

Article

Joint Optimization Strategy of Coverage Planning and Energy Scheduling for Wireless Rechargeable Sensor Networks

Cheng Gong ¹, Chao Guo ^{2*}, Haitao Xu ¹, Chengcheng Zhou ¹ and Xiaotao Yuan ³

¹ School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; cgong1986@foxmail.com

² Electronic and Communication Engineering, Beijing Electronics Science and Technology Institute, Beijing, 100070, China

³ School of chemistry and biological engineering, University of Science and Technology Beijing, Beijing, 100083, China

* Correspondence: guo99chao@163.com; Tel.: +86-01-8363-5170

1 **Abstract:** Wireless Sensor Networks (WSNs) has the characteristics of large-scale deployment, flexible
2 networking, and wide application. It is an important part of the wireless communication networks.
3 However, due to limited energy supply, the development of WSN is greatly restricted. Wireless
4 Rechargeable Sensor Networks (WRSNs) transform the distributed energy around the environment
5 into usable electricity through energy collection technology. In this work, a joint optimization strategy
6 is proposed to improve the energy management efficiency for WRSNs. The joint optimization strategy
7 is divided into two phases. In the first phase, we design an Annulus Virtual Force based Particle
8 Swarm Optimization (AVFPSO) algorithm for area coverage planing. It adopts the multi-parameter
9 joint optimization method to improve the efficiency of the algorithm. In the second phase, a Queuing
10 Game-based Energy Supply (QGES) algorithm is designed for energy scheduling. It converts energy
11 supply and consumption into network service. By solving the game equilibrium of the model, the
12 optimal energy distribution strategy can be obtained. The simulation results show that our scheme
13 improves the efficiency of coverage and energy, and extends the lifetime of WSN.

14 **Keywords:** Wireless Rechargeable Sensor Network, Coverage Optimization, Virtual Force, Particle
15 Swarm Optimization, Queuing Game

16 1. Introduction

17 5G networks support more devices, ushering in a new era of ubiquitous connectivity. As an
18 important part of 5G networks, Wireless Sensor Network (WSN) will be used more widely based on
19 the original network architecture [1] and brings more convenient services for mobile Internet users.
20 Due to the large scale of deployment, diverse functions, and complex terrain in most target areas in
21 WSN, traditional battery power supply mode is difficult to maintain the long-term operation of the
22 network. In order to charge sensor network nodes, distributed energy around the environment such as
23 solar energy, thermal energy, vibration and electromagnetic waves, can be collected and converted into
24 usable electrical energy. Wireless Rechargeable Sensor Network (WRSNs) use these energy harvesting
25 technologies to increase the lifetime of WSN nodes, which has attracted extensive attention. In practice,
26 Microwave Power Transmission (MPT) has the relatively high efficiency, and energy supply is realized
27 by transmitting and receiving electromagnetic waves with antennas [2]. To efficiently supplement the
28 energy of WSN nodes, the fixed platforms, mobile air platforms or Unmanned Aerial Vehicles (UAVs)
29 can be set up over the target area for network coverage.

30 The coverage effect of WSNs determines the network connectivity of the target area. It can be
31 changed by adjusting the antenna's azimuth, tilt, transmitting power and other parameters. Coverage
32 optimization mainly focuses on the supplementary coverage blind area, the reduction of repeatability
33 of the overlapping area, and the improvement of the effectiveness and rapid convergence of the
34 optimization algorithm [3]. As the adjustable parameters show a non-linear sharp increase with the
35 growth of network size, how to achieve the optimization of coverage algorithm under the premise of
36 saving network resources becomes an important challenge [4]. After coverage, the design of energy
37 supply scheme, to a large degree, determines the performance and lifetime of WRSNs. If the Power
38 Supply Node (PSN) continues to charge the sensor nodes, the energy supplied may exceed the node
39 demand, resulting in a waste of resources. However, periodic energy supply may cause the nodes
40 with high loads to fall into dormancy or death due to their fast energy consumption. Therefore, it is
41 necessary to design a reasonable energy supply scheme according to the different energy demands of
42 nodes.

43 In this paper, the power supply node with multi-antenna is configured on a platform with a
44 certain height to carry out network coverage to the ground. Considering the interaction between
45 multiple isomorphic antennas on a node, an Annulus Virtual Force based Particle Swarm Optimization
46 (AVFPSO) algorithm is proposed to improve the performance of coverage. Then, a Queuing
47 Game-based Energy Supply (QGES) algorithm is designed. It divides the energy provided by the nodes
48 into energy packets with the same size, and establishes the system model of sending energy packets to
49 multiple nodes in the covered area. Each energy packet wants to be used more efficiently, creating a
50 competitive relationship. In the process of energy packets entering the storage of sensor nodes and
51 being consumed, the nodes need to pay the cost such as reduced life of power components and waiting
52 for network task transformation. The optimal strategy of node energy supply is obtained by minimizing
53 the cost and solving the Nash equilibrium. Combining the two algorithms, a Two-Phase Energy
54 Management (TPEM) scheme for WRSNs is obtained. The main contributions can be summarized as
55 follows.

- 56 • By introducing Virtual Force (VF) and combining with Particle Swarm Optimization (PSO), an
57 efficient energy supply region coverage optimization algorithm is proposed. The joint debugging
58 of antenna azimuth and tilt improves the effectiveness of the algorithm.
- 59 • With the queuing game theory, the finite energy supply problem in WRSNs is transformed
60 into a mathematical model of discrete energy packet service. The QGES algorithm provides
61 energy to nodes with different energy consumption rates on demand, thus improving the optimal
62 allocation of limited resources.
- 63 • In the solution of the energy supply system model, the influence of the random distribution of
64 node energy consumption on the social welfare can be obtained. It has theoretical significance
65 for the design of energy saving schemes such as sensor node sleep strategy.

66 The remainder of this paper is organized as follows. The related work of target area coverage
67 optimization and energy supply scheme are presented in Section 2. The system model and problem
68 formulation of the Two-Phase energy management in WRSNs are described in Section 3. In section
69 4, the AVFPSO algorithm is designed considering the interaction between multiple antennas on the
70 node. The optimal strategy of node charging is obtained by solving the energy supply system model,
71 and a QGES algorithm for WRSNs is designed. The TPEM scheme is proposed by combining the two
72 algorithms. Section 5 deals with the simulation and comparison results, followed by the conclusion in
73 Section 6.

74 2. Related Work

75 The network structure of WSN changes dynamically with the change of node state. Therefore,
76 the coverage optimization of WSN has always been concerned. In traditional sensor networks, the
77 problem of directed sensor coverage is usually solved by optimization algorithm [5–7]. In literature [5],

78 an optimization strategy based on genetic algorithm was proposed to achieve full target coverage by
79 adjusting the direction and perception range of the sensors. In literature [6], nodes in heterogeneous
80 WSN are processed by clustering. The angle and coverage of nodes are adjusted by greedy search
81 algorithm, so as to achieve the fence coverage of directed sensor networks. For WRSNs, literature [8]
82 proposed a hybrid integer linear programming method to complete network coverage through heuristic
83 search. They mainly studied the coverage of two-dimensional scenes under specific circumstances,
84 but the number of parameters used for optimization was not large, and the scale of joint optimization
85 was small. As in literature [9], differential evolution algorithm was adopted to solve the coverage
86 problem of directional sensor network in three-dimensional environment. Literature [10] proposed a
87 multi-objective optimization scheme of comprehensive three-dimensional uncertain coverage model
88 based on fuzzy ring concept. The problem of three-dimensional environmental optimization conformed
89 to the situation of large-scale joint optimization. However, the eliminating redundancy of solution
90 space was not mentioned in these works, and the computation time would grow significantly with the
91 increase of network size.

92 The research on wireless charging of sensor networks mainly focuses on the case that the sensor
93 node is charged by the mobile charging node [11–14] and the charging node is fixed [15,16]. In literature
94 [11], a charging model of sector search algorithm using directional antenna was proposed. It had better
95 performance than the golden section search method with the all-directional antenna charging model.
96 Literature [13] proposed HeuristicMaxLifetime and HeuristicMinCost algorithms by solving a partial
97 energy charging model for sensor charging. They maximized the sum of the sensor lifetimes and
98 minimized the travel distance of the charger. In literature [14], an annular charging model was adopted
99 in consideration of different node energy consumption in different regions. Corresponding charging
100 strategies were used for the nodes in and out of the ring. Mobile charging nodes themselves have high
101 energy consumption, and environmental energy harvesting efficiency is random and unstable, which is
102 difficult to be applied in practice. For charging nodes deployed at fixed heights, literature [15] proposed
103 the Greedy Cone Coverage algorithm and Adaptive Cone Coverage algorithm to deploy as few as
104 possible chargers to make WRSNs sustainable. While focusing on the wireless charging efficiency,
105 literature [16] proposed a fair charging model with radiation constraints in consideration of radiation
106 hazards. These schemes usually did not consider the case of supplying energy simultaneously to
107 multiple sensor nodes with different power consumption capacities. Under the condition of limited
108 energy, the energy supply on demand improves the efficient allocation of resources and thus extends
109 the life of sensor network.

110 In recent years, some researches use game theory to design charging strategies [17,18]. In literature
111 [17], a game collaborative scheduling algorithm was proposed with the introduction of the unique
112 dynamic warning threshold and sacrifice-charge mechanism. The device that needs to choose the
113 charging node was taken as the player of the game, and the non-cooperative game theory was used
114 to build the system model. The overall energy efficiency of the system was improved by solving
115 Nash equilibrium. Literature [18] adopted the non-cooperative Stackelberg game model and realizes a
116 new architecture with better performance than cache architecture and energy recovery architecture.
117 The energy cache strategy, excitation strategy and energy transfer strategy of charging node were
118 considered comprehensively. These solutions consider the system from a global perspective, rather
119 than being limited to performance improvements in a particular scenario. Due to limited energy
120 resources in WRSNs, there will be resource competition among node participants. Meanwhile, in order
121 to achieve the common goal of the players in the small set, there will also be cooperative relationship
122 between players. These specific behaviors correspond to the description of game players' elements in
123 game theory.

124 This paper introduces virtual force and queuing game theory [19] to establish the energy
125 management system model of WRSNs. A TPEM scheme is proposed to improve coverage optimization
126 and energy supply efficiency for WRSNs. In the first stage of TPEM scheme, an AVFPSO algorithm is
127 designed by introducing the interaction force between multiple antennas on the node. In the process

128 of particle optimization, the virtual force is added to pull the particles, so that the algorithm can
 129 converge to the global optimal solution faster. In the second phase, the system is modeled based on
 130 queuing game theory, with constraints such as limits on the modes and amount of energy supply and
 131 the randomness of nodes' demand for energy. The arrival rate of energy packets selected to enter
 132 different sensor nodes is obtained by solving the minimization cost function, and the QGES algorithm
 133 of WRSNs based on queueing game is designed.

134 3. System model and Problem formulation

135 MPT technology improves the lifetime of the WSN. The PSNs carried by fixed, aerial platforms
 136 or UAVs replenish energy for sensor nodes, which replace the difficult charging scheme of changing
 137 batteries for each node. Fixed and aerial platform have advantages of geographical location and large
 138 scale. In addition to its own large power supply, the PSN converts solar or wind into electric energy
 139 through energy harvesting technologies to charge the sensor nodes. Here, we focus on the system
 140 modeling for the target coverage optimization and energy supply of WRSNs, and formulate these two
 141 problems.

142 3.1. System model

143 It is assumed that there are m PSNs in region R of the WRSNs. The PSNs are installed
 144 on fixed or mobile platforms with a certain height and equipped with a large-capacity power
 145 system as shown in Figure 1. The mobile platforms such as aerial platforms or UAVs, which
 146 can be returned to recharge after completing the power supply mission and perform the next
 147 mission. $B = \{B_1, B_2, \dots, B_m\}$ represents the set of PSNs, where B_i denotes the i th PSN. $A =$
 148 $\{A_{11}, A_{12}, \dots, A_{1z}, A_{21}, \dots, A_{2z}, \dots, A_{m1}, \dots, A_{mz}\}$ represents the set of antennas mounted on a node, where
 149 A_{ik} denotes the k th antenna of the i th PSN. $P = \{P_1, P_2, \dots, P_n\}$ represents the set of signal strength
 150 sampling points, where P_j denotes the j th sampling point. There are n sampling points in this region,
 151 which are generated at equal intervals after meshing the region. Each antenna charges multiple sensor
 152 nodes in the covered area. Remote field charging is realized by using MPT technology with high
 153 charge efficiency.

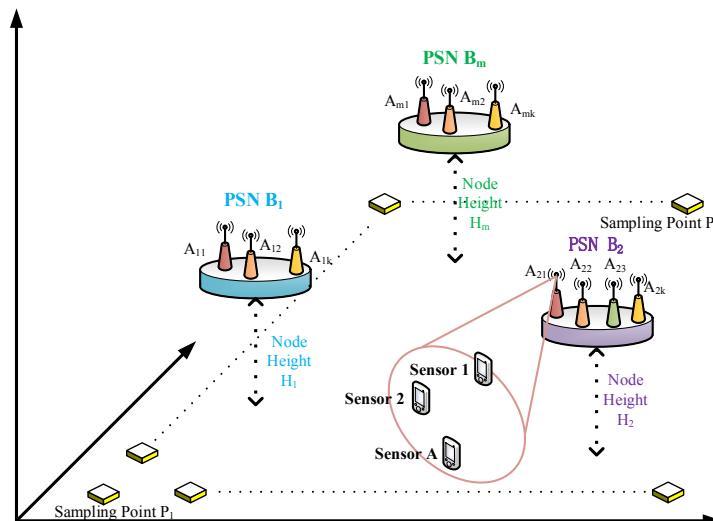


Figure 1. A coverage and power supply system model of WRSNs.

154 To achieve the target coverage of WRSNs, the azimuth ϕ_{ik} and tilt θ_{ik} of antenna A_{ik} of the PSN
 155 can be adjusted. The relationship between antenna angle parameters and sampling point position is
 156 shown in Figure 2. Assuming that the location of the PSN is known, the problem of node location
 157 selection is not considered in this paper.

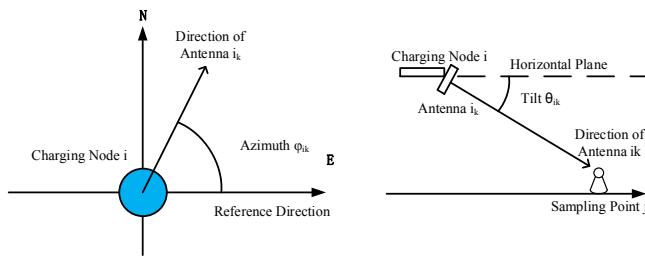


Figure 2. The relationship between antenna angle parameters and sampling point position.

158 WRSNs are usually used in areas where maintenance is inconvenient and energy resources of
 159 PSNs are limited. In our scheme, the antenna charges all sensor nodes automatically according to the
 160 designed QGES algorithm in the area coverage. The energy is divided into multiple energy packets
 161 for a fixed duration. In an energy supply cycle, it is assumed that each antenna transfers energy
 162 packets in a Poisson distribution with time intervals following parameters λ to supply energy to the
 163 nodes. The energy packet consumption rates μ of different sensor nodes in the coverage area of the
 164 antenna obey the general distribution. The players in the game are the energy packets. Nodes receive
 165 energy packets and store them in the power system, waiting for being consumed and then converting
 166 them into network value to obtain benefit ε . During charging and waiting, sensor nodes need to pay
 167 corresponding costs C per unit time, which indicates the decline of power life and energy conversion
 168 efficiency of nodes. To maximize the social welfare of the energy supply system, the problem can
 169 be transformed into an optimal strategy for energy packets to be allocated to different sensor nodes
 170 with the minimum cost. As shown in Figure 3, the power supply system model is composed of PSN
 171 antenna, sensors and power supply strategy based on queued game.

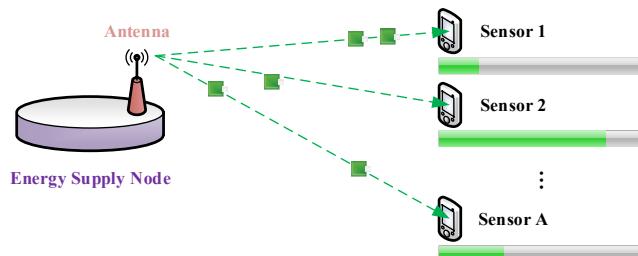


Figure 3. Energy supply system model.

172 3.2. Problem formulation

173 **Problem 1:** Two-parameter joint optimization of power supply target coverage. Under the
 174 constraint of azimuth ϕ and tilt θ of independent variables, the maximum of coverage function is
 175 solved. To describe problem 1, the following definitions are given.

176 Definition 1. Evaluate whether a sampling point meets the coverage requirements according to
 177 the value of Reference Signal Receiving Power (RSRP). $g_j(\phi, \theta)$ represents the coverage at sampling
 178 point P_j , which can be expressed as:

$$g_j(\phi, \theta) = \begin{cases} 1, & hr_j(\phi, \theta) > Th_{RSRP} \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

179 where 1 indicates covered, 0 indicates not covered, and Th_{RSRP} denotes the threshold value of RSRP.
 180 $hr_j(\phi, \theta)$ denotes the RSRP of the point P_j , which is the maximum power of the RSRP from all antennas
 181 at the point. It can be given by:

$$hr_j(\phi, \theta) = \max(hi_j(\phi_{11}, \theta_{11}), hi_j(\phi_{12}, \theta_{12}), \dots, hi_j(\phi_{1n}, \theta_{1n}), \dots, hi_j(\phi_{mz}, \theta_{mz})) \quad (2)$$

182 Definition 2. The function $hi_j(\phi_{ik}, \theta_{ik})$ that represents the RSRP from the antenna A_{ik} at the point
183 P_j can be given by:

$$hi_j(\phi_{ik}, \theta_{ik}) = P_T + hg_j(\phi_{ik}, \theta_{ik}) + G_R - L_{i,j} \quad (3)$$

184 where P_T denotes is the transmitting power of the antenna, which is set as a constant; G_R denotes
185 the receiver gain and is set as a constant; $L_{i,j}$ denotes the path loss from the charging node C_i to the
186 sampling point P_j . Based on COST231-HATA [20], the path loss $L_{i,j}$ can be obtained as:

$$L_{i,j} = 46.3 + 33.9\log_{10}(f_0) - 13.82\log_{10}(h_{i,j}) - (3.2(\log_{10}(11.75h_p))^2 + 4.97) \\ + (44.9 - 6.55\log_{10}(h_{i,j}))\log_{10}(d_{ij,k}) + C_M \quad (4)$$

187 where $h_{i,j}$ denotes the height of antenna A_{ij} , h_p denotes the height of the sampling point P_j , $d_{ij,k}$ denotes
188 the horizontal distance between the antenna A_{ij} and the sampling point P_j , and C_M denotes the model
189 correction factor. The directional gain is a function of horizontal and vertical angles. According to the
190 approximate model given by 3GPP [21], it can be expressed as:

$$G(\phi, \theta) = -\min\{-[G_H(\phi) + G_V(\theta)], G_m\} + G_{\max} \\ G_H(\phi) = -\min[12(\frac{\phi}{\phi_{3dB}})^2, G_m] \\ G_V(\theta) = -\min[12(\frac{\theta}{\theta_{3dB}})^2, SLA_V] \quad (5)$$

191 where G_{\max} denotes the maximum gain of the antenna, ϕ_{3dB} denotes the angle of the Half power
192 waveform width, G_m denotes the maximum value of the reverse attenuation, and SLA_V denotes the
193 attenuation of lateral lobe. The function $hg_j(\phi_{ik}, \theta_{ik})$ that represents the directional gain of the antenna
194 A_{ik} towards the sampling point P_j can be given by:

$$hg_j(\phi_{ik}, \theta_{ik}) = G(\phi_{ik,j}, \theta_{ik,j}) \quad (6)$$

195 where ϕ_{ik} and θ_{ik} denote the azimuth and tilt of the antenna A_{ij} respectively; $a_{ik,j}$ and $b_{ik,j}$ denote the
196 horizontal and vertical angles of the sampling point P_j relative to the antenna A_{ij} . $\phi_{ik,j}$ and $\theta_{ik,j}$ denote
197 their relative angles respectively, which can be calculated as follow.

198 If $a_{ik,j} = \phi_{ik}$,

$$\phi_{ik,j} = 0 \\ \theta_{ik,j} = b_{ik,j} - \theta_{ik} \quad (7)$$

199 If $a_{ik,j} \neq \phi_{ik}$,

$$\phi_{ik,j} = \arctan \left(\frac{\cos(\theta_{ik})}{\tan(a_{ik,j} - \phi_{ik})} + \frac{\sin(\theta_{ik}) \cdot \tan(b_{ik,j})}{\sin(a_{ik,j} - \phi_{ik})} \right)^{-1} \\ \theta_{ik,j} = \arctan \left(\sin(\phi_{ik,j}) \cdot \left(\frac{-\sin(\theta_{ik})}{\tan(a_{ik,j} - \phi_{ik})} + \frac{\cos(\theta_{ik}) \cdot \tan(b_{ik,j})}{\sin(a_{ik,j} - \phi_{ik})} \right) \right) \quad (8)$$

200 The two-parameter joint optimization problem can be described as:

$$\max \left\{ f(\phi, \theta) = \frac{1}{N} \sum_{j=1}^N g_j(\phi, \theta) \right\} \quad (9)$$

201 Subjects to:

$$\begin{aligned} \phi_{ik} &\in [0, 2\pi], \quad i = 1, 2, \dots, m, \quad k = 1, 2, \dots, z \\ \theta_{ik} &\in [0, 2\pi], \quad i = 1, 2, \dots, m, \quad k = 1, 2, \dots, z \end{aligned} \quad (10)$$

202 where the function $f(\phi, \theta)$ represents the overall coverage in the region. The detailed calculation
 203 formula of the coverage calculation function $f(\phi, \theta)$ has been given. The corresponding coverage rate
 204 can be obtained by modifying the antenna azimuth ϕ and tilt θ . Then, according to the characteristics
 205 of the antennas on the PSN, the formula (6) should be changed reasonably to reduce the amount of
 206 calculation and improve the speed of calculation.

207 **Problem 2:** Energy supply strategy with the minimum cost. The antenna of the PSN provides
 208 limited energy packets. The energy packets pay the cost when they enter sensor nodes with different
 209 power consumption capacity and are consumed translates into network value. Under the condition of
 210 minimum cost, the optimal rate of energy packets being assigned to each sensor node is solved.

211 It is assumed that each antenna of the PSN covers A sensor nodes and provides energy packets
 212 in a Poisson distribution with rate Λ ($\Lambda > 0$). Energy packets are sent from the antenna of the PSN,
 213 allocated to different sensor nodes, received and stored in the power system of the node through
 214 electromagnetic transformation, waiting to provide energy for network tasks. The process of energy
 215 packets allocation to sensor nodes follows the Poisson distribution with parameter λ_a , and satisfies
 216 $\sum_{a=1}^A \lambda_a = \Lambda$. The time interval T_a of the energy packets consumed by sensor node a follows the
 217 general distribution. It satisfies $E(T_a) = \frac{1}{\mu_a}$, $E(T_a^2) = \frac{q}{\mu_a^2}$, and $\sum_{a=1}^A \mu_a > \Lambda$. Each energy packet that
 218 enters the sensor node obtains a fixed benefit ϵ . Each energy packet needs to pay a waiting cost c_a per
 219 unit time in the node. Sort the sensor nodes and get $\frac{c_1}{\mu_1} \leq \frac{c_2}{\mu_2} \leq \frac{c_a}{\mu_a}$.

220 The solution to the optimal problem of the system is to find an allocation strategy $(\lambda_1^*, \lambda_2^*, \dots, \lambda_A^*)$
 221 of energy packets to the sensor node with the minimum cost of the entire energy supply system.
 222 According to the assumption, the queuing model of each sensor node is $M/G/1$. $\Gamma_a(\lambda_a)$ represents
 223 the average number of energy packets in the node queue. The average cost function of the system can
 224 be given by:

$$\psi(\vec{\lambda}) = \sum_{a=1}^A c_a \Gamma_a(\lambda_a) \quad (11)$$

225 Subjects to:

$$\sum_{a=1}^A \lambda_a = \Lambda \quad (12)$$

226 In equilibrium, the average cost of the system reaches a minimum, and each energy packet cannot
 227 reduce the system cost by entering any other node. Problem 2 can be described as a minimization cost
 228 function $\psi(\vec{\lambda})$ and the optimal strategy of energy supply allocation is obtained by solving $\psi(\vec{\lambda})$.

229 4. Joint optimization scheme for WRSNs

230 To solve Problem 1 and 2, we design AVFPSO algorithm and QGES algorithm respectively. In the
 231 first phase, the PSN uses AVFPSO algorithm to jointly debug azimuth and tilt for full coverage of the
 232 target area. In the second phase, QGES algorithm is applied to realize energy supply on demand for
 233 sensor nodes with different energy consumption capacity under the condition of limited energy. The
 234 Two-Phase algorithms are integrated to form an efficient energy management scheme for WRSNs.

235 4.1. AVFPSO algorithm for problem 1

236 4.1.1. Annulus Virtual Force Algorithm

237 The virtual force algorithm was originally applied to the deployment of sensor nodes [22–24].
 238 After the sensor node random position is initialized, the finally position is changed through the
 239 interaction of virtual forces to achieve the enhancing effect of coverage. Each node makes a strategy
 240 selection based on the position relationship with other nodes. When the distance is less than a
 241 threshold, repulsive forces appear between nodes. On the contrary, when the distance is greater than
 242 the threshold, there is an attractive force between nodes. When the distance is exactly equal to the
 243 threshold, the interaction force between nodes is zero, and the nodes appear to be static.

244 There are l sensor nodes $S = \{s_1, s_2, \dots, s_l\}$ in the area, where the coordinates of the u th and v th
 245 nodes are $s_u(x_u, y_u)$ and $s_v(x_v, y_v)$ respectively. The distance $d_{u,v}$ between the two nodes is defined by:

$$d_{u,v} = \sqrt{(x_u - x_v)^2 + (y_u - y_v)^2} \quad (13)$$

246 The force $\vec{F}_{u,v}$ between node s_u and node s_v is defined as:

$$\vec{F}_{u,v} = \begin{cases} (\omega_A(d_{u,v} - d_{th}), \alpha_{u,v}), & \text{if } d_{u,v} > d_{th} \\ 0, & \text{if } d_{u,v} = d_{th} \\ (\omega_R/d_{u,v}, \alpha_{u,v} + \pi), & \text{if } d_{u,v} < d_{th} \end{cases} \quad (14)$$

247 where d_{th} denotes the threshold value of the distance between nodes, which is responsible for
 248 controlling the distance between nodes. ω_A denotes the coefficient of attraction between nodes, ω_R
 249 denotes the coefficient of repulsion between nodes, and $\alpha_{u,v}$ denotes the Angle between the line
 250 between nodes and the horizontal direction. A node may be acted upon by multiple nodes, and
 251 $\vec{F}_u = \vec{F}_{u,1} + \vec{F}_{u,2} + \dots + \vec{F}_{u,l}$ means that node u is acted upon by all other nodes.

252 The traditional virtual force algorithm considers the interaction forces between nodes in Euclidean
 253 space. Different from the traditional virtual force algorithm, we consider the interaction force between
 254 isomorphic antennas on the charging nodes. Assume that the azimuth distribution of the antenna on
 255 the B_i th charging node is shown in Figure 4, which are $\varphi_{i,1}, \varphi_{i,2}, \dots, \varphi_{i,z}$ respectively. Their distribution
 256 is not the coordinate on The Euclidean space, but the Angle distribution on the ring structure and can
 257 be circulated.

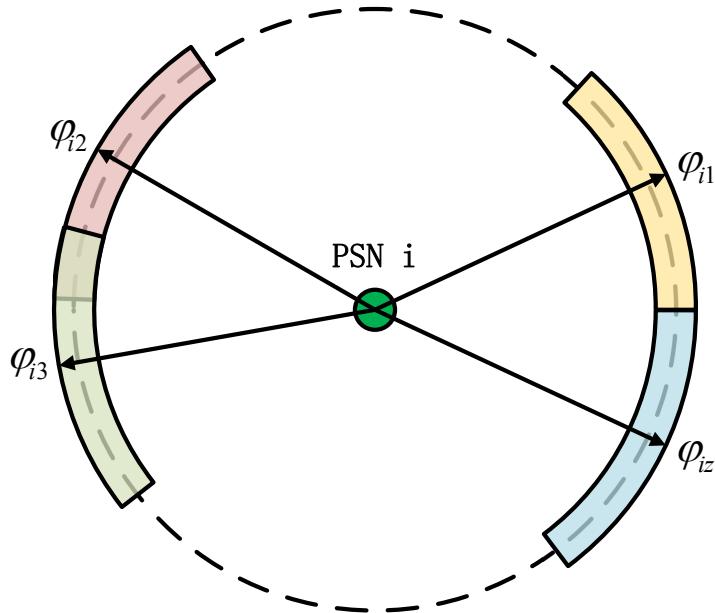


Figure 4. The azimuth distribution of the antenna on a PSN.

258 The dotted line in the Figure 4 represents the circle with azimuth, the position pointed at by the
 259 arrow represents different azimuth, and the band interval near the azimuth represents the threshold
 260 limit range of azimuth. Then, the distance $d_i^{u,v}$ between azimuth $\varphi_{i,u}$ and azimuth $\varphi_{i,v}$ is defined as:

$$d_i^{u,v} = |\varphi_{i,u} - \varphi_{i,v}| \quad (15)$$

261 The force $\vec{F}_i^{u,v}$ between azimuth $\varphi_{i,u}$ and azimuth $\varphi_{i,v}$ is defined as:

$$\vec{F}_i^{u,v} = \begin{cases} \omega_A (d_i^{u,v} - d_i^{th}), & \text{if } d_i^{u,v} > d_i^{th} \\ 0, & \text{if } d_i^{u,v} = d_i^{th} \\ \omega_R / d_i^{u,v}, & \text{if } d_i^{u,v} < d_i^{th} \end{cases} \quad (16)$$

262 where ω_A and ω_R have the same meaning as formula (14), and d_i^{th} represent the virtual force threshold
 263 of the antenna on the PSN. By observing the overlap of the limited threshold range of each azimuth in
 264 Figure 4, the type of force between the azimuths can be judged. There is no coincidence area between
 265 azimuth $\varphi_{i,1}$ and azimuth $\varphi_{i,2}$, so there is attraction between them. Azimuth $\varphi_{i,2}$ and azimuth $\varphi_{i,3}$
 266 overlap in some regions, i.e. there is repulsion between them. As a result, there is a tendency for
 267 the two azimuths to be adjusted to non-coincident states. Azimuth $\varphi_{i,z}$ and azimuth $\varphi_{i,1}$ are just in
 268 adjacent states, then, there is no interacting force between them.

269 The other difference between the ring virtual force algorithm and the traditional virtual force
 270 algorithm is that only the adjacent azimuths interact with each other, while the non-adjacent azimuth
 271 angles do not interact with each other. For example, there is no force between azimuth $\varphi_{i,1}$ and azimuth
 272 $\varphi_{i,3}$, and the coincidence problem of their limited threshold range is not taken into account.

273 4.1.2. AVFPSO algorithm

274 Particle swarm optimization is an algorithm developed by simulating the unpredictable motion
 275 of a flock of birds. It evolves around the advantages of sharing information in groups. The initial PSO
 276 algorithm was formed by adding the nearest neighbor speed match and adding the multidimensional
 277 search, in addition to considering the accelerated search based on distance. Then the PSO algorithm
 278 is optimized by introducing parameters such as inertia weight ω . Suppose the q th particle in the
 279 population is denoted as $X_q = (x_{q,1}, x_{q,2}, \dots, x_{q,W})$. The best position it has ever experienced, the value

280 with the best fit, is represented by $pbest_q = (p_{q,1}, p_{q,2}, \dots, p_{q,W})$, where W denotes the dimension of the
281 particle. The best adaptive value is given by:

$$g_{best} = \arg \max(f(X_q)), \quad q \in (1, 2, \dots, W) \quad (17)$$

282 The moving velocity of particle is denoted by $V_q(v_{q,1}, v_{q,2}, \dots, v_{q,W})$. The updating formula of
283 velocity and position is given by:

$$V_{q,w+1} = \omega V_{q,w} + c_1 r_1 (p_{best_{q,w}} - x_{q,w}) + c_2 r_2 (g_{best_w} - x_{q,w}) \quad (18)$$

284 and

$$x_{q,w+1} = x_{q,w} + V_{q,w} \quad (19)$$

285 where c_1 and c_2 denote acceleration constants, and r_1 and r_2 denote random values within the range of
286 [0,1].

287 When PSO algorithm and ring virtual force algorithm are combined to solve the coverage problem,
288 $f(X_q)$ in formula (17) is replaced by $f(\phi, \theta)$ in formula (9) to calculate the optimal fitness value $p_{best_q}^*$
289 as follow:

$$p_{best_q}^* = \arg \max(f(\phi, \theta)) \quad (20)$$

290 After completing the speed update, when updating the position of particles, the azimuths of the
291 antennas on the same PSN are adjusted by virtual force according to formula (16).

292 4.2. QGES algorithm for problem 2

293 4.2.1. Solution of the model

294 For the solution of the multi-node energy supply system model, the situation of the single-sensor
295 node energy supply system is first considered. Similarly, each energy packet entering the sensor
296 node receives fixed benefit ϵ , and the waiting cost per unit time is c . The ultimate goal is to select
297 the appropriate energy packet delivery rate, so as to minimize the total cost. Since the energy packet
298 emission rate obeys the Poisson distribution with parameter λ , and the energy packet consumption of
299 sensor nodes obeys the general distribution with parameter μ , the queuing model of the energy supply
300 system of the single-sensor node can be described as $M/G/1$. Assume that:

301 X_b : represents the number of energy packets left in the node when the b th energy packet is
302 consumed, and the consumed energy packet is numbered as b .

303 T_b : represents the elapsed time (From the time when the b th energy pack is consumed) of the next
304 (($b + 1$)th) energy pack when the b th energy packet is consumed. $E(T_b) = \frac{1}{\mu}$, $E(T_b^2) = \frac{q}{\mu^2}$.

305 Y_b : represents the number of new energy packets entering the node during the period when the
306 ($b + 1$)th energy packet is being consumed.

307 According to the queuing situation:

$$X_{b+1} = \begin{cases} Y_b, & X_b = 0, \\ X_b + Y_b - 1, & X_b > 0. \end{cases} \quad (21)$$

308 Let $d_\beta = P(Y_b = \beta) > 0$, then, it can be proved that $\{X_b\}$ forms a Markov chain, which is
309 generally called an embedded Markov chain. If $p_{\alpha\beta} = P(X_{b+1} = \beta | X_b = \alpha)$, $p_{0\beta}$ can be given as:

$$p_{0\beta} = (X_{b+1} = \beta | X_b = 0) = P(Y_b = \beta) = d_\beta (\beta \geq 0) \quad (22)$$

310 When $X_b > 0$,

$$p_{\alpha\beta} = P(Y_b = \beta + 1 - X_b | X_b = \alpha) = \begin{cases} 0, & \alpha > \beta + 1 \\ d_{\beta+1-\alpha}, & \alpha \leq \beta + 1 \end{cases} \quad (23)$$

Since the time $\{T_b, b \geq 1\}$ consumed by the energy packet is an independent identically distributed sequence of random variables, its public distribution function is denoted as $G(t) = P(T_b \leq t)$. Then,

$$d_\beta = P(Y_b = \beta) = \int_0^\infty P(Y_b = \beta | T_b = t) dG(t) \quad (24)$$

where, $P(Y_b = \beta | T_b = t)$ represents the probability of β new energy packets entering the system in time interval $(0, t)$. Since the energy packet arrives according to Poisson flow, we can get:

$$P(Y_b = \beta | T_b = t) = \frac{(\lambda t)^\beta}{\beta!} e^{-\lambda t} \quad (25)$$

Substituting formula [32] in [31],

$$d_\beta = \int_0^\infty \frac{(\lambda t)^\beta}{\beta!} e^{-\lambda t} dG(t) \quad (26)$$

Since $d_0 = p_{00} > 0$ and the states of the Markov chain are interconnected, this Markov chain is periodically irreducible. It satisfies:

$$\begin{aligned} E(Y_b) &= \sum_{\beta=0}^{\infty} \beta d_\beta = \sum_{\beta=0}^{\infty} \beta \int_0^\infty \frac{(\lambda t)^\beta}{\beta!} e^{-\lambda t} dG(t) \\ &= \int_0^\infty \sum_{\beta=0}^{\infty} \frac{(\lambda t)^{\beta-1}}{(\beta-1)!} e^{-\lambda t} \lambda t dG(t) = \int_0^\infty \lambda t dG(t) \\ &= \lambda E(T_b) = \rho \end{aligned} \quad (27)$$

and

$$\begin{aligned} E(Y_b^2) &= \sum_{\beta=0}^{\infty} \beta^2 d_\beta = \sum_{\beta=0}^{\infty} \beta^2 \int_0^\infty \frac{(\lambda t)^\beta}{\beta!} e^{-\lambda t} dG(t) \\ &= \int_0^\infty \left(\sum_{\beta=0}^{\infty} \frac{(\lambda t)^\beta}{(\beta-2)!} + \sum_{\beta=1}^{\infty} \frac{(\lambda t)^\beta}{(\beta-1)!} \right) e^{-\lambda t} \lambda t dG(t) \\ &= \int_0^\infty [(\lambda t)^2 + \lambda t] dG(t) = \lambda^2 E(T_b^2) + \lambda E(T_b) = q\rho^2 + \rho \end{aligned} \quad (28)$$

It can be verified that the Markov chain is traversed when $\rho < 1$. So there is a stationary distribution $\{p_\beta, \beta \geq 0\}$ which satisfies

$$p_\beta = \sum_{\alpha=0}^{\infty} p_\alpha p_{\alpha\beta} \quad (\beta \geq 0) \quad (29)$$

Constructing the generating function to solve p_β , let $P(x) = \sum_{\beta=0}^{\infty} p_\beta x^\beta$ and $D(x) = \sum_{\beta=0}^{\infty} d_\beta x^\beta$. It can be obtained from formula (29), (22) and (23) that when $\beta=0$, $x^0 p_0 = (p_0 d_0 + p_1 d_0) x^0$; when $\beta=1$, $x p_1 = (p_0 d_1 + p_1 d_1 + p_2 d_0) x$;...; when $\beta=b$, $x^b p_b = (p_0 d_b + p_1 d_b + p_2 d_{b-1} + \dots + p_{b+1} d_0) x^b$;.... Add up all the equations to get

$$\begin{aligned}
 P(x) &= p_0 D(x) + p_1 D(x) + p_2 x D(x) + p_3 x^2 D(x) + \cdots + p_b x^{b-1} D(x) + \cdots \\
 &= \frac{D(x)}{x} (p_0 x + p_1 x + p_2 x^2 + p_3 x^3 + \cdots + p_b x^b + \cdots) \\
 &= \frac{D(x)}{x} [p_0(x-1) + P(x)]
 \end{aligned} \tag{30}$$

326 Therefore, the generating function of energy packet quantity distribution in the system can be
 327 deduced as:

$$P(x) = \frac{(1-x)p_0 D(x)}{D(x)-x} \tag{31}$$

328 Since $D'(x) = \sum_{\beta=0}^{\infty} \beta d_{\beta} x^{\beta-1}$, $D'(1) = \sum_{\beta=0}^{\infty} \beta d_{\beta} = E(Y_b) = \rho$. $P(1) = \sum_{\beta=0}^{\infty} p_{\beta} = 1$ and
 329 $D(1) = \sum_{\beta=0}^{\infty} d_{\beta} = 1$. L'Hopital's rule is applied to formula (31),

$$\lim_{x \rightarrow 1} P(x) = \lim_{x \rightarrow 1} \frac{(1-x)p_0 D(x)}{D(x)-x} = \frac{p_0}{1-\rho} \Rightarrow p_0 = 1-\rho \tag{32}$$

330 Substituting formula (32) in (31),

$$P(x) = \frac{(1-x)(1-\rho)D(x)}{D(x)-x} \tag{33}$$

331 Combining the formula (27) and (28),

$$D''(1) = \sum_{\beta=0}^{\infty} (\beta^2 d_{\beta} - \beta d_{\beta}) = E(Y_b^2) - E(Y_b) = q\rho^2 \tag{34}$$

332 With the formula (34) and (31), applying L'Hopital's rule twice more, the average number of
 333 energy packets in the system can be obtained as

$$\begin{aligned}
 \Gamma(\rho) &= E(X_b) = P'(1) = \left[\frac{(1-x)(1-\rho)D(x)}{D(x)-x} \right]' \Big|_{x=1} \\
 &= (1-\rho) \frac{-2[D'(1)]^2 + 2D'(1) + D''(1)}{2[D'(1)-1]^2} = \rho + \frac{q\rho^2}{2(1-\rho)}
 \end{aligned} \tag{35}$$

334 In the single-node power supply system with the queuing model $M/G/1$, the cost minimization
 335 problem of single-node power supply system can be described as

$$\min [c\Gamma(\rho) - \varepsilon\lambda] = \min \left[\rho + \frac{q\rho^2}{2(1-\rho)} - \varepsilon\lambda \right] \tag{36}$$

336 where λ satisfies $0 \leq \lambda < \mu$.

337 Since formula (36) is a differentiable strictly convex function, $\Gamma'(\lambda)$ represents the first derivative
 338 of $\Gamma(\rho)$ with respect to λ , which can be given as

$$\Gamma'(\lambda) = \frac{1}{\mu} + \frac{q(2\mu - \lambda)\lambda}{2\mu(\mu - \lambda)^2} \tag{37}$$

339 Therefore, the optimal arrival rate λ^* satisfies

$$\begin{cases} c\Gamma'(\lambda^*) - \varepsilon = 0, & \lambda^* > 0 \\ c\Gamma'(\lambda^*) = \frac{c}{\mu}, & \lambda^* = 0 \end{cases} \tag{38}$$

340 Combining the formula (38) and (37),

$$\frac{1}{\mu} + \frac{q(2\mu - \lambda^*)\lambda^*}{2\mu(\mu - \lambda^*)^2} = \frac{\varepsilon}{c} (\lambda^* > 0) \quad (39)$$

341 ε is a fixed value satisfying $\varepsilon > 0$, and $\lambda^*(\varepsilon)$ is the optimal arrival rate. The solution of formula
342 (39) can be obtained as

$$\lambda^*(\varepsilon) = \mu - \mu \sqrt{\frac{q}{q + 2\mu\varepsilon/c - 2}} (\lambda^* > 0) \quad (40)$$

343 Due to $0 \leq \lambda < \mu$, the optimal arrival rate of the energy packets is

$$\lambda^*(\varepsilon) = \max \left\{ 0, \mu - \mu \sqrt{\frac{q}{q + 2\mu\varepsilon/c - 2}} \right\} \quad (41)$$

344 From the system model of formula (11) and (12), the problem of minimizing cost for multi-node
345 energy supply system can be described as

$$f^*(\vec{\lambda}) = \min \sum_{a=1}^A c_a \Gamma_a(\lambda_a) \quad (42)$$

346 Subjects to

$$\sum_{a=1}^A \lambda_a = \Lambda (0 \leq \lambda_a < \mu_a, a = 1, 2, \dots, A) \quad (43)$$

347 According to the generalized Lagrangian multiplier method, formula (42) satisfies equation (38)
348 for each sensor node a and partial benefit ε . Therefore, the optimal arrival rate similar to the single
349 node can be obtained as

$$\lambda_a^*(\varepsilon) = \max \left\{ 0, \mu_a - \mu_a \sqrt{\frac{q}{q + 2\mu_a\varepsilon/c_a - 2}} \right\} \quad (44)$$

350 where $\sum_{a=1}^A \lambda_a^*(\varepsilon) = \Lambda$. Since $\Lambda > 0$, there is at least one solution $\lambda_1^*(\varepsilon) > 0$. Then, $\mu_1 -$
351 $\mu_1 \sqrt{\frac{q}{q + 2\mu_1\varepsilon/c_1 - 2}} > 0$, that is, $\varepsilon > \frac{c_1}{\mu_1}$. In this case, $\sum_{a=1}^A \lambda_a^*(\varepsilon)$ is a strictly increasing function of ε .
352 Thus, there is one and only one ε^* , such that $\sum_{a=1}^A \lambda_a^*(\varepsilon^*) = \Lambda$. If $\varepsilon > \frac{c_A}{\mu_A}$, $\lambda_a^*(\varepsilon) > 0$. Therefore, when
353 $h < a$, $\lambda_h^*(\varepsilon) > 0$, which means that under the equilibrium state of the system, the former a sensor
354 nodes obtain energy packets according to the arrival rate of $\lambda_a^*(\varepsilon)$ to be charged. Other sensor nodes
355 are not selected because of low energy efficiency and sufficient energy. Therefore, in the designed
356 model of multi-node power supply system, $\varepsilon > \frac{c_A}{\mu_A}$ needs to be set for supplying energy to all active
357 sensors.

358 In the multi-node energy supply system with queueing model $M/G/1$ of each sensor node, the
359 optimal arrival rate of each node energy packet can be obtained as

$$\lambda_a^* = \left(\mu_a - \mu_a \sqrt{\frac{q}{q + 2\mu_a\varepsilon^*/c_a - 2}} \middle| \sum_{a=1}^A \lambda_a^*(\varepsilon^*) = \Lambda \right), \varepsilon^* > \frac{c_A}{\mu_A} \quad (45)$$

360 In this case, the lowest cost of the energy supply system is

$$f^*(\vec{\lambda}) = \sum_{a=1}^A c_a \left[1 - \sqrt{\frac{q}{q + 2\mu_a\varepsilon^*/c_a - 2}} + \frac{q(1 - \sqrt{\frac{q}{q + 2\mu_a\varepsilon^*/c_a - 2}})^2}{2\sqrt{\frac{q}{q + 2\mu_a\varepsilon^*/c_a - 2}}} \right] \quad (46)$$

361 where $\sum_{a=1}^A \lambda_a^*(\varepsilon^*) = \Lambda$ and $\varepsilon^* > \frac{c_A}{\mu_A}$.

362 4.2.2. Model Analysis

363 When building the energy supply system model, it assume that the energy consumption random
 364 process of sensor nodes follows the general distribution with parameter μ . It satisfies $E(T_b) = \frac{1}{\mu}$ and
 365 $E(T_b^2) = \frac{q}{\mu^2}$. When $q=2$, $D(T_b) = \frac{1}{\mu^2}$, which means that the node energy consumption process is
 366 simplified to a negative exponential distribution. Then

$$\lambda_a^*(\varepsilon) = \mu_a - \sqrt{\frac{\mu_a c_a}{\varepsilon}} \left(\varepsilon > \frac{c_a}{\mu_a} \right) \quad (47)$$

367 Combining $\sum_{a=1}^A \lambda_a^*(\varepsilon) = \Lambda$,

$$\sqrt{\varepsilon} = \frac{\sum_{a=1}^A \sqrt{\mu_a c_a}}{\sum_{a=1}^A \mu_a - \Lambda} \quad (48)$$

368 In the multi-node power supply system with each sensor node queuing model $M/M/1$, the
 369 equilibrium solution can be obtained as

$$\lambda_a^* = \mu_a - \frac{\sqrt{\mu_a c_a}}{\sum_{a=1}^A \sqrt{\mu_a c_a}} \left(\sum_{a=1}^A \mu_a - \Lambda \right) \quad (49)$$

370 When $q=1$, $D(T_b) = 0$. In this case, the energy consumption time of the sensor node follows the
 371 deterministic distribution; when $1 < q < 2$, it follows the $\frac{1}{q-1}$ -order Irish distribution. By analyzing the
 372 random process of node energy consumption in WRSNs, the random distribution which minimizes the
 373 cost of energy supply system is got under the same system parameters. According to this conclusion,
 374 the energy consumption time distribution of sensor nodes can be designed by adding sleep mechanism.

375 4.3. Realization of the TPEM scheme

376 The AVFPSO algorithm and QGES algorithm are combined to realize the TPEM scheme for
 377 WRSNs as shown in Figure 5.

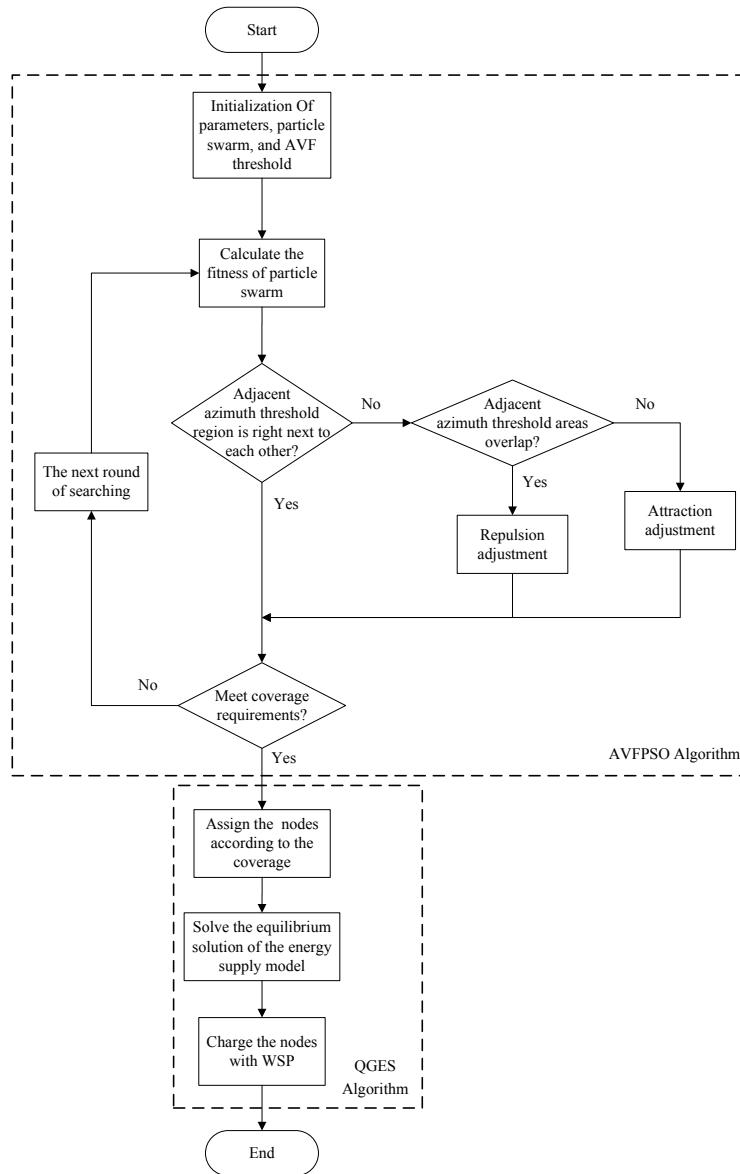


Figure 5. The flow of the TPEM scheme.

378 In the first phase of the TPEM scheme, the threshold interval of antenna azimuth on the same PSN
 379 is determined by the initialization of AVFPSO algorithm. The initial particle swarm is then generated
 380 within the range of each parameter. After that, the fitness of each particle swarm are calculated and
 381 iterated. Then we determine the relationship between the position and the threshold. If the adjacent
 382 azimuth threshold interval overlaps, the azimuth is adjusted by repulsion. If the adjacent azimuth
 383 threshold interval diverges, the azimuth is adjusted by attraction. If the adjacent azimuth threshold
 384 interval happens to be next to each other, the next step is entered. The search for the maximum
 385 coverage is completed by the cross iterative update of two particle swarms. Finally, the optimal

386 solution of azimuth and tilt is obtained to achieve the area coverage. The pseudocode of AVFPSO
 387 algorithm is described in Algorithm 1.

Algorithm 1: AVFPSO algorithm

```

1 initialize all particles and virtual force threshold;
2 evaluate the fitness values of particle swarm;
3  $t \leftarrow 1$ ;
4 calculate  $pbest$  and  $gbest$ ;
5 while  $t < N_t$  do
6   forall the  $q \in N_p$  do
7     update  $V_{q,w+1}$ ;
8     forall the azimuth in the same PSN do
9       calculate the distance between adjacent azimuth  $d_i^{u,v}$ ;
10      if  $d_i^{u,v} > d_i^{th}$  then
11        | Use attraction;
12      end
13      else if  $d_i^{u,v} < d_i^{th}$  then
14        | Use repulsion;
15      end
16    end
17    update  $x_{q,w+1}$ ;
18  end
19   $gbest_{w+1} \leftarrow$  the position of the particle with best fitness;
20   $t = t + 1$ ;
21 end

```

389 After the completion of the first phase, the TPEM scheme executes the QGES algorithm in the
 390 second phase to charge sensor nodes. The parameter information of nodes μ_a , c_a and q in the coverage
 391 area is obtained by the PSN. Random flow of energy packets with arrival rate Λ ($0 < \Lambda < \sum_{a=1}^A \mu_a$)
 392 is generated from the PSN. The arrival rate λ_a^* of energy packets received by each sensor node is
 393 calculated according to formula (45). λ_a^* is taken as the weight of sensor node a , and the PSN adopts

394 the Smooth Weighted Polling (SWP) algorithm to provide energy packets for each sensor node. The
 395 pseudocode of QGES algorithm is described in Algorithm 2.

Algorithm 2: QGES algorithm

Input: Energy packets with arrival rate Λ is generated from the PSN.

1 initialization:;

2 The energy packet consumption time T_a of sensor node a obeys the general distribution which
 satisfies $E(T_a) = \frac{1}{\mu_a}$, $E(T_a^2) = \frac{q}{\mu_a^2}$ and $\sum_{a=1}^A \mu_a > \Lambda$.

3 Each energy packet entering the sensor node receives fixed benefit ε and the waiting cost per
 unit time is c_a . It satisfies $\frac{c_1}{\mu_1} \leq \frac{c_2}{\mu_2} \leq \frac{c_a}{\mu_a}$.

4 **forall** the $i \in A$ **do**

5 $\mu = \mu + \mu_i$

6 $\mu = \sum \mu_i$

7 **end**

8 According to Theorem 2, calculate the value of ε^* , and λ_a^* .

9

$$\lambda_a^* = \left(\mu_a - \mu_a \sqrt{\frac{q}{q + 2\mu_a \varepsilon^* / c_a - 2}} \left| \sum_{a=1}^A \lambda_a^*(\varepsilon^*) = \Lambda \right. \right), \varepsilon^* > \frac{c_A}{\mu_A}$$

10 The PSN adopts the Smooth Weighted Polling (SWP) algorithm to provide energy packets for
 each sensor node a with the weight λ_a^* .

397 **5. Simulations and comparisons**

398 **5.1. Parameters setting**

399 In the validation of the AVFPSO algorithm, COST-231 transmission model [20] is selected to
 400 calculate the path loss $L_{i,j}$. The adjustable parameters are antenna azimuth *objective* : $\max f(\phi, \theta)$ and
 401 tilt *objective* : $\max f(\phi, \theta)$ with the effective range $[0, 2\pi]$. The DSNPSO algorithm [25], a modified
 402 PSO algorithm suitable for directed sensor networks, is selected as the comparison algorithm. In the
 403 simulation, real data with terrain height in real environment is used to verify the effectiveness of the
 404 AVFPSO algorithm. The parameters are described below in Table 1.

Table 1. Specifications of the parameters of AVFPSO algorithm.

Parameter name	Meaning	Value
f_0	Antenna operating frequency	2600MHz
Th_{RSRP}	Receiving signal strength threshold	-88dBm
C_M	Model correction factor	3dBm
G_m	Antenna reverse radiation	32dBm
$SLAV$	Lateral lobe attenuation	32dBm
G_{max}	Maximum antenna gain	18dBm
N_p	Particle swarm number	10, 20
N_t	Iterations	100
C_1	Correction factor 1	1.494
C_2	Correction factor 2	1.494

405 In the validation of the QGES algorithm, the energy packet consumption rate of sensor node
 406 determines the operating efficiency of the network element. Parameter $q = \{2, \frac{3}{2}, 1\}$ is set to simulate
 407 the energy consumption interval obeying negative exponential distribution, 2-order Irish distribution
 408 and deterministic distribution respectively. Set the number of sensor nodes with charging requirements
 409 as $A = 3$ and the energy consumption rate as $\mu = \{10, 20, 35\}$. The energy packet generation rate of
 410 the PSN obeys the Poisson distribution with parameter $\Lambda = 50$. Each energy packet is consumed and

411 converted into network value for data acquisition, storage or forwarding. The network value return of
 412 each energy packet is set as ε . After the energy pack is charged into the sensor node, it needs to pay
 413 the waiting cost c before it is consumed. c is composed of the node energy storage space occupied by
 414 the energy pack and the reduction of power life. The cost of waiting can be translated into the loss of
 415 the data service and thus associated with the social welfare.

416 *5.2. Numerical simulation.*

417 The corresponding parameters of QGES algorithm are put into formula (45) for numerical
 418 calculation in MATLAB, and the results are shown as Figure 6. It depicts the relationship between the
 419 optimal energy packet allocation rate λ^* , the value of q and energy consumption rate $\mu = \{10, 20, 35\}$
 420 of the sensor node. When q increases from 1 to 2, it basically remains unchanged, indicating that
 421 different distribution of energy consumption interval has little influence on the optimal solution of the
 422 energy supply system. Obviously, the bigger μ is, the bigger the corresponding λ^* is. It demonstrates
 423 that the nodes with higher energy consumption rate obtain more energy supply, which is consistent
 424 with normal rational cognition. However, under the optimal solution condition, the excess of the
 425 total energy consumption rate over total demand is not distributed uniformly among the nodes, but
 426 in a way that is proportional to the square root of their energy consumption rate. According to this
 427 conclusion, the design of energy supply strategy achieves the system cost minimization.

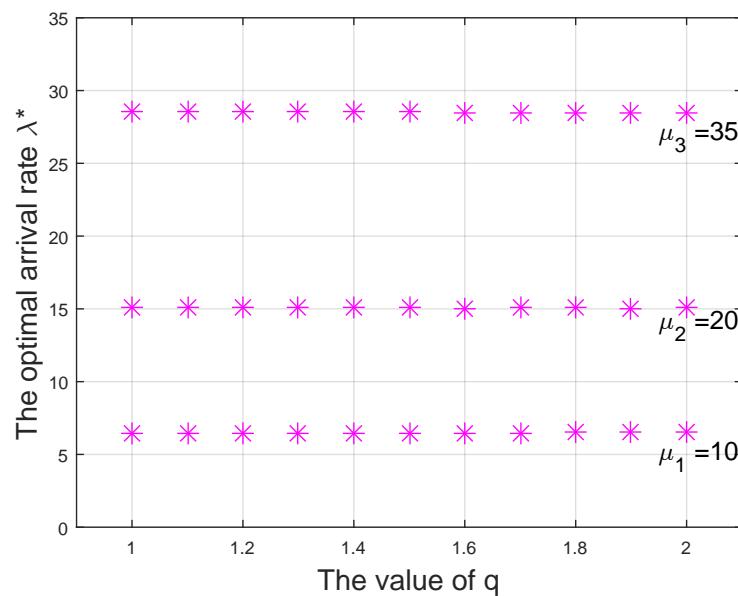


Figure 6. The optimal allocation rate with changing the value q .

428 Based on formula (46), the minimum cost of the energy supply system can be obtained with the
 429 energy consumption rate $\mu = \{10, 20, 35\}$. Figure 7 depicts the trend of the system minimum cost
 430 with the value q . $q = 1$ represents the energy consumption time interval of the nodes follows the
 431 deterministic distribution; $1 < q < 2$ represents the nodes follow the $\frac{1}{q-1}$ -order Irish distribution; and
 432 $q = 2$ represents the nodes follow the negative exponential distribution. From Figure 7, the minimum
 433 cost of the energy supply system increases with the increase of the value q . In other words, the
 434 system cost is the lowest when the node energy consumption time interval follows the deterministic
 435 distribution. Therefore, when designing the working scheme of sensor nodes, it can be considered
 436 to make the energy dissipation interval obey the random distribution with small variance as far as
 437 possible. Finally, maximize the social welfare of the system.

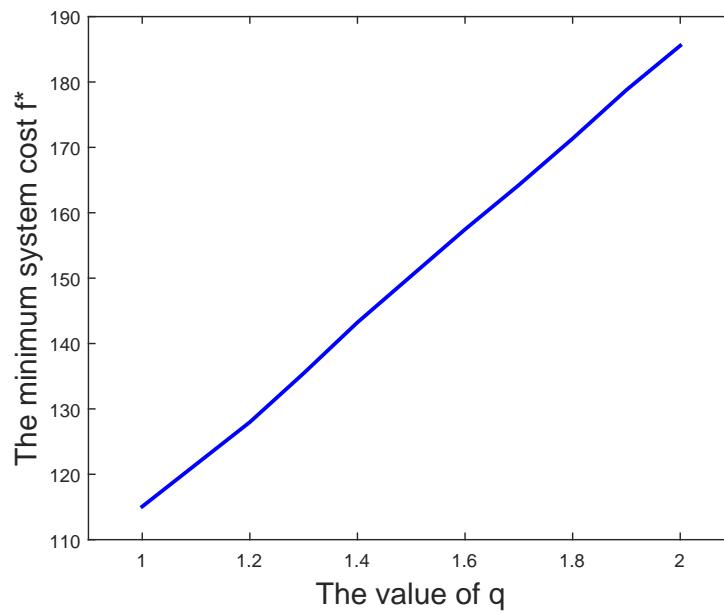


Figure 7. The trend of the system minimum cost with the value q .

438 5.3. System simulation.

439 Figure 8 shows the actual network deployment map, where the yellow circle represents the
440 location of the PSN. Other colors represent different actual terrain, such as green for forests and blue
441 for rivers. Three directional charging antennas are configured on the yellow PSN nodes. This scenario
442 contains 23 PSNs and the number of covered assessment sampling points is 62,730.

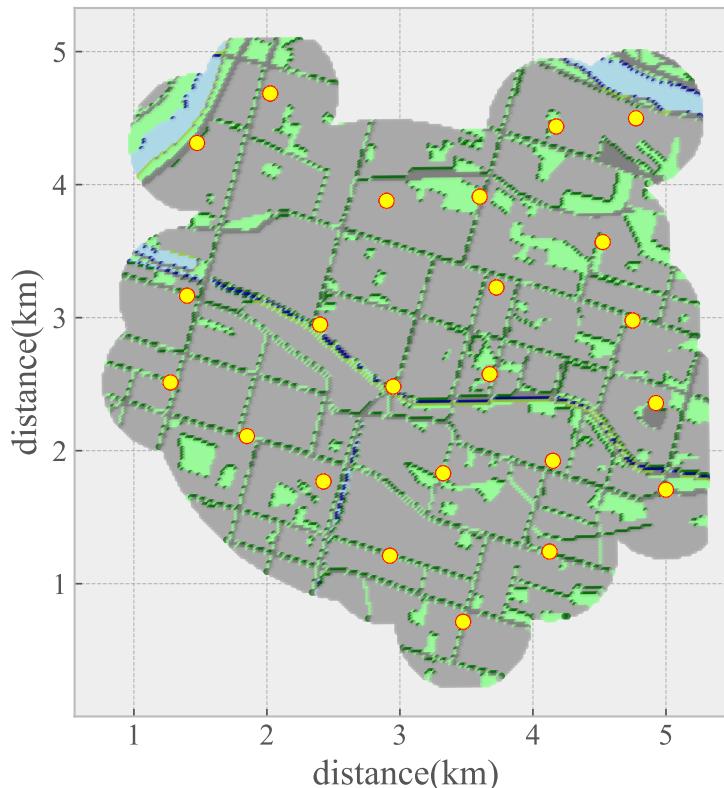


Figure 8. The actual network deployment map.

443 Firstly, the number of particle swarms is set to 10. As shown in Figure 9, the coverage implemented
 444 by AVFPSO algorithm is higher than that of DSNPSO algorithm in the whole iteration running interval.
 445 The AVFPSO algorithm also converges faster. Then increase the number of particle swarms to 20. As
 446 shown in Figure 10, similar to the previous results, the AVFPSO algorithm is still better than DSNPSO
 447 in terms of overall coverage performance and algorithm convergence. In the case of a larger particle
 448 swarm, the gap between the two is slightly larger than before. By comparing the AVFPSO algorithm
 449 with 10 particles and DSNPSO algorithm with 20 particles, it can be observed that the performance of
 450 AVFPSO algorithm is still better than that of DSNPSO algorithm even if the number of particle swarm
 451 is small. It means that the AVFPSO algorithm can get a faster search speed with the aid of virtual force
 452 algorithm.

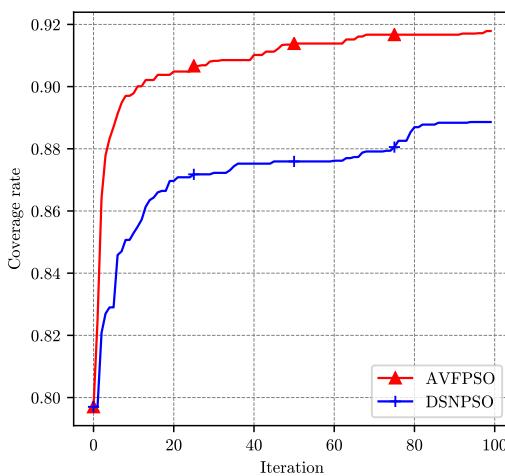


Figure 9. The coverage rate with 10 particles.

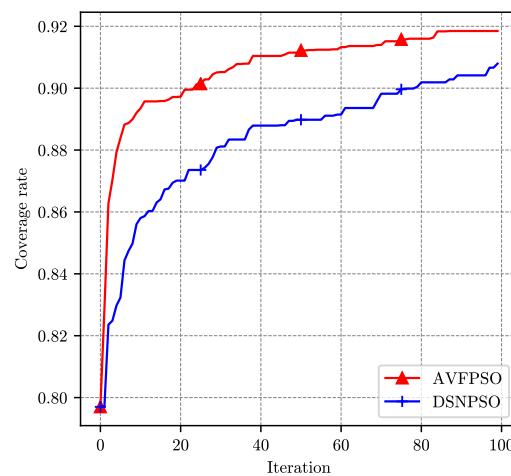


Figure 10. The coverage rate with 20 particles.

453 A Real-Time Demand Scheduling Scheme (RCSS) [25] has been selected as a comparison of QGES
 454 algorithms. As shown in Figure 11, the Y-coordinate indicates the total electric quantity of the system.
 455 If the power is 0, it means that the system cannot work normally due to the power failure of one or
 456 more sensor nodes. Both algorithms start with the same initial electric quantity. The electric quantity
 457 obtained by each node is not uniform. When the electric quantity of some nodes is too low, the RCSS
 458 algorithm charges them to ensure the normal operation of the system. QGES algorithm is a balanced
 459 charging method based on the strategy of each node. The power of the system decreases slowly in a
 460 wave mode, indicating that each node in the network can maintain a relatively balanced power. As
 461 shown in Figure 12, within a short time after the system is started, the total power of the network
 462 charged by the RCSS algorithm decreases significantly. Overall, the QGES algorithm allows the system
 463 to maintain a higher power level than RCSS, allowing the network to operate for longer periods with
 464 the same amount of power.

465 6. Conclusion

466 The laying of 5G networks provides a foundation for future scenarios where things are connected.
 467 As the ends and edges of the Internet, WSNs provide massive data for the core network and reduce
 468 resource costs such as manpower and equipment. The main constraint to the applications of WSNs is
 469 energy supply. In this paper, a joint optimization scheme named TPEM based on virtual force and
 470 queueing game is proposed to extend the life cycle of WRSNs effectively. In the first phase, according
 471 to the position distribution characteristics of multiple antennas on the nodes, the AVFPSO algorithm is
 472 designed to achieve the coverage of the target area by solving the optimal azimuth and tilt. By using the
 473 virtual force to pull particles and adjusting the optimal direction, the optimization algorithm can jump
 474 out of the local optimal solution and converge to the global optimal solution more quickly. After the

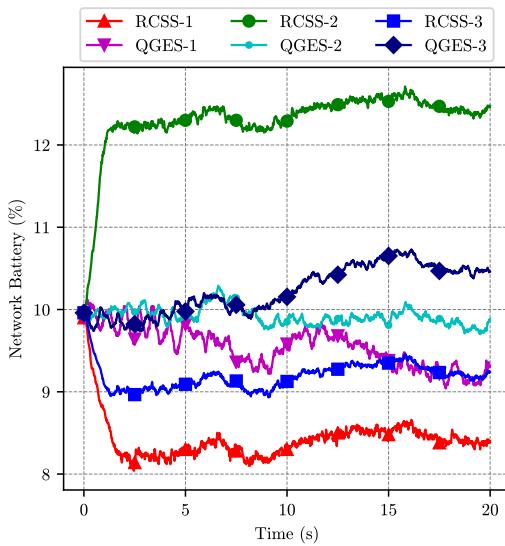


Figure 11. The electric quantity of the nodes with two algorithms.

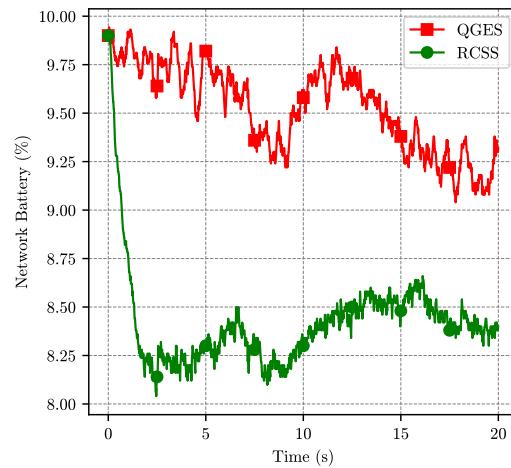


Figure 12. The electric quantity of the system with two algorithms.

coverage is completed, the limited energy is divided into energy packets and the queuing game theory is used to construct the energy supply system model. By solving the optimal energy supply strategy at the minimum cost, the QGES algorithm is designed to realize the optimal resources allocation of WRSNs. Meanwhile, the change of system cost is analyzed with different random distribution of the energy consumption interval of nodes. The results show that the smaller the variance of the random distribution is, the lower the cost of the energy supply system will be, that is, the greater the social welfare will be obtained. This conclusion can provide theoretical guidance for designing mechanisms such as node sleep scheduling. The system simulation results show that compared with the RCSS algorithm, the TPEM scheme achieves efficient energy management of WRSNs with lower total energy consumption in the same running time.

Author Contributions: C.G.(Cheng Gong), C.G.(Chao Guo), and H.T. designed the study. C.G.(Chao Guo) and H.T. developed the computer simulations and performed the data analysis. C.G.(Cheng Gong), C.Z. and X.Y. prepared the figures and tables. C.G.(Cheng Gong), C.G.(Chao Guo) wrote the final manuscript. All authors read and approved the final manuscript.

Funding: This research was funded by the National Key R&D Program of China No. 2017YFB0702100.

Acknowledgments: We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions.

References

- Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of Things (IoT): Research, Simulators, and Testbeds. *IEEE Internet of Things Journal* **2018**, *5*, 1637–1647. doi:10.1109/JIOT.2017.2786639.
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Charging Technologies: Fundamentals, Standards, and Network Applications. *IEEE Communications Surveys Tutorials* **2016**, *18*, 1413–1452. doi:10.1109/COMST.2015.2499783.
- Amutha, J.; Sharma, S.; Nagar, J. WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues. *WIRELESS PERSONAL COMMUNICATIONS* **2020**, *111*, 1089–1115. doi:10.1007/s11277-019-06903-z.
- Saadi, N.; Bounceur, A.; Euler, R.; Lounis, M.; Bezoui, M.; Kerkar, M.; Pottier, B. Maximum Lifetime Target Coverage in Wireless Sensor Networks. *WIRELESS PERSONAL COMMUNICATIONS* **2020**, *111*, 1525–1543. doi:10.1007/s11277-019-06935-5.

504 5. Alibeiki, A.; Motameni, H.; Mohamadi, H. A new genetic-based approach for maximizing network lifetime
505 in directional sensor networks with adjustable sensing ranges. *PERVASIVE AND MOBILE COMPUTING*
506 **2019**, *52*, 1–12. doi:10.1016/j.pmcj.2018.10.009.

507 6. Wang, Z.; Cao, Q.; Qi, H.; Chen, H.; Wang, Q. Cost-effective barrier coverage formation in heterogeneous
508 wireless sensor networks. *AD HOC NETWORKS* **2017**, *64*, 65–79. doi:10.1016/j.adhoc.2017.06.004.

509 7. Sharmin, S.; Nur, F.N.; Islam, M.; Razzaque, M.A.; Hassan, M.M.; Alelaiwi, A. Target Coverage-Aware
510 Clustering in Directional Sensor Networks: A Distributed Approach. *IEEE ACCESS* **2019**, *7*, 64005–64014.
511 doi:10.1109/ACCESS.2019.2916407.

512 8. Zhu, X.; Li, J.; Zhou, M.; Chen, X. Optimal Deployment of Energy-Harvesting Directional Sensor Networks
513 for Target Coverage. *IEEE SYSTEMS JOURNAL* **2019**, *13*, 377–388. doi:10.1109/JSYST.2018.2820085.

514 9. Zhang, L.; Liu, T.T.; Wen, F.Q.; Hu, L.; Hei, C.; Wang, K. Differential Evolution Based Regional
515 Coverage-Enhancing Algorithm for Directional 3D Wireless Sensor Networks. *IEEE ACCESS* **2019**,
516 *7*, 93690–93700. doi:10.1109/ACCESS.2019.2927805.

517 10. Cao, B.; Zhao, J.; Lv, Z.; Liu, X. 3D Terrain Multiobjective Deployment Optimization of Heterogeneous
518 Directional Sensor Networks in Security Monitoring. *IEEE TRANSACTIONS ON BIG DATA* **2019**,
519 *5*, 495–505. doi:10.1109/TB DATA.2017.2685581.

520 11. Moraes, C.; Myung, S.; Lee, S.; Har, D. Distributed Sensor Nodes Charged by Mobile Charger with
521 Directional Antenna and by Energy Trading for Balancing. *SENSORS* **2017**, *17*. doi:10.3390/s17010122.

522 12. Na, W.; Park, J.; Lee, C.; Park, K.; Kim, J.; Cho, S. Energy-Efficient Mobile Charging for Wireless
523 Power Transfer in Internet of Things Networks. *IEEE INTERNET OF THINGS JOURNAL* **2018**, *5*, 79–92.
524 doi:10.1109/JIOT.2017.2772318.

525 13. Xu, W.; Liang, W.; Jia, X.; Xu, Z.; Li, Z.; Liu, Y. Maximizing Sensor Lifetime with the Minimal Service Cost
526 of a Mobile Charger in Wireless Sensor Networks. *IEEE TRANSACTIONS ON MOBILE COMPUTING*
527 **2018**, *17*, 2564–2577. doi:10.1109/TMC.2018.2813376.

528 14. Tian, M.; Jiao, W.; Liu, J. The Charging Strategy of Mobile Charging Vehicles in Wireless
529 Rechargeable Sensor Networks With Heterogeneous Sensors. *IEEE ACCESS* **2020**, *8*, 73096–73110.
530 doi:10.1109/ACCESS.2020.2987920.

531 15. Jiang, J.R.; Liao, J.H. Efficient Wireless Charger Deployment for Wireless Rechargeable Sensor Networks.
532 *ENERGIES* **2016**, *9*. doi:10.3390/en9090696.

533 16. Li, L.; Dai, H.; Chen, G.; Zheng, J.; Dou, W.; Wu, X. Radiation Constrained Fair Charging for Wireless
534 Power Transfer. *ACM TRANSACTIONS ON SENSOR NETWORKS* **2019**, *15*. doi:10.1145/3289182.

535 17. Lin, C.; Wei, S.; Deng, J.; Obaidat, M.S.; Song, H.; Wang, L.; Wu, G. GTCCS: A Game Theoretical
536 Collaborative Charging Scheduling for On-Demand Charging Architecture. *IEEE TRANSACTIONS ON*
537 *VEHICULAR TECHNOLOGY* **2018**, *67*, 12124–12136. doi:10.1109/TVT.2018.2872890.

538 18. Yao, J.; Ansari, N. Caching in Energy Harvesting Aided Internet of Things: A Game-Theoretic Approach.
539 *IEEE INTERNET OF THINGS JOURNAL* **2019**, *6*, 3194–3201. doi:10.1109/JIOT.2018.2880483.

540 19. Bell, C.; Jr, S. Individual versus Social Optimization in the Allocation of Customers to Alternative Servers.
541 *Management Science* **1983**, *29*, 831–839. doi:10.1287/mnsc.29.7.831.

542 20. Abhayawardhana, V.S.; Wassell, I.J.; Crosby, D.; Sellars, M.P.; Brown, M.G. Comparison of empirical
543 propagation path loss models for fixed wireless access systems. *2005 IEEE 61st Vehicular Technology
544 Conference*, 2005, Vol. 1, pp. 73–77 Vol. 1. doi:10.1109/VETECS.2005.1543252.

545 21. Evolved Universal Terrestrial Radio Access (E-Utra). Technical report, 3rd Generation Partnership Project,
546 2017.

547 22. Zou, Y.; Chakrabarty, K. Sensor Deployment and Target Localization Based on Virtual Forces.
548 Proceedings {IEEE} {INFOCOM} 2003, The 22nd Annual Joint Conference of the {IEEE} Computer and
549 Communications Societies, San Francisco, CA, USA, March 30 - April 3, 2003, 2003, pp. 1293–1303.
550 doi:10.1109/INFCOM.2003.1208965.

551 23. Jia, J.; Chen, J. An energy-balanced self-deployment algorithm based on virtual force for mobile
552 sensor networks. *INTERNATIONAL JOURNAL OF SENSOR NETWORKS* **2015**, *19*, 150–160.
553 doi:10.1504/IJSNET.2015.072862.

554 24. Liu, S.; Zhang, R.; Shi, Y. Design of coverage algorithm for mobile sensor networks based on virtual
555 molecular force. *COMPUTER COMMUNICATIONS* **2020**, *150*, 269–277. doi:10.1016/j.comcom.2019.11.001.

556 25. Peng, S.; Xiong, Y. A New Sensing Direction Rotation Approach to Area Coverage Optimization in
557 Directional Sensor Network. *JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND*
558 *INTELLIGENT INFORMATICS* **2020**, 24, 206–213.