable oil, with 27.67 million metric tons produced worldwide  
 70 annually [21]. Drought stress results in a severe reduction of *B. napus* biomass and seed yield [22]. In  
 71 *B. napus*, various important genetic loci underlying different agronomic traits were identified using a  
 72 GWAS [23]; however, few investigations have explored drought tolerance QTLs in this crop [24,25].

73 In this study, we aimed to address this shortcoming by identifying drought-tolerant lines and  
 74 drought-tolerant QTLs related to the water loss ratio (WLR) trait in *B. napus*. We phenotyped a panel  
 75 of 265 *B. napus* lines at the full-bloom stage under normal conditions by measuring the water loss  
 76 ratio (WLR) of their detached leaves. As a low leaf WLR is associated with increased drought  
 77 tolerance of the plant [11], we selected a set of drought-tolerant and drought-sensitive lines on the  
 78 basis of WLRs and further validated their performances at the seedling stage under water-deficit

79 conditions. Furthermore, we performed a GWAS to uncover the genetic basis of WLR, and identified  
 80 candidate genes by combining SNP-WLR associations and transcriptional expression data. In  
 81 addition to identifying two drought-tolerant genotypes, we dissected the genetic structure of the  
 82 WLR trait and identified candidate genes associated with drought tolerance, laying the foundation  
 83 for improving WLR-associated drought tolerance in rapeseed.

84 **2. Materials and Methods**

85 *2.1 Plant Materials and Growth Conditions*

86 A total of 265 *B. napus* accessions from Zhejiang University, Zhejiang, China, were used in this  
 87 study. Detailed information about these lines can be found in a previous publication [26]. The detailed  
 88 field cultivation protocol for these *B. napus* accessions was described previously [27]. The association  
 89 panel was planted in an experimental field at Beibei, Chongqing, China (29° 45' N, 106° 22' E, 238.57  
 90 m above sea level) under natural conditions in 2019–2020. The seeds were sown in triplicate in a  
 91 randomized block design. Each plot contained three rows, with 10 plants per row, 20 cm between  
 92 plants within a row, and 30 cm between rows. Two replicates of each accession were phenotyped.

93 *2.2 WLR Measurement*

94 The WLR trait was investigated in the 265 accessions. The fifth fresh leaves above ground were  
 95 picked from stems at the full-bloom stage and then leaves were put on the shelf in a room with  
 96 temperature of about 25 °C. Leaves were weighed at 0, 24, and 48 h after being removed from the  
 97 plants. The WLR was calculated as follows: weight loss / initial leaf weight. A frequency distribution  
 98 plot was drawn to demonstrate the WLR phenotypic data using GraphPad Prism 8 (GraphPad, San  
 99 Diego, California, USA).

100 *2.3 Drought Treatment and Sampling*

101 To understand the relationship between the WLR trait and drought tolerance in *B. napus*, six  
 102 accessions with a relatively high WLR (HWLR) and eight with a relatively low WLR (LWLR) were  
 103 subjected to drought treatments. The seeds were germinated in the experimental field using a Jiffy  
 104 pellet (JIFFY, Pokemouche, Canada), and 10 to 15 seedlings at the five-leaf stage (four-week-old  
 105 seedlings) were subjected to rainfed (dry) treatment, with five seedlings per accession being well-  
 106 watered as a control. The treatment lasted for seven days, after which the soil moisture content  
 107 decreased to a physiological limit at which the plants were not viable. The third youngest leaves were  
 108 sampled throughout the treatment period and immediately frozen at -80°C for the verification of  
 109 gene expression. The fresh and dry weights of the aerial tissues were determined seven days after the  
 110 start of the drought treatment.

111 *2.4 RT-qPCR Validation of Marker Gene Expression*

112 To validate the performance of the selected 14 accessions in response to drought stress, two  
 113 relatively high-WLR accessions and two relatively low-WLR accessions (HWLR4, HWLR6, LWLR5,  
 114 and LWLR6) were selected for the verification of the expression patterns of four marker genes, which  
 115 were previously reported to specifically respond to drought [28,29]. The third youngest leaves were  
 116 sampled at four growth stages (0, 3, 4, and 7 days after the drought stress treatment) and analyzed  
 117 using RT-qPCR, which was performed as previously described [23]. The primer pairs are listed in

118 Table S1.

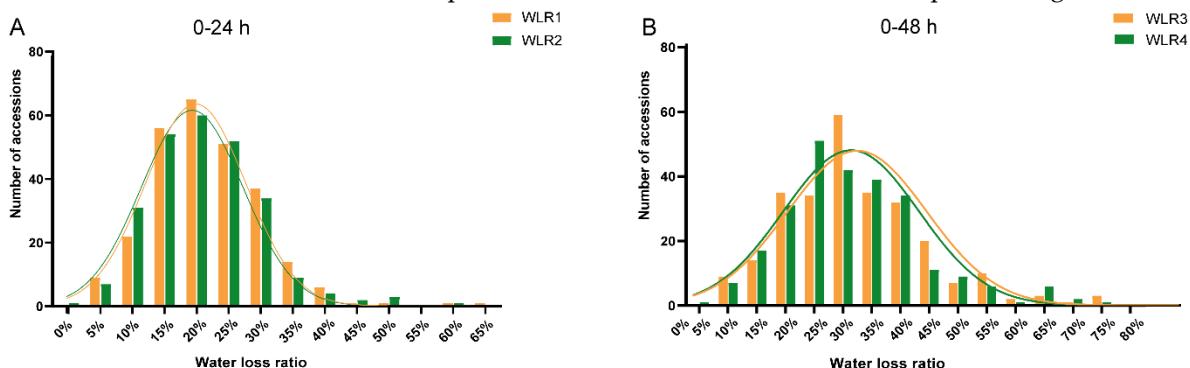
119 2.5 GWAS

120 The efficient mixed-model association expedited (EMMAX) cloud computing procedure  
 121 (<http://121.41.229.126:3838/gwas/>) was used to perform a GWAS. The WLR data from the panel of 265  
 122 accessions at 0–24 h and 0–48 h under normal conditions were imported into a Bna-GWAS-cloud  
 123 online pipeline, and the EMMAX model was chosen to perform the GWAS. The *p*-value of each SNP  
 124 was calculated;  $-\log_{10}(p\text{-value}) > 5$  was set as the suggestive threshold, and  $-\log_{10}(p\text{-value}) > 6$  was set  
 125 as the significant threshold to screen for significant SNP–WLR associations.

126 2.6 Identification and Validation of Candidate Genes

127 The 75-kbp flanking sequences upstream and downstream of the significant SNPs were  
 128 considered to be confidence intervals for the identification of the candidate genes responsible for the  
 129 WLR effect. To confirm the function of these candidate genes in maintaining the water content of the  
 130 leaves, their expression levels were quantified from the transcriptomes of 14 leaves at different  
 131 growth stages, using transcriptome data acquired from BrassicaEDB  
 132 (<https://biodb.swu.edu.cn/brassica/>). Genes with a FPKM (fragment per kilobase of transcript per  
 133 million mapped reads) of  $> 1$  were selected for further analysis. The expression levels of the candidate  
 134 genes under drought and heat treatments were also obtained from BrassicaEDB. The candidate genes  
 135 were then further verified among two LWLR and two HWLR accessions using RT-qPCR analysis,  
 136 which was performed across four timepoints using the same procedure as used for the marker gene  
 137 validation.

138 2.7 Statistical Analysis


139 Descriptive statistical analyses, normality tests, one-way analyses of variance (ANOVAs), and  
 140 correlation analyses were all performed in SPSS 20.0 (IBM, Armonk, New York, USA). The means,  
 141 standard deviations, minimum values, maximum values, and coefficients of variation were included  
 142 in the descriptive statistical analyses. Kolmogorov–Smirnova and Shapiro–Wilk analyses of the  
 143 phenotypic traits were performed for the normality tests. Student's *t*-tests were used to analyze  
 144 differences between the treatment and control conditions for each individual accession.

145 **3. Results**

146 3.1 Phenotypic Analysis of the WLR in a Natural Population

147 The WLR of leaves taken over two periods (0–24 h and 0–48 h) was investigated in a *B. napus*  
 148 population comprising 265 accessions. As expected, the WLR over 48 h was higher than it was over  
 149 24 h. Further, the WLR values followed the same trend across the two data sets, and were close to  
 150 normally distributed (Figure 1 and Table S2). The WLRs of individual accessions ranged from 4% to  
 151 63% (WLR data set 1; WLR1) and 2% to 62% (WLR2) in 0–24 h, while the WLRs for 0–48 h ranged  
 152 from 10% to 75% (WLR3) and 7% to 77% (WLR4) (Table 1). No significant differences were detected  
 153 using a one-way ANOVA, demonstrating the high level of similarity between biological repeats  
 154 (Tables 2 and S3). In addition, a clear positive correlation was observed between the WLR values in  
 155 the four data sets (WLR1, WLR2, WLR3, and WLR4) (Table 3); for example, the correlation coefficient  
 156 ( $r^2$ ) was 0.94 when comparing phenotypic values of WLR1 (0–24 h) and WLR3 (0–48 h), and 0.95 when

157 comparing the WLR2 (0–24 h) and WLR4 (0–48 h) data sets. Together, these results show that our  
 158 WLR data were characteristic of a quantitative trait, and thus suitable for performing a GWAS.



159

160 **Figure 1.** Frequency distribution of WLR in a 265-accession panel. The leaf water loss ratio during two  
 161 time periods (0–24 and 0–48 h after the onset of drought treatment) were measured for 265 accessions.

162

**Table 1. Statistical analysis of WLR in rapeseed**

| Trait | Mean $\pm$ SD      | Min   | Median | Max   | CV    |
|-------|--------------------|-------|--------|-------|-------|
| WLR1  | 21.52% $\pm$ 0.50% | 4.0%  | 21.07% | 63.0% | 0.80% |
| WLR2  | 21.17% $\pm$ 0.50% | 2.0%  | 20.46% | 62.0% | 0.80% |
| WLR3  | 32.06% $\pm$ 0.70% | 10.0% | 30.90% | 75.0% | 1.50% |
| WLR4  | 31.51% $\pm$ 0.70% | 7.0%  | 29.32% | 77.0% | 1.50% |

163 WLR1 and WLR2: two WLR replicates for the 0–24 h period. WLR3 and WLR4: two WLR replicates for the 0–  
 164 48 h period.

165

**Table 2. ANOVA of WLR in different replicates**

| Phenotypic data |                | Sum of squares | Degrees of freedom | Mean square | F     | Significance |
|-----------------|----------------|----------------|--------------------|-------------|-------|--------------|
| 0–24 h          | Between groups | 0.004          | 1                  | 0.004       | 0.529 | 0.467        |
|                 | Within groups  | 3.997          | 520                | 0.008       |       |              |
|                 | Total          | 4.002          | 521                |             |       |              |
| 0–48 h          | Between groups | 0.009          | 1                  | 0.009       | 0.604 | 0.437        |
|                 | Within groups  | 7.732          | 520                | 0.015       |       |              |
|                 | Total          | 7.741          | 521                |             |       |              |

166

167

168

169

170

171

172

173

174

175

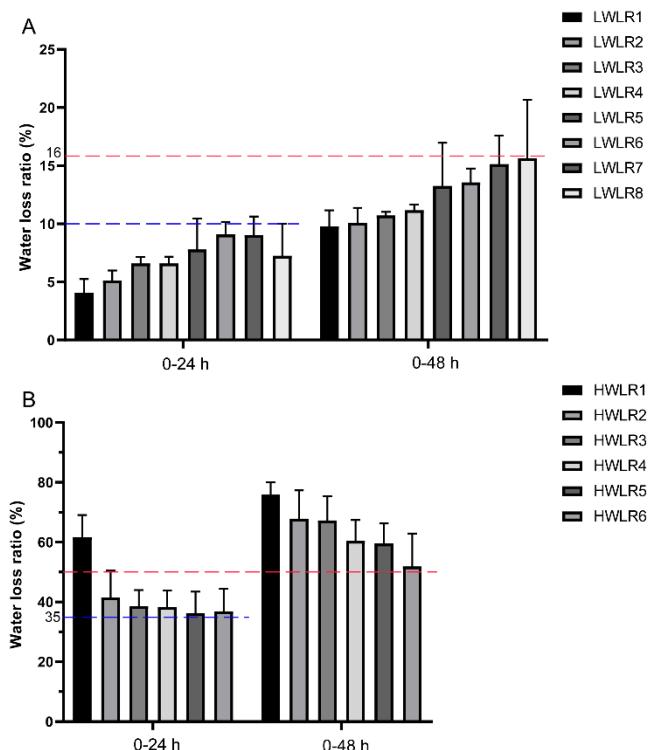
**Table 3.** Pearson correlation analysis of the four WLR data sets

|      |                           | WLR1    | WLR2    | WLR3    | WLR4    |
|------|---------------------------|---------|---------|---------|---------|
| WLR1 | Pearson correlation       | 1       | 0.222** | 0.941** | 0.216** |
|      | Significance (two-tailed) |         | 0       | 0       | 0       |
|      | Number of data points     | 264     | 258     | 264     | 258     |
| WLR2 | Pearson correlation       | 0.222** | 1       | 0.165** | 0.948** |
|      | Significance (two-tailed) | 0       |         | 0.008   | 0       |
|      | Number of data points     | 258     | 258     | 258     | 258     |
| WLR3 | Pearson correlation       | 0.941** | 0.165** | 1       | 0.176** |
|      | Significance (two-tailed) | 0       | 0.008   |         | 0.005   |
|      | Number of data points     | 264     | 258     | 264     | 258     |
| WLR4 | Pearson correlation       | 0.216** | 0.948** | 0.176** | 1       |
|      | Significance (two-tailed) | 0       | 0       | 0.005   |         |
|      | Number of data points     | 258     | 258     | 258     | 258     |

176

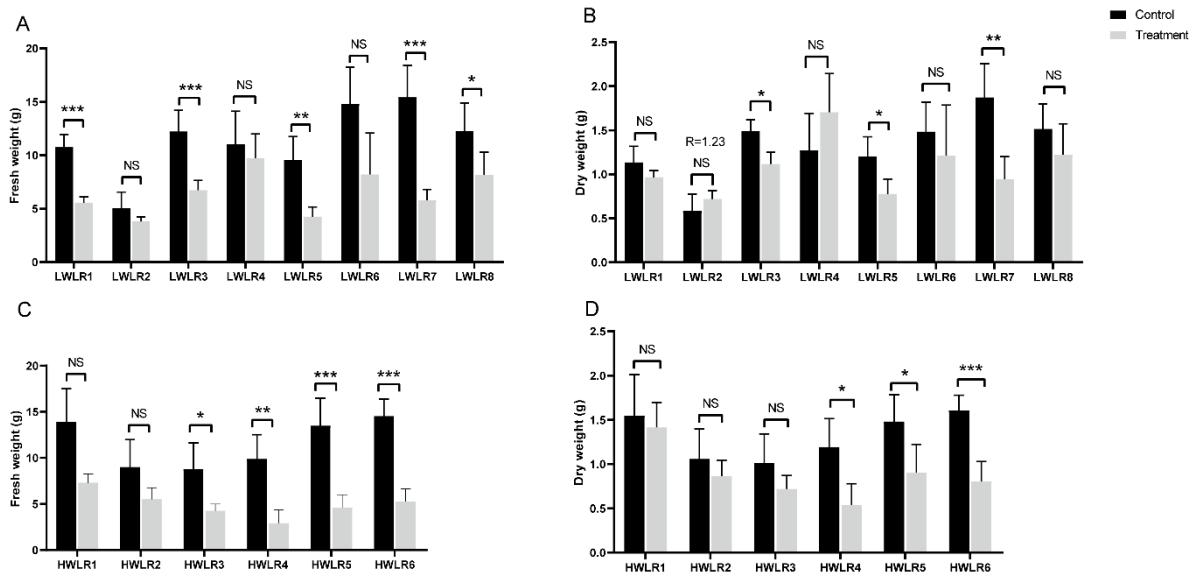
\*\*, *p*-value < 0.01.

177


178 *3.2 Identification of Drought-tolerant Germplasm*

179 To identify germplasm with a high tolerance to drought stress, we selected eight accessions with  
 180 a relatively low WLR (LWLR) and six with a relatively high WLR (HWLR) from the 265 accessions  
 181 (Table S4), and investigated their performance under drought stress. For 8 LWLR accessions, the WLR  
 182 of the LWLR leaves was less than 10% after 24 h and no more than 16% after 48 h (Figure 2A), which  
 183 implied that these cultivars were probably tolerant of drought stress due to their reduced evaporation  
 184 from the leaves. By contrast, the WLR of the excised HWLR leaves exceeded 35% after 24 h and over  
 185 50% after 48 h (Figure 2B), indicating that these varieties lose much more water than most of the  
 186 accessions comprising the association panel. Hence, these six HWLR accessions are likely to be  
 187 susceptible to drought or heat stress because of the rapid evaporation of water from their leaves.

188 Reduced water loss from leaves is a vital indicator that could reflect water-deficit tolerance when  
 189 plants are subjected to drought stress [30]. Here, we assume that the LWLR accessions are drought  
 190 tolerant and the HWLR accessions are drought susceptible. We subjected the LWLR and HWLR  
 191 accessions to drought stress at the seedling stage to examine their performance. After seven days  
 192 without watering, a variety of phenotypic changes could be observed in the HWLR and LWLR  
 193 accessions. Four of the eight LWLR accessions (LWLR2, LWLR4, and LWLR6) showed no or only  
 194 small differences in fresh weight between the drought-treated and well-watered plants (Figure 3A).


195 By contrast, only two of the six HWLR cultivars (HWLR1 and HWLR2) displayed no significant  
 196 difference in fresh weight between the drought-treated and well-watered plants (Figure 3C). This  
 197 result illustrated that cultivars with a low leaf WLR maintained their growth better than cultivars  
 198 with a relatively high leaf WLR under water-deficit conditions.

199 Five of the eight LWLR accessions (LWLR1, LWLR2, LWLR4, LWLR6, and LWLR8) displayed no  
 200 significant difference in dry weight between the treatment and control conditions (Figure 3B).  
 201 Interestingly, the dry weights of two LWLR accessions (LWLR2 and LWLR4) were higher in the  
 202 drought-stressed plants than the well-watered plants (but not statistically significant), indicating that  
 203 drought stress promoted the accumulation of dry matter in these two LWLR accessions. Three of the  
 204 six HWLR cultivars showed no apparent difference in the dry weights of the stressed and well-  
 205 watered plants, indicating that the HWLR accessions were able to accumulate dry matter when  
 206 subjected to drought stress (Figure 3D).



207

208 **Figure 2.** WLRs of 14 selected accessions at the flowering stage. Bars represent means  $\pm$  SD of three  
 209 samples of individual accessions. In A, the red dotted line indicates the maximum WLR value after  
 210 48 h, while the blue dotted line indicates the maximum WLR value after 24 h. By contrast, in B, the  
 211 red dotted line represents the minimum WLR value after 48 h, and the blue dotted line represents the  
 212 minimum WLR value after 24 h. LWLR: low-WLR accession; HWLR: high-WLR accession.



**Figure 3.** Fresh and dry weights of HWLR and LWLR accessions after seven days without watering. Bars represent means  $\pm$  SD of three to five samples of individual accessions. NS: no significant difference. \*,  $p < 0.05$ ; \*\* $p < 0.01$ ; \*\*\*,  $p < 0.001$ , Student's  $t$ -test.

213

214

215 3.3 Comparison of the Expression Patterns of Marker Genes Related to Drought Tolerance Between the

216 LWLR and HWLR Accessions

217 To further validate degrees of drought stress tolerance in the LWLR and HWLR accessions, we  
 218 assessed the expression patterns of four marker genes, previously shown to function in the response  
 219 to drought stress, in two HWLR accessions (HWLR4 and HWLR6) and two LWLR accessions (LWLR5  
 220 and LWLR6).

221 *Betaine aldehyde dehydrogenase (BADH)* is a member of the *Acetaldehyde dehydrogenase (ALDH)*  
 222 family, and catalyzes the conversion of betaine aldehyde to betaine under drought stress [31]. Betaine  
 223 is an important osmotic regulator in plants, and previous studies showed that overexpression of  
 224 *BADH* improves plant stress tolerance [32]. Here, we showed that *BADH* expression began to increase  
 225 by three days after the drought stress treatment in all four accessions; however, *BADH* expression  
 226 remained relatively low after seven days (Figure 4). This result indicated that *BADH* expression may  
 227 not correspond with the WLR values of extremely different accessions, and thus drought resistance  
 228 cannot be predicted from the *BADH* expression among the two pairs of accessions.

229 *Brassica turgor gene 26 (btg-26)* also belongs to the *ALDH* family and has been reported to be  
 230 induced rapidly by water loss from the leaves [28]. Here, we showed that, in LWLR4 and LWLR6, *btg-*  
 231 26 expression began to increase four days after the drought treatment and the expression further  
 232 escalated by seven days after the stress treatment (Figure 4A,B). In the two HWLR accessions, *btg-26*  
 233 expression was increased at three days after the drought treatment but declined the following day,  
 234 before becoming slightly elevated seven days after the onset of drought treatment (Figure 4C,D). The  
 235 rapid increase in *btg-26* expression in LWLR4 and LWLR6 indicated that this gene was involved in  
 236 the drought tolerance mechanism once the seedlings had become damaged.

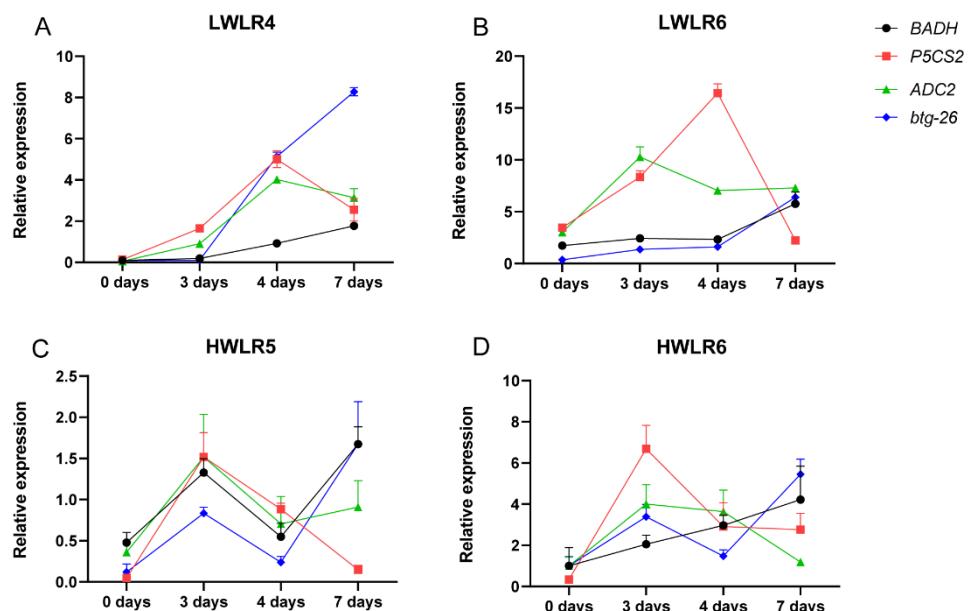
237 Proline is an important factor that confers osmotic stress tolerance to plants. *Delta 1-pyrroline-5-*  
 238 *carboxylate synthetase 2 (P5CS2)* encodes an enzyme with both gamma-glutamyl kinase and glutamic-  
 239 gamma-semialdehyde dehydrogenase activities, which catalyzes the first two steps in proline  
 240 biosynthesis [33]. Here, we showed that *P5CS2* expression began to rise three days after the onset of  
 241 drought treatment, peaked after four days, and fell after 7 days in both LWLR4 and LWLR6 (Figure

238

239

240

241


242

243

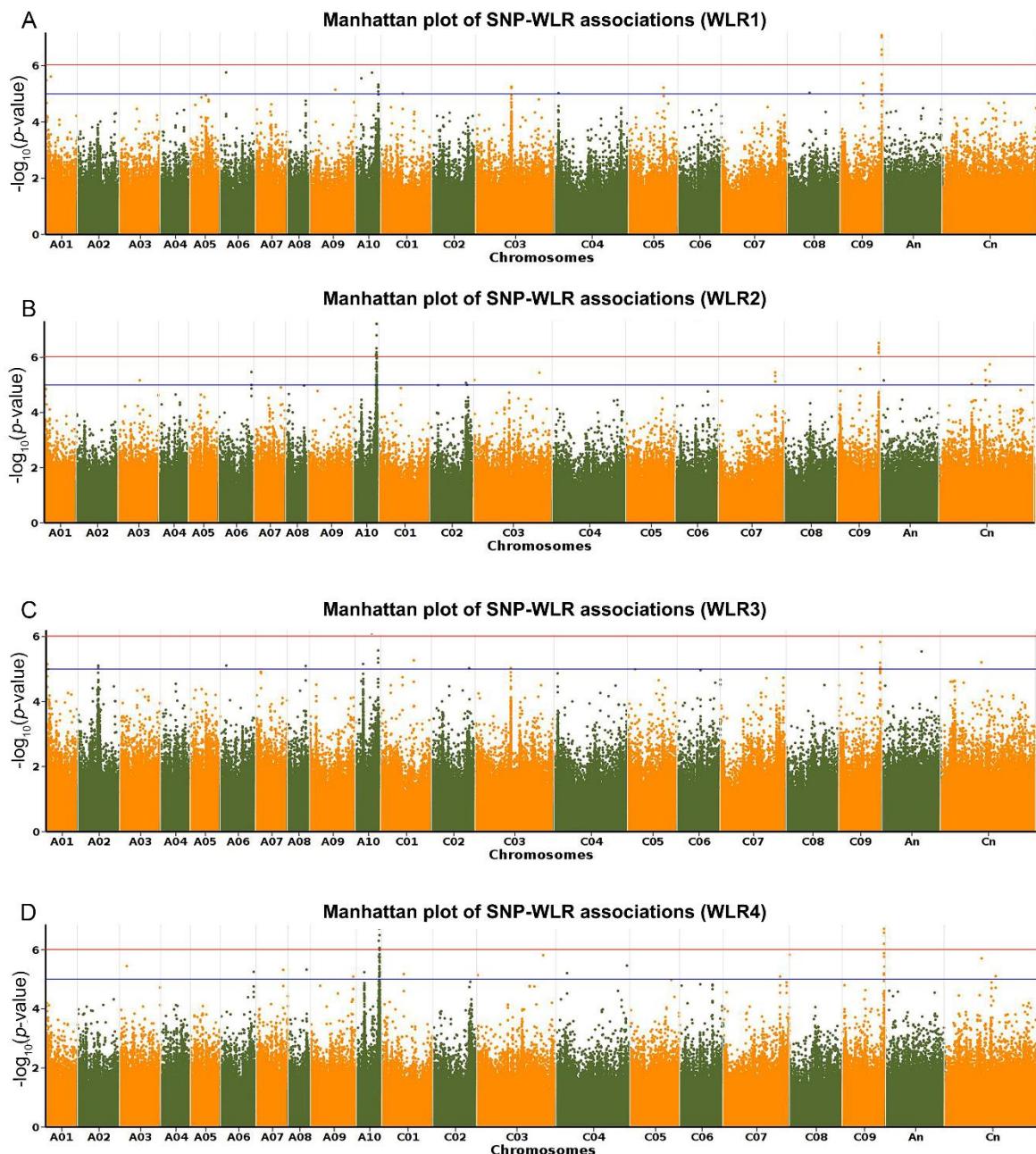
244 4A,B). In the HWLR5 and HWLR6 accessions, *P5CS2* expression also increased from three days after  
 245 the onset of the drought treatment, but declined from four days after the onset of the drought  
 246 treatment (Figure 4C,D). Therefore, proline could be biosynthesized more rapidly in LWLR4 and  
 247 LWLR6, enabling these plants to adjust their osmotic pressure in the seedlings to protect against the  
 248 water deficit.

249 In addition to proline and betaine, putrescine also plays an important role in the osmotic  
 250 adjustment process. In plants, arginine decarboxylase (ADC) is an essential compound in  
 251 biosynthesis of putrescine [34]. *ADC* expression was previously shown to be upregulated in *A.*  
 252 *thaliana* under drought stress, while the overexpression of *ADC* can effectively improve drought  
 253 resistance [35]. In our field experiment, *ADC* expression increased from three days after the start of  
 254 the stress treatment but dropped the following day in LWLR6, HWLR5, and HWLR6 (Figure 4B,C,D).  
 255 The *ADC* expression level remained relatively high at seven days after the treatment in LWLR4 in  
 256 comparison with the HWLR lines. In the LWLR6 accession, however, *ADC* expression was higher  
 257 than in the other accessions at three days after the onset of the drought stress treatment, and then  
 258 remained stable at a relatively high level from four to seven days after the start of treatment (Figure  
 259 4B). These findings suggest that putrescine accumulates to much higher levels in LWLR4 and LWLR6  
 260 than in the HWLR lines because the relatively high *ADC* expression levels lasted longer in the LWLR  
 261 accessions, which could assist the leaves in adjusting their osmotic pressure.

262 Thus, the marker genes showed better performance in the two LWLR accessions than in the two  
 263 HWLR accessions, which corresponds to the phenotypic traits of these lines under drought treatment.  
 264 This result indicated that WLR could be a useful indicator of drought-tolerant accessions.



265  
 266 **Figure 4.** Expression patterns of drought-tolerant marker genes in two LWLR accessions and two  
 267 HWLR accessions. The treatment panel was subjected to no watering and the control panel was well-  
 268 watered. Error bars indicate the standard deviation of three technical replicates. 0, 3, 4, 7 days indicate  
 269 the length of time after the onset of drought stress treatment. *BADH*, Betaine aldehyde dehydrogenase;  
 270 *P5CS2*, Delta 1-pyrroline-5-carboxylate synthetase; *ADC2*, Arginine decarboxylase; *btg-26*, *Brassica* turgor  
 271 gene 26.


272

273 3.4 Significant WLR-associated SNPs

274 To uncover SNPs with a significant association to the WLR trait and the quantitative loci  
275 associated with drought-stress tolerance, we performed a GWAS using EMMAX online software. A  
276 total of 78 SNPs associated with the WLR in the 0–24-h experiment ( $-\log_{10}(p\text{-value}) > 5$ ) were screened,  
277 and 7 SNP–WLR associations were found to be over the significance threshold ( $-\log_{10}(p\text{-value}) > 6$ ;  
278 Figure 5A,B; Table S5). These SNPs were unevenly distributed on chromosomes A01, A06, A03, A09,  
279 A10, C01, C02, C03, C04, C05, C07, C08, and C09, with more than half (41 of 78) located on  
280 chromosome A10. A total of 61 SNPs associated with the WLR in the 0–48-h experiment ( $-\log_{10}(p\text{-value}) > 5$ ) were identified, and 5 SNP–WLR associations over the significance level ( $-\log_{10}(p\text{-value}) > 6$ ) were identified (Figure 5C,D; Table S5). These SNPs were located on chromosomes A01, A02, A03,  
282 A06, A07, A08, A09, A10, C01, C02, C03, C04, C07, and C09, with almost half of them (26 of 61) also  
284 located on chromosome A10.

285 A total of 139 SNPs were above the suggestive threshold in both SNP–WLR association data sets,  
286 and 13 SNPs were above the significant threshold in both screens (Tables 4 and S5). A wide range of  
287 WLR-associated genetic loci were identified offering abundant basis for improving WLR-related  
288 agronomy trait.

289



290 **Figure 5.** SNPs associated with the WLR identified using the EMMAX model. Manhattan plot  
 291 displaying significant SNPs associated with the WLR trait that were identified by performing GWAS  
 292 using the EMMAX model. Error bars indicate the standard deviation of three technical replicates. The  
 293 blue horizontal line indicates  $-\log_{10}(p\text{-value}) > 5$  and the red horizontal line indicates  $-\log_{10}(p\text{-value}) >$   
 294 6. WLR1 and WLR2: two WLR replicates for the 0–24 h period. WLR3 and WLR4: two WLR replicates  
 295 for the 0–48 h period.

296

**Table 4.** Summary of SNPs significantly associated with WLR

| Phenotypic data | Chromosome | SNP location | $-\log_{10}(p\text{-value})$ | Candidate genes      | Orthologous gene in <i>Arabidopsis</i> | Literature |
|-----------------|------------|--------------|------------------------------|----------------------|----------------------------------------|------------|
| WLR1            | C09        | 46268738     | 6.58                         |                      |                                        |            |
|                 | A10        | 14518988     | 6.08                         |                      |                                        |            |
|                 |            |              |                              | <i>BnaA10g21040D</i> | AT5G11450                              | [51]       |
|                 | A10        | 14797339     | 6.12                         |                      |                                        |            |
|                 | A10        | 14863060     | 7.21                         | <i>BnaA10g21880D</i> | AT5G65360                              | [72]       |
| WLR2            |            | 14865349     | 6.33                         |                      |                                        |            |
|                 | A10        | 14967680     | 6.19                         |                      |                                        |            |
|                 | A10        | 15040248     | 6.08                         |                      |                                        |            |
|                 | A10        | 15046760     | 7.21                         |                      |                                        |            |
|                 | C09        | 46221003     | 6.19                         | <i>BnaC09g46240D</i> | AT5G44050                              | [67]       |
|                 |            |              |                              | <i>BnaC09g46300D</i> | AT5G10360                              | [59]       |
|                 | C09        | 46268778     | 6.38                         |                      |                                        |            |
| WLR3            | C09        | 46270880     | 6.3                          |                      |                                        |            |
|                 | A10        | 10510902     | 6.1                          |                      |                                        |            |
| WLR4            |            | 14518988     | 6.3                          |                      |                                        |            |
|                 |            |              |                              | <i>BnaA10g21040D</i> | AT5G11450                              | [51]       |
|                 | A10        | 14863060     | 6.72                         | <i>BnaA10g21880D</i> | AT5G65360                              | [72]       |
|                 | A10        | 14865349     | 6.75                         |                      |                                        |            |
|                 | A10        | 15043924     | 6.06                         |                      |                                        |            |
|                 | C09        | 46221003     | 6.2                          | <i>BnaC09g46240D</i> | AT5G44050                              | [67]       |
|                 |            |              |                              | <i>BnaC09g46300D</i> | AT5G10360                              | [59]       |
|                 | C09        | 46270880     | 6.71                         |                      |                                        |            |

297

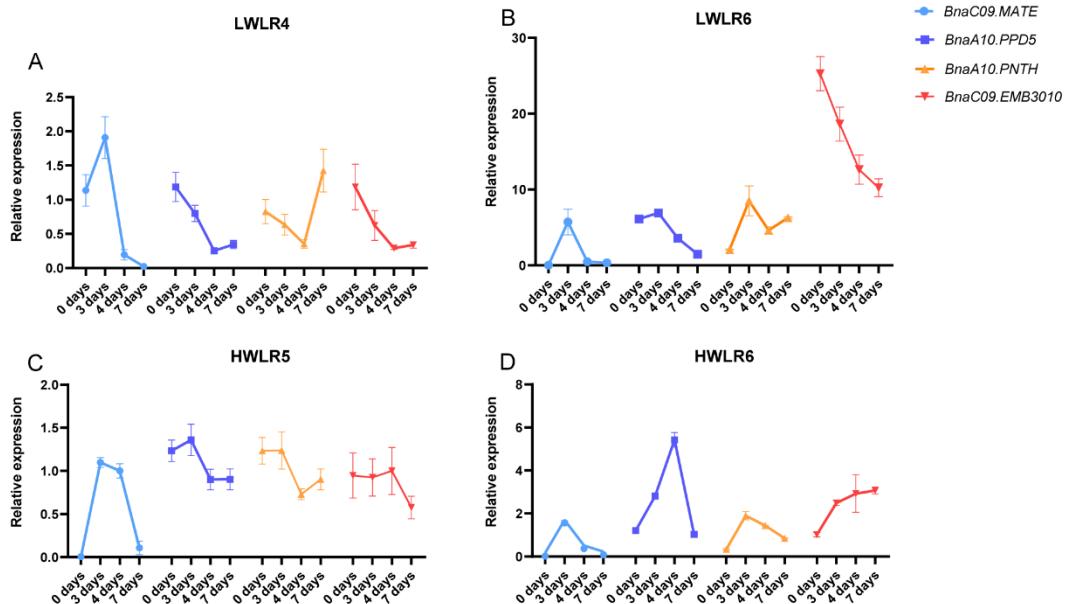
298

## 299 3.5 Identification and Validation of the Candidate Genes Associated with WLR

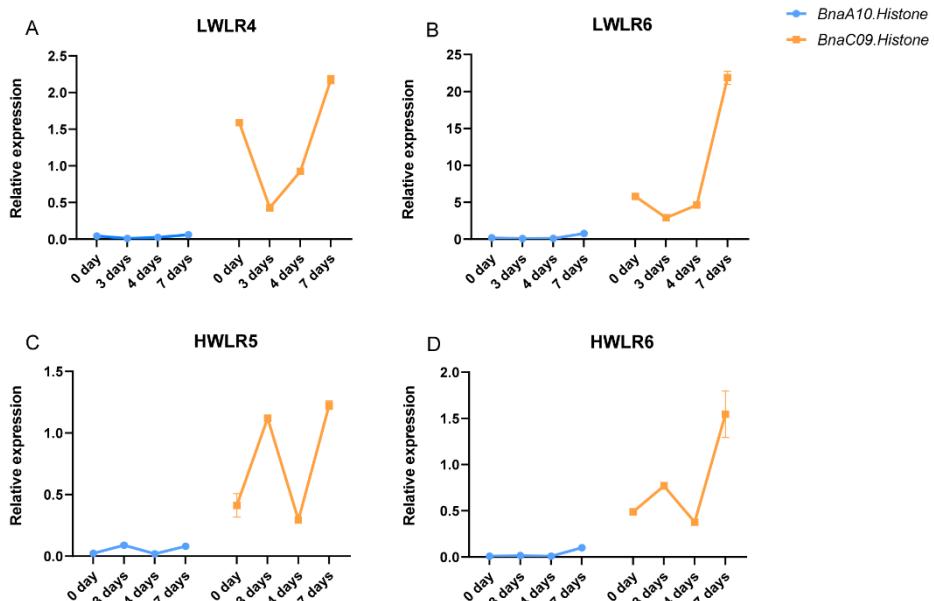
300 To identify the WLR-associated genes that may have an important role in improving plant  
 301 drought resistance, all the genes within the 75-kbp regions flanking each of the 13 SNPs  
 302 significantly associated with WLR were investigated. The expression patterns of the 180 genes  
 303 identified from the SNP-flanking regions were analyzed with the transcriptional expression  
 304 data from leaves of the 'ZS11' cultivar at 14 different growth stages, resulting in 36 genes with  
 305 a FPKM > 1 that were analyzed further (Figure S1). These 36 putative WLR genes were studied  
 306 in terms of their function in the response to drought stress. Using the BrassicaEDB database,  
 307 we established that four of the genes improved the capacity of drought resistance in Brassica  
 308 species, while two genes were negatively associated with drought stress (Table S6 and Figure  
 309 S2). These six genes were selected for further analysis.

310 To verify the function of the six putative candidate genes, we validated their expression  
 311 patterns in the two LWLR and two HWLR accessions across four timepoints (0, 3, 4, and 7 days  
 312 after the onset of the drought treatment) using RT-qPCR (Figures 6 and 7). The expression level  
 313 of *BnaC09.MATE* rose at three days after the start of the drought treatment in all four accessions,  
 314 but fell from four days post-drought stress, and was not detected at seven days after the start  
 315 of the drought treatment (Figure 6). The expression of *BnaA10.PPD5* was upregulated at three  
 316 days after the stress treatment started but declined the following day in LWLR6 and HWLR5.  
 317 By contrast, in HWLR6, *BnaA10.PPD5* expression increased until four days after the drought  
 318 treatment before declining at seven days after the treatment (Figure 6). These results indicate  
 319 that *BnaC09.MATE* and *BnaA10.PPD5* are induced early in the drought response and exhibit  
 320 peak expression levels for only one or two days, suggesting that they could provide early  
 321 protection against water scarcity.

322 The expression pattern of *BnaC09.EMB3010* in the two LWLR accessions clearly differed  
 323 from that in the two HWLR accessions. In LWLR4 and LWLR6, *BnaC09.EMB3010* expression  
 324 fell from a peak immediately after the drought treatment throughout the following seven days  
 325 (Figure 6A,B). In HWLR5, *BnaC09.EMB3010* expression was stable for the first four days after  
 326 the drought-stress treatment, decreasing slightly at seven days after the treatment (Figure 6C).  
 327 By contrast, *BnaC09.EMB3010* expression in HWLR6 rose continuously throughout the seven  
 328 days following the onset of drought treatment (Figure 6D). This phenomenon strongly suggests  
 329 that *BnaC09.EMB3010* was negatively regulated in the LWLR accessions following exposure to  
 330 drought stress, but either responded tardily or was positively regulated in the HWLR  
 331 accessions. *BnaC09.EMB3010* expression may therefore be closely related to drought tolerance.


332 The *BnaA10.PNTH* expression varied between the four accessions, implying that this gene  
 333 might respond to other stimuli and is therefore not a crucial candidate gene associated with  
 334 drought tolerance (Figure 6).

335 Similarly, the *BnaC09.Histone* expression pattern also showed an apparent difference  
 336 between the LWLR accessions and the HWLR accessions (Figure 7). In the two LWLR accessions,  
 337 *BnaC09.Histone* expression decreased at three days after the onset of drought treatment, but  
 338 subsequently increased. By contrast, *BnaC09.Histone* expression fluctuated for the first four  
 339 days after the onset of drought treatment then rose to peak at seven days after the onset of  
 340 treatment. These results demonstrated that *BnaC09.Histone* expression has a complex response


341 to drought stress, and that this gene may play an important role when *B. napus* is subjected to  
 342 severe water deficiency.

343 *BnaA10.Histone*, which is a homolog of *BnaC09.Histone*, is expressed at very low levels in  
 344 all four accessions, illustrating that it may not respond to drought stress in the selected  
 345 genotypes (Figure 7).

346 In summary, we identified four candidate genes (*BnaC09.EMB3010*, *BnaC09.MATE*,  
 347 *BnaA10.PPD5*, and *BnaC09.Histone*) that could confer drought tolerance to *B. napus* (Table 4).



348  
 349 **Figure 6.** Expression patterns of four drought-upregulated candidate genes in the LWLR and  
 350 HWLR accessions. Error bars indicate standard deviation of three technical replicates.



351  
 352 **Figure 7.** Expression patterns of two drought-downregulated candidate genes in the LWLR and  
 353 HWLR accessions. Error bars indicate the standard deviations of three technical replicates.

354

355 **4. Discussion**356 *4.1 WLR is a Useful Index for Screening Potential Drought-tolerant Cultivars*

357 Drought stress is a prevalent abiotic stress and causes severe reductions in crop yields [36,37].  
 358 *Brassica napus* is sensitive to water deficiency throughout its entire growth period [38], and breeders  
 359 have searched for drought-tolerant germplasm with the ability to withstand water deficiency in the  
 360 field. Drought-tolerant indices, such as water-use efficiency, drought susceptibility index, relative-  
 361 vigor index, and the leaf-wilting index (LWI), facilitate the efficient identification of drought-tolerant  
 362 accessions, and are widely used [39]. The LWI has a strong positive correlation with eight  
 363 physiological indicators, which are crucial aspects of the physiological trait response to drought stress  
 364 in *B. napus*. Four elite drought-tolerant *B. napus* accessions were identified using the LWI [40]. Due to  
 365 the importance of preserving leaf water in dehydration, many indicators that reflect the leaf water  
 366 loss have been employed to identify drought-tolerant species, such as the relative water content and  
 367 leaf water content [41,42]. Drought-tolerant plants tend to have a good ability to preserve water in  
 368 their leaves or ground cover, which can help the plants withstand drought conditions.

369 In our study, we used the leaf WLR as an indicator of drought tolerance to assess 265 accessions  
 370 collected from around the world. Eight accessions with relatively low WLRs and six with relatively  
 371 high WLRs were selected from this natural population and subjected to drought stress at the four-  
 372 week-old seedling stage to validate their tolerance of drought. After seven days of drought stress, the  
 373 eight LWLR accessions had higher fresh and dry weights than the six HWLR accessions. Three of the  
 374 eight LWLR accessions showed no significant differences in fresh weight between the treatment and  
 375 control groups, while five of the LWLR accessions showed no significant difference in dry weight  
 376 under the treatment and control conditions (Figure 3A, B). By contrast, two of the six HWLR cultivars  
 377 displayed no obvious difference in fresh weight between the drought-treated and control plants  
 378 (Figure 3C). In addition, three HWLR accessions exhibited no difference in dry weight when  
 379 subjected to drought stress (Figure 3D). Furthermore, four known drought-response genes were more  
 380 highly expressed in the two LWLR accessions than in the two HWLR accessions (Figure 4). Overall,  
 381 our results showed that the WLR can be used to identify drought-tolerant germplasms from a natural  
 382 population, and that it is therefore a useful physiological indicator for selecting for drought tolerance  
 383 during breeding.

384 *4.2 Identification of SNP–WLR Associations using GWAS*

385 The dehydration imposed by drought stress results in a severe reduction of the *B. napus* biomass  
 386 and seed yield [22]. Drought-tolerant cultivars have been selected in breeding programs over the past  
 387 few decades; however, conventional advances in the identification of drought-tolerant germplasm  
 388 have not been sufficient to meet the current demand for oilseed production. Dissecting drought-  
 389 tolerant QTLs and unraveling water deficit-responsive genes has thus become a new objective for  
 390 enhancing drought tolerance in *B. napus*.

391 In this study, we performed a GWAS to dissect the SNP–WLR associations. We identified 13  
 392 significant SNPs located on chromosomes A10 and C09 of the *B. napus* genome. In a previous study,  
 393 nine, eleven, and nine QTLs were respectively found to be associated with the drought-tolerant index,  
 394 shoot biomass accumulation, and flowering time under rainfed conditions [43]. Of these, three QTLs  
 395 were located on chromosome A10 and two on chromosome C09. One QTL responsible for shoot

396 biomass, 4108375, is located 21.4 kbp away from the Bna-A10-4948281 SNP site identified here, which  
 397 suggests that the QTLs of WLR and shoot biomass may partially overlap. Previously, the stress  
 398 tolerance index and stress susceptibility index were employed to identify the SNPs associated with  
 399 drought stress in *B. napus* using a GWAS [24]. In that study, 577 SNPs associated with the stress  
 400 tolerance index and the stress susceptibility index were screened, resulting in the identification of 17  
 401 SNPs located on chromosome A10 and 57 SNPs located on chromosome C09. None of these SNPs  
 402 were found to overlap with those identified in the present study. The SNP loci identified here could  
 403 therefore enhance our understanding of the genetic mechanisms underpinning drought tolerance in  
 404 *B. napus*, but further validation of these data is needed.

405 *4.3 Candidate Genes Contributing to Stomatal Closure via the ABA-dependent or ABA-independent*  
 406 *Drought-response Pathways*

407 Plants must regulate their stomatal opening in response to stress because, besides from allowing  
 408 CO<sub>2</sub> into leaf cells, open stomata facilitate rapid water loss; thus, the reduction in water loss through  
 409 stomatal closure is a critical physiological response of plants to drought stress [44,45]. Chloroplasts  
 410 are considered to be an important intracellular site for abiotic stress responses in plants, since a  
 411 significant amount of reactive oxygen species (ROS) are produced in these organelles [46]. ROS and  
 412 ABA are signaling molecules that can mediate stomatal closure under stress conditions such as  
 413 drought [47]. The ABA signaling pathway involves three core components: the intracellular ABA  
 414 receptors (PYLs), type-2C protein phosphatases (PP2Cs), and SNF1-related protein kinase 2 (SnRK<sub>2</sub>)  
 415 [48]. ABA interacts with an intracellular PYL receptor, resulting in the inhibition of PP2C activity and  
 416 the depression of SnRK2s to activate the downstream proteins that mediate stomatal closure and  
 417 other ABA responses [49]. OST1 is one of the SnRK2s that is stimulated by ABA, and controls stomatal  
 418 movement by phosphorylating various substrates [50]. Here, we reported that a candidate gene,  
 419 *BnaA10g21040D*, which encodes an ortholog of *A. thaliana* PPD5, displays different expression  
 420 patterns in the drought-tolerant and drought-sensitive *B. napus* lines under drought stress, with a  
 421 significant downregulation observed in the drought-tolerant lines. Hong et al. [51] observed that  
 422 PPD5 in *A. thaliana* negatively regulates drought resistance by modulating H<sub>2</sub>O<sub>2</sub> accumulation in the  
 423 guard cells via an OST1-dependent pathway. The *ppd5* mutants had improved H<sub>2</sub>O<sub>2</sub> accumulation in  
 424 the guard cells and enhanced stomatal closure under drought stress. PPD5 possesses a PsbP domain,  
 425 N-terminal transit peptide domain for plastid localization, and a C-terminal domain. OST1 functions  
 426 near the chloroplast (potentially the cytoplasmic side of the chloroplast membrane) to phosphorylate  
 427 PPD5 at the C-terminal domain and increase its protein stability [51]. Protein phosphorylation in the  
 428 chloroplast rather than the regulation of the photosynthetic light reaction was also suggested to be  
 429 the strategy by which the chloroplast enables plants to withstand environmental stresses [52]. OST1-  
 430 mediated PPD5 phosphorylation could be a stress acclimation mechanism by which the drought  
 431 stress signals are transduced into chloroplast actions for stomatal regulation. The stronger interaction  
 432 of the phosphorylated PPD5 with OST1 may sequestrate OST1 in the chloroplast membrane [51], thus  
 433 preventing it from phosphorylating its other substrates, including the plasma membrane-localized  
 434 RbohF (NADPH oxidase), which leads to the production of apoplastic O<sub>2</sub><sup>-</sup> and H<sub>2</sub>O<sub>2</sub> [53]. The higher  
 435 accumulation of ABA in *ppd5* mutants under drought conditions suggests that PPD5 may be involved  
 436 in regulating ABA metabolism [51]; however, further experiments are required to investigate this role.

437 The other three candidate genes we identified encode a ribosomal protein (RP), a multidrug and  
 438 toxic compound extrusion (MATE) protein, and a histone superfamily protein, respectively. RPs are  
 439 involved in many crucial functions, including ribosome assembly, protein translation, and other basic

440 cellular functions that significantly affect cellular energy homeostasis [54]. The role of RPs in plants  
 441 has also been studied in the response to environmental stresses [55]. RPs comprise two subunit  
 442 proteins, known as small (RPS) and large subunit (RPL) proteins. RIBOSOMAL PROTEIN SMALL  
 443 SUBUNIT 6 (RPS6) is located in the 40S subunit of cytosolic ribosomes, and is the main target of the  
 444 TOR signaling pathway. Under favorable conditions, TOR promotes the activation of RIBOSOMAL  
 445 S6 KINASE (S6K), which phosphorylates RPS6 [56]. Various environmental stimuli affect the  
 446 phosphoprotein RPS6; for example, heat shock and oxygen deprivation promote the  
 447 dephosphorylation of RPS6 [57,58]. Under unfavorable conditions, ABA induces the SnRKs, which  
 448 inactivate the TOR kinase and ultimately reduce RPS6 phosphorylation [56]. Cell size reduction,  
 449 delayed growth, and delayed flowering were observed in the *Arabidopsis rps6* mutant [59]. In the  
 450 current study, the expression level of *RPS6B*, also referred to as *EMB3010*, a putative *B. napus*  
 451 homolog of one of the two *Arabidopsis RPS6* paralogs, was reduced in the drought-tolerant lines under  
 452 drought stress.

453 MATE transporter proteins, also called detoxification efflux carriers (DTX), are involved in the  
 454 metabolism of the toxic compounds and organic acids. Topologically, MATE transporters contain 12  
 455 transmembrane helices arranged in two bundles, with long C- and N-terminal extensions [60,61].  
 456 MATE proteins generally exist in two conformations, straight or bent, which are determined by the  
 457 protonation state of the acidic residues [62]. Hydrophobic residues are often found surrounding the  
 458 substrate-binding cavity, and might provide the appropriate level of affinity for the association and  
 459 dissociation of a substrate [63]. Different MATE transporters were reported to play a role in drought  
 460 tolerance by regulating stomatal closure through different pathways, including AtDTX56 [64],  
 461 AtDTX33, AtDTX35 [65], and AtDTX50. Mutation of *DTX50* promotes the accumulation of ABA in the  
 462 guard cells, resulting in rapid stomatal closure [66]. AtDTX28 is a putative flavonol transporter [67];  
 463 a role for flavonols in suppressing H<sub>2</sub>O<sub>2</sub> accumulation and stomatal closure has been explored.  
 464 Ethylene-induced accumulation of flavonols in guard cells suppressed ROS accumulation and  
 465 reduced ABA-dependent stomatal closure [68].

466 Gene expression is influenced by chromatin structure, which is controlled by processes often  
 467 linked with epigenetic regulation, including DNA methylation and post-translational histone  
 468 modifications [69]. Histone proteins are modified through N-terminal tails after translation and these  
 469 modifications delineate the gene expression level by altering the strength of DNA histone interaction  
 470 or recruitment of non-histone proteins. Drought-induced regulation of gene expression is linked with  
 471 alterations in histone modification pattern [70,71]. In our current study, we detected variations in  
 472 expression pattern of histone family protein under drought stress. Further investigation is required  
 473 to identify the specific roles of this protein in the plant's response to drought.

474 Despite these advances, no study has directly addressed the roles of these RPs, MATE protein,  
 475 and histone superfamily protein in drought stress. In the current study, a preliminary RT-qPCR  
 476 validation was performed; however, future studies should further validate the roles of these  
 477 candidate genes and explore their functions in the drought stress response. Overall, this research  
 478 provides a valuable source for the study of a drought tolerance mechanism related to the WLR trait  
 479 in *B. napus*. The detected SNP loci and candidate genes will be useful for future investigations of  
 480 drought tolerance in rapeseed. Furthermore, an integrative approach using WLR as a drought  
 481 tolerance index appears to be a viable strategy for detecting drought-tolerant germplasm.

482  
 483  
 484  
 485

486 **Supplementary Materials:**

487 Supplementary materials can be found at [www.mdpi.com/xxx/s1](http://www.mdpi.com/xxx/s1). Table S1: Primer pairs of drought-tolerant  
488 maker genes for RT-qPCR analysis; Table S2: Normal distribution test of four WLR data sets; Table S3: Variance  
489 homogeneity test of two time period WLR data; Table S4: Information of 14 selected accessions for drought stress  
490 treatment; Table S5: Summary of SNPs significant associated with WLR trait; Table S6: Transcriptional  
491 expression data of 4 candidate genes in drought stress treatment; Figure S1: Transcriptional expression of 36  
492 genes screened by combining GWAS results and transcriptome profile; Figure S2 Transcriptional expression of six  
493 putative candidate gene under drought treatment.

494 **Author Contributions:**

495 K.L. and C.Q. conceived the experiments and methodology; A.S., M.Q., B.S., U.M., S.T. and Y.H. performed the  
496 experiments, measurements and analyses; W.C., L.D. and H.Z. curated and analyzed the data; A.S., M.Q. and  
497 K.L. wrote the manuscript draft; J.L. and C.Q. reviewed, edited and completed the manuscript; K.L. supervised  
498 the whole work. All authors have read and agreed to the published version of the manuscript.

499 **Funding:**

500 This work was supported by grants from the National Key Research and Development Plan (2018YFD0100500),  
501 the National Natural Science Foundation of China (31871653), the Fundamental Research Funds for the Central  
502 Universities (XDKJ2020D023), the Chongqing Postgraduate Research and Innovation Projects (CYS20124), the  
503 Natural Science Foundation of Chongqing, China (cstc2018jcyjAX0347), the 111 project (B12006).

504 **Acknowledgments:**

505 The authors are grateful to LiXi Jiang lab from College of Agriculture and Biotechnology, Zhejiang University,  
506 China.

507 **Conflicts of Interest:** The authors declare that they have no competing interests for this research.

508

509

510 **References**

- 511 1. Zhu, J.K. Salt and drought stress signal transduction in plants. *Annu. Rev. Plant Biol.* **2002**, *53*, 247-  
512 273. <https://doi.org/10.1146/annurev.arplant.53.091401.143329>
- 513 2. Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: prospects  
514 for water-saving agriculture. *J. Exp. Bot.* **2004**, *55*, 2365-2384. <https://doi.org/10.1093/jxb/erh269>
- 515 3. ElBasyoni, I.; Saadalla, M.; Baenziger, S.; Bockelman, H.; Morsy, S. Cell membrane stability and  
516 association mapping for drought and heat tolerance in a worldwide wheat collection. *Sustainability*  
517 **2017**, *9*, 1606. <https://doi.org/10.3390/su9091606>
- 518 4. Ouyang, W.; Struik, P.C.; Yin, X.; Yang, J. Stomatal conductance, mesophyll conductance, and  
519 transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. *J.*  
520 *Exp. Bot.* **2017**, *68*, 5191-5205. <https://doi.org/10.1093/jxb/erx314>
- 521 5. Singh, P.K.; Srivastava, D.; Tiwari, P.; Tiwari, M.; Verma, G.; Chakrabarty, D. Drought tolerance in  
522 plants: molecular mechanism and regulation of signaling molecules. In *Plant Signaling Molecules*.  
523 Woodhead Publishing, 2019; pp. 105-123. <https://doi.org/10.1016/B978-0-12-816451-8.00006-X>
- 524 6. Daszkowska-Golec, A.; Szarejko, I. Open or close the gate-stomata action under the control of  
525 phytohormones in drought stress conditions. *Front. Plant Sci.* **2013**, *4*, 138.  
526 <https://doi.org/10.3389/fpls.2013.00013>
- 527 7. Lee, S.C.; Luan, S. ABA signal transduction at the crossroad of biotic and abiotic stress responses.  
528 *Plant Cell Environ.* **2012**, *35*, 53-60. <https://doi.org/10.1111/j.1365-3040.2011.02426.x>
- 529 8. Lake, J.A.; Woodward, F.I. Response of stomatal numbers to CO<sub>2</sub> and humidity: control by  
530 transpiration rate and abscisic acid. *New Phytol.* **2008**, *179*, 397-404. <https://doi.org/10.1111/j.1469-8137.2008.02485.x>
- 532 9. Xiong, L.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. *Plant Cell*  
533 **2002**, *14*, S165-S183. <https://doi.org/10.1105/tpc.000596>
- 534 10. Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.;  
535 Chater, C.C.; Coe, R.A.; et al. Rice with reduced stomatal density conserves water and has improved  
536 drought tolerance under future climate conditions. *New Phytol.* **2019**, *221*, 371-384.  
537 <https://doi.org/10.1111/nph.15344>
- 538 11. Kholová, J.; Hash, C.T.; Kakkera, A.; Kočová, M.; Vadez, V. Constitutive water-conserving  
539 mechanisms are correlated with the terminal drought tolerance of pearl millet [*Pennisetum glaucum*  
540 (L.) R. Br.]. *J. Exp. Bot.* **2010**, *61*, 369-377. <https://doi.org/10.1093/jxb/erp314>
- 541 12. Wang, P.; Song, C.P. Guard-cell signalling for hydrogen peroxide and abscisic acid. *New Phytol.* **2008**,  
542 *178*, 703-718. <https://doi.org/10.1111/j.1469-8137.2008.02431.x>
- 543 13. Zhang, X.; Zhang, L.; Dong, F.; Gao, J.; Galbraith, D.W.; Song, C.P. Hydrogen peroxide is involved  
544 in abscisic acid-induced stomatal closure in *Vicia faba*. *Plant Physiol.* **2001**, *126*, 1438-1448.  
545 <https://doi.org/10.1104/pp.126.4.1438>
- 546 14. Kim, Y.M.; Han, Y.J.; Hwang, O.J.; Lee, S.S.; Shin, A.Y.; Kim, S.Y.; Kim, J.I. Overexpression of  
547 Arabidopsis translationally controlled tumor protein gene *AtTCTP* enhances drought tolerance with  
548 rapid ABA-induced stomatal closure. *Mol. Cells* **2012**, *33*, 617-626. <https://doi.org/10.1007/s10059-012-0080-8>
- 550 15. Li, J.; Li, Y.; Yin, Z.; Jiang, J.; Zhang, M.; Guo, X.; Ye, Z.; Zhao, Y.; Xiong, H.; Zhang, Z.; et al. OsASR5  
551 enhances drought tolerance through a stomatal closure pathway associated with ABA and H<sub>2</sub>O<sub>2</sub>  
552 signalling in rice. *Plant Biotechnol. J.* **2017**, *15*, 183-196. <https://doi.org/10.1111/pbi.12601>
- 553 16. Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. *Annu.*

554 554      *Rev. Plant Biol.* **2014**, *65*, 531-551. <https://doi.org/10.1146/annurev-arplant-050213-035715>

555 555      17. Nordborg, M.; Weigel, D. Next-generation genetics in plants. *Nature* **2008**, *456*, 720-723. <https://doi.org/10.1038/nature07629>

556 556      18. Guo, Z.; Yang, W.; Chang, Y.; Ma, X.; Tu, H.; Xiong, F.; Jiang, N.; Feng, H.; Huang, C.; Yang, P.; et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. *Mol. Plant* **2018**, *11*, 789-805. <https://doi.org/10.1016/j.molp.2018.03.018>

557 557      19. Lin, Y.; Yi, X.; Tang, S.; Chen, W.; Wu, F.; Yang, X.; Jiang, X.; Shi, H.; Ma, J.; Chen, G.; et al. Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. *Plant Genome* **2019**, *12*, 1-14. <https://doi.org/10.3835/plantgenome2019.03.0025>

558 558      20. Pham, A.T.; Maurer, A.; Pillen, K.; Brien, C.; Dowling, K.; Berger, B.; Eglinton, J.K.; March, T.J. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. *BMC Plant Biol.* **2019**, *19*, 134. <https://doi.org/10.1186/s12870-019-1723-0>

559 559      21. USDA, FAS. Oilseeds: World Markets and Trade (Foreign Agricultural Service/USDA). 2020. Available from: <https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf> (accessed on 19 August 2020).

560 560      22. Sinaki, J.M.; Heravan, E.M.; Rad, A.S.; Noormohammadi, G. H.; Zarei, G.H. The effects of water deficit during growth stages of canola (*Brassica napus* L.). *Am. Eurasian J. Agric. Environ. Sci.* **2007**, *2*, 417-422.

561 561      23. Xiao, Z.; Zhang, C.; Tang, F.; Yang, B.; Zhang, L.; Liu, J.; Huo, Q.; Wang, S.; Li, S.; Wei, L.; et al. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop *Brassica napus*. *Biotechnol. Biofuels* **2019**, *12*, 216. <https://doi.org/10.1186/s13068-019-1557-x>

562 562      24. Khanzada, H.; Wassan, G.M.; He, H.; Mason, A.S.; Keerio, A.A.; Khanzada, S.; Faheem, M.; Solangi, A.M.; Zhou, Q.; Fu, D.; et al. Differentially evolved drought stress indices determine the genetic variation of *Brassica napus* at seedling traits by genome-wide association mapping. *J. Adv. Res.* **2020**, *24*, 447-461. <https://doi.org/10.1016/j.jare.2020.05.019>

563 563      25. Zhang, J.; Mason, A.S.; Wu, J.; Liu, S.; Zhang, X.; Luo, T.; Redden, R.; Batley, J.; Hu, L.; Yan, G. Identification of putative candidate genes for water stress tolerance in canola (*Brassica napus*). *Front. Plant Sci.* **2015**, *6*, 1058. <https://doi.org/10.3389/fpls.2015.01058>

564 564      26. Wu, D.; Liang, Z.; Yan, T.; Xu, Y.; Xuan, L.; Tang, J.; Zhou, G.; Lohwasser, U.; Hua, S.; Wang, H.; et al. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. *Mol. Plant* **2019**, *12*, 30-43. <https://doi.org/10.1016/j.molp.2018.11.007>

565 565      27. Lu, K.; Xiao, Z.; Jian, H.; Peng, L.; Qu, C.; Fu, M.; He, B.; Tie, L.; Liang, Y.; Xu, X.; et al. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in *Brassica napus*. *Sci. Rep.* **2016**, *6*, 36452. <https://doi.org/10.1038/srep36452>

566 566      28. Stroher, V.L.; Boothe, J.G.; Good, A.G. Molecular cloning and expression of a turgor-responsive gene in *Brassica napus*. *Plant Mol. Biol.* **1995**, *27*, 541-551. <https://doi.org/10.1007/BF00019320>

567 567      29. Xu, M.Y.; Xiao, Q.S.; Zhang, X.K.; Cheng, Y.; Lu, G.Y.; Xu, J.S.; Zeng, L.; Fu, G.P.; Qu, Z.; Zou, X.L. Correlation between drought related genes expression and physiological indicators in rapeseed. *Chin. J. Oil Crop Sci.* **2013**, *35*, 557-563.

568 568      30. Tardieu, F. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. *Front. Physio.* **2013**, *4*, 17. <https://doi.org/10.3389/fphys.2013.00017>

569 569      31. Ishitani, M.; Nakamura, T.; Han, S.Y.; Takabe, T. Expression of the betaine aldehyde dehydrogenase

598 gene in barley in response to osmotic stress and abscisic acid. *Plant Mol. Biol.* **1995**, *27*, 307-315.  
 599 <https://doi.org/10.1007/BF00020185>

600 32. Chattopadhyay, M.K.; Gupta, S.; Sengupta, D.N.; Ghosh, B. Expression of arginine decarboxylase in  
 601 seedlings of indica rice (*Oryza sativa* L.) cultivars as affected by salinity stress. *Plant Mol. Biol.* **1997**,  
 602 *34*, 477-483. <https://doi.org/10.1023/A:1005802320672>

603 33. Hu, C.A.; Delauney, A.J.; Verma, D.P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate  
 604 synthetase) catalyzes the first two steps in proline biosynthesis in plants. *Proc. Natl. Acad. Sci.  
 605 U.S.A.* **1992**, *89*, 9354-9358. <https://doi.org/10.1073/pnas.89.19.9354>

606 34. Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological implications of arginine  
 607 metabolism in plants. *Front. Plant Sci.* **2015**, *6*, 534. <https://doi.org/10.3389/fpls.2015.00534>

608 35. Kasukabe, Y.; He, L.; Nada, K.; Misawa, S.; Ihara, I.; Tachibana, S. Overexpression of spermidine  
 609 synthetase enhances tolerance to multiple environmental stresses and up-regulates the expression of  
 610 various stress-regulated genes in transgenic *Arabidopsis thaliana*. *Plant Cell Physiol.* **2004**, *45*, 712-722.  
 611 <https://doi.org/10.1093/pcp/pch083>

612 36. Boyer, J.S. Plant productivity and environment. *Science* **1982**, *218*, 443-448.  
 613 <https://doi.org/10.1126/science.218.4571.443>

614 37. Venuprasad, R.; Lafitte, H.R.; Atlin, G.N. Response to direct selection for grain yield under drought  
 615 stress in rice. *Crop Sci.* **2007**, *47*, 285-293. <https://doi.org/10.2135/cropsci2006.03.0181>

616 38. Zhu, M.; Monroe, J.G.; Suhail, Y.; Villiers, F.; Mullen, J.; Pater, D.; Hauser, F.; Jeon, B.W.; Bader, J.S.;  
 617 Kwak, J.M.; et al. Molecular and systems approaches towards drought-tolerant canola crops. *New  
 618 Phytol.* **2016**, *210*, 1169-1189. <https://doi.org/10.1111/nph.13866>

619 39. Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent progress in drought and salt tolerance  
 620 studies in Brassica crops. *Breed. Sci.* **2014**, *64*, 60-73. <https://doi.org/10.1270/jsbbs.64.60>

621 40. Li, Z.; Wu, B.J.; Lu, G.Y.; Chen, Y.; Zou, C.S.; Zhang, X.K. Differences in physiological responses of  
 622 Brassica napus genotypes under water stress during seedling stage. *Chin. J. Oil Crop Sci.* **2012**, *34*, 33-  
 623 39. <http://www.jouroilcrops.cn/CN/Y2012/V34/I1/33>

624 41. Oliver, M.J.; Cushman, J.C.; Koster, K.L. Dehydration tolerance in plants. In *Plant stress tolerance*.  
 625 Humana Press, 2010; pp. 3-24. [https://doi.org/10.1007/978-1-60761-702-0\\_1](https://doi.org/10.1007/978-1-60761-702-0_1)

626 42. Zuo, K.F.; Guo, N.; Zhang, B.B.; Qin, M.F.; Ma, N.; Liu, X.; Li, Q.Q.; Huang, Z.; Xu, A.X. Identification  
 627 of drought resistance and physiological evaluation of drought resistance of *Brassica napus* L. at  
 628 seedling stage. *Agric. Res. Arid Areas* **2020**, *38*, 295-300. [https://doi.org/10.7606/j.issn.1000-7601.2020.01.38](https://doi.org/10.7606/j.issn.1000-<br/>
  629 7601.2020.01.38)

630 43. Raman, H.; Raman, R.; Mathews, K.; Diffey, S.; Salisbury, P. QTL mapping reveals genomic regions  
 631 for yield based on an incremental tolerance index to drought stress and related agronomic traits in  
 632 canola. *Crop Pasture Sci.* **2020**, *71*, 562-577. <https://doi.org/10.1071/CP20046>

633 44. Maggio, A.; Zhu, J.K.; Hasegawa, P.M.; Bressan, R.A. Osmogenetics: aristotle to arabidopsis. *Plant  
 634 Cell* **2006**, *18*, 1542-1557. <https://doi.org/10.1105/tpc.105.040501>

635 45. Steudle, E. The cohesion-tension mechanism and the acquisition of water by plant roots. *Annu. Rev.  
 636 Plant Biol.* **2001**, *52*, 847-875. <https://doi.org/10.1146/annurev.arplant.52.1.847>

637 46. Dietz, K.J.; Turkan, I.; Krieger-Liszakay, A. Redox-and reactive oxygen species-dependent signaling  
 638 into and out of the photosynthesizing chloroplast. *Plant Physiol.* **2016**, *171*, 1541-1550.  
 639 <https://doi.org/10.1104/pp.16.00375>

640 47. Murata, Y.; Mori, I.C.; Munemasa, S. Diverse stomatal signaling and the signal integration  
 641 mechanism. *Annu. Rev. Plant Biol.* **2015**, *66*, 369-392. <https://doi.org/10.1146/annurev-arplant-043014->

642 [114707](#)

643 48. Umezawa, T.; Nakashima, K.; Miyakawa, T.; Kuromori, T.; Tanokura, M.; Shinozaki, K.; Yamaguchi-  
644 Shinozaki, K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling  
645 and transport. *Plant Cell Physiol.* **2010**, *51*, 1821-1839. <https://doi.org/10.1093/pcp/pcq156>

646 49. Fujii, H.; Chinnusamy, V.; Rodrigues, A.; Rubio, S.; Antoni, R.; Park, S.Y.; Cutler, S.R.; Sheen, J.;  
647 Rodriguez, P.L.; Zhu, J.K. In vitro reconstitution of an abscisic acid signalling pathway. *Nature* **2009**,  
648 *462*, 660-664. <https://doi.org/10.1038/nature08599>

649 50. Belin, C.; de Franco, P.O.; Bourbousse, C.; Chaignepain, S.; Schmitter, J.M.; Vavasseur, A.; Giraudat,  
650 J.; Barbier-Brygoo, H.; Thomine, S. Identification of features regulating OST1 kinase activity and  
651 OST1 function in guard cells. *Plant Physiol.* **2006**, *141*, 1316-1327.  
<https://doi.org/10.1104/pp.106.079327>

653 51. Hong, Y.; Wang, Z.; Liu, X.; Yao, J.; Kong, X.; Shi, H.; Zhu, J.K. Two chloroplast proteins negatively  
654 regulate plant drought resistance through separate pathways. *Plant Physiol.* **2020**, *182*, 1007-1021.  
<https://doi.org/10.1104/pp.19.01106>

656 52. Chen, Y.E.; Zhao, Z.Y.; Zhang, H.Y.; Zeng, X.Y.; Yuan, S. The significance of CP29 reversible  
657 phosphorylation in thylakoids of higher plants under environmental stresses. *J. Exp. Bot.* **2013**, *64*,  
658 1167-1178. <https://doi.org/10.1093/jxb/ert002>

659 53. Acharya, B.R.; Jeon, B.W.; Zhang, W.; Assmann, S.M. Open Stomata 1 (OST1) is limiting in abscisic  
660 acid responses of *Arabidopsis* guard cells. *New Phytol.* **2013**, *200*, 1049-1063.  
<https://doi.org/10.1111/nph.12469>

662 54. Albert, B.; Kos-Braun, I.C.; Henras, A.K.; Dez, C.; Rueda, M.P.; Zhang, X.; Gadal, O.; Kos, M.; Shore,  
663 D. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis.  
*eLife* **2019**, *8*, e45002. <https://doi.org/10.7554/eLife.45002>

665 55. Sormani, R.; Masclaux-Daubresse, C.; Daniele-Vedele, F.; Chardon, F. Transcriptional regulation of  
666 ribosome components are determined by stress according to cellular compartments in *Arabidopsis*  
667 *thaliana*. *PLoS One* **2011**, *6*, e28070. <https://doi.org/10.1371/journal.pone.0028070>

668 56. Rodriguez, M.; Parola, R.; Andreola, S.; Pereyra, C.; Martínez-Noél, G. TOR and SnRK1 signaling  
669 pathways in plant response to abiotic stresses: Do they always act according to the "yin-yang"  
670 model?. *Plant Sci.* **2019**, *288*, 110220. <https://doi.org/10.1016/j.plantsci.2019.110220>

671 57. Scharf, K.D.; Nover, L. Heat-shock-induced alterations of ribosomal protein phosphorylation in  
672 plant cell cultures. *Cell* **1982**, *30*, 427-437. [https://doi.org/10.1016/0092-8674\(82\)90240-9](https://doi.org/10.1016/0092-8674(82)90240-9)

673 58. Williams, A.J.; Werner-Fraczek, J.; Chang, F.; Bailey-Serres, J. Regulated phosphorylation of 40S  
674 ribosomal protein S6 in root tips of maize. *Plant Physiol.* **2003**, *132*, 2086-2097.  
<https://doi.org/10.1104/pp.103.022749>

676 59. Ren, M.; Venglat, P.; Qiu, S.; Feng, L.; Cao, Y.; Wang, E.; Xiang, D.; Wang, J.; Alexander, D.;  
677 Chalivendra, S.; et al. Target of rapamycin signaling regulates metabolism, growth, and life span in  
678 *Arabidopsis*. *Plant Cell* **2012**, *24*, 4850-4874. <https://doi.org/10.1105/tpc.112.107144>

679 60. Hvorup, R.N.; Winnen, B.; Chang, A.B.; Jiang, Y.; Zhou, X.F.; Saier Jr, M.H. The  
680 multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. *Eur. J. Biochem.* **2003**,  
681 *270*, 799-813. <https://doi.org/10.1046/j.1432-1033.2003.03418.x>

682 61. Matsumoto, T.; Kanamoto, T.; Otsuka, M.; Omote, H.; Moriyama, Y. Role of glutamate residues in  
683 substrate recognition by human MATE1 polyspecific H<sup>+</sup>/organic cation exporter. *Am. J. Physiol. Cell  
684 Physiol.* **2008**, *294*, C1074-C1078. <https://doi.org/10.1152/ajpcell.00504.2007>

685 62. Law, C.J.; Maloney, P.C.; Wang, D.N. Ins and outs of major facilitator superfamily antiporters. *Annu.*

686 63. *Rev. Microbiol.* **2008**, *62*, 289-305. <https://doi.org/10.1146/annurev.micro.61.080706.093329>

687 63. Upadhyay, N.; Kar, D.; Deepak Mahajan, B.; Nanda, S.; Rahiman, R.; Panchakshari, N.; Bhagavatula,  
688 L.; Datta, S. The multitasking abilities of MATE transporters in plants. *J. Exp. Bot.* **2019**, *70*, 4643-4656.  
689 <https://doi.org/10.1093/jxb/erz246>

690 64. Tian, W.; Hou, C.; Ren, Z.; Pan, Y.; Jia, J.; Zhang, H.; Bai, F.; Zhang, P.; Zhu, H.; He, Y.; et al. A  
691 molecular pathway for CO<sub>2</sub> response in Arabidopsis guard cells. *Nat. Commun.* **2015**, *6*, 6057.  
692 <https://doi.org/10.1038/ncomms7057>

693 65. Zhang, H.; Zhao, F.G.; Tang, R.J.; Yu, Y.; Song, J.; Wang, Y.; Li, L.; Luan, S. Two tonoplast MATE  
694 proteins function as turgor-regulating chloride channels in Arabidopsis. *Proc. Natl. Acad. Sci. U.S.A.*  
695 **2017**, *114*, E2036-E2045. <https://doi.org/10.1073/pnas.1616203114>

696 66. Zhang, H.; Zhu, H.; Pan, Y.; Yu, Y.; Luan, S.; Li, L. A DTX/MATE-type transporter facilitates abscisic  
697 acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. *Mol. Plant* **2014**, *7*,  
698 1522-1532. <https://doi.org/10.1093/mp/ssu063>

699 67. Polinceusz, A.I. Molecular characterisation of the Arabidopsis TT12 MATE protein and functional  
700 analysis of other plant MATE transporters. Doctoral dissertation, University of Zurich, Switzerland,  
701 2011. <https://doi.org/10.5167/uzh-59369>

702 68. Watkins, J.M.; Hechler, P.J.; Muday, G.K. Ethylene-induced flavonol accumulation in guard cells  
703 suppresses reactive oxygen species and moderates stomatal aperture. *Plant Physiol.* **2014**, *164*, 1707-  
704 1717. <https://doi.org/10.1104/pp.113.233528>

705 69. Grotewold, E.; Chappell, J.; Kellogg, E.A. Chromatin and gene expression. In *Plant Genes, Genomes*  
706 and *Genetics*. John Wiley & Sons, 2015; pp. 173-182. <https://doi.org/10.1002/9781118539385.ch12>

707 70. Chinnusamy, V.; Zhu, J.K. Epigenetic regulation of stress responses in plants. *Curr. Opin. Plant Biol.*  
708 **2009**, *12*, 133-139. <https://doi.org/10.1016/j.pbi.2008.12.006>

709 71. Han, S.K.; Wagner, D. Role of chromatin in water stress responses in plants. *J. Exp. Bot.* **2014**, *65*,  
710 2785-2799. <https://doi.org/10.1093/jxb/ert403>

711 72. Bergamin, E.; Sarvan, S.; Malette, J.; Eram, M.S.; Yeung, S.; Mongeon, V.; Joshi, M.; Brunzelle, J.S.;  
712 Michaels, S.D.; Blais, A.; et al. Molecular basis for the methylation specificity of ATXR5 for histone  
713 H3. *Nucleic Acids Res.* **2017**, *45*, 6375-6387. <https://doi.org/10.1093/nar/gkx224>