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1 Abstract: Wireless Sensor Networks (WSNs) has the characteristics of large-scale deployment, flexible
:  networking, and wide application. It is an important part of the wireless communication networks.
s However, due to limited energy supply, the development of WSN is greatly restricted. Wireless
s Rechargeable Sensor Networks (WRSNSs) transform the distributed energy around the environment
s into usable electricity through energy collection technology. In this work, a joint optimization strategy
¢ is proposed to improve the energy management efficiency for WRSNs. The joint optimization strategy
»  is divided into two phases. In the first phase, we design an Annulus Virtual Force based Particle
s Swarm Optimization (AVFPSO) algorithm for area coverage planing. It adopts the multi-parameter
s joint optimization method to improve the efficiency of the algorithm. In the second phase, a Queuing
1o Game-based Energy Supply (QGES) algorithm is designed for energy scheduling. It converts energy
u  supply and consumption into network service. By solving the game equilibrium of the model, the
1= optimal energy distribution strategy can be obtained. The simulation results show that our scheme
1z improves the efficiency of coverage and energy, and extends the lifetime of WSN.

1= Keywords: Wireless Rechargeable Sensor Network, Coverage Optimization, Virtual Force, Particle
15 Swarm Optimization, Queuing Game

¢ 1. Introduction

"

17 5G networks support more devices, ushering in a new era of ubiquitous connectivity. As an
1z important part of 5G networks, Wireless Sensor Network (WSN) will be used more widely based on
1o the original network architecture [1] and brings more convenient services for mobile Internet users.
20 Due to the large scale of deployment, diverse functions, and complex terrain in most target areas in
a1 WSN, traditional battery power supply mode is difficult to maintain the long-term operation of the
22 network. In order to charge sensor network nodes, distributed energy around the environment such as
= solar energy, thermal energy, vibration and electromagnetic waves, can be collected and converted into
22 usable electrical energy. Wireless Rechargeable Sensor Network (WRSNs) use these energy harvesting
= technologies to increase the lifetime of WSN nodes, which has attracted extensive attention. In practice,
2 Microwave Power Transmission (MPT) has the relatively high efficiency, and energy supply is realized
2z by transmitting and receiving electromagnetic waves with antennas [2]. To efficiently supplement the
2s  energy of WSN nodes, the fixed platforms, mobile air platforms or Unmanned Aerial Vehicles (UAVs)
20 can be set up over the target area for network coverage.
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30 The coverage effect of WSNs determines the network connectivity of the target area. It can be
a1 changed by adjusting the antenna’s azimuth, tilt, transmitting power and other parameters. Coverage
s2 optimization mainly focuses on the supplementary coverage blind area, the reduction of repeatability
ss  of the overlapping area, and the improvement of the effectiveness and rapid convergence of the
:a  optimization algorithm [3]. As the adjustable parameters show a non-linear sharp increase with the
s growth of network size, how to achieve the optimization of coverage algorithm under the premise of
s saving network resources becomes an important challenge [4]. After coverage, the design of energy
sz supply scheme, to a large degree, determines the performance and lifetime of WRSNSs. If the Power
s Supply Node (PSN) continues to charge the sensor nodes, the energy supplied may exceed the node
s demand, resulting in a waste of resources. However, periodic energy supply may cause the nodes
« with high loads to fall into dormancy or death due to their fast energy consumption. Therefore, it is
a1 necessary to design a reasonable energy supply scheme according to the different energy demands of
a2 nodes.

a3 In this paper, the power supply node with multi-antenna is configured on a platform with a
as certain height to carry out network coverage to the ground. Considering the interaction between
«s  multiple isomorphic antennas on a node, an Annulus Virtual Force based Particle Swarm Optimization
s (AVFPSO) algorithm is proposed to improve the performance of coverage. Then, a Queuing
+z  Game-based Energy Supply (QGES) algorithm is designed. It divides the energy provided by the nodes
s into energy packets with the same size, and establishes the system model of sending energy packets to
4 multiple nodes in the covered area. Each energy packet wants to be used more efficiently, creating a
so competitive relationship. In the process of energy packets entering the storage of sensor nodes and
s1  being consumed, the nodes need to pay the cost such as reduced life of power components and waiting
s2 for network task transformation. The optimal strategy of node energy supply is obtained by minimizing
s the cost and solving the Nash equilibrium. Combining the two algorithms, a Two-Phase Energy
s« Management (TPEM) scheme for WRSNSs is obtained. The main contributions can be summarized as

ss  follows.

56 e By introducing Virtual Force (VF) and combining with Particle Swarm Optimization (PSO), an
57 efficient energy supply region coverage optimization algorithm is proposed. The joint debugging
58 of antenna azimuth and tilt improves the effectiveness of the algorithm.

59 o With the queuing game theory, the finite energy supply problem in WRSNSs is transformed
60 into a mathematical model of discrete energy packet service. The QGES algorithm provides
o1 energy to nodes with different energy consumption rates on demand, thus improving the optimal
62 allocation of limited resources.

63 o In the solution of the energy supply system model, the influence of the random distribution of
64 node energy consumption on the social welfare can be obtained. It has theoretical significance
o5 for the design of energy saving schemes such as sensor node sleep strategy.

o6 The remainder of this paper is organized as follows. The related work of target area coverage

ez optimization and energy supply scheme are presented in Section 2. The system model and problem
es formulation of the Two-Phase energy management in WRSN's are described in Section 3. In section
oo 4, the AVFPSO algorithm is designed considering the interaction between multiple antennas on the
7 node. The optimal strategy of node charging is obtained by solving the energy supply system model,
7 and a QGES algorithm for WRSNSs is designed. The TPEM scheme is proposed by combining the two
72 algorithms. Section 5 deals with the simulation and comparison results, followed by the conclusion in
7s Section 6.

7a 2. Related Work

75 The network structure of WSN changes dynamically with the change of node state. Therefore,
7 the coverage optimization of WSN has always been concerned. In traditional sensor networks, the
7z problem of directed sensor coverage is usually solved by optimization algorithm [5-7]. In literature [5],
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7e an optimization strategy based on genetic algorithm was proposed to achieve full target coverage by
7 adjusting the direction and perception range of the sensors. In literature [6], nodes in heterogeneous
so  WSN are processed by clustering. The angle and coverage of nodes are adjusted by greedy search
&1 algorithm, so as to achieve the fence coverage of directed sensor networks. For WRSNSs, literature [8]
=2 proposed a hybrid integer linear programming method to complete network coverage through heuristic
ez search. They mainly studied the coverage of two-dimensional scenes under specific circumstances,
s« but the number of parameters used for optimization was not large, and the scale of joint optimization
e was small. As in literature [9], differential evolution algorithm was adopted to solve the coverage
s problem of directional sensor network in three-dimensional environment. Literature [10] proposed a
ez multi-objective optimization scheme of comprehensive three-dimensional uncertain coverage model
ss based on fuzzy ring concept. The problem of three-dimensional environmental optimization conformed
s to the situation of large-scale joint optimization. However, the eliminating redundancy of solution
%0 space was not mentioned in these works, and the computation time would grow significantly with the
o1 increase of network size.
02 The research on wireless charging of sensor networks mainly focuses on the case that the sensor
s node is charged by the mobile charging node [11-14] and the charging node is fixed [15,16]. In literature
s [11], a charging model of sector search algorithm using directional antenna was proposed. It had better
os performance than the golden section search method with the all-directional antenna charging model.
ss Literature [13] proposed HeuristicMaxLifetime and HeuristicMinCost algorithms by solving a partial
oz energy charging model for sensor charging. They maximized the sum of the sensor lifetimes and
e minimized the travel distance of the charger. In literature [14], an annular charging model was adopted
%o in consideration of different node energy consumption in different regions. Corresponding charging
100 strategies were used for the nodes in and out of the ring. Mobile charging nodes themselves have high
101 energy consumption, and environmental energy harvesting efficiency is random and unstable, which is
102 difficult to be applied in practice. For charging nodes deployed at fixed heights, literature [15] proposed
103 the Greedy Cone Coverage algorithm and Adaptive Cone Coverage algorithm to deploy as few as
10s  possible chargers to make WRSNs sustainable. While focusing on the wireless charging efficiency,
105 literature [16] proposed a fair charging model with radiation constraints in consideration of radiation
1s hazards. These schemes usually did not consider the case of supplying energy simultaneously to
1z multiple sensor nodes with different power consumption capacities. Under the condition of limited
10s  energy, the energy supply on demand improves the efficient allocation of resources and thus extends
100 the life of sensor network.
110 In recent years, some researches use game theory to design charging strategies [17,18]. In literature
w1 [17], a game collaborative scheduling algorithm was proposed with the introduction of the unique
12 dynamic warning threshold and sacrifice-charge mechanism. The device that needs to choose the
us charging node was taken as the player of the game, and the non-cooperative game theory was used
us  to build the system model. The overall energy efficiency of the system was improved by solving
us  Nash equilibrium. Literature [18] adopted the non-cooperative Stackelberg game model and realizes a
us New architecture with better performance than cache architecture and energy recovery architecture.
ur The energy cache strategy, excitation strategy and energy transfer strategy of charging node were
us considered comprehensively. These solutions consider the system from a global perspective, rather
1 than being limited to performance improvements in a particular scenario. Due to limited energy
120 resources in WRSNS, there will be resource competition among node participants. Meanwhile, in order
121 to achieve the common goal of the players in the small set, there will also be cooperative relationship
122 between players. These specific behaviors correspond to the description of game players’ elements in
122 game theory.
124 This paper introduces virtual force and queuing game theory [19] to establish the energy
125 management system model of WRSNs. A TPEM scheme is proposed to improve coverage optimization
126 and energy supply efficiency for WRSNSs. In the first stage of TPEM scheme, an AVFPSO algorithm is
12z designed by introducing the interaction force between multiple antennas on the node. In the process
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12¢  Of particle optimization, the virtual force is added to pull the particles, so that the algorithm can
120 converge to the global optimal solution faster. In the second phase, the system is modeled based on
10 queuing game theory, with constraints such as limits on the modes and amount of energy supply and
131 the randomness of nodes” demand for energy. The arrival rate of energy packets selected to enter
12 different sensor nodes is obtained by solving the minimization cost function, and the QGES algorithm
133 of WRSNs based on queueing game is designed.

13s 3. System model and Problem formulation

135 MPT technology improves the lifetime of the WSN. The PSNs carried by fixed, aerial platforms
13s  or UAVs replenish energy for sensor nodes, which replace the difficult charging scheme of changing
137 batteries for each node. Fixed and aerial platform have advantages of geographical location and large
138 scale. In addition to its own large power supply, the PSN converts solar or wind into electric energy
e through energy harvesting technologies to charge the sensor nodes. Here, we focus on the system
100 modeling for the target coverage optimization and energy supply of WRSNs, and formulate these two
11 problems.

w2 3.1. System model

143 It is assumed that there are m PSNs in region R of the WRSNs. The PSNs are installed
14s on fixed or mobile platforms with a certain height and equipped with a large-capacity power
s system as shown in Figure 1. The mobile platforms such as aerial platforms or UAVs, which
s can be returned to recharge after completing the power supply mission and perform the next
1z mission. B = {By,By,..., By} represents the set of PSNs, where B; denotes the ith PSN.A =
ws  {A11, A1, ., A1z, Ao, oy Az, ooy Ayt ., Az | Tepresents the set of antennas mounted on a node, where
e Aj denotes the kthantenna of the ith PSN. P = { P, P,, ..., P, } represents the set of signal strength
10 sampling points, where P; denotes the jth sampling point. There are n sampling points in this region,
151 which are generated at equal intervals after meshing the region. Each antenna charges multiple sensor
152 nodes in the covered area. Remote field charging is realized by using MPT technology with high
153 charge efficiency.
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Figure 1. A coverage and power supply system model of WRSNs.

154 To achieve the target coverage of WRSNs, the azimuth ¢ and tilt 6;; of antenna Aj of the PSN
s can be adjusted. The relationship between antenna angle parameters and sampling point position is
15 shown in Figure 2. Assuming that the location of the PSN is known, the problem of node location

-
o

157 selection is not considered in this paper.
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Figure 2. The relationship between antenna angle parameters and sampling point position.
158 WRSNs are usually used in areas where maintenance is inconvenient and energy resources of

150 PSNs are limited. In our scheme, the antenna charges all sensor nodes automatically according to the
160 designed QGES algorithm in the area coverage. The energy is divided into multiple energy packets
w1 for a fixed duration. In an energy supply cycle, it is assumed that each antenna transfers energy
162 packets in a Poisson distribution with time intervals following parameters A to supply energy to the
16z nodes. The energy packet consumption rates u of different sensor nodes in the coverage area of the
16 antenna obey the general distribution. The players in the game are the energy packets. Nodes receive
165 energy packets and store them in the power system, waiting for being consumed and then converting
16 them into network value to obtain benefit . During charging and waiting, sensor nodes need to pay
16z corresponding costs C per unit time, which indicates the decline of power life and energy conversion
1ee  efficiency of nodes. To maximize the social welfare of the energy supply system, the problem can
1es  be transformed into an optimal strategy for energy packets to be allocated to different sensor nodes
170 with the minimum cost. As shown in Figure 3, the power supply system model is composed of PSN
i1 antenna, sensors and power supply strategy based on queued game.

____!#!_—@ Sensor 1

N -— P—
- E--__
~ ==
S~ ‘@ Sensor 2
~
~
~
~
~

~

Energy Supply Node

LN
~
~
~
\@ Sensor A

Figure 3. Energy supply system model.

w2 3.2. Problem formulation

173 Problem 1: Two-parameter joint optimization of power supply target coverage. Under the
17a  constraint of azimuth ¢ and tilt 6 of independent variables, the maximum of coverage function is
15 solved. To describe problem 1, the following definitions are given.

176 Definition 1. Evaluate whether a sampling point meets the coverage requirements according to
w7 the value of Reference Signal Receiving Power (RSRP). g;(¢, 0) represents the coverage at sampling
7s  point P;, which can be expressed as:

1, hri(¢,0) > Thrsgrp
. — ]
8i(¢.9) { 0, otherwise M

17 where 1 indicates covered, 0 indicates not covered, and Thrsgp denotes the threshold value of RSRP.
w0 hrj(¢,0) denotes the RSRP of the point P;, which is the maximum power of the RSRP from all antennas
11 at the point. It can be given by:
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hri(¢,0) = max(hij(p11,011), hij (P12, 012), -, Bij (P10, 010), +wor i ( Pz, Omz)) ()

182 Definition 2. The function hi; (¢ir, 0ix) that represents the RSRP from the antenna A;; at the point
13 Pj can be given by:

hij(¢i, 0ix) = Pr + hgj(¢pix, Ox) + Gr — Li 3)

1sa  Where Pr denotes is the transmitting power of the antenna, which is set as a constant; Ggr denotes
s the receiver gain and is set as a constant; L; ; denotes the path loss from the charging node C; to the
s sampling point P;. Based on COST231-HATA [20], the path loss L; ; can be obtained as:

L;; =463 + 33.9l0g,(fo) — 13.82l0g,,(h; ) — (3.2(log;(11.75h,))* + 4.97)

4)
+ (44.9 - 6.5510g10 (hi,j))logm (dij,k) + CM

1z where h; jdenotes the height of antenna A;;, 1, denotes the height of the sampling point P}, d;; ; denotes
s the horizontal distance between the antenna A;; and the sampling point P;, and Cy; denotes the model
10 correction factor. The directional gain is a function of horizontal and vertical angles. According to the
10 approximate model given by 3GPP [21], it can be expressed as:

G((P, 9) = _min{_[GH((P) + GV(G)]/ Gm} + Gmax

. ¢ 2
Gu(¢) = —mm[lz(@) e 5)

2
Gy(9) = —min[12(L) ,SLAYy]
0345
101 Where Gmax denotes the maximum gain of the antenna, ¢3;5 denotes the angle of the Half power
1.2 waveform width, G, denotes the maximum value of the reverse attenuation, and SLAy denotes the
13 attenuation of lateral lobe. The function hg; (i, 0;) that represents the directional gain of the antenna
1s  Aj towards the sampling point P; can be given by:

hgi(¢ik, Oik) = G(Pik,ji, Oix,j) (6)

s where ¢;; and 6 denote the azimuth and tilt of the antenna A;; respectively; a; ; and b, ; denote the
ws horizontal and vertical angles of the sampling point P; relative to the antenna A;;. ¢j; and 6 ; denote
107 their relative angles respectively, which can be calculated as follow.

108 If Aik,j = ik,
Pik,j =0 @)
Oir,j = bik,j — Oi
100 It Aik,j # Pik,
. -1
i = arctan cos(0i) sin(0;) - tan(bi.;)
" tan(ap,; — i) sin(aig; — i) @®)
. . — sin(()ik) COS(Gik) ’ tan(bik,j)
Oik,j = arctan (Sln((Plk,]) (tan(aik,j o) + sin(az; — ¢i)
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200 The two-parameter joint optimization problem can be described as:
1 N
max ¢ f(9,60) = 55 ). 8j(9,0) ©)
j=1
201 Subjects to:
€102, i=12,...m, k=1,2,..,z
Pik [ ] (10)

0x €027, i=1,2.,m k=1,2.,z2

202 where the function f(¢,6) represents the overall coverage in the region. The detailed calculation
20s formula of the coverage calculation function f(¢, ) has been given. The corresponding coverage rate
20¢ can be obtained by modifying the antenna azimuth ¢ and tilt 6. Then, according to the characteristics
205 of the antennas on the PSN, the formula (6) should be changed reasonably to reduce the amount of
206 calculation and improve the speed of calculation.

207 Problem 2: Energy supply strategy with the minimum cost. The antenna of the PSN provides
20s limited energy packets. The energy packets pay the cost when they enter sensor nodes with different
200 poOwer consumption capacity and are consumed translates into network value. Under the condition of
20 minimum cost, the optimal rate of energy packets being assigned to each sensor node is solved.

211 It is assumed that each antenna of the PSN covers A sensor nodes and provides energy packets
212 in a Poisson distribution with rate A (A > 0). Energy packets are sent from the antenna of the PSN,
=3 allocated to different sensor nodes, received and stored in the power system of the node through
zs  electromagnetic transformation, waiting to provide energy for network tasks. The process of energy
215 packets allocation to sensor nodes follows the Poisson distribution with parameter A,, and satisfies
26 Y2 A, = A. The time interval T, of the energy packets consumed by sensor node a follows the
21z general distribution. It satisfies E (T,) = i, E(T?) = 2 and Y4 | 4, > A. Each energy packet that

=ue  enters the sensor node obtains a fixed benefit e. Each energy packet needs to pay a waiting cost ¢, per
210 unit time in the node. Sort the sensor nodes and get % < % < %

220 The solution to the optimal problem of the system is to find an allocation strategy (A}, A3, - -+, A})
2 Of energy packets to the sensor node with the minimum cost of the entire energy supply system.
222 According to the assumption, the queuing model of each sensor node is M/G/1. T'; (A,;) represents
223 the average number of energy packets in the node queue. The average cost function of the system can

224 be given by:

N A
" (/\) =Y caTa (Aa) (11)
226 Subjects to:
A
L=t e = A (12)
226 In equilibrium, the average cost of the system reaches a minimum, and each energy packet cannot

227 reduce the system cost by entering any other node. Problem 2 can be described as a minimization cost

22s  function ¢ (A ) and the optimal strategy of energy supply allocation is obtained by solving i (A ).
¥ 3 8y gy supply y 8

220 4. Joint optimization scheme for WRSNs

230 To solve Problem 1 and 2, we design AVFPSO algorithm and QGES algorithm respectively. In the
21 first phase, the PSN uses AVFPSO algorithm to jointly debug azimuth and tilt for full coverage of the
232 target area. In the second phase, QGES algorithm is applied to realize energy supply on demand for
233 sensor nodes with different energy consumption capacity under the condition of limited energy. The
23 Two-Phase algorithms are integrated to form an efficient energy management scheme for WRSNs.
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25 4.1. AVFPSO algorithm for problem 1
23 4.1.1. Annulus Virtual Force Algorithm
237 The virtual force algorithm was originally applied to the deployment of sensor nodes [22-24].

238 After the sensor node random position is initialized, the finally position is changed through the
230 interaction of virtual forces to achieve the enhancing effect of coverage. Each node makes a strategy
2e0 selection based on the position relationship with other nodes. When the distance is less than a
2a1  threshold, repulsive forces appear between nodes. On the contrary, when the distance is greater than
2a2  the threshold, there is an attractive force between nodes. When the distance is exactly equal to the
2a3  threshold, the interaction force between nodes is zero, and the nodes appear to be static.

244 There are [ sensor nodes S = {s1, 8y, ..., §;} in the area, where the coordinates of the uth and vth
25 nodes are s, (Xy, ¥, ) and sy (X, Yo ) respectively. The distance d,, » between the two nodes is defined by:

dup = \/(xu —x0)* + (Yu — o) (13)

246 The force ?u,v between node s, and node s, is defined as:

(wa(duo —dum), aup), if duop > dy,

Fuo=10, if dup = dyy (14)
(CUR /du,v/ Ayt 7T)/ if du,v < dy
247 where d;;, denotes the threshold value of the distance between nodes, which is responsible for

2es  controlling the distance between nodes. w4 denotes the coefficient of attraction between nodes, wr
2e0 denotes the coefficient of repulsion between nodes, and «,, denotes the Angle between the line
20 between nodes and the horizontal direction. A node may be acted upon by multiple nodes, and
251 u= Fy1+ ?M,Z + ~--?u,l means that node u is acted upon by all other nodes.

252 The traditional virtual force algorithm considers the interaction forces between nodes in Euclidean
23 space. Different from the traditional virtual force algorithm, we consider the interaction force between
2ss  isomorphic antennas on the charging nodes. Assume that the azimuth distribution of the antenna on
=5 the B;jth charging node is shown in Figure 4, which are ¢; 1, ¢; 5, ..., ¢; ; respectively. Their distribution
266 is not the coordinate on The Euclidean space, but the Angle distribution on the ring structure and can
=7 be circulated.
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Figure 4. The azimuth distribution of the antenna on a PSN.
288 The dotted line in the Figure 4 represents the circle with azimuth, the position pointed at by the

20 arrow represents different azimuth, and the band interval near the azimuth represents the threshold
260 limit range of azimuth. Then, the distance d;”” between azimuth ¢; , and azimuth ¢; ; is defined as:

a7 = |@iu— @ip (15)
261 The force ?ZMU between azimuth ¢; , and azimuth ¢; ; is defined as:
wAd —dfl), if di >
Fro={o, if di = gt (16)

wr/d”, ifd'? < dh

202 Where w, and wg have the same meaning as formula (14), and dﬁh represent the virtual force threshold
263 Of the antenna on the PSN. By observing the overlap of the limited threshold range of each azimuth in
2ea  Figure 4, the type of force between the azimuths can be judged. There is no coincidence area between
zes azimuth @;; and azimuth @; 5, so there is attraction between them. Azimuth ¢;, and azimuth g; 3
26s Overlap in some regions, i.e. there is repulsion between them. As a result, there is a tendency for
2z the two azimuths to be adjusted to non-coincident states. Azimuth ¢; , and azimuth ¢; ; are just in
2es adjacent states, then, there is no interacting force between them.

260 The other difference between the ring virtual force algorithm and the traditional virtual force
270 algorithm is that only the adjacent azimuths interact with each other, while the non-adjacent azimuth
an  angles do not interact with each other. For example, there is no force between azimuth ¢; ; and azimuth
2z @;3, and the coincidence problem of their limited threshold range is not taken into account.

2z 4.1.2. AVFPSO algorithm

274 Particle swarm optimization is an algorithm developed by simulating the unpredictable motion
27 of a flock of birds. It evolves around the advantages of sharing information in groups. The initial PSO
276 algorithm was formed by adding the nearest neighbor speed match and adding the multidimensional
27 search, in addition to considering the accelerated search based on distance. Then the PSO algorithm
ze  is optimized by introducing parameters such as inertia weight w. Suppose the gth particle in the
2o population is denoted as X; = (x41,Xg2, -, X5,w)- The best position it has ever experienced, the value
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with the best fit, is represented by pbest; = (py,1, Pg2, - Pg,w), where W denots the dimension of the
particle. The best adaptive value is given by:

gbest = argmax(f(X;)), q¢€ (1,2,..,W) (17)
The moving velocity of particle is denoted by V;(v,1,v42, - v5w). The updating formula of
velocity and position is given by:

Vw1 = WVyw + c1r1(pbestgw — Xgw) + c2r2(gbesty — Xq.) (18)

and

where ¢1 and ¢p denote acceleration constants, and r1 and r, denote random values within the range of
[0,1].

When PSO algorithm and ring virtual force algorithm are combined to solve the coverage problem,
f(Xg) in formula (17) is replaced by f(¢,6) in formula (9) to calculate the optimal fitness value pbest;
as follow:

pbest; = argmax(f(¢,0)) (20)

After completing the speed update, when updating the position of particles, the azimuths of the
antennas on the same PSN are adjusted by virtual force according to formula (16).

4.2. QGES algorithm for problem 2

4.2.1. Solution of the model

For the solution of the multi-node energy supply system model, the situation of the single-sensor
node energy supply system is first considered. Similarly, each energy packet entering the sensor
node receives fixed benefit ¢, and the waiting cost per unit time is c. The ultimate goal is to select
the appropriate energy packet delivery rate, so as to minimize the total cost. Since the energy packet
emission rate obeys the Poisson distribution with parameter A, and the energy packet consumption of
sensor nodes obeys the general distribution with parameter y, the queuing model of the energy supply
system of the single-sensor node can be described as M/G/1. Assume that:

Xp: represents the number of energy packets left in the node when the bth energy packet is
consumed, and the consumed energy packet is numbered as b.

Ty: represents the elapsed time (From the time when the bth energy pack is consumed) of the next
((b + 1) th) energy pack when the bth energy packet is consumed. E (T},) = %, E(T?) = %

Y),: represents the number of new energy packets entering the node during the period when the
(b + 1) th energy packet is being consumed.

According to the queuing situation:

Yy, Xy =0,
Xpt1 = (21)
Xp+Y,—1, X, >0.

Let dg = P (Y, = B) > 0, then, it can be proved that {X;} forms a Markov chain, which is
generally called an embedded Markov chain. If pg = P (Xp41 = B| Xy = @), pog can be given as:

pop = (Xp41= B[ Xp =0) =P (Y, =p) =dg (p>0) (22)
When X;, > 0,

d0i:10.20944/preprints202009.0626.v1


https://doi.org/10.20944/preprints202009.0626.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2020 d0i:10.20944/preprints202009.0626.v1

11 0f23
0, a«>pB+1
=P(Y,=B+1—Xp|Xp =a) = (23)
Pup ﬁ ) dﬁ+1_a, a < .B+1
a11 Since the time {Tj,b > 1} consumed by the energy packet is an independent identically

a1z distributed sequence of random variables, its public distribution function is denoted as G (t) =
i3 P (Tb S t). Then,

dy=P(Y, =) = [ P(¥,=BIT, = 1)dG 1) 24)

sia where, P (Y, = B| T, = t) represents the probability of p new energy packets entering the system in
ais  time interval (0, t). Since the energy packet arrives according to Poisson flow, we can get:

AP
P(Yy = pITy = 1) = e 25)
316 Substituting formula [32] in [31],
_ Py
dg = /0 e e (26)
317 Since dy = pop > 0 and the states of the Markov chain are interconnected, this Markov chain is

ais periodially irreducible. It satisfies:

© (Af)P
E(Yy) =Y, Pdp = Z;‘;O,B / ()Z,) e MdG (1)

_ A" —n (27)
/ Y, (/3 AHG (¢ / MG (¢
=AE(Ty) =p
310 and
/\t) oA
( ) 2,5 o Bdp = Z,g o B / G (1)
. o —At 28
_/0 (Z,g()( +Yy N _1) )e MG (1) (28)
- /0 (M) + At]dG (1) = A2E (TZ) +AE (Ty) = go* +p
320 It can be verified that the Markov chain is traversed when p < 1. So there is a stationary

sz distribution {pg, B > 0} which satisfies

Pp =Y o PabPup (B >0) (29)

s22 Constructing the generating function to solve pg, let P (x) = 3 ppxf and D (x) = Ypod pxP.
s23 It can be obtained from formula (29), (22) and (23) that when =0, xpy = ( podo + p1dg) x°; when =1,
24 XpP| = (POdl + p1d1 + pzdo) X;..., when ﬁ b, x? Py = (podb +p1dy+pody 1+ + Pb+1d0) xb;.... Add
22 up all the equations to get
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P(x) = poD(x) + p1D(x) + poxD(x) + p3x*D(x) + - + ppx’ "1 D(x) + -+
D(x
= i)@M+pw+Pﬂ”+mﬁ+~-+mﬁ+~-) (30)
D(x
N EI S 10%)
326 Therefore, the generating function of energy packet quantity distribution in the system can be
sz deduced as:
_ (1=x)poD (x)
P(x) - D (x) —x (31)
Since D' (x) = Yo BdpxF?, D' (1) = L5 opdp = E(Yy) = p. P(1) = L5 opp = 1 and
20 D (1) = Y5’ (dp = 1. L "Hopital’s rule is applied to formula (31),
; . (=) poD(x) _ po
fr— = == - 2
91c1—>H}P(x) )1(13% D(x)—x 1—p:>P0 1= (32)
330 Substituting formula (32) in (31),
_(1-x)(1-p)D(x)
P(x) - D (X) —x (33)
331 Combining the formula (27) and (28),
D" (1) = Yy, (Bdg — pdg) = E(¥2) — E(¥;) =gp? (34)
332 With the formula (34) and (31), applying L "Hopital’s rule twice more, the average number of
;33 energy packets in the system can be obtained as
_ o [A=0(A-p) D]
o) =E(x) =P (1) = | S50
R =1 (35)
—2[D' (1)]" 42D’ (1) + D" (1) q0°
=(1-p) 2 =Pt 5a 5
2[D’ (1) —1] (1—p)
334 In the single-node power supply system with the queuing model M/G/1, the cost minimization
a5 problem of single-node power supply system can be described as
90’
min [c] (p) —eA] =min |[p+ ——— — €A (36)

2(1-p)

:3s  Where A satisfies 0 < A < p.
337 Since formula (36) is a differentiable strictly convex function, I'” (1) represents the first derivative
ss Of I' (p) with respect to A, which can be given as

1 2u—A)A
Iy =Lq 1@ MA (37)
woo2u(p = A)
330 Therefore, the optimal arrival rate A* satisfies
I'(A)—e=0, A*>0
38
J%M):%, A* =0 38)
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340 Combining the formula (38) and (37),
1 2u — A*) A*
1, a@-A)A >2 =S >0 (39)
oo 2u(p—An)c
341 e is A fixed value satisfying ¢ > 0, and A* (¢) is the optimal arrival rate. The solution of formula
sz (39) can be obtained as
* q *
A =p—pu | —F= (A 4
& =r=m| T2 >0 (40)
343 Due to 0 < A < y, the optimal arrival rate of the energy packets is
A" (¢) =max<0,u—p S — (41)
’ q+2ue/c—2
344 From the system model of formula (11) and (12), the problem of minimizing cost for multi-node
as  energy supply system can be described as
(5 . A
f ()\) = min Zu:l cal'a (Aa) (42)
346 Subjects to
YA A=A0< A <pga=12---,A) (43)
347 According to the generalized Lagrangian multiplier method, formula (42) satisfies equation (38)

se  for each sensor node a and partial benefit e. Therefore, the optimal arrival rate similar to the single

320 node can be obtained as
AL (&) = max {0, Ha — Ma 6]} (44)
¢ q+2uqe/co —2

30 where Y4 A% (e) = A. Since A > 0, there is at least one solution A} (¢) > 0. Then, pj —

1 Uy /M+/c14 > 0, that is, ¢ > % In this case, Y2 ; A% (¢) is a strictly increasing function of e.

sz Thus, there is one and only one &*, such that Y4 | A* (¢*) = A. If e > ;—i, A} (€) > 0. Therefore, when
s h<a, A, (¢) > 0, which means that under the equilibrium state of the system, the former a sensor
s« nodes obtain energy packets according to the arrival rate of A} (¢) to be charged. Other sensor nodes
355 are not selected because of low energy efficiency and sufficient energy. Therefore, in the designed

. c . .
s model of multi-node power supply system, € > ;T/:; needs to be set for supplying energy to all active

o

357 SENSOIS.
358 In the multi-node energy supply system with queueing model M/G/1 of each sensor node, the
30 optimal arrival rate of each node energy packet can be obtained as

* q A . . A
! ’ ’ + — _11a =A],e > = 45
’ <y : \/q 2.1’[113* /Ca 2 ' Za_l (S ) ) € A ( )

360 In this case, the lowest cost of the energy supply system is

2
() =Xl 1—\/ 1 +q<1 W”;q/c_ZD (46)

a=1 2 * )
q+2pae*/cy 2 /7{1%%8*/%_2

e where Y4 | A% (e%) = Aand & > .
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2 4.2.2. Model Analysis
363 When building the energy supply system model, it assume that the energy consumption random
ssa  process of sensor nodes follows the general distribution with parameter p. It satisfies E (Tj,) = % and

ws E(TZ) = %. When =2, D (T},) = %, which means that the node energy consumption process is
ses  simplified to a negative exponential distribution. Then

* WaCq Cq
. Ca 47
0= na B (e ) @
367 Combining Y2 | A% () = A,
Ve= Do/ (48)
Yilita — A
368 In the multi-node power supply system with each sensor node queuing model M/M/1, the

se0 equilibrium solution can be obtained as

M= o= A (D ) 49)
Zuzl \/m

370 When g=1, D (T;) = 0. In this case, the energy consumption time of the sensor node follows the

s deterministic distribution; when 1 < g < 2, it follows the 11 -order Irish distribution. By analyzing the

sz random process of node energy consumption in WRSNS, the random distribution which minimizes the

a3  cost of energy supply system is got under the same system parameters. According to this conclusion,

;74 the energy consumption time distribution of sensor nodes can be designed by adding sleep mechanism.

sz 4.3. Realization of the TPEM scheme

376 The AVFPSO algorithm and QGES algorithm are combined to realize the TPEM scheme for
a7z WRSNs as shown in Figure 5.
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Figure 5. The flow of the TPEM scheme.

In the first phase of the TPEM scheme, the threshold interval of antenna azimuth on the same PSN
is determined by the initialization of AVFPSO algorithm.The initial particle swarm is then generated
within the range of each parameter. After that, the fitness of each particle swarm are calculated and
iterated. Then we determine the relationship between the position and the threshold. If the adjacent
azimuth threshold interval overlaps, the azimuth is adjusted by repulsion. If the adjacent azimuth
threshold interval diverges, the azimuth is adjusted by attraction. If the adjacent azimuth threshold
interval happens to be next to each other, the next step is entered. The search for the maximum
coverage is completed by the cross iterative update of two particle swarms. Finally, the optimal
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solution of azimuth and tilt is obtained to achieve the area coverage. The pseudocode of AVFPSO
algorithm is described in Algorithm 1.

Algorithm 1: AVFPSO algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21

initialize all particles and virtual force threshold;
evaluate the fitness values of particle swarm;
t+1;
calculate pbest and gbest;
while t < N; do
forall the g € N), do
update Vj 411;
forall the azimuth in the same PSN do
calculate the distance between adjacent azimuth d;"%;
if d/” > d'" then

‘ Use attraction;
end
else if 4! < d'" then

‘ Use repulsion;
end

end

update Xg41;

end

gbest,, 1 < the position of the particle with best fitness;
t=t+1;

end

After the completion of the first phase, the TPEM scheme executes the QGES algorithm in the

second phase to charge sensor nodes. The parameter information of nodes y,, ¢, and g in the coverage

area is obtained by the PSN. Random flow of energy packets with arrival rate A (0 <A<Yd, ya)

is generated from the PSN. The arrival rate A} of energy packets received by each sensor node is
calculated according to formula (45). A; is taken as the weight of sensor node 4, and the PSN adopts
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s0s the Smooth Weighted Polling (SWP) algorithm to provide energy packets for each sensor node. The
a5 pseudocode of QGES algorithm is described in Algorithm 2.

Algorithm 2: QGES algorithm
Input: Energy packets with arrival rate A is generated from the PSN.

1 initialization:;

2 The energy packet consumption time T, of sensor node a obeys the general distribution which
satisfies E (T,) = %, E(T?) = % and YA | 4o > A.

3 Each energy packet entering the sensor node receives fixed benefit € and the waiting cost per
unit time is ¢,. It satisfies % < % < %

4 forallthei € A do

396 5 H=p Y

6 | H=ELHi

7 end

8 According to Theorem 2, calculate the value of €*, and A.

* o q A N . C7A
)\a - <‘ua e \/q+2;’la€*/Ca -2 Z;a:l /\ﬂ (€ ) A) € > A

10 The PSN adopts the Smooth Weighted Polling (SWP) algorithm to provide energy packets for
each sensor node 4 with the weight A}.

307 5. Simulations and comparisons

s0s  0.1. Parameters setting

300 In the validation of the AVFPSO algorithm, COST-231 transmission model [20] is selected to
a0 calculate the path loss L; ;. The adjustable parameters are antenna azimuth objective : maxf(¢,6) and
1 tilt objective : maxf(¢,0) with the effective range [0,277). The DSNPSO algorithm [25], a modified
202 PSO algorithm suitable for directed sensor networks, is selected as the comparison algorithm. In the
a3 simulation, real data with terrain height in real environment is used to verify the effectiveness of the
s0a  AVFPSO algorithm. The parameters are described below in Table 1.

Table 1. Specifications of the parameters of AVFPSO algorithm.

Parameter name Meaning Value
fo Antenna operating frequency 2600MHz
Thrsrp Receiving signal strength threshold  -88dBm
Cm Model correction factor 3dBm
Gm Antenna reverse radiation 32dBm
SLAy Lateral lobe attenuation 32dBm
Gmax Maximum antenna gain 18dBm
Np Particle swarm number 10, 20
N Iterations 100
Cy Correction factor 1 1.494
Cy Correction factor 2 1.494
a05 In the validation of the QGES algorithm, the energy packet consumption rate of sensor node

ws determines the operating efficiency of the network element. Parameter g = {2, 3,1} is set to simulate
s07 the energy consumption interval obeying negative exponential distribution, 2-order Irish distribution
s0s and deterministic distribution respectively. Set the number of sensor nodes with charging requirements
as as A = 3 and the energy consumption rate as u = {10,20,35}. The energy packet generation rate of
a0 the PSN obeys the Poisson distribution with parameter A = 50. Each energy packet is consumed and


https://doi.org/10.20944/preprints202009.0626.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2020 d0i:10.20944/preprints202009.0626.v1

18 of 23

an  converted into network value for data acquisition, storage or forwarding. The network value return of
a1z each energy packet is set as . After the energy pack is charged into the sensor node, it needs to pay
a3 the waiting cost ¢ before it is consumed. ¢ is composed of the node energy storage space occupied by
a1 the energy pack and the reduction of power life. The cost of waiting can be translated into the loss of
a5 the data service and thus associated with the social welfare.

a1e 5.2, Numerical simulation.

a7 The corresponding parameters of QGES algorithm are put into formula (45) for numerical
a1s  calculation in MATLAB, and the results are shown as Figure 6. It depicts the relationship between the
a0 Optimal energy packet allocation rate A*, the value of g and energy consumption rate 1 = {10, 20,35}
a0 of the sensor node. When g increases from 1 to 2, it basically remains unchanged, indicating that
sz different distribution of energy consumption interval has little influence on the optimal solution of the
a2 energy supply system. Obviously, the bigger y is, the bigger the corresponding A* is. It demonstates
a3 that the nodes with higher energy consumption rate obtain more energy supply, which is consistent
a2« with normal rational cognition. However, under the optimal solution condition, the excess of the
a5 total energy consumption rate over totol demand is not distributed uniformly among the nodes, but
a2¢ in a way that is proportional to the square root of their energy consumption rate. According to this
a2z conclusion, the design of energy supply strategy achieves the system cost minimization.
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Figure 6. The optimal allocation rate with changing the value 4.

a2s Based on formula (46), the minimum cost of the energy supply system can be obtained with the
a0 energy consumption rate ¢ = {10,20,35}. Figure 7 depicts the trend of the system minimum cost
a0 with the value 4. ¢ = 1 represents the energy consumption time interval of the nodes follows the
4 deterministic distribution; 1 < g < 2 represents the nodes follow the q%l—order Irish distribution; and
a2 g = 2 represents the nodes follow the negative exponential distribution. From Figure 7, the minimum
a3 cost of the energy supply system increases with the increase of the value 4. In other words, the
a3a  system cost is the lowest when the node energy consumption time interval follows the deterministic
a5 distribution. Therefore, when designing the working scheme of sensor nodes, it can be considered
as  to make the energy dissipation interval obey the random distribution with small variance as far as
a7 possible. Finally, maximize the social welfare of the system.
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Figure 7. The trend of the system minimum cost with the value 4.
as  5.3. System simulation.

439 Figure 8 shows the actual network deployment map, where the yellow circle represents the
as0 location of the PSN. Other colors represent different actual terrain, such as green for forests and blue
a1 for rivers. Three directional charging antennas are configured on the yellow PSN nodes.This scenario
a2 contains 23 PSNs and the number of covered assessment sampling points is 62,730.

distance(km)

distance(km)

Figure 8. The actual network deployment map.
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443 Firstly, the number of particle swarms is set to 10. As shown in Figure 9, the coverage implemented
s by AVFPSO algorithm is higher than that of DSNPSO algorithm in the whole iteration running interval.
ass The AVFPSO algorithm also converges faster. Then increase the number of particle swarms to 20. As
«ss shown in Figure 10, similar to the previous results, the AVFPSO algorithm is still better than DSNPSO
a7 in terms of overall coverage performance and algorithm convergence. In the case of a larger particle
as  swarm, the gap between the two is slightly larger than before. By comparing the AVFPSO algorithm
a0 with 10 particles and DSNPSO algorithm with 20 particles, it can be observed that the performance of
aso  AVFPSO algorithm is still better than that of DSNPSO algorithm even if the number of particle swarm
451 is small. It means that the AVFPSO algorithm can get a faster search speed with the aid of virtual force
42 algorithm.
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Figure 9. The coverage rate with 10 Figure 10. The coverage rate with 20
particles. particles.
453 A Real-Time Demand Scheduling Scheme (RCSS) [25] has been selected as a comparison of QGES

asa  algorithms. As shown in Figure 11, the Y-coordinate indicates the total electric quantity of the system.
ass  If the power is 0, it means that the system cannot work normally due to the power failure of one or
ase more sensor nodes. Both algorithms start with the same initial electric quantity. The electric quantity
«s7  obtained by each node is not uniform. When the electric quantity of some nodes is too low, the RCSS
ass  algorithm charges them to ensure the normal operation of the system. QGES algorithm is a balanced
a0 charging method based on the strategy of each node. The power of the system decreases slowly in a
a0 wave mode, indicating that each node in the network can maintain a relatively balanced power. As
«1 shown in Figure 12, within a short time after the system is started, the total power of the network
a2 charged by the RCSS algorithm decreases significantly. Overall, the QGES algorithm allows the system
a3 to maintain a higher power level than RCSS, allowing the network to operate for longer periods with
s the same amount of power.

a5 6. Conclusion

466 The laying of 5G networks provides a foundation for future scenarios where things are connected.
a7 As the ends and edges of the Internet, WSNs provide massive data for the core network and reduce
ses resource costs such as manpower and equipment. The main constraint to the applications of WSNss is
a0 energy supply. In this paper, a joint optimization scheme named TPEM based on virtual force and
a0 queueing game is proposed to extend the life cycle of WRSNs effectively. In the first phase, according
ann to the position distribution characteristics of multiple antennas on the nodes, the AVFPSO algorithm is
a2 designed to achieve the coverage of the target area by solving the optimal azimuth and tilt. By using the
473 virtual force to pull particles and adjusting the optimal direction, the optimization algorithm can jump
aza out of the local optimal solution and converge to the global optimal solution more quickly. After the
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Figure 11. The electric quantity of the nodes Figure 12. The electric quantity of the
with two algorithms. system with two algorithms.

a7s  coverage is completed, the limited energy is divided into energy packets and the queuing game theory
a7 is used to construct the energy supply system model. By solving the optimal energy supply strategy
arz  at the minimum cost, the QGES algorithm is designed to realize the optimal resources allocation of
azs . WRSNs. Meanwhile, the change of system cost is analyzed with different random distribution of the
a7 energy consumption interval of nodes. The results show that the smaller the variance of the random
a0 distribution is, the lower the cost of the energy supply system will be, that is, the greater the social
ssx welfare will be obtained. This conclusion can provide theoretical guidance for designing mechanisms
sz such as node sleep scheduling. The system simulation results show that compared with the RCSS
«e3 algorithm, the TPEM scheme achieves efficient energy management of WRSNs with lower total energy
ass consumption in the same running time.
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