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Abstract: Wireless Sensor Networks (WSNs) has the characteristics of large-scale deployment, flexible1

networking, and wide application. It is an important part of the wireless communication networks.2

However, due to limited energy supply, the development of WSN is greatly restricted. Wireless3

Rechargeable Sensor Networks (WRSNs) transform the distributed energy around the environment4

into usable electricity through energy collection technology. In this work, a joint optimization strategy5

is proposed to improve the energy management efficiency for WRSNs. The joint optimization strategy6

is divided into two phases. In the first phase, we design an Annulus Virtual Force based Particle7

Swarm Optimization (AVFPSO) algorithm for area coverage planing. It adopts the multi-parameter8

joint optimization method to improve the efficiency of the algorithm. In the second phase, a Queuing9

Game-based Energy Supply (QGES) algorithm is designed for energy scheduling. It converts energy10

supply and consumption into network service. By solving the game equilibrium of the model, the11

optimal energy distribution strategy can be obtained. The simulation results show that our scheme12

improves the efficiency of coverage and energy, and extends the lifetime of WSN.13

Keywords: Wireless Rechargeable Sensor Network, Coverage Optimization, Virtual Force, Particle14

Swarm Optimization, Queuing Game15

1. Introduction16

5G networks support more devices, ushering in a new era of ubiquitous connectivity. As an17

important part of 5G networks, Wireless Sensor Network (WSN) will be used more widely based on18

the original network architecture [1] and brings more convenient services for mobile Internet users.19

Due to the large scale of deployment, diverse functions, and complex terrain in most target areas in20

WSN, traditional battery power supply mode is difficult to maintain the long-term operation of the21

network. In order to charge sensor network nodes, distributed energy around the environment such as22

solar energy, thermal energy, vibration and electromagnetic waves, can be collected and converted into23

usable electrical energy. Wireless Rechargeable Sensor Network (WRSNs) use these energy harvesting24

technologies to increase the lifetime of WSN nodes, which has attracted extensive attention. In practice,25

Microwave Power Transmission (MPT) has the relatively high efficiency, and energy supply is realized26

by transmitting and receiving electromagnetic waves with antennas [2]. To efficiently supplement the27

energy of WSN nodes, the fixed platforms, mobile air platforms or Unmanned Aerial Vehicles (UAVs)28

can be set up over the target area for network coverage.29
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The coverage effect of WSNs determines the network connectivity of the target area. It can be30

changed by adjusting the antenna’s azimuth, tilt, transmitting power and other parameters. Coverage31

optimization mainly focuses on the supplementary coverage blind area, the reduction of repeatability32

of the overlapping area, and the improvement of the effectiveness and rapid convergence of the33

optimization algorithm [3]. As the adjustable parameters show a non-linear sharp increase with the34

growth of network size, how to achieve the optimization of coverage algorithm under the premise of35

saving network resources becomes an important challenge [4]. After coverage, the design of energy36

supply scheme, to a large degree, determines the performance and lifetime of WRSNs. If the Power37

Supply Node (PSN) continues to charge the sensor nodes, the energy supplied may exceed the node38

demand, resulting in a waste of resources. However, periodic energy supply may cause the nodes39

with high loads to fall into dormancy or death due to their fast energy consumption. Therefore, it is40

necessary to design a reasonable energy supply scheme according to the different energy demands of41

nodes.42

In this paper, the power supply node with multi-antenna is configured on a platform with a43

certain height to carry out network coverage to the ground. Considering the interaction between44

multiple isomorphic antennas on a node, an Annulus Virtual Force based Particle Swarm Optimization45

(AVFPSO) algorithm is proposed to improve the performance of coverage. Then, a Queuing46

Game-based Energy Supply (QGES) algorithm is designed. It divides the energy provided by the nodes47

into energy packets with the same size, and establishes the system model of sending energy packets to48

multiple nodes in the covered area. Each energy packet wants to be used more efficiently, creating a49

competitive relationship. In the process of energy packets entering the storage of sensor nodes and50

being consumed, the nodes need to pay the cost such as reduced life of power components and waiting51

for network task transformation. The optimal strategy of node energy supply is obtained by minimizing52

the cost and solving the Nash equilibrium. Combining the two algorithms, a Two-Phase Energy53

Management (TPEM) scheme for WRSNs is obtained. The main contributions can be summarized as54

follows.55

• By introducing Virtual Force (VF) and combining with Particle Swarm Optimization (PSO), an56

efficient energy supply region coverage optimization algorithm is proposed. The joint debugging57

of antenna azimuth and tilt improves the effectiveness of the algorithm.58

• With the queuing game theory, the finite energy supply problem in WRSNs is transformed59

into a mathematical model of discrete energy packet service. The QGES algorithm provides60

energy to nodes with different energy consumption rates on demand, thus improving the optimal61

allocation of limited resources.62

• In the solution of the energy supply system model, the influence of the random distribution of63

node energy consumption on the social welfare can be obtained. It has theoretical significance64

for the design of energy saving schemes such as sensor node sleep strategy.65

The remainder of this paper is organized as follows. The related work of target area coverage66

optimization and energy supply scheme are presented in Section 2. The system model and problem67

formulation of the Two-Phase energy management in WRSNs are described in Section 3. In section68

4, the AVFPSO algorithm is designed considering the interaction between multiple antennas on the69

node. The optimal strategy of node charging is obtained by solving the energy supply system model,70

and a QGES algorithm for WRSNs is designed. The TPEM scheme is proposed by combining the two71

algorithms. Section 5 deals with the simulation and comparison results, followed by the conclusion in72

Section 6.73

2. Related Work74

The network structure of WSN changes dynamically with the change of node state. Therefore,75

the coverage optimization of WSN has always been concerned. In traditional sensor networks, the76

problem of directed sensor coverage is usually solved by optimization algorithm [5–7]. In literature [5],77
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an optimization strategy based on genetic algorithm was proposed to achieve full target coverage by78

adjusting the direction and perception range of the sensors. In literature [6], nodes in heterogeneous79

WSN are processed by clustering. The angle and coverage of nodes are adjusted by greedy search80

algorithm, so as to achieve the fence coverage of directed sensor networks. For WRSNs, literature [8]81

proposed a hybrid integer linear programming method to complete network coverage through heuristic82

search. They mainly studied the coverage of two-dimensional scenes under specific circumstances,83

but the number of parameters used for optimization was not large, and the scale of joint optimization84

was small. As in literature [9], differential evolution algorithm was adopted to solve the coverage85

problem of directional sensor network in three-dimensional environment. Literature [10] proposed a86

multi-objective optimization scheme of comprehensive three-dimensional uncertain coverage model87

based on fuzzy ring concept. The problem of three-dimensional environmental optimization conformed88

to the situation of large-scale joint optimization. However, the eliminating redundancy of solution89

space was not mentioned in these works, and the computation time would grow significantly with the90

increase of network size.91

The research on wireless charging of sensor networks mainly focuses on the case that the sensor92

node is charged by the mobile charging node [11–14] and the charging node is fixed [15,16]. In literature93

[11], a charging model of sector search algorithm using directional antenna was proposed. It had better94

performance than the golden section search method with the all-directional antenna charging model.95

Literature [13] proposed HeuristicMaxLifetime and HeuristicMinCost algorithms by solving a partial96

energy charging model for sensor charging. They maximized the sum of the sensor lifetimes and97

minimized the travel distance of the charger. In literature [14], an annular charging model was adopted98

in consideration of different node energy consumption in different regions. Corresponding charging99

strategies were used for the nodes in and out of the ring. Mobile charging nodes themselves have high100

energy consumption, and environmental energy harvesting efficiency is random and unstable, which is101

difficult to be applied in practice. For charging nodes deployed at fixed heights, literature [15] proposed102

the Greedy Cone Coverage algorithm and Adaptive Cone Coverage algorithm to deploy as few as103

possible chargers to make WRSNs sustainable. While focusing on the wireless charging efficiency,104

literature [16] proposed a fair charging model with radiation constraints in consideration of radiation105

hazards. These schemes usually did not consider the case of supplying energy simultaneously to106

multiple sensor nodes with different power consumption capacities. Under the condition of limited107

energy, the energy supply on demand improves the efficient allocation of resources and thus extends108

the life of sensor network.109

In recent years, some researches use game theory to design charging strategies [17,18]. In literature110

[17], a game collaborative scheduling algorithm was proposed with the introduction of the unique111

dynamic warning threshold and sacrifice-charge mechanism. The device that needs to choose the112

charging node was taken as the player of the game, and the non-cooperative game theory was used113

to build the system model. The overall energy efficiency of the system was improved by solving114

Nash equilibrium. Literature [18] adopted the non-cooperative Stackelberg game model and realizes a115

new architecture with better performance than cache architecture and energy recovery architecture.116

The energy cache strategy, excitation strategy and energy transfer strategy of charging node were117

considered comprehensively. These solutions consider the system from a global perspective, rather118

than being limited to performance improvements in a particular scenario. Due to limited energy119

resources in WRSNs, there will be resource competition among node participants. Meanwhile, in order120

to achieve the common goal of the players in the small set, there will also be cooperative relationship121

between players. These specific behaviors correspond to the description of game players’ elements in122

game theory.123

This paper introduces virtual force and queuing game theory [19] to establish the energy124

management system model of WRSNs. A TPEM scheme is proposed to improve coverage optimization125

and energy supply efficiency for WRSNs. In the first stage of TPEM scheme, an AVFPSO algorithm is126

designed by introducing the interaction force between multiple antennas on the node. In the process127
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of particle optimization, the virtual force is added to pull the particles, so that the algorithm can128

converge to the global optimal solution faster. In the second phase, the system is modeled based on129

queuing game theory, with constraints such as limits on the modes and amount of energy supply and130

the randomness of nodes’ demand for energy. The arrival rate of energy packets selected to enter131

different sensor nodes is obtained by solving the minimization cost function, and the QGES algorithm132

of WRSNs based on queueing game is designed.133

3. System model and Problem formulation134

MPT technology improves the lifetime of the WSN. The PSNs carried by fixed, aerial platforms135

or UAVs replenish energy for sensor nodes, which replace the difficult charging scheme of changing136

batteries for each node. Fixed and aerial platform have advantages of geographical location and large137

scale. In addition to its own large power supply, the PSN converts solar or wind into electric energy138

through energy harvesting technologies to charge the sensor nodes. Here, we focus on the system139

modeling for the target coverage optimization and energy supply of WRSNs, and formulate these two140

problems.141

3.1. System model142

It is assumed that there are m PSNs in region R of the WRSNs. The PSNs are installed143

on fixed or mobile platforms with a certain height and equipped with a large-capacity power144

system as shown in Figure 1. The mobile platforms such as aerial platforms or UAVs, which145

can be returned to recharge after completing the power supply mission and perform the next146

mission. B = {B1, B2, ..., Bm} represents the set of PSNs, where Bi denotes the ith PSN.A =147

{A11, A12, ..., A1z, A21, ..., A2z, ..., Am1..., Amz} represents the set of antennas mounted on a node, where148

Aik denotes the kthantenna of the ith PSN. P = {P1, P2, ..., Pn} represents the set of signal strength149

sampling points, where Pj denotes the jth sampling point. There are n sampling points in this region,150

which are generated at equal intervals after meshing the region. Each antenna charges multiple sensor151

nodes in the covered area. Remote field charging is realized by using MPT technology with high152

charge efficiency.153

PSN B1

PSN Bm
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Am2

PSN B2

Node

Height
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Sampling Point P1

Sensor A

Sensor 2

Sensor 1
Node

Height

H2
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 A11
A12

A1k

 A21
A22

A2k
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Figure 1. A coverage and power supply system model of WRSNs.

To achieve the target coverage of WRSNs, the azimuth φik and tilt θik of antenna Aik of the PSN154

can be adjusted. The relationship between antenna angle parameters and sampling point position is155

shown in Figure 2. Assuming that the location of the PSN is known, the problem of node location156

selection is not considered in this paper.157
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Figure 2. The relationship between antenna angle parameters and sampling point position.

WRSNs are usually used in areas where maintenance is inconvenient and energy resources of158

PSNs are limited. In our scheme, the antenna charges all sensor nodes automatically according to the159

designed QGES algorithm in the area coverage. The energy is divided into multiple energy packets160

for a fixed duration. In an energy supply cycle, it is assumed that each antenna transfers energy161

packets in a Poisson distribution with time intervals following parameters λ to supply energy to the162

nodes. The energy packet consumption rates µ of different sensor nodes in the coverage area of the163

antenna obey the general distribution. The players in the game are the energy packets. Nodes receive164

energy packets and store them in the power system, waiting for being consumed and then converting165

them into network value to obtain benefit ε. During charging and waiting, sensor nodes need to pay166

corresponding costs C per unit time, which indicates the decline of power life and energy conversion167

efficiency of nodes. To maximize the social welfare of the energy supply system, the problem can168

be transformed into an optimal strategy for energy packets to be allocated to different sensor nodes169

with the minimum cost. As shown in Figure 3, the power supply system model is composed of PSN170

antenna, sensors and power supply strategy based on queued game.171

Energy Supply Node

Antenna

Sensor A

Sensor 2

Sensor 1

…

Figure 3. Energy supply system model.

3.2. Problem formulation172

Problem 1: Two-parameter joint optimization of power supply target coverage. Under the173

constraint of azimuth φ and tilt θ of independent variables, the maximum of coverage function is174

solved. To describe problem 1, the following definitions are given.175

Definition 1. Evaluate whether a sampling point meets the coverage requirements according to176

the value of Reference Signal Receiving Power (RSRP). gj(φ, θ) represents the coverage at sampling177

point Pj, which can be expressed as:178

gj(φ, θ) =

{
1, hrj(φ, θ) > ThRSRP
0, otherwise

(1)

where 1 indicates covered, 0 indicates not covered, and ThRSRP denotes the threshold value of RSRP.179

hrj(φ, θ) denotes the RSRP of the point Pj, which is the maximum power of the RSRP from all antennas180

at the point. It can be given by:181
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hrj(φ, θ) = max(hij(φ11, θ11), hij(φ12, θ12), ..., hij(φ1n, θ1n), ..., hij(φmz, θmz)) (2)

Definition 2. The function hij(φik, θik) that represents the RSRP from the antenna Aik at the point182

Pj can be given by:183

hij(φik, θik) = PT + hgj(φik, θik) + GR − Li,j (3)

where PT denotes is the transmitting power of the antenna, which is set as a constant; GR denotes184

the receiver gain and is set as a constant; Li,j denotes the path loss from the charging node Ci to the185

sampling point Pj. Based on COST231-HATA [20], the path loss Li,j can be obtained as:186

Li,j =46.3 + 33.9log10( f0)− 13.82log10(hi,j)− (3.2(log10(11.75hp))
2 + 4.97)

+ (44.9− 6.55log10(hi,j))log10(dij,k) + CM
(4)

where hi,jdenotes the height of antenna Aij, hp denotes the height of the sampling point Pj, dij,k denotes187

the horizontal distance between the antenna Aij and the sampling point Pj, and CM denotes the model188

correction factor. The directional gain is a function of horizontal and vertical angles. According to the189

approximate model given by 3GPP [21], it can be expressed as:190

G(φ, θ) = −min{−[GH(φ) + GV(θ)], Gm}+ Gmax

GH(φ) = −min[12(
φ

φ3dB
)

2
, Gm]

GV(θ) = −min[12(
θ

θ3dB
)

2
, SLAV ]

(5)

where Gmax denotes the maximum gain of the antenna, φ3dB denotes the angle of the Half power191

waveform width, Gm denotes the maximum value of the reverse attenuation, and SLAV denotes the192

attenuation of lateral lobe. The function hgj(φik, θik) that represents the directional gain of the antenna193

Aik towards the sampling point Pj can be given by:194

hgj(φik, θik) = G(φik,j, θik,j) (6)

where φik and θik denote the azimuth and tilt of the antenna Aij respectively; aik,j and bik,j denote the195

horizontal and vertical angles of the sampling point Pj relative to the antenna Aij. φik,j and θik,j denote196

their relative angles respectively, which can be calculated as follow.197

If aik,j = φik,198

φik,j = 0

θik,j = bik,j − θik
(7)

If aik,j 6= φik,199

φik,j = arctan

(
cos(θik)

tan(aik,j − φik)
+

sin(θik) · tan(bik,j)

sin(aik,j − φik)

)−1

θik,j = arctan

(
sin(φik,j) ·

(
− sin(θik)

tan(aik,j − φik)
+

cos(θik) · tan(bik,j)

sin(aik,j − φik)

)) (8)
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The two-parameter joint optimization problem can be described as:200

max

{
f (φ, θ) =

1
N

N

∑
j=1

gj(φ, θ)

}
(9)

Subjects to:201

φik ∈ [0, 2π], i = 1, 2, ..., m, k = 1, 2, ..., z

θik ∈ [0, 2π], i = 1, 2, ..., m, k = 1, 2, ..., z
(10)

where the function f (φ, θ) represents the overall coverage in the region. The detailed calculation202

formula of the coverage calculation function f (φ, θ) has been given. The corresponding coverage rate203

can be obtained by modifying the antenna azimuth φ and tilt θ. Then, according to the characteristics204

of the antennas on the PSN, the formula (6) should be changed reasonably to reduce the amount of205

calculation and improve the speed of calculation.206

Problem 2: Energy supply strategy with the minimum cost. The antenna of the PSN provides207

limited energy packets. The energy packets pay the cost when they enter sensor nodes with different208

power consumption capacity and are consumed translates into network value. Under the condition of209

minimum cost, the optimal rate of energy packets being assigned to each sensor node is solved.210

It is assumed that each antenna of the PSN covers A sensor nodes and provides energy packets211

in a Poisson distribution with rate Λ (Λ > 0). Energy packets are sent from the antenna of the PSN,212

allocated to different sensor nodes, received and stored in the power system of the node through213

electromagnetic transformation, waiting to provide energy for network tasks. The process of energy214

packets allocation to sensor nodes follows the Poisson distribution with parameter λa, and satisfies215

∑A
a=1 λa = Λ. The time interval Ta of the energy packets consumed by sensor node a follows the216

general distribution. It satisfies E (Ta) =
1

µa
, E
(
T2

a
)
= q

µ2
a
, and ∑A

a=1 µa > Λ. Each energy packet that217

enters the sensor node obtains a fixed benefit ε. Each energy packet needs to pay a waiting cost ca per218

unit time in the node. Sort the sensor nodes and get c1
µ1
≤ c2

µ2
≤ ca

µa
.219

The solution to the optimal problem of the system is to find an allocation strategy
(
λ∗1 , λ∗2 , · · · , λ∗a

)
220

of energy packets to the sensor node with the minimum cost of the entire energy supply system.221

According to the assumption, the queuing model of each sensor node is M/G/1. Γa (λa) represents222

the average number of energy packets in the node queue. The average cost function of the system can223

be given by:224

ψ
(⇀

λ
)
= ∑A

a=1 caΓa (λa) (11)

Subjects to:225

∑A
a=1 λa = Λ (12)

In equilibrium, the average cost of the system reaches a minimum, and each energy packet cannot226

reduce the system cost by entering any other node. Problem 2 can be described as a minimization cost227

function ψ
(
~λ
)

and the optimal strategy of energy supply allocation is obtained by solving ψ
(
~λ
)

.228

4. Joint optimization scheme for WRSNs229

To solve Problem 1 and 2, we design AVFPSO algorithm and QGES algorithm respectively. In the230

first phase, the PSN uses AVFPSO algorithm to jointly debug azimuth and tilt for full coverage of the231

target area. In the second phase, QGES algorithm is applied to realize energy supply on demand for232

sensor nodes with different energy consumption capacity under the condition of limited energy. The233

Two-Phase algorithms are integrated to form an efficient energy management scheme for WRSNs.234
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4.1. AVFPSO algorithm for problem 1235

4.1.1. Annulus Virtual Force Algorithm236

The virtual force algorithm was originally applied to the deployment of sensor nodes [22–24].237

After the sensor node random position is initialized, the finally position is changed through the238

interaction of virtual forces to achieve the enhancing effect of coverage. Each node makes a strategy239

selection based on the position relationship with other nodes. When the distance is less than a240

threshold, repulsive forces appear between nodes. On the contrary, when the distance is greater than241

the threshold, there is an attractive force between nodes. When the distance is exactly equal to the242

threshold, the interaction force between nodes is zero, and the nodes appear to be static.243

There are l sensor nodes S = {s1, s2, ..., sl} in the area, where the coordinates of the uth and vth244

nodes are su(xu, yu) and sv(xv, yv) respectively. The distance du,v between the two nodes is defined by:245

du,v =

√
(xu − xv)

2 + (yu − yv)
2 (13)

The force
−→
F u,v between node su and node sv is defined as:246

−→
F u,v =


(ωA(du,v − dth), αu,v), i f du,v > dth

0, i f du,v = dth

(ωR/du,v, αu,v + π), i f du,v < dth

(14)

where dth denotes the threshold value of the distance between nodes, which is responsible for247

controlling the distance between nodes. ωA denotes the coefficient of attraction between nodes, ωR248

denotes the coefficient of repulsion between nodes, and αu,v denotes the Angle between the line249

between nodes and the horizontal direction. A node may be acted upon by multiple nodes, and250 −→
F u =

−→
F u,1 +

−→
F u,2 + ...

−→
F u,l means that node u is acted upon by all other nodes.251

The traditional virtual force algorithm considers the interaction forces between nodes in Euclidean252

space. Different from the traditional virtual force algorithm, we consider the interaction force between253

isomorphic antennas on the charging nodes. Assume that the azimuth distribution of the antenna on254

the Bith charging node is shown in Figure 4, which are ϕi,1, ϕi,2, ..., ϕi,z respectively. Their distribution255

is not the coordinate on The Euclidean space, but the Angle distribution on the ring structure and can256

be circulated.257
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PSN i

1i
2i

3i

iz

Figure 4. The azimuth distribution of the antenna on a PSN.

The dotted line in the Figure 4 represents the circle with azimuth, the position pointed at by the258

arrow represents different azimuth, and the band interval near the azimuth represents the threshold259

limit range of azimuth. Then, the distance du,v
i between azimuth ϕi,u and azimuth ϕi,v is defined as:260

du,v
i = |ϕi,u − ϕi,v| (15)

The force
−→
F u,v

i between azimuth ϕi,u and azimuth ϕi,v is defined as:261

−→
F u,v

i =


ωA(d

u,v
i − dth

i ), i f du,v
i > dth

i

0, i f du,v
i = dth

i

ωR/du,v
i , i f du,v

i < dth
i

(16)

where ωA and ωR have the same meaning as formula (14), and dth
i represent the virtual force threshold262

of the antenna on the PSN. By observing the overlap of the limited threshold range of each azimuth in263

Figure 4, the type of force between the azimuths can be judged. There is no coincidence area between264

azimuth ϕi,1 and azimuth ϕi,2, so there is attraction between them. Azimuth ϕi,2 and azimuth ϕi,3265

overlap in some regions, i.e. there is repulsion between them. As a result, there is a tendency for266

the two azimuths to be adjusted to non-coincident states. Azimuth ϕi,z and azimuth ϕi,1 are just in267

adjacent states, then, there is no interacting force between them.268

The other difference between the ring virtual force algorithm and the traditional virtual force269

algorithm is that only the adjacent azimuths interact with each other, while the non-adjacent azimuth270

angles do not interact with each other. For example, there is no force between azimuth ϕi,1 and azimuth271

ϕi,3, and the coincidence problem of their limited threshold range is not taken into account.272

4.1.2. AVFPSO algorithm273

Particle swarm optimization is an algorithm developed by simulating the unpredictable motion274

of a flock of birds. It evolves around the advantages of sharing information in groups. The initial PSO275

algorithm was formed by adding the nearest neighbor speed match and adding the multidimensional276

search, in addition to considering the accelerated search based on distance. Then the PSO algorithm277

is optimized by introducing parameters such as inertia weight ω. Suppose the qth particle in the278

population is denoted as Xq = (xq,1, xq,2, ..., xq,W). The best position it has ever experienced, the value279
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with the best fit, is represented by pbestq = (pq,1, pq,2, ..., pq,W), where W denots the dimension of the280

particle. The best adaptive value is given by:281

gbest = arg max( f (Xq)), q ∈ (1, 2, ..., W) (17)

The moving velocity of particle is denoted by Vq(vq,1, vq,2, ..., vq,W). The updating formula of282

velocity and position is given by:283

Vq,w+1 = ωVq,w + c1r1(pbestq,w − xq,w) + c2r2(gbestw − xq,w) (18)

and284

xq,w+1 = xq,w + Vq,w (19)

where c1 and c2 denote acceleration constants, and r1 and r2 denote random values within the range of285

[0,1].286

When PSO algorithm and ring virtual force algorithm are combined to solve the coverage problem,287

f (Xq) in formula (17) is replaced by f (φ, θ) in formula (9) to calculate the optimal fitness value pbest∗q288

as follow:289

pbest∗q = arg max( f (φ, θ)) (20)

After completing the speed update, when updating the position of particles, the azimuths of the290

antennas on the same PSN are adjusted by virtual force according to formula (16).291

4.2. QGES algorithm for problem 2292

4.2.1. Solution of the model293

For the solution of the multi-node energy supply system model, the situation of the single-sensor294

node energy supply system is first considered. Similarly, each energy packet entering the sensor295

node receives fixed benefit ε, and the waiting cost per unit time is c. The ultimate goal is to select296

the appropriate energy packet delivery rate, so as to minimize the total cost. Since the energy packet297

emission rate obeys the Poisson distribution with parameter λ, and the energy packet consumption of298

sensor nodes obeys the general distribution with parameter µ, the queuing model of the energy supply299

system of the single-sensor node can be described as M/G/1. Assume that:300

Xb: represents the number of energy packets left in the node when the bth energy packet is301

consumed, and the consumed energy packet is numbered as b.302

Tb: represents the elapsed time (From the time when the bth energy pack is consumed) of the next303

((b + 1) th) energy pack when the bth energy packet is consumed. E (Tb) =
1
µ , E

(
T2

b
)
= q

µ2 .304

Yb: represents the number of new energy packets entering the node during the period when the305

(b + 1) th energy packet is being consumed.306

According to the queuing situation:307

Xb+1 =

{
Yb, Xb = 0,

Xb + Yb − 1, Xb > 0.
(21)

Let dβ = P (Yb = β) > 0, then, it can be proved that {Xb} forms a Markov chain, which is308

generally called an embedded Markov chain. If pαβ = P (Xb+1 = β|Xb = α), p0β can be given as:309

p0β = (Xb+1 = β|Xb = 0) = P (Yb = β) = dβ (β ≥ 0) (22)

When Xb > 0,310
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pαβ = P(Yb = β + 1− Xb|Xb = α) =

{
0, α > β + 1

dβ+1−α, α ≤ β + 1
(23)

Since the time {Tb, b ≥ 1} consumed by the energy packet is an independent identically311

distributed sequence of random variables, its public distribution function is denoted as G (t) =312

P (Tb ≤ t). Then,313

dβ = P (Yb = β) =
∫ ∞

0
P (Yb = β| Tb = t)dG (t) (24)

where, P (Yb = β| Tb = t) represents the probability of β new energy packets entering the system in314

time interval (0, t). Since the energy packet arrives according to Poisson flow, we can get:315

P (Yb = β| Tb = t) =
(λt)β

β!
e−λt (25)

Substituting formula [32] in [31],316

dβ =
∫ ∞

0

(λt)β

β!
e−λtdG (t) (26)

Since d0 = p00 > 0 and the states of the Markov chain are interconnected, this Markov chain is317

periodially irreducible. It satisfies:318

E (Yb) = ∑∞
β=0 βdβ = ∑∞

β=0 β
∫ ∞

0

(λt)β

β!
e−λtdG (t)

=
∫ ∞

0
∑∞

β=0
(λt)β−1

(β− 1)!
e−λtλtdG (t) =

∫ ∞

0
λtdG (t)

= λE (Tb) = ρ

(27)

and319

E
(

Y2
b

)
= ∑∞

β=0 β2dβ = ∑∞
β=0 β2

∫ ∞

0

(λt)β

β!
e−λtdG (t)

=
∫ ∞

0

(
∑∞

β=0
(λt)β

(β− 2)!
+ ∑∞

β=1
(λt)β

(β− 1)!

)
e−λtλtdG (t)

=
∫ ∞

0

[
(λt)2 + λt

]
dG (t) = λ2E

(
T2

b

)
+ λE (Tb) = qρ2 + ρ

(28)

It can be verified that the Markov chain is traversed when ρ < 1. So there is a stationary320

distribution
{

pβ, β ≥ 0
}

which satisfies321

pβ = ∑∞
α=0 pα pαβ (β ≥ 0) (29)

Constructing the generating function to solve pβ, let P (x) = ∑∞
β=0 pβxβ and D (x) = ∑∞

β=0 dβxβ.322

It can be obtained from formula (29), (22) and (23) that when β=0, x0 p0 = (p0d0 + p1d0) x0; when β=1,323

xp1 = (p0d1 + p1d1 + p2d0) x;...; when β=b, xb pb = (p0db + p1db + p2db−1 + · · ·+ pb+1d0) xb;.... Add324

up all the equations to get325
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P(x) = p0D(x) + p1D(x) + p2xD(x) + p3x2D(x) + · · ·+ pbxb−1D(x) + · · ·

=
D(x)

x
(p0x + p1x + p2x2 + p3x3 + · · ·+ pbxb + · · · )

=
D(x)

x
[p0(x− 1) + P(x)]

(30)

Therefore, the generating function of energy packet quantity distribution in the system can be326

deduced as:327

P (x) =
(1− x) p0D (x)

D (x)− x
(31)

Since D′ (x) = ∑∞
β=0 βdβxβ-1, D′ (1) = ∑∞

β=0 βdβ = E (Yb) = ρ. P (1) = ∑∞
β=0 pβ = 1 and328

D (1) = ∑∞
β=0 dβ = 1. L ’Hopital’s rule is applied to formula (31),329

lim
x→1

P (x) = lim
x→1

(1− x) p0D (x)
D (x)− x

=
p0

1− ρ
⇒ p0 = 1− ρ (32)

Substituting formula (32) in (31),330

P (x) =
(1− x) (1− ρ) D (x)

D (x)− x
(33)

Combining the formula (27) and (28),331

D′′ (1) = ∑∞
β=0

(
β2dβ − βdβ

)
= E

(
Y2

b

)
− E (Yb)=qρ2 (34)

With the formula (34) and (31), applying L ’Hopital’s rule twice more, the average number of332

energy packets in the system can be obtained as333

Γ (ρ) = E (Xb) = P′ (1) =
[
(1− x) (1− ρ) D (x)

D (x)− x

]′∣∣∣∣∣
x=1

= (1− ρ)
−2[D′ (1)]2 + 2D′ (1) + D′′ (1)

2[D′ (1)− 1]2
= ρ +

qρ2

2 (1− ρ)

(35)

In the single-node power supply system with the queuing model M/G/1, the cost minimization334

problem of single-node power supply system can be described as335

min [cΓ (ρ)− ελ] = min
[

ρ +
qρ2

2 (1− ρ)
− ελ

]
(36)

where λ satisfies 0 ≤ λ < µ.336

Since formula (36) is a differentiable strictly convex function, Γ′ (λ) represents the first derivative337

of Γ (ρ) with respect to λ, which can be given as338

Γ′ (λ) =
1
µ
+

q (2µ− λ) λ

2µ(µ− λ)2 (37)

Therefore, the optimal arrival rate λ∗ satisfies339 
cΓ′ (λ∗)− ε = 0, λ∗ > 0

cΓ′ (λ∗) =
c
µ

, λ∗ = 0
(38)
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Combining the formula (38) and (37),340

1
µ
+

q (2µ− λ∗) λ∗

2µ(µ− λ∗)2 =
ε

c
(λ∗ > 0) (39)

ε is A fixed value satisfying ε > 0, and λ∗ (ε) is the optimal arrival rate. The solution of formula341

(39) can be obtained as342

λ∗ (ε) = µ− µ

√
q

q + 2µε/c− 2
(λ∗ > 0) (40)

Due to 0 ≤ λ < µ, the optimal arrival rate of the energy packets is343

λ∗ (ε) = max
{

0, µ− µ

√
q

q + 2µε/c− 2

}
(41)

From the system model of formula (11) and (12), the problem of minimizing cost for multi-node344

energy supply system can be described as345

f ∗
(⇀

λ
)
= min ∑A

a=1 caΓa (λa) (42)

Subjects to346

∑A
a=1 λa = Λ (0 ≤ λa < µa, a = 1, 2, · · · , A) (43)

According to the generalized Lagrangian multiplier method, formula (42) satisfies equation (38)347

for each sensor node a and partial benefit ε. Therefore, the optimal arrival rate similar to the single348

node can be obtained as349

λ∗a (ε) = max
{

0, µa − µa

√
q

q + 2µaε/ca − 2

}
(44)

where ∑A
a=1 λ∗a (ε) = Λ. Since Λ > 0, there is at least one solution λ∗1 (ε) > 0. Then, µ1 −350

µ1

√
q

q+2µ1ε/c1−2 > 0, that is, ε > c1
µ1

. In this case, ∑A
a=1 λ∗a (ε) is a strictly increasing function of ε.351

Thus, there is one and only one ε∗, such that ∑A
a=1 λ∗a (ε

∗) = Λ. If ε > ca
µa

, λ∗a (ε) > 0. Therefore, when352

h < a, λ∗h (ε) > 0, which means that under the equilibrium state of the system, the former a sensor353

nodes obtain energy packets according to the arrival rate of λ∗a (ε) to be charged. Other sensor nodes354

are not selected because of low energy efficiency and sufficient energy. Therefore, in the designed355

model of multi-node power supply system, ε > cA
µA

needs to be set for supplying energy to all active356

sensors.357

In the multi-node energy supply system with queueing model M/G/1 of each sensor node, the358

optimal arrival rate of each node energy packet can be obtained as359

λ∗a =

(
µa − µa

√
q

q + 2µaε∗/ca − 2

∣∣∣∣∑A
a=1 λ∗a (ε

∗) = Λ
)

, ε∗ >
cA
µA

(45)

In this case, the lowest cost of the energy supply system is360

f ∗
(⇀

λ
)
= ∑A

a=1 ca

1−
√

q
q + 2µaε∗/ca − 2

+
q
(

1−
√

q
q+2µaε∗/ca−2

∣∣∣)2

2
√

q
q+2µaε∗/ca−2

 (46)

where ∑A
a=1 λ∗a (ε

∗) = Λ and ε∗ > cA
µA

.361
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4.2.2. Model Analysis362

When building the energy supply system model, it assume that the energy consumption random363

process of sensor nodes follows the general distribution with parameter µ. It satisfies E (Tb) =
1
µ and364

E
(
T2

b
)
= q

µ2 . When q=2, D (Tb) = 1
µ2 , which means that the node energy consumption process is365

simplified to a negative exponential distribution. Then366

λ∗a (ε) = µa −
√

µaca

ε

(
ε >

ca

µa

)
(47)

Combining ∑A
a=1 λ∗a (ε) = Λ,367

√
ε =

∑A
a=1
√

µaca

∑A
a=1 µa −Λ

(48)

In the multi-node power supply system with each sensor node queuing model M/M/1, the368

equilibrium solution can be obtained as369

λ∗a = µa −
√

µaca

∑A
a=1
√

µaca

(
∑A

a=1 µa −Λ
)

(49)

When q=1, D (Tb) = 0. In this case, the energy consumption time of the sensor node follows the370

deterministic distribution; when 1 < q < 2, it follows the 1
q−1 -order Irish distribution. By analyzing the371

random process of node energy consumption in WRSNs, the random distribution which minimizes the372

cost of energy supply system is got under the same system parameters. According to this conclusion,373

the energy consumption time distribution of sensor nodes can be designed by adding sleep mechanism.374

4.3. Realization of the TPEM scheme375

The AVFPSO algorithm and QGES algorithm are combined to realize the TPEM scheme for376

WRSNs as shown in Figure 5.377
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Figure 5. The flow of the TPEM scheme.

In the first phase of the TPEM scheme, the threshold interval of antenna azimuth on the same PSN378

is determined by the initialization of AVFPSO algorithm.The initial particle swarm is then generated379

within the range of each parameter. After that, the fitness of each particle swarm are calculated and380

iterated. Then we determine the relationship between the position and the threshold. If the adjacent381

azimuth threshold interval overlaps, the azimuth is adjusted by repulsion. If the adjacent azimuth382

threshold interval diverges, the azimuth is adjusted by attraction. If the adjacent azimuth threshold383

interval happens to be next to each other, the next step is entered. The search for the maximum384

coverage is completed by the cross iterative update of two particle swarms. Finally, the optimal385
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solution of azimuth and tilt is obtained to achieve the area coverage. The pseudocode of AVFPSO386

algorithm is described in Algorithm 1.387

Algorithm 1: AVFPSO algorithm

1 initialize all particles and virtual force threshold;
2 evaluate the fitness values of particle swarm;
3 t← 1;
4 calculate pbest and gbest;
5 while t < Nt do
6 forall the q ∈ Np do
7 update Vq,w+1;
8 forall the azimuth in the same PSN do
9 calculate the distance between adjacent azimuth du,v

i ;
10 if du,v

i > dth
i then

11 Use attraction;
12 end
13 else if du,v

i < dth
i then

14 Use repulsion;
15 end
16 end
17 update xq,w+1;
18 end
19 gbestw+1 ← the position of the particle with best fitness;
20 t = t + 1;
21 end

388

After the completion of the first phase, the TPEM scheme executes the QGES algorithm in the389

second phase to charge sensor nodes. The parameter information of nodes µa, ca and q in the coverage390

area is obtained by the PSN. Random flow of energy packets with arrival rate Λ
(

0 < Λ < ∑A
a=1 µa

)
391

is generated from the PSN. The arrival rate λ∗a of energy packets received by each sensor node is392

calculated according to formula (45). λ∗a is taken as the weight of sensor node a, and the PSN adopts393
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the Smooth Weighted Polling (SWP) algorithm to provide energy packets for each sensor node. The394

pseudocode of QGES algorithm is described in Algorithm 2.395

Algorithm 2: QGES algorithm
Input: Energy packets with arrival rate Λ is generated from the PSN.

1 initialization:;
2 The energy packet consumption time Ta of sensor node a obeys the general distribution which

satisfies E (Ta) =
1

µa
, E
(
T2

a
)
= q

µ2
a

and ∑A
a=1 µa > Λ.

3 Each energy packet entering the sensor node receives fixed benefit ε and the waiting cost per
unit time is ca. It satisfies c1

µ1
≤ c2

µ2
≤ ca

µa
.

4 forall the i ∈ A do
5 µ=µ + µi
6 µ= ∑ µi

7 end
8 According to Theorem 2, calculate the value of ε∗, and λ∗a .
9

λ∗a =

(
µa − µa

√
q

q + 2µaε∗/ca − 2

∣∣∣∣∑A
a=1 λ∗a (ε

∗) = Λ
)

, ε∗ >
cA
µA

10 The PSN adopts the Smooth Weighted Polling (SWP) algorithm to provide energy packets for
each sensor node a with the weight λ∗a .

396

5. Simulations and comparisons397

5.1. Parameters setting398

In the validation of the AVFPSO algorithm, COST-231 transmission model [20] is selected to399

calculate the path loss Li,j. The adjustable parameters are antenna azimuth objective : max f (φ, θ) and400

tilt objective : max f (φ, θ) with the effective range [0, 2π). The DSNPSO algorithm [25], a modified401

PSO algorithm suitable for directed sensor networks, is selected as the comparison algorithm. In the402

simulation, real data with terrain height in real environment is used to verify the effectiveness of the403

AVFPSO algorithm. The parameters are described below in Table 1.404

Table 1. Specifications of the parameters of AVFPSO algorithm.

Parameter name Meaning Value

f0 Antenna operating frequency 2600MHz
ThRSRP Receiving signal strength threshold -88dBm

CM Model correction factor 3dBm
Gm Antenna reverse radiation 32dBm

SLAV Lateral lobe attenuation 32dBm
Gmax Maximum antenna gain 18dBm
Np Particle swarm number 10, 20
Nt Iterations 100
C1 Correction factor 1 1.494
C2 Correction factor 2 1.494

In the validation of the QGES algorithm, the energy packet consumption rate of sensor node405

determines the operating efficiency of the network element. Parameter q =
{

2, 3
2 , 1
}

is set to simulate406

the energy consumption interval obeying negative exponential distribution, 2-order Irish distribution407

and deterministic distribution respectively. Set the number of sensor nodes with charging requirements408

as A = 3 and the energy consumption rate as µ = {10, 20, 35}. The energy packet generation rate of409

the PSN obeys the Poisson distribution with parameter Λ = 50. Each energy packet is consumed and410
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converted into network value for data acquisition, storage or forwarding. The network value return of411

each energy packet is set as ε. After the energy pack is charged into the sensor node, it needs to pay412

the waiting cost c before it is consumed. c is composed of the node energy storage space occupied by413

the energy pack and the reduction of power life. The cost of waiting can be translated into the loss of414

the data service and thus associated with the social welfare.415

5.2. Numerical simulation.416

The corresponding parameters of QGES algorithm are put into formula (45) for numerical417

calculation in MATLAB, and the results are shown as Figure 6. It depicts the relationship between the418

optimal energy packet allocation rate λ∗, the value of q and energy consumption rate µ = {10, 20, 35}419

of the sensor node. When q increases from 1 to 2, it basically remains unchanged, indicating that420

different distribution of energy consumption interval has little influence on the optimal solution of the421

energy supply system. Obviously, the bigger µ is, the bigger the corresponding λ∗ is. It demonstates422

that the nodes with higher energy consumption rate obtain more energy supply, which is consistent423

with normal rational cognition. However, under the optimal solution condition, the excess of the424

total energy consumption rate over totol demand is not distributed uniformly among the nodes, but425

in a way that is proportional to the square root of their energy consumption rate. According to this426

conclusion, the design of energy supply strategy achieves the system cost minimization.427
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Figure 6. The optimal allocation rate with changing the value q.

Based on formula (46), the minimum cost of the energy supply system can be obtained with the428

energy consumption rate µ = {10, 20, 35}. Figure 7 depicts the trend of the system minimum cost429

with the value q. q = 1 represents the energy consumption time interval of the nodes follows the430

deterministic distribution; 1 < q < 2 represents the nodes follow the 1
q−1 -order Irish distribution; and431

q = 2 represents the nodes follow the negative exponential distribution. From Figure 7, the minimum432

cost of the energy supply system increases with the increase of the value q. In other words, the433

system cost is the lowest when the node energy consumption time interval follows the deterministic434

distribution. Therefore, when designing the working scheme of sensor nodes, it can be considered435

to make the energy dissipation interval obey the random distribution with small variance as far as436

possible. Finally, maximize the social welfare of the system.437
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Figure 7. The trend of the system minimum cost with the value q.

5.3. System simulation.438

Figure 8 shows the actual network deployment map, where the yellow circle represents the439

location of the PSN. Other colors represent different actual terrain, such as green for forests and blue440

for rivers. Three directional charging antennas are configured on the yellow PSN nodes.This scenario441

contains 23 PSNs and the number of covered assessment sampling points is 62,730.442
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Figure 8. The actual network deployment map.
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Firstly, the number of particle swarms is set to 10. As shown in Figure 9, the coverage implemented443

by AVFPSO algorithm is higher than that of DSNPSO algorithm in the whole iteration running interval.444

The AVFPSO algorithm also converges faster. Then increase the number of particle swarms to 20. As445

shown in Figure 10, similar to the previous results, the AVFPSO algorithm is still better than DSNPSO446

in terms of overall coverage performance and algorithm convergence. In the case of a larger particle447

swarm, the gap between the two is slightly larger than before. By comparing the AVFPSO algorithm448

with 10 particles and DSNPSO algorithm with 20 particles, it can be observed that the performance of449

AVFPSO algorithm is still better than that of DSNPSO algorithm even if the number of particle swarm450

is small. It means that the AVFPSO algorithm can get a faster search speed with the aid of virtual force451

algorithm.452
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Figure 9. The coverage rate with 10
particles.
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Figure 10. The coverage rate with 20
particles.

A Real-Time Demand Scheduling Scheme (RCSS) [25] has been selected as a comparison of QGES453

algorithms. As shown in Figure 11, the Y-coordinate indicates the total electric quantity of the system.454

If the power is 0, it means that the system cannot work normally due to the power failure of one or455

more sensor nodes. Both algorithms start with the same initial electric quantity. The electric quantity456

obtained by each node is not uniform. When the electric quantity of some nodes is too low, the RCSS457

algorithm charges them to ensure the normal operation of the system. QGES algorithm is a balanced458

charging method based on the strategy of each node. The power of the system decreases slowly in a459

wave mode, indicating that each node in the network can maintain a relatively balanced power. As460

shown in Figure 12, within a short time after the system is started, the total power of the network461

charged by the RCSS algorithm decreases significantly. Overall, the QGES algorithm allows the system462

to maintain a higher power level than RCSS, allowing the network to operate for longer periods with463

the same amount of power.464

6. Conclusion465

The laying of 5G networks provides a foundation for future scenarios where things are connected.466

As the ends and edges of the Internet, WSNs provide massive data for the core network and reduce467

resource costs such as manpower and equipment. The main constraint to the applications of WSNs is468

energy supply. In this paper, a joint optimization scheme named TPEM based on virtual force and469

queueing game is proposed to extend the life cycle of WRSNs effectively. In the first phase, according470

to the position distribution characteristics of multiple antennas on the nodes, the AVFPSO algorithm is471

designed to achieve the coverage of the target area by solving the optimal azimuth and tilt. By using the472

virtual force to pull particles and adjusting the optimal direction, the optimization algorithm can jump473

out of the local optimal solution and converge to the global optimal solution more quickly. After the474

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2020                   doi:10.20944/preprints202009.0626.v1

https://doi.org/10.20944/preprints202009.0626.v1


21 of 23

0 5 10 15 20

Time (s)

8

9

10

11

12

N
et

w
or

k
 B

a
tt

er
y
 (

%
)

RCSS-1

QGES-1

RCSS-2

QGES-2

RCSS-3

QGES-3

Figure 11. The electric quantity of the nodes
with two algorithms.
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system with two algorithms.

coverage is completed, the limited energy is divided into energy packets and the queuing game theory475

is used to construct the energy supply system model. By solving the optimal energy supply strategy476

at the minimum cost, the QGES algorithm is designed to realize the optimal resources allocation of477

WRSNs. Meanwhile, the change of system cost is analyzed with different random distribution of the478

energy consumption interval of nodes. The results show that the smaller the variance of the random479

distribution is, the lower the cost of the energy supply system will be, that is, the greater the social480

welfare will be obtained. This conclusion can provide theoretical guidance for designing mechanisms481

such as node sleep scheduling. The system simulation results show that compared with the RCSS482

algorithm, the TPEM scheme achieves efficient energy management of WRSNs with lower total energy483

consumption in the same running time.484
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