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Abstract: This paper presents a numerical two-scale framework for the simulation of fiber reinforced
concrete under impact loading. The numerical homogenization framework considers the full balance
of linear momentum at the microscale. This allows for the study of microscopic inertia effects affecting
the macroscale. After describing the ideas of the dynamic framework and the material models applied
at the microscale, the experimental behavior of the fiber and the fiber-matrix bond under varying
loading rates are discussed. To capture the most important features, a simplified matrix cracking
and a strain rate sensitive fiber pullout model are utilized at the microscale. A split Hopkinson bar
tension test is used as an example to present the capabilities of the framework to analyze different
sources of dynamic behavior measured at the macroscale. The induced loading wave is studied and
the influence of structural inertia on the measured signals within the simulation are verified. Further
parameter studies allow the analysis of the macroscopic response resulting from the rate dependent
fiber pullout as well as the direct study of the microscale inertia. Even though the material models
and the microscale discretization used within this study are still simplified, the value of the numerical
two-scale framework to study material behavior under impact loading is shown.

Keywords: Computational Homogenization; Impact; Microscopic Inertia; SHCC; ECC; Fiber Pullout;
Rate Effect

1. Introduction

The characteristic composition of strain-hardening cementitious composites (SHCC) consisting of
fine-grained mineral-bonded matrices in combination with high-performance polymer micro-fibers in
a volume content of up to 2 % is defined by a purposeful material design, accounting for the mechanical
and physical properties of the cementitious matrix, of the reinforcing fibers and of their interaction,
see [1,2]. Such a material design ensures a strain-hardening tensile behavior accompanied by the
formation of multiple, fine cracks under increasing deformation. The high strain capacity prior to
failure localization, notable damage tolerance and outstanding energy dissipation capacity make
SHCC promising as main material for new structural elements and as strengthening layers applied on
existing structures subject to earthquake, impact or blast [3].

Given the pronounced rate sensitivity of SHCC in terms of tensile strength and strain capacity, a
targeted material design for applications involving dynamic loading requires a proper understanding
of the governing mechanisms and phenomena at the micro- and mesoscales [4]. Furthermore, the
accurate assessment of their in-situ mechanical performance in structural elements or as strengthening
layers subject to dynamic loading is challenging and can be only achieved with accompanying
numerical simulations, see [5]. Thus, the development of adequate, scale-linking numerical models is
indispensable for assessing complex fracture phenomena in conjunction with dynamic effects as well as
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for predicting the structural performance of dynamically loaded components made of or strengthened
with SHCC. A powerful tool for a simultaneous analysis of a full test specimen and the corresponding
microstructure are multiscale methods. A coarse macroscopic problem uses a fine discretization of the
microscale as material input. There are various frameworks that consider the dynamic effects of the
microscale. Two related methods are asymptotic expansion, e.g. [6–9] which are mainly based on the
original work of Bensoussan et al. [10] and the more general theory of elastodynamic homogenization
by Willis [11], applied in [12–14] and others. Both methods are limited to elastic, periodic media.
A more general approach is the micro-macro simulation based on a representative volume element
(RVE). When the finite element method (FEM) is used on both scales in a scale-coupled manner, it is
called the FE2 method. A comprehensive introduction to this theory including dynamics is given by
de Souza Neto et al. [15]. Within the FE2 method there are still different approaches, usually optimized
to special conditions. The framework in [6] considers a quasi-static microstructure but then applies
an additional body force at the macroscale to account for microinertia effects. This framework was
extended in [16] to account for localizations at the microscale under impact loading. Further FE2 type
schemes calculate the full balance of linear momentum at the microscale. In [17] an explicit, periodic,
small strain framework is presented for modeling resonant elastic metamaterials. This was extended
to an implicit time integration method in [18]. By splitting the problem into a purely static and a
special dynamic BVP, in [19,20] the assumption of linear elasticity is used to improve the computational
performance. To better capture a wider range of applied frequencies, the work of Sridhar et al. [21] uses
a Floquet-Bloch transformation to build a base of eigenmodes to analyze elastic, periodic metamaterials.
The framework applied in the article at hand is presented in [22]. It is also of the FE2 type, but has a
more general approach. The formulations are compatible with standard FE architecture. To enable the
analysis of micromechanical processes as plasticity or fiber pullout, as well as to incorporate effects of
geometric nonlinearities, the framework uses a finite-strain formulation. In addition, a kinematic scale
link is proposed which would allow the study of arbitrary crack paths. The framework is applicable to
lower frequencies, which makes it a suitable candidate for impact investigations.

The paper at hand applies the homogenization method to study full sized SHCC specimens
under impact loading, while simultaneously including the most relevant microstructural processes
as matrix cracks and fiber pullout. To the best of the authors knowledge, this is the first application
of a multiscale framework which considers microinertia for a simulation of fiber reinforced concrete
to study the dynamic effects arising at the fine scale. The paper is organized as follows. Section 2
presents the experimental behavior of the constituents under different loading rates. Section 3 gives
an overview of the dynamic FE2 framework. Section 4 discusses the material models used at the
microscale. The aspects are combined in Section 5 into a simulation of a split Hopkinson tensile test,
which is used to showcase the possibilities of a dynamic multiscale analysis. Finally, a conclusion is
given in Section 6.

2. Materials and Experimental Results

The RVE presented in the paper at hand was constructed for a high-strength SHCC described in
detail in previous studies by the authors Curosu and Mechtcherine [23,24]. The cementitious matrix has
a fine-grained nature with aggregates consisting of a relatively small content of fine sand with particle
sizes between 0.06 mm and 0.2 mm. The density of the modeled SHCC is approximately 2135 kg/m3

and it can vary slightly depending on the content of entrapped air [23,25]. The high-strength SHCC
under investigation and the corresponding matrix material have a Young’s modulus of 29 GPa, while
the compressive strength ranges between 130 MPa and 140 MPa [23–25]. The tensile strength of the
cementitious matrix under quasi-static loading is approximately 3.4 MPa [24].

The optimal use of high-performance polymer micro-fibers in SHCC, such as
ultra-high-molecular-weight polyethylene (UHMWPE, short: PE), is justified by the criteria
for strain-hardening and multiple cracking [2]. In the modeled high-strength SHCC, the PE fibers have
a diameter of 20 µm in average and a cut-length of 12 mm. The nominal tensile strength as given by
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the producer is approximately 2500 MPa, the Young’s modulus is 80 GPa and the elongation at break is
3.5 %. The PE fibers exhibit a hydrophobic nature and no chemical adhesion to cementitious matrices
[25]. Their bond is of frictional and mechanical nature, whereas their longitudinally grooved surface
profile ensures additionally a mechanical interlock [4]. With such surface properties the PE fibers
exhibit a controlled pullout behavior under constant interfacial shear stress [25].

Since these fibers exhibit a pronounced non-linear tensile behavior and rate dependent tensile
strength, Young’s modulus and elongation capacity, extensive micromechanical investigations were
performed to characterize their tensile behavior in form of stress-strain relationships in an amplified
piezoelectric actuator at displacement rates ranging from 0.005 mm/s to 50 mm/s (strain rates between
0.001 s−1 and 1 s−1). The free length of the fibers in the tension experiments was 5 mm. The fibers were
glued at the top end to the loading frame and at the bottom end to the force sensor [4,23]. The results
showed an increase in tensile strength and Young’s modulus, but a decrease in elongation capacity
at higher displacement rates, see Figure 1. It was assumed that the rate sensitivity of the Young’s
modulus of the fibers determined the pronounced rate dependency of the fiber-matrix bond properties
as well. This was demonstrated in single-fiber pullout experiments with a fiber-embedment length of
2 mm, see Figure 2.
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Figure 1. Results of PE fiber tension tests at
different strain rates, data from [4,23].
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Figure 2. Results of PE fiber in pullout tests at
different displacement/loading rates, data from [4,
23].

The pullout tests were performed in the same testing setup under identical displacement rates as
the single-fiber tension tests. For details regarding specimen preparation and testing configuration see
[4]. Assuming a rate independent Poisson’s ratio, the dynamically enhanced Young’s modulus limited
the radial contraction of the loaded fibers and, consequently, the reduction in interfacial confinement
during pullout. Note that the stroke in the testing device was limited to 1 mm and the fibers could not
be pulled out from the matrix specimens completely. The entire pullout pattern for this fiber-matrix
combination under quasi-static loading can be found in [25].

Both the single-fiber tension and pullout experiments served as experimental basis for the
calibration of the micromechanical parameters in the developed numerical model. Due to the
limitations imposed by the testing facilities and measuring techniques, the micromechanical
experiments assumed displacement rates considerably lower than the crack opening speeds in SHCC
subject to tensile impact loading in Hopkinson bar tests [4,26], the latter serving for validation purposes
in the numerical study presented in the paper at hand. Thus, for the modeling of SHCC, the derived
micromechanical parameters at higher strain/displacement rates were extrapolated assuming a linear
rate dependency. Whether this assumption matches the real rate dependency can be investigated in a
numerical parameter study, as presented in the next sections.
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3. Numerical Two-Scale Framework Accounting for Microscopic Inertia

This section provides an overview of the assumptions the applied numerical multiscale
framework is based on and presents the resulting formulations necessary for an implementation
of the homogenization scheme. A more detailed description of the full derivation is given in [22]. The
proposed framework is an FE2 homogenization method with the key characteristic that it considers
the full balance of linear momentum at the microscale. This enables the direct analysis of full dynamic
fields at the microscale, while simultaneously allowing the study of resulting effects at the macroscale.
Depicted is the two-way coupling, where each macroscopic integration point is associated with a
separate microscopic RVE simulation. The macroscopic values are required as input for the microscopic
boundary value problem (BVP). By using appropriate averaging relations and kinematic links, a
consistent scale bridging for dynamic loading is established. After solving for microscopic equilibrium,
the homogenized fields of stress P (here in terms of the first Piola-Kirchhoff stress tensor) and the
homogenized inertia force vector f

ρ
are passed to the macroscopic problem, along with four essential

tangent moduli AP,F
, AP,u

, A f,F
and A f,u

, representing the derivatives of stress and body force with
respect to deformation gradient F and displacement u, respectively. In the following, values associated
with the macroscale are indicated by a bar •. In order to enable the analysis of versatile micromechanical
phenomena, a finite-strain formulation is used. The (undeformed) reference and the (deformed) current
configuration are linked by the displacement u = x− X, where X ∈ B refers to the coordinates in the
undeformed reference configuration and x ∈ S to the coordinates in the deformed configuration. The
transformation between the configurations in terms of vector elements is described by the deformation
and displacement gradients, respectively F = ∂X x = 1 + H and H = ∂X u, such that x = FX. To
simplify the notation, the origin of the microscopic coordinates is chosen as the geometrical center of
the RVE, with

∫
B X dV = 0. This choice has no influence on the results. Under the assumption of scale

separation, the microscopic deformation x can be split into a sum of terms,

x = u + FX + ũ. (1)

Two terms result directly from the macroscale: a constant part u, which describes the macroscopic
rigid body translations, and a homogeneous part FX, defined in terms of the macroscopic deformation
gradient. ũ denotes the microscopic displacement fluctuation field, which is the field the microscopic
BVP is solved for. Analogously, the microscopic deformation gradient can be written as

F = F + H̃ with H̃ = ∂X ũ. (2)

To account for the microscale dynamics, an extended version of the Hill-Mandel condition of
macro homogeneity also called the Principle of Multiscale Virtual Power is adopted, as base for the
derivation of the framework, c.f. [27] and [15]. It ensures that the virtual work of the macroscale
coincides with its respective microscopic volume average. The resulting averaging equation for the
effective macroscopic stress P and the effective macroscopic body force vector f are given as

P = 〈P− f ⊗ X〉 and f = 〈 f 〉 . (3)

Herein, 〈•〉 = 1
V
∫
B •dV is an abbreviation for the volume average of a microscopic quantity. A

principal ingredient of the Hill-Mandel condition, is the assumption of a clear separation of scales. This
stipulates that the fluctuations of mechanical fields at the microscale need to be significantly smaller
than those of the macroscopic problem. For dynamic homogenization this signifies in practice, that
additionally the principal wavelength of the applied macroscopic loading must be sufficiently larger
than the size of the RVE. For dealing with time derivatives, the Newmark method [28] is applied, a
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widely used implicit numerical time integration method of first order. First, the microscopic element
formulations are viewed in more detail. Subsequently the respective macroscopic element equations
are given.

3.1. The Microscopic Problem

To allow a full dynamic analysis at the microscale, the microscopic balance of linear momentum
is given by

Div P + f = 0. (4)

This paper models impact loading, where gravitational forces are negligible compared to the
inertia forces. Therefore, only the inertia part of the body forces f ρ is considered here. The relevant
body force vector is defined as f := f ρ = −ρ0ü with ρ0 denoting the density of the microscale
components in the undeformed configuration. Following the standard FEM algorithm, the global
tangent stiffness matrix K̂ is assembled from the element matrix,

k̂e = ke +
1

β∆t2 me, with (5)

ke =
∫
Be

BeTABe dV and me =
∫
Be

Neρ0NeT
dV, (6)

where Ne is the classical element matrix of shape functions, Be denotes the B-matrix containing
the derivatives of the shape functions, and A is the matrix representation of the material tangent
modulus, defined as A = ∂FP. β is one of the two Newmark parameters. Throughout this work the
parameters are set as β = 0.25 and γ = 0.5. Analogously to the stiffness matrix, the global residuum
matrix R̂ is obtained by the assembly of the element-wise counterparts in matrix representation,

r̂e =
∫
Be

(
BeT

P + Neρ0ü
)

dV. (7)

After including Dirichlet boundary conditions, the resulting discrete system of equations at the
microscale reads

K̂∆D̃ = R̂. (8)

The macroscopic displacements and deformation gradient and their time derivatives are used to
define boundary conditions on the RVE, c.f. (1). To ensure a consistent application of the macroscopic
values, certain constraints need to be enforced at the microscale. The first kinematic link concerns the
deformation gradient, F = 〈F〉. It postulates that the volume average of the microscopic deformation
gradient must equal the deformation gradient at the macroscale. This is prescribed by applying
periodic boundary conditions on the RVE. To enable a dynamic framework, it needs to be ensured that
no arbitrary rigid body motions are possible. Within this work a simple solution is used for the second
kinematic constraint. By applying the macroscopic displacements u to the corners of the RVE and
simultaneously forcing the microscopic displacement fluctuations to be zero, a direct coupling of the
macroscopic displacements is achieved. This constraint is chosen a priori and might not be optimal for
all problems, however for the problem at hand it is well suited. A softer and more general constraint
which applies the macroscopic displacements as the volume average using Lagrange multipliers is
presented in [22].
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3.2. The Macroscopic Problem

After identifying the formulations at the microscale based on macroscopic values, the bilateral
coupling is realized by defining the respective macroscopic values depending on the microscopic
fields, c.f. (3). In the same way as for the microscale, the complete macroscopic balance of linear
momentum including inertia is considered. Here the weak form of linear momentum is given without
the contributions of external traction as,

G :=
∫
B

δF : P dV +
∫
B

δuT f
ρ

dV = 0. (9)

Once more, only body forces related to inertia are regarded, such that f := f
ρ
= 〈 f ρ〉. To apply

the standard Newton-Raphson scheme, the linearized balance of linear momentum is obtained as

LinG = G + ∆G = 0 with ∆G =
∫
B

δF : ∆P dV +
∫
B

δuT∆ f
ρ

dV. (10)

Within the multiscale framework the macroscopic values of stress P and inertia f
ρ

are defined
in terms of the microscale. Furthermore, the microscopic fields depend on both the macroscopic
acceleration ü as well as the macroscopic deformation gradient F. Therefore, the effective macroscopic
stress and inertia for any given point at the macroscale are sensitive to both its displacement as well as
the respective deformation gradient. This is a special property arising from the consideration of the
microscale dynamics. From this observation it follows directly that the linearized terms are expanded
as

∆P =
∂P
∂F

: ∆F +
∂P
∂ü
· ∆ü and ∆ f

ρ
=

∂ f
ρ

∂F
: ∆F +

∂ f
ρ

∂ü
· ∆ü. (11)

The four emerging sensitivities are defined as

AP,F
= ∂FP, AP,u

= ∂üP, A f,F
= ∂F f

ρ
and A f,u

= ∂ü f
ρ
. (12)

By applying standard FE discretization to the linearized weak form (10) while considering (11),

the macroscopic element stiffness matrix k̂
e
and the element residuum vector r̂

e
are identified. Here the

matrix representation of the moduli in index notation is used, where lowercase indices refer to the
spacial dimension ndm, and uppercase indices to the total degrees of freedom of an element nedf. This
yields the definition of the full macroscopic element matrices as

k̂
e
PQ =

∫
Be

(
Be

ijPA
P,F
ijmnBe

mnQ +
1

β∆t2
Be

ijPA
P,u
ijk Ne

Qk

+Ne
PiA

f,F
imnBe

mnQ +
1

β∆t2
Ne

PiA
f,u
ik Ne

Qk

)
dV and (13)

r̂
e
P =

∫
Be

(
Be

ijPPij + Ne
Pi f

ρ
i

)
dV. (14)

By inserting the averaging equations into the definitions of the moduli and evaluating the
linearized weak form of the microscale at equilibrium, the four closed form expressions can be
identified in terms of the microscopic fields. This allows an efficient numerical algorithm. The
macroscopic tangent moduli have been presented in [22,29].
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4. Micromechanical Material Models

To present the capability of the dynamic multiscale framework of analyzing microstructures
under impact loading, micromechanical models must be implemented that display the most important
characteristics. For SHCC, this involves the modeling of the matrix, including a possibility to include
cracks as well as the implementation of a fiber pullout mechanism.

4.1. SHCC Matrix

As the relevant loading considered within this work is tension, the complex behavior of the matrix
under compression can currently be neglected. Therefore the elastic Neo-Hooke material law is used
for the matrix material. The Neo-Hookean constitutive law yields a simple expression to model elastic
material behavior at large strains. The first Piola-Kirchhoff stress tensor is given as

P = (λ ln[det[F] ]− µ) F−T + µF, (15)

with the Lamé constants λ and µ. For more details see e.g. Bonet and Wood [30]. In the tensile regime,
the crack development is the most important mechanical mechanism of the matrix. The simulation
of proper crack propagation is a highly complex field and not in the scope of the current work. As
an approximation, a simple erosion technique is implemented for the matrix. Once the specified
matrix material reaches a stress threshold σcr in loading direction, its stiffness is reduced to a small
value Ecr , resulting in an effective crack. As the threshold is evaluated at the local material point,
this method is mesh dependent. Therefore only simulations using the same microscopic mesh will
be directly compared. Due to the approximation of the fibers as truss elements directly connected to
the matrix nodes, this erosion method can not be applied evenly to all matrix elements, as artificial
stress localization at the shared nodes would lead to a non-physical erosion of the fiber anchorages.
Consequently the crack location needs to be selected before the computation.

4.2. Effective Fiber Pullout

The full fiber pullout is represented by a linear truss element. The effective material model
consists of a general 1D Neo-Hookean material law with two additional features. The model includes
a strain rate sensitivity, as observed in the micromechanical test of the fiber material and a damage
formulation to represent the pullout behavior, c.f. Section 2. It is based on the simplified assumption
that the fibers are engaged by a crack crossing it in the center, leading to the same pullout function for
all fibers. The standard 3D Neo-Hookean stress formulation can be simplified to 1D as

P =
1
2

E
(

F− 1
F

)
, (16)

where E is the Young’s modulus. This is then extended with a multiplicative approach to include a
damage and strain rate formulation as

P̂ = P (1 + Ω) (1− D) . (17)

Here, Ω denotes the dynamic increase, which takes on only positive values. It is defined using a
logarithmic function of the rate of the deformation gradient, as

Ω =

 αI ln
[

Ḟ
αII

]
Ḟ ≥ αII

0 Ḟ < αII
. (18)

The two parameters αI and αII respectively determine the slope and zero value of the logarithmic
function. This allows an increase in stress for high deformation rates. The damage formulation is the
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governing mechanism to represent the effective fiber pullout. The scalar parameter D takes on values
of 0 to 1, where 1 represents a fully damaged state, in this case a full fiber pullout. Applying the strain
equivalence principle, an exponential damage function has been chosen as

D = D∞

(
1− exp

(
−
(

ψD

Drate

)Dshape
))

. (19)

The damage value D is determined based on the internal variable ψD, representing the effective
energy considered for damage.
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Figure 3. Simulation of single-fiber tension test with rate-dependent material properties, (a) stress-strain
diagram, (b) the dynamic increase factor of the secant stiffness at fracture compared to experimental results
from [4]. Material parameters used: E = 50 kN/mm2, αI = 0.19 and αII = 1.8 · 10−3.

It is defined as the maximum value of the strain energy function ψ0 which has so far been
reached. Thus, the damage evolves only when ψ0 > ψD. This results in a discontinuous damage
approach. There are three material parameters associated with the damage formulation. D∞ defines
the maximum reachable damage value. The model parameter Drate > 0 influences the velocity of the
damage evolution, Dshape enables the modification of the overall shape of the function, where values
below 1 will increase the damage rate at the beginning, while decreasing it for larger deformations.

First we analyze the strain rate effect without the damage formulation, modeling a simple dynamic
fiber tension test, as presented in Section 2. Figure 3a presents the stress strain curve of the the 1D
Neo-Hookean material for different strain rates. To compare the simulation to the experiment, the
secant modulus at maximum strain is plotted against the applied strain rate. The linear increase in
stress plotted on a logarithmic scale is clearly visible.
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Figure 4. Simulation of single-fiber pullout test for different strain rates. Material parameters free
length: E = 50 kN/mm2, αI = 0.19 and αII = 1.8 · 10−3. Material parameters embedded fiber:
E = 300 kN/mm2, αI = 0.08, αII = 1.8 · 10−3, D∞ = 0.998, Drate = 2.0 and Dshape = 0.2.

Secondly, the damage formulation is activated and fitted to the presented single-fiber pullout
tests in Figure 2. The simulation uses two elements, one representing the free length of the fiber where
only the rate sensitivity is active and the second element represents the embedded part of the fiber
where the pullout takes place. Here both the strain rate sensitivity as well as the damage is active.
The stress-strain curves for four different strain rates, applied at the boundary are given in Figure 4.
Comparing this to the experimental results, shows that the overall phases of debonding and pullout
are captured. The experiments under higher strain rates show a gradual shift from slip-softening to
slip-hardening, see Figure 2. This phenomenon has not been included in the model.

5. Numerical Examples

The last sections described the multiscale framework as well as the material models created for
the microscale simulation. This section combines the two by using a well known experimental setup
as example problem: the split Hopkinson bar tension test. First, the experimental setup and results
are discussed. Then a quasi static calculation is used to calibrate the numerical material parameters.
Finally, the full split Hopkinson bar simulation is presented and used to show the possibilities of the
multiscale framework to perform dynamic simulations.
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Figure 5. Split Hopkinson tension bar setup, based on [4,24].
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5.1. Split Hopkinson Bar Experiment

In the split Hopkinson tension bar setup [24], the specimen is sandwiched between two aluminum
bars having front and end surface contact, as visualized in Figure 5. The split Hopkinson tension bar
setup consists of an input bar of length 3 m and of an output bar 6 m long, both bars made of aluminum
and having a diameter of 20 mm. A high-strength steel bar 6 m long having a diameter of 12 mm used
as a pre-tensioned bar for generating the loading pulse of trapezoidal shape of 2.4 ms duration and
with a rise-time of about 60 µs, see Figure 6.
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Figure 6. The characteristic trapezoidal loading pulse of the modified split Hopkinson tension bar, as
measured in the in input bar, from [4,24]. Here only the rise is depicted a the failure occurs before the
plateau is reached.

The maximum displacement speed in the test was 6 m/s and the specimen length was 50 mm,
which ensured a peak strain rate of 120 s−1. The application of the elastic, uniaxial stress wave
propagation theory to the Hopkinson bar system [31] allows calculation of the forces and and the
displacements and acting on the two faces of the specimen in contact with the input and output bars,
respectively. From this the stress at the two interfaces can be inferred, denoted as σ1 and σ2 within
this work. The specimen is assumed to reach dynamic stress equilibrium if the force-time response
at both ends (derived in the input and output bar) approach each other. This condition imposes a
certain number of wave reverberations inside the specimen before damage initiation (cracking) and
it is essential for an accurate derivation of the stress-strain relationships. With a specimen length of
only 50 mm in the presented experiments, the dynamic stress equilibrium is reached before first crack
formation.

The resulting stress-strain curves are compared to quasi-static measurements in Figure 7.
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Figure 7. Experimental stress-strain curves for a split Hopkinson bar tension test with SHCC, data
from [4,24]. The quasi-static results are given in gray as a comparison.
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Damage initiation in the matrix substantially reduces the stiffness of the specimen and the effective
strain rate in the matrix. This explains the high initial stress peak and the subsequent multiple cracking
occurring at lower stress levels. Moreover, the formation of cracks causes additional wave reflections
in the sample, leading to pronounced oscillations of the captured waves in both input and output bars,
and resulting in an unsteadiness of the derived stress-strain curves, as shown in Figure 7.

Furthermore, the dynamic tensile curves in the SHTB exhibit higher stresses but lower strains
at failure localization, this representing the characteristic rate sensitivity of the high-strength SHCC.
The rate-induced reduction of strain capacity can be traced back to a considerably less pronounced
multiple cracking compared to quasi-static conditions and is a result of an exaggerated dynamic
enhancement of the fiber-matrix bond compared to that of the fiber tensile strength. Such unbalanced
micromechanical rate sensitivities lead to a shift from fiber pullout to fiber rupture at higher strain
rates, which is disadvantageous with regard to steady strain-hardening and multiple cracking. This
phenomenon cannot be reproduced by the simplified numerical model currently presented in the
paper at hand.

5.2. Quasi-Static Simulation

Considering the simplified numerical models discussed in Section 4, there is no gain using a
complex microstructure. Processes that would benefit from a detailed microstructure with a realistic
distribution and number of fibers, as e.g. crack evolution or a fiber pullout behavior depending on the
angle to the fracture face are not within the scope of this paper. Therefore, it is sufficient to discretize
the microstructure as a single fiber intersected by a single crack embedded in a cubic RVE with an
edge length of 1 mm. The RVE is depicted within Figure 8a.

0 1 2 3 4 5 6
0

2

4

6

8

10

Strain in %

St
re

ss
in

N
/m

m
2

experiments simulation

(a)
0 0.025 0.05 0.075 0.1

0

2

4

Strain in %

St
re

ss
in

N
/m

m
2

experiments
simulation

(b)

Figure 8. Results of the quasi-static multiscale simulation, compared to the experimental data. Part (a)
shows the loading up to 6 % strain and depicts the selected RVE. Part (b) shows a zoomed in detail of
part (a), focusing on the cracking of the matrix in the RVEs. Experimental data from [4,24].

The mesh consists of three quadratic brick elements, two for the matrix and the one in the center
with the possibility for cracking. The embedded fiber is simulated by a single truss element in loading
direction. Unfortunately, the micromechanical measurements presented in the last section can not be
directly extrapolated to the case of fully embedded fibers. Therefore, the two-scale SHCC simulation
is calibrated by using the results of a quasi-static tension test. To replicate the quasi-static tension
experiment, a multiscale simulation is used which consists of five truss elements at the macroscale.
The bar is fixed at one end and a linear displacement load is applied at the other. The stress is recorded
at the boundary and the is strain computed as the boundary displacement divided by the specimen
length. The following material parameters are applied: for the matrix E = 29 kN/mm2 and ν = 0.3,
additionally for the crack Ecr = 10−3 kN/mm2 and σcr = 5 kN/mm2 and for the fiber E = 40 kN/mm2,
A = 0.18 mm2, D∞ = 0.9982, Dshape = 0.36 and Drate = 0.2. The resulting stress-strain curve is
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compared to the experiment in Figure 8, including a zoomed-in section up to the first crack. The
overall fit is good, however instead of a gradual strain hardening behavior a sharp drop in stress is
observed in the simulation once the tensile strength σcr is reached. This phenomenon is due to the fact
that in a quasi-static setting a homogeneous stress state is obtained at the macroscale. Thus, as there is
no natural variation in material parameters, all RVEs fracture simultaneously. Nevertheless, after the
cracking of the matrix, i.e. when the fibers are engaged, the general debonding behavior matches well
that observed in the experiment.

5.3. Split Hopkinson Bar Simulation

To properly capture the essential details, first the experimental setup needs to be replicated. A
sketch of the macroscopic BVP is given in Figure 9. It consists of a row of truss elements, discretized in
10 mm sections.

u(t)

2000 mm 50 mm 4000 mm

20
m

m

(a) (b)

Macroscale Microscale

single scale multiscale single scale

input bar specimen output bar

1× 1× 1 mm

Figure 9. Schematic visualization of the boundary value problem representing the split Hopkinson
tension test. Part (a) depicts the macroscopic problem, part (b) shows the discretization of the SHCC
microstructure applied in the multiscale simulation of the test specimen.

The input and output bars are simulated with standard single scale elements, whereas the
two-scale homogenization framework is used for the SHCC specimen to include the simplified RVEs
at the microscale. The next step is the choice of the input load, which is applied via a displacement
boundary. Using the measured signal from the experiments, a piece-wise polynomial function,
formulated to represent the loading conditions. It consists of three parts

uI(t) =
14
275

t vc

(
2t
tvc

)3
, (20)

uII(t) =
t vc

275

[
7
(

2t
tvc

)8
− 12

(
2t
tvc

)7
+ 16

(
2t
tvc

)6
+ 19− 34

3

(
2t
tvc

)−1
]

and (21)

uIII(t) = vc

(
t− 529

825
tvc

)
. (22)

The transitions between the respective functions are at uI(0.592 tvc) = uII(0.592 tvc) and uII(tvc) =

uIII(tvc), so that the loading function is defined as

uBC(t) =


uI(t) 0 ≤ t ≤ 0.592 tvc

uII(t) 0.592 tvc < t ≤ tvc

uIII(t) t > tvc

. (23)

Figure 10 compares the chosen displacement function uBC and the time derivatives, velocity and
acceleration, to two experimental measurements.
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Figure 10. Loading function uBC (23) and its first two time derivatives, compared to the two
experiments from [4], with tvc = 60 µs and vc = 3540 mm/s.

Here the significance of the two loading parameters is visible. The first parameter tvc defines the
time when the transition from the acceleration phase to the phase of constant velocity is completed.
The second parameter vc sets the constant velocity. These parameters are easily identified from the
experimental data. Even though the experimental data could have been used as a direct input at the
boundary, the function has the advantage that parameter studies can be easily conducted to analyze
the influence of the loading conditions on the specimen’s response. In addition to the adjusted material
parameters used in the quasi-static calculation, further parameters accounting for the dynamics must
be selected. The same dynamic material parameters as identified for the fiber pullout experiments are
assumed: for the matrix and the crack ρ0 = 2100 kg/m3, and for the fiber ρ0 = 980 kg/m3, αI = 0.08
and αII = 0.51. However, the values of αI and αII should only be viewed as a rough approximation, as
the experiments do not represent the same conditions as in the fully embedded fibers. In addition, the
applied strain rate during the split Hopkinson bar experiment is significantly higher then during the
fiber tension and fiber pullout tests. Nevertheless qualitative parameter studies can be conducted.

The first results of the split Hopkinson bar simulation are presented in Figure 11.
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Figure 11. Results of the split Hopkinson bar simulation. The average of the stress-strain signals at
both interfaces (σ) compared to the quasi-static computation (QS). The zoom shows the initial cracking
of the matrix.

It compares the dynamic stress-strain curve to the quasi static results. The increase in stress level
due to the dynamic conditions is evident. In addition, a shift is observed from the instantaneous
fracture of all RVEs in the quasi-static case to a successive multiple cracking behavior, as also observed
in the experiments. To further understand the results and showcase the utility of the numerical
framework, four parameter studies are conducted. Firstly, the two loading parameters are varied to
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understand the general influence of the loading conditions. Secondly, the influence of the strain rate
sensitivity of the effective fiber pullout model is studied. Finally, the effect of the microscale inertia on
the macroscopic measurements is presented.

5.3.1. Parameter Study – tcv

To study the influence of the applied loading function, the parameter tvc is varied. A smaller
value tvc represents a faster rise time. This entails a higher acceleration. Therefore, this parameter
allows to visualize the influence of the initial acceleration on the measured signal, while the second
parameter, the value of constant velocity vc remains unchanged. To better understand the effects, the
two signals σ1 and σ2 are each analyzed in a separate plot, see Figure 12.
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Figure 12. Analysis of the variation in rise time tcv from 5 · 10−4 s to 10−6 s, with vc = 3540 mm/s. Plot
(a) depicts the signal σ1 at the input face and (b) the respective signal σ2 at the output face.

With increasing acceleration, i.e. a shorter rise time tvc, the initial peak at the input face increases,
as well as the subsequent macroscopic stress fluctuations. The only noticeable difference at the output
face is a slight delay in stress increase for faster applied loads. This apparent delay is a simple result of
the analyzed properties, as for a constant wave speed through the specimen the wave front will reach
the output face at larger overall strains when the load is applied faster.

5.3.2. Parameter Study – vcv

The other loading parameter is vc. It controls the constant velocity during the impact wave.
Increasing the velocity leads to a higher stress level during the loading pulse.

0 1 2 3 4 5
0

20

40

60

Strain in %

St
re

ss
σ

1
in

N
/

m
m

2

(a)
0 1 2 3 4 5

0

20

40

60

Strain in %

St
re

ss
σ

2
in

N
/

m
m

2

(b)

vc = 3540 mm/s vc = 3000 mm/s vc = 14160 mm/s
vc = 2000 mm/s vc = 7080 mm/s

Figure 13. Analysis of the variation of vc from 2000 mm/s to 14160 mm/s , with tcv = 6 · 10−5 s. Plot (a)
depicts the signal σ1 at the input face and (b) the respective signal σ2 at the output face .
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In addition to an increase in strain rate, the maximum acceleration during the initial phase
increases, as the elevated speed is reached in the same time frame. The resulting stress-strain curves
are depicted in Figure 13. The two effects discussed in the previous parameter study on tcv are
again observed. However, varying vc changes not only the initial loading phase, but also the overall
stress-strain curve at the loading face. Therefore, the first stress peak observed in Figure 13a is a
combined result of the strain-rate sensitivity of the fibers and the macroscopic inertia. In addition, with
increasing vc the stress equilibrium is reached only at higher strain rates. Another effect concerns the
drop in stress at the end of the curves. This is not a global failure but rather the result of a decrease in
strain rate, as will be visible in the subsequent analysis. This parameter study demonstrates that, with a
reduction in the rise time of the loading wave, the condition of dynamic stress equilibrium in the sample
is violated and an experimental derivation of the material response based on the one-dimensional
wave theory is not accurate.

5.3.3. Parameter Study – Strain-Rate Sensitivity of the Fiber

After investigating the influence of the loading conditions on the obtained stress-strain curves,
the dynamic influence of the microscale simulation on the macroscopic response is analyzed. First, the
strain-rate sensitivity of the fiber is regarded. The results of the variation of αI is given in Figure 14.
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Figure 14. Analysis of the variation of the
parameter αI from 0 to 0.16.
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Figure 15. Analysis of the influence of microinertia
on the macroscopic response.

Here the stress average σ of the two recorded stress signals is shown. As expected, with increasing
strain-rate sensitivity of the fibers the macroscopic stress level increases as well. From this analysis it
is evident that the previously observed drop in stress is due to a reduction in strain rate. This effect
is due to a phase of a quasi-rigid translation of the specimen within the system, where the overall
deformation does not change, but at the same time the strain rate decreases. For higher values of αI

the fibers are effectively stiffer, resulting in a higher wave speed though the specimen. Therefore, the
phase of quasi-rigid translation is reached earlier.

5.3.4. Parameter Study – Microinertia

Finally, the simulation is run without considering the inertia at the microscale compared to
the full dynamic simulation as presented in Figure 11. The average of the measured stress at the
specimen interfaces is given in Figure 15, including a zoomed section to highlight the difference. For
the presented microstructure the overall macroscopic behavior does not appear to be significantly
influenced by microscale inertia effects. This is not surprising, as the chosen RVE combined with the
microscopic material models does only allow for moderate dynamic activity. High frequency stress
oscillations arising at the microscale once the crack has been formed are the results of the microcracks
being able to freely open and close, as the fiber is anchored at the RVE boundary.
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6. Summary and Conclusion

The influence of dynamic loading during micromechanical experimental tests was analyzed.
After an introduction of the applied numerical homogenization framework for dynamic analysis,
simplified material models were presented and calibrated with respect to the experimental data at
hand. Finally, the two parts were combined in a multiscale simulation of a split Hopkinson tension test
on an SHCC specimen. To account for the mismatch in data between the experimental single-sided
pullout test and the fully embedded fibers in the SHCC sample, the material models were calibrated
based on a quasi-static tension test on the SHCC. The experimental loading conditions during the split
Hopkinson bar tension test were replicated using a piece-wise polynomial function. The resulting
stress-strain curve of the dynamic simulation showed a significant increase in stress compared to the
quasi-static results. This was followed by a thorough parameter study. The two loading parameters
were analyzed to show a significant influence on the macroscopic results. This showed that dynamic
measurements represent always a structural response and need to be interpreted carefully. One tool to
do so is to use the presented framework. The further two parameter studies focused on the microscale.
By varying the strain-rate sensitivity of the fibers, the influence of the fibers on the macroscopic
response was visualized. By increasing the sensitivity higher stress levels were observed. In addition,
another structural effect was visible. The applied loading led to a phase of rigid body motion of the
specimen, resulting in a temporary decrease in strain rate. Finally the computation was run without the
influence of microscale inertia. As it turned out, the overall macroscopic results were not significantly
influenced by microscopic inertia, only high frequency oscillations were observed as change in effective
macroscopic stress. This is not surprising, as the simplified microstructure combined with the chosen
material models does not allow for significant microscopic inertia effects. The initial findings imply that
micro inertia might not have a pronounced direct effect on the resulting macroscopic stress. However,
it is likely that more advanced micromechanical models will show a more pronounced indirect effect
by directly changing the fiber pullout and the crack evolution. Furthermore, there is the possibility
that for microstructures allowing for multiple cracks, the direct effect will increase. More research
is needed to give a definite answer. Nevertheless, there are two insights from this parameter study.
One, that even small effects as a single crack opening and closing, can be observed at the macroscale.
Two, that this type of analysis is only possible by using a two-scale framework that includes the full
inertia effects at the microscale. By developing more sophisticated material models while conducting
further dynamic micromechanical experiments, the predictive capacity of the simulation can be further
improved. For future investigations aiming at a more detailed assessment of the developed RVEs,
the micromechanical testing configurations will be adapted for higher displacement rates (such as
presented in [32]). This will allow for a more realistic assessment of the dynamic fiber tensile strength
and fiber-matrix bond strength. Moreover, the constitutive morphology (e.g. fiber distribution and
orientation and flaw size distribution) of SHCC will be modeled based on statistical measures obtained
by microtomography scans [33], allowing a more realistic simulation of the micromechanical and
statistical influences on the multiple cracking process.
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