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Abstract: Background: Since circa 1980, a model of neocortical interactions, Sta-
tistical Mechanics of Neocortical Interactions (SMNI) has been successful in calculating
many experimental phenomena, including fits to electroencephalographic (EEG) data
in attention tasks, using an importance-sampling code Adaptive Simulated Annealing
(ASA). The SMNI model is developed in the context of classical path-integrals, which
affords intuitive insights as well as direct numerical benefits, e.g., using the effective
Action as a a cost/objective function for parameter fits to data. Objective: Previous
authors have fit affective EEG data to neural-network models. This project seeks to
use models based on physics and biology to fit this same data. Previous work showed
improvements in fits to EEG for attention states; this project extends these methods
to affective states. Method: Path integrals are used in both classical and quantum
contexts. Classical path integrals are used to define a cost/objective function to fit data,
and quantum path integrals are used to derive a closed-form analytic expression for Ca-
ion waves in the presence of a magnetic vector potential which is generated by highly
synchronous neuronal firings which give rise to EEG. ASA is used to fit EEG data.
Results: The mathematical-physics and computer parts of the study are successful, in
that cost/objective functions used to fit EEG data using these models are consistent
with previous work published by other authors. However, since the SMNI model in-
cludes these quantum effects, this is another reason to continue examining these issues.
The results here are consistent, not better, than previous work using neural-network
models, albeit only one parameter was used here, instead of multiple filters and kernels
used previously on such data. Conclusion: Although these quantum effects are highly
speculative, explicit calculations have shown them to be consistent with experimental
data, at least to date. The current supercomputer project extends this model to af-
fective/emotion data. Results from several authors using neural-network approaches
at individual electrode sites show some predictive capabilities; the results given here
are consistent with these other results. However, since the SMNI model includes these
quantum effects, this is another reason to continue examining these issues.
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1 Introduction

This project builds on previous studies (Ingber, 2018) that have further developed a Statistical
Mechanics of Neocortical Interactions (SMNI) by including quantum effects at synaptic gaps.

Over the past decade the author has published a series of papers examining a highly specula-
tive quantum-mechanical neocortical interaction due to experimentally observed Ca-ion waves at
tripartite neuron-astrocyte-neuron synaptic sites. Inclusion of this quantum interaction in SMNI
was shown to improve fits in EEG taken during attention tasks. The current project reports using
this same approach for affective tasks.

Section 2 gives a brief description SMNI.
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Section 3 gives a brief description of two algorithms used for computation, path integrals and
Adaptive Simulated Annealing (ASA).

Section 4 gives a brief description of the electroencephalographic (EEG) data used in the current
study.

Section 4 gives the results of these computations.
Section 5 gives the Conclusion.

2 Statistical Mechanics of Neocortical Interactions (SMNI)

SMNI scales aggregate synaptic interactions to neuronal firings, up to minicolumnar-macrocolumnar
columns of neurons to mesocolumnar dynamics, up to columns of neuronal firings, up to regional
macroscopic sites (Ingber, 1981, 1982, 1983, 1984, 1985, 1994).

SMNI has fit experimental data of neocortical interactions, e.g., properties of short-term mem-
ory (STM) (Ingber, 2012a), including its capacity (auditory 7 ± 2 and visual 4 ± 2) (Ericsson &
Chase, 1982; Zhang & Simon, 1985), duration, stability, primacy versus recency rule, as well other
phenomenon, e.g., Hick’s law (Hick, 1952; Ingber, 1999; Jensen, 1987), interactions within macro-
columns calculating mental rotation of images, etc (Ingber, 1982, 1983, 1984, 1985, 1994). SMNI
scaled mesocolumns across neocortical regions to fit EEG data (Ingber, 1997a,b, 2012a).

2.1 Synaptic Interactions

The short-time conditional probability distribution of firing of a given neuron firing given just-
previous firings of other neurons is calculated from chemical and electrical intra-neuronal interac-
tions (Ingber, 1982, 1983). Given its previous interactions with k neurons within τj of 5-10 msec,
the conditional probability that neuron j fires (σj = +1) or does not fire (σj = −1) is

pσj = ΓΨ =
exp(−σjFj)

exp(Fj) + exp(−Fj)

Fj =

Vj −
∑
k

a∗jkvjk(
π
∑
k′
a∗jk′(v

2
jk′ + φ2

jk′)
)1/2

ajk =
1

2
A|jk|(σk + 1) +Bjk (1)

The contribution to polarization achieved at an axon given activity at a synapse, taking into
account averaging over different neurons, geometries, etc., is given by Γ, the “intra-neuronal”
probability distribution. Ψ is the “inter-neuronal” probability distribution, of thousands of quanta
of neurotransmitters released at one neuron’s presynaptic site effecting a (hyper-)polarization at
another neuron’s postsynaptic site, taking into account interactions with neuromodulators, etc.
This development holds for Γ Poisson, and for Ψ Poisson or Gaussian.

Vj is the depolarization threshold in the somatic-axonal region. vjk is the induced synaptic
polarization of E or I type at the axon, and φjk is its variance. The efficacy ajk is a sum of Ajk
from the connectivity between neurons, activated if the impinging k-neuron fires, and Bjk from
spontaneous background noise. The efficacy is related to the impedance across synaptic gaps.
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2.2 Neuronal Interactions

Aggregation up to the mesoscopic scale from the microscopic synaptic scale uses mesoscopic prob-
ability P

P =
∏
G

PG[MG(r; t+ τ)|M Ḡ(r′; t)]

=
∑
σj

δ

∑
jE

σj −ME(r; t+ τ)

 δ

∑
jI

σj −M I(r; t+ τ)

 N∏
j

pσj (2)

M represents a mesoscopic scale of columns of N neurons, with subsets E and I, represented by
pqi . Ḡ designates chemically independent contributions from both E and I.

2.3 Columnar Interactions

In the prepoint (Ito) representation the SMNI Lagrangian L is

L =
∑
G,G′

(2N)−1(ṀG − gG)gGG′(ṀG′ − gG′
)/(2Nτ)− V ′

gG = −τ−1(MG +NG tanhFG)

gGG
′

= (gGG′)−1 = δG
′

G τ
−1NGsech2FG

g = det(gGG′) (3)

The threshold factor FG is derived as

FG =
∑
G′

νG + ν‡E
′(

(π/2)[(vGG′)2 + (φGG′)2](δG + δ‡E′)
)1/2

νG = V G − aGG′vGG′NG′ − 1

2
AGG′vGG′MG′

, ν‡E
′

= −a‡EE′ v
E
E′N ‡E

′ − 1

2
A‡EE′ v

E
E′M ‡E

′

δG = aGG′NG′
+

1

2
AGG′MG′

, δ‡E
′

= a‡EE′N
‡E′

+
1

2
A‡EE′M

‡E′

aGG′ =
1

2
AGG′ +BG

G′ , a
‡E
E′ =

1

2
A‡EE′ +B‡EE′ (4)

whereAGG′ is the columnar-averaged direct synaptic efficacy, BG
G′ is the columnar-averaged background-

noise contribution to synaptic efficacy. The “‡” parameters arise from regional interactions across
many macrocolumns.

The path integral is derived in terms of mesoscopic Lagrangian L. The Action is defined as
Ldt. The “effective Action” is defined as the sum of the Action and the logarithm of the prefactor
normalization, and is used as the cost/objective function for fitting data, as this is the true measure
of the maximum probability sought by the fitting process.
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2.4 Tripartite Contributions To Neuronal Firings

Intercellular calcium waves (ICWs) travel over hundreds of astrocytes affecting many neuronal
synapses. ICWs contribute to control synaptic activity (Ross, 2012).

These free regenerative Ca2+ waves arise from astrocyte-neuron interactions, and couple to the
magnetic vector potential A produced by highly synchronous collective firings, e.g., during selective
attention tasks.

2.4.1 Canonical Momentum Π = p + qA

As derived in the Feynman (midpoint) representation of the path integral, the canonical momentum,
Π, defines the dynamics of a moving particle with momentum p in an electromagnetic field. In SI
units,

Π = p + qA (5)

where q = −2e for Ca2+, e is the magnitude of the charge of an electron = 1.6×10−19 C (Coulomb),
and A is the electromagnetic vector potential.

2.4.2 Vector Potential of Wire

A columnar firing state is modeled as a wire/neuron with current I measured in A = Amperes =
C/s,

A(t) =
µ

4π

∫
dr

r
I (6)

along a length z observed from a perpendicular distance r from a line of thickness r0, yielding

A =
µ

4π
I log

( r
r0

)
(7)

where µ is the magnetic permeability in vacuum = 4π10−7 H/m (Henry/meter), which has a
log-insensitivity on distance.

2.4.3 Effects of Vector Potential on Momenta

The momentum p for a Ca2+ ion with mass m = 6.6× 10−26 kg, speed on the order of 50 µm/s to
100 µm/s, is on the order of 10−30 kg-m/s.

The magnitude of the current is taken from experimental data on dipole moments (Murakami &
Okada, 2006; Nunez & Srinivasan, 2006). Taking 104 synchronous firings in a macrocolumn, leads
to a dipole moment |Q| = 10−8 A-m. Taking z to be 102µm = 10−4 m, a couple of neocortical
layers, gives |qA| ≈ 2× 10−19 × 10−7 × 10−8/10−4 = 10−28 kg-m/s,

2.4.4 Reasonable Estimates

Estimates used here for Q come from experimental data. These include shielding and material
effects. When coherent activity among many macrocolumns associated with STM is considered,
|A| may be much larger.

Classical physics calculations give qA from macroscopic EEG on the order of 10−28 kg-m/s,
while the momentum p of a Ca2+ ion is on the order of 10−30 kg-m/s.
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Calculations in classical and quantum physics support the premise that ionic calcium momentum-
wave effects among neuron-astrocyte-neuron tripartite synapses contribute to background SMNI
parameters, thereby creating interactions between ionic/quantum and macroscopic scales (Ingber,
2012a,b, 2015, 2016, 2017a; Ingber et al., 2014; Nunez et al., 2013).

2.4.5 Quantum Zeno Effects

The quantum-mechanical wave function of the Ca wave packet was shown to “survive” overlaps
after multiple collisions, due to their regenerative processes during the observed long durations
of hundreds of ms, leading to the ansatz that Ca2+ waves may support a Zeno or “bang-bang”
effect for long coherence times (Burgarth et al., 2018; Facchi et al., 2004; Facchi & Pascazio, 2008;
Giacosa & Pagliara, 2014; Kozlowski et al., 2015; Muller et al., 2016; Patil et al., 2015; Wu et al.,
2012).

Decoherence among particles is very fast, so this premise is highly speculative (Preskill, 2015),
but may be determined by experiments.

2.4.6 Nano-Robotic Applications

Pharmaceutical products may be transported in nanosystems using this effect (Ingber, 2015),
wherein a Ca2+-wave momentum-sensor could act like a piezoelectric device.

3 Computational Tools

3.1 Path Integrals

Path integral are used here in two ways, for a classical EEG cost function that is used to optimize
parameters in a Statistical Mechanics of Interactions (SMNI) model of neocortex, and in for a
quantum calculation of a magnetic vector potential contribution to tripartite neuron-astrocyte-
neuron interactions at synaptic sites.

This project considers interactions across these vast scales using tools of path integrals (Ingber,
2018). Also, while fitting such models to EEG tests some aspects of this project is a somewhat
indirect path, but not novel to many physics paradigms that are tested by experiment or computa-
tion. It is understood that decoherence is known to be very fast (Preskill, 2015), but unlike other
models of neocortex that attempt to directly include quantum effects, the SMNI approach has been
supported by direct classical and quantum calculations since 2012 (Ingber, 2012a). Admittedly, it
is surprising that detailed calculations continue to support this model, but it is deemed worthwhile
for continued examination it until it is theoretically or experimentally proven to be false.

3.1.1 Classical Path Integrals

In the context of classical systems, path integrals are used to derive a short-time probability dis-
tribution for a two-variable nonlinear (in drifts and diffusions) model of neocortex. This has been
established since 1982 in 30+ publications (Ingber, 1982, 1983).

3.1.2 Quantum Path Integrals

Codes qPATHINT and qPATHTREE have been developed from their classical counterparts PATHINT
and PATHTREE to calculate the propagation of a wave function (Ingber, 2017a,b,c).
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However, here a closed-form analytic solution is derived for the wave function ψe which includes
the interaction of A with p of Ca2+ wave packets derived from the Feynman representation of the
path integral using path-integral techniques (Schulten, 1999), modified here to include A.

ψe(t) =

∫
dr0ψ0ψF =

[
1− ih̄t/(m∆r2)

1 + ih̄t/(m∆r2)

]1/4 [
π∆r2{1 + [h̄t/(m∆r2)]2}

]−1/4

× exp

[
− [r− (p0 + qA)t/m]2

2∆r2

1− ih̄t/(m∆r2)

1 + [h̄t/(m∆r2)]2
+ i

p0 · r
h̄
− i(p0 + qA)2t

2h̄m

]

ψF (t) =

∫
dp

2πh̄
exp

[
i

h̄

(
p(r− r0)− Π2t

(2m)

)]
=
[ m

2πih̄t

]1/2
exp

[
im(r− r0 − qAt/m)2

2h̄t
− i(qA)2t

2mh̄

]

ψ0 = ψ(r0, t = 0) =

(
1

π∆r2

)1/4

exp

(
− r2

0

2∆r2
+ i

p0 · r0

h̄

)
(8)

ψ0 is the initial Gaussian packet, ψF is the free-wave evolution operator, h̄ is the Planck constant,
q is the electronic charge of Ca2+ ions, m is the mass of a wave-packet of 1000 Ca2+ ions, ∆r2 is
the spatial variance of the wave-packet, the initial momentum is p0, and the evolving canonical
momentum is Π = p + qA. Calculations show p of the Ca2+ wave packet and qA of the EEG field
make about equal contributions to Π (Ingber, 2015).

Tripartite influence on synaptic BG
G′ is calculated by the ratio of packet’s < p(t) >ψ∗ψ to

< p0(t0) >ψ∗ψ at the onset of each attentional task. Here <>ψ∗ψ is taken over ψ∗e ψe.

< p >ψ∗ψ= m
< r >ψ∗ψ
t− t0

=
qA + p0

m1/2|∆r|

(
(h̄t)2 + (m∆r2)2

h̄t+m∆r2

)1/2

(9)

A changes slower than p, so static approximation of A used to derive ψe and < p >ψ∗ψ is reasonable
to use within EEG epochs, resetting t = 0 at the onset of each classical EEG measurement, using
the current A.

The h̄t-dependence of this result makes it possible to experimentally test these effects, e.g., in
EEG fits as well as perhaps more directly in future experiments.

3.2 Adaptive simulated annealing (ASA)

This ASA algorithm is faster than fast Cauchy annealing, which has schedule Ti = T0/k, and much
faster than Boltzmann annealing, which has schedule Ti = T0/ ln k (Ingber, 1989).

3.3 Outline of ASA Algorithm

For parameters

αik ∈ [Ai, Bi]

sampling with the random variable xi

xi ∈ [−1, 1]

αik+1 = αik + xi(Bi −Ai)
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the default generating function is

gT (x) =
D∏
i=1

1

2 ln(1 + 1/Ti)(|xi|+ Ti)
≡

D∏
i=1

giT (xi)

in terms of parameter “temperatures”

Ti = Ti0 exp(−cik1/D) (10)

The default ASA uses the same type of annealing schedule for the acceptance function h as used
for the generating function g.

All default functions in ASA can be overridden with user-defined functions.

4 Data Sources: GAMEEMO

The EEG data used for this study was made publicly available via Mendeley from a study of
emotion recognition on 4 types of computer games (Alakus et al., 2020). The computer games
consist of 4 types of affective behavior:

Game 1: low arousal negative valence (LANV), e.g., sad, bored, sleepy.

Game 2: low arousal positive valence (LAPV), e.g., calm, relaxed.

Game 3: high arousal negative valence (HANV), e.g., nervous, anger.

Game 4: high arousal positive valence (HAPV), e.g., pleased, excited.

The data generated was confirmed by detailed questionnaires designed to confirm or deny the
affective states assumed by the experimental paradigms.

These emotional states were measured over durations of several minutes, and typically they
do not produce large EEG peaks, e.g., such as those associated with attention states which have
fractions of seconds of duration. Thus, the SMNI model had much more difficulty fitting affective
data than it had done previously with attention data.

The data collection required 1,568 Training runs over 14 Electrode sites, 28 Subjects and 4
Games. Each Training run had 4 subsequent Testing runs, one for each Game. The lowest cost
function (effective Action) of Training sets per Electrode per Subject per Game determined whether
or not there was a match between the Training set and the 4 subsequent Testing sets. Electrode
sites selected were {AF3, AF4, F3, F4, F7, F8, FC5, FC6, O1, O2, P7, P8, T7, T8}.

Since the subjects physically moved during these games, enhancing their affective states, the
data was pre-cleaned for movement artifacts, making it even more useful for research.

5 Results

Only one parameter, multiplying the synaptic background from a rage [0.1,0.5], was used for ASA-
fitting EEG for each electrode, followed up by simplex fits which did not improve any results. In all
previous SMNI studies fitting EEG, all electrode sources were used and parameters n each region
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weighted contributions from other regions. The parameter selected for this study weights the scale
mapping the EEG data into neuronal firing space, also proportional to experimentally observed
maximum number of neurons per minicolumn which is twice that in visual neocortex than in other
regions.

The authors of the data used multiple trial-and-error parameters in their neural-network calcu-
lations, as well as the use of several classification filters and kernels (Alakus et al., 2020).

The percent of success over all 28 Subjects for each Game is given in Fig. 1, where column 1
is the percent (P) correct match between the Training cost function and the lowest Testing cost
function over all 28 Subjects; column 2 the game (G) number; column 3 is the electrode (E) site.
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Figure 1. Column 1 is the percent (P) correct match between the Training cost function
and the lowest Testing cost function over all 28 Subjects. Column 2 is the Game (G)
number. Column 3 is the electrode (E) site.

Epochs of duration 1/128 for each electrode site varied, but were always over 8000. Data
used were from epoch 2000 through 6000. Since their was just one session per Subject per Game,
Training sets were determined by selecting every even data for Training and every odd data for
Testing, resulting in an effective dt duration of 2/128 for each Training/Testing set of 1000 epochs.
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These results are consistent, but not as good, with those obtained for single electrodes by
the authors of the data (Alakus et al., 2020), as verified in a private email with the lead author.
However, here the model includes quantum effects from tripartite influences.

6 Conclusion

A model of neocortical interactions, Statistical Mechanics of Neocortical Interactions (SMNI) has
been successful in calculating many experimental phenomena, including fits to EEG data in atten-
tion tasks, using an importance-sampling code Adaptive Simulated Annealing (ASA). The SMNI
model is developed in the context of classical path-integrals, which affords intuitive insights as
well as direct numerical benefits, e.g., using the effective Action as a a cost/objective function for
parameter fits to data.

Results from several authors using neural-network approaches at individual electrode sites, show
some predictive capabilities; the results given here are consistent with these other results. However,
since the SMNI model includes these quantum effects, this is another reason to continue examining
these issues.
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