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Abstract

As the Autonomous Vehicle (AV) industry is rapidly advancing, classification of non-motorized
(vulnerable) road users (VRUs) becomes essential to ensure their safety and to smooth operation
ofroad applications. The typical practice of non-motorized road users’ classification usually takes
numerous training time and ignores the temporal evolution and behavior of the signal. In this
research effort, we attempt to detect VRUs with high accuracy be proposing a novel framework
that includes using Deep Transfer Learning, which saves training time and cost, to classify images
constructed from Recurrence Quantification Analysis (RQA) that reflect the temporal dynamics
and behavior of the signal. Recurrence Plots (RPs) were constructed from low-power smartphone
sensors without using GPS data. The resulted RPs were used as inputs for different pre-trained
Convolutional Neural Network (CNN) classifiers including constructing 227x227 images to be
used for AlexNet and SqueezeNet; and constructing 224x224 images to be used for VGG16 and
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VGGI19. Results show that the classification accuracy of Convolutional Neural Network Transfer
Learning (CNN-TL) reaches 98.70%, 98.62%, 98.71%, and 98.71% for AlexNet, SqueezeNet,
VGGI16, and VGGI19, respectively. The results of the proposed framework outperform other
results in the literature (to the best of our knowledge) and show that using CNN-TL is promising
for VRUs classification. Because of its relative straightforwardness, ability to be generalized and
transferred, and potential high accuracy, we anticipate that this framework might be able to solve

various problems related to signal classification.

Keywords: Transportation Mode Classification; Vulnerable Road Users; Recurrence plots;

Computer Vision; Image Classification System.

Introduction

Through the ongoing growth of the automated vehicles (AV) trade, the classification of
non-motorized road users such as walkers is becoming crucial in developing safety applications
for the Cooperative Intelligent Transportation System (C-ITS) to enhance the safety of
non-motorized road users [1, 2]. The C-ITS has been widely investigate and used due to its ability
to utilize the data and better manage the transportation networks. The C-ITS attempts to advance
health, performance and comfort through various connectivity technologies such as
vehicle-to-vehicle (V2V). C-ITS shares various forms of information, including knowledge about
non-motorized road users, traffic congestion, incidents and road threats [3]. This helps C-ITS to
create an integrated person, route, infrastructure, and vehicle network by implementing
communications and other transportation technologies. Taking advantage of the new technology
and available big datasets can create a fully functional, instant-time, precise, and secure transport

facilities [2, 4]. While C-ITS is now taking attention globally, the academic community focused
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primarily on motorized road users such as motor vehicles, expressing less interest for
non-motorized road users [5]. Major planning challenges faced by deploying AV is intermodal
traffic control, where AV regulations and programming should be structured to value human life by
reducing the likelihood of crashes and protecting non-motorized road users [6, 7].

The non-motorized road users are known to be one example of people intervening with
AVs “humans that do not explicitly interact with the automated vehicle but still affect how the
vehicle accomplishes its task by observing or interfering with the actions of the vehicle” [1]. The
non-motorized road users, that is typically have lack ofa shield protection, can be described as
'vulnerable'. Those were identified in this research effort by the quantity of traffic safety they lack.
The lethality of non-motorized road users, in particular walkers and bikers are greater than the
norm. This is because of the discrimination factor for non-motorized road users’ collisions is small
compared to motorized road users [8].

Conversely, the use of smartphones in data analysis has also lately gained attention of
academics and policymakers. The smartphone applications (apps) were designed and used
successfully in several fields to gather data from smartphones. Researchers can use smartphones in
the transport industry to track and gather motion information such as velocity and motion vector
from the integrated Global Positioning System (GPS). This information has the potential to
identify the travel mode of the individual, that be used in a variety of different ways and may
decrease the amount of time and expense of traditional travel surveys substantially.

A very established practice in non-motorized road users’ classification and mode
transportation recognition tasks is using the state-of-the-art algorithms for classification by
integrating frame-level features over some period as an input. The common approach is to use the

traditional statistic techniques such as mean and standard deviation, resulting in a less resolution
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dataset and losing very valuable information such as the historical evolution and needs significant
training time and expense. In this study, we explore the possibility of using Transfer Learning with
Convolutionary Neural Network to classify non-motorized road users with high precision
(CNN-TL), which saves training time and cost, to classify images constructed from Recurrence
Quantification Analysis (RQA). This approach has the potential to be popular in the transportation

mode recognition field due to the potential high accuracy and ease of implementation.

Related work
Scientists have established many methods to effectively differentiate between the modes of

transport. Machine learning and artificial intelligence algorithms have shown outstanding
performance in creating classification models with high precision, in particular with transportation
mode classification. Throughout different experiments, supervised learning models such as
Support Vector Machines (SVMs) [9-11], and Random Forests (RFs) [11, 12], Decision Trees [11,
13-18], have all been utilized in different research efforts.

These research efforts have got various levels ofaccuracy in the classification. There are
many variables that influence the precision of detecting modes of transport, as for example the
monitoring time, the source of the data, number of modes, and others [12, 19]. A major factor
influencing the precision of transportation mode recognition approach, however, is the classifier
used in the approach. In most of the research conducted in the past, researchers used only one
classification algorithm layer [12, 14, 15]. This is called a conventional framework. On the other
side, a few researchers have used more than one classification algorithm layer, which is called , a
hierarchical framework [11].

In addition to the number of classification layers, the domain of the extracted features is

another important factor that needs to be considered in the transportation mode recognition
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approach. The domain of the features can be classified into two categories: time and frequency.
Several research efforts were conducted using both as in [9-12, 14, 15, 20] [9, 11, 15]. Both
accomplished significant and high accuracy.

Zadeh et al. [21] proposes a geometric approach to detect the risky circumstances that
their built-in alert system on smartphones can secure non-motorized road users. This approach can
estimate the probability of crash with the use ofa fuzzy inference. Inaddition, a 3D photonic mixer
camera was developed to provide pedestrian identification using a sensor device to meet a unique
criteria for pedestrian safety in [22]. Anaya et al. [5] have used V2V communications to develop a
novel Advanced Driver Assistance Program to prevent collisions between motorcyclists and bikes.
A multi-sensor approach was developed to non-motorized road users’ security as part of the
PROTECTOR project by detecting and identifying non-motorized road users from vehicles in
motion in [23]. They explore the impact of using CNN-TL on the precision of the non-motorized
road user’s classification, which was the first effort to the best of our knowledge in this respect.
They aim at precisely detecting non-motorized road users through data obtained from sensors on
the smartphone with low power. High level C-ITS protection relies on a specific classification of
the non-motorized road users. A binary classifier was introduced to discriminate non-motorized
road user’s modes (i.e. bicycling, running, and walking) from motorized road user’s modes
(passenger car and taking bus). A binary classifier is useful in situations where there are higher
threats to non-motorized road users. For instance, at an intersection, all subjects' smartphones
detect non-motorized road users reports to C-ITS' roadside unit. The C-ITS’ roadside also receives
messages from vehicles, if any, and then transmits this message onto a warning sign if it detects a
potential conflict between non-motorized road users and the vehicle.

We should emphasize that most of the methods proposed in the latest research efforts did
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not consider the shortcomings of GPS data such as signal failure or data loss, resulting in
unreliable location information. In addition, turning on GPS service in smartphones might quickly
drain the battery, thus, this effort attempt to use of collected data of various sensors in a

smartphone without GPS information.

Data collection

The dataset was obtained in Blacksburg, VA using a smartphone app by Jahangiriand Rakha [12].
Ten travelers were provided with the app to track their movement in five different modes of
transportation, namely: car, bicycle, bus, running, and walking. Data was gathered from four
different sensors in the smartphone: The Global Positioning System (GPS), accelerometer,
gyroscope, and rotation-vector. Data was warehoused at the maximum viable frequency. Data
gathering took place on working days (Mondays to Fridays) and during working hours: from 8:00
AM to 6:00 PM). Several variables have been considered to gather meaningful data that represent
natural behaviors. To ensure the sensor positioning has no impact on the data collected, travelers
(ie. participants) were asked to consider holding the smartphone in various positions with no
limitations. The data was gathered on various road types, and some periods that indicate
congestion conditions that occur in real-life circumstances. The gathering of 30-minute of data per
person during the study period was considered appropriate for each mode.

To equate the results of the analysis with results of previous research efforts [11, 12], the
selected features extracted from the signals were assumed to have a significant association with the
modes of travel for the study. In addition, features that could be derived from the rotation-vector
values were omitted or the same purpose. Furthermore, GPS features were ignored in this study
allowing this system to be applied in circumstance in which GPS data was unavailable and to relax

the issue of battery depleting when GPS service is turned on.
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RQA features

Extracting features from the signal is the standard approach in solving mode classification
problems in the literature, which can be then used as inputs into the various classification
algorithms. The traditional method creates features mainly by using statistics such as the mean,
median, and standard deviation values. This process might result in losing the temporal evolution
and behavior ofthe signal, which are valuable information. Extracting features that represent this
behavior maximizes the classification precision and accuracy, but it is not yet deeply
investigated in the literature. In [24], we proposed extracting features using Recurrence
Quantification Analysis (RQA), which we proved that it provided extensive temporal behavior of
the obtained signal. RQA is a nonlinear method for analyzing complex dynamic systems by
quantifying the recurrence properties of the signal. Eckmann et al. [25] implemented this as a
visual tool for finding hidden recurring patterns, un-stationary and systemic shifts. RQA has
proved to be a robust method for analyzing dynamic systems, and is capable of quantitatively
characterizing the magnitude and complexity of nonlinear, non-stationary and small signals
[26-32]. It seems that RQA may result in more subtle-kind of features to the variations in the signal
and more robust against the noise in the signal data [30, 31].

In this study we used the extracted features using RQA to create images (we called them
RQA images) that could be then used as inputs in a classification algorithm instead of using many
numerical features. This has many benefits including the ability of using pretrained deep learning
algorithms and representing the various features in one single image, which will save a significant
time in computing and reduce the complexity of the system. However, before we introduce the
proposed framework, the following is a brief description of how we extracted the features using
quantification of patterns that occur in Recurrence Plots (RPs) and more information and details
should be found here [24]. Extraction of RQA features involves the setting of three essential
parameters: delay (7) (i.e. lag), phase space dimension (D), and threshold parameter (7). Delay is
chosen as the minimum value for the Average Mutual Knowledge (AMI) function. We averaged
the collective average information functionover all participants and modes inorder to calibrate the
delay parameter for each channel, as can be seen in

Figure 1 (a). The phase space dimension is calculated using the False Nearest Neighbor
(FNN) test, as seen in

Figure 1 (b).
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Figure 1: Results of (a) AMI function and (b) FNN test
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To calculate the value of T, the space dimension and the delay were used to create the RP

and to extract RQA features at various T values. We use the resulted RQ A features of each stream

from applying RF algorithm as inputs. Consequently, T was calculated for each wave based on the

precision of the classification.

Jahangiri and Rakha [12] obtained measurements at a frequency approximately 25 Hz
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from the various sensors. As the sensor output samples were not synchronized, a linear
interpolation was implemented by the authors to generate continuous signals from the discrete
samples. Subsequently, they sampled the designed sensor signals at 100 Hz and divided each
sensor's output in each direction (x,y,and z) into 1-s long, non-overlapping windows (t). Using
RQA, eachpoint (V;) in the dimensional space is V; = p; + Djr + Piyar + - + Disp-1)r» Which
means that each 1-s window (ie. 100 sample) results in 70 X 70 RP for D = 10 and T = 4; and
40 X 40 RP for D = 30 and 7 = 3. As aresult, six RPs 0of 70 X 70 and three RP of 40 X 40 were
extracted to be used in image classification. An example of the extracted RQA images of VRUs
and non-VRUs modes are shown mn Figure 2.

Y

A

Figure 2: An example of a resulted RQA image of VRU (right) and non-VRU (left)

Methods
Convolutional neural network transfer learning (CNN-TL)

Convolutional neural networks (CNN) is a Deep Learning algorithm that have recently shown
outstanding performance in many computer vision applications such as image classification,
object classification, and face recognition [33]. In this study, we used CNN as it takes images as

inputs, and was proved to be able to process and classify it. Technically, each input image
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processes through a series of convolution hidden layers with certain filters to classify it with a
defined probabilistic value between 0 and 1. However, because training CNNs needs a relatively
huge number of input image data and parameters to be processed, Transfer Learning (TL) was
introduced as a pretrained method to expedite training and advance the performance of the CNN
models. TL is defined as “a machine learning method where a modeldeveloped for a task is reused
as the starting point for a modelon a second task, which can be used in computer vision and natural
language processing aiming to transfer knowledge between related source and target domains™
[34, 35]. There are many benefits for using TL, it “overcomes the deficit of training samples for
some categories by adapting classifiers trained for other categories and to cope with different data
distributions in the source and target domains for the same categories” [33, 34].

In this study, we applied Convolutional Neural Network Transfer Learning (CNN-TL) to
classify the resulted RQA images using: 1) AlexNet, whichcontains five convolutional, three fully
connected, max-pooling, and dropout layers [36]; 2) SqueezeNet, which contains two convolution
layers, eight Fire Modules, and max-pooling layers [37]; 3) VGG16 and 4) VGG19 [38], both of
them contain three convolutional layers, max-pooling, and two fully-connected layers. However,

the “16” and “19” stand for the number of weight layers in the network.

Proposed Framework and Results

In order to use CNN-TL for classifying VRU and non-VRU, we proposed the framework shown in
Figure 3: . Following to extracting RPs using RQA analysis, we resized and concatenated the nine
resulted RPs to construct 227x227 images to be used for AlexNet and SqueezeNet, and 224x244
images to be used for VGG16 and VGG19. For each CNN method, we used 47.5% ofthe images
for training the pre-trained deep neural network using transfer learning, 2.5% of the images were

used for validation, and the remaining 50% were used for testing. Consequently, as a key

10
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advantage of the proposed framework, we used RF with varying number of trees from 10 to 200
to capture the temporal dependencies between the consecutive non-overlapping windows (t) of1-s
width and return the probability of a window/image being VRU. As this type of neural network
fails to model the time dependency, RF aims to model this temporal relationship using the
concatenating VRU probability of consecutive windows to form a vector of probabilities. In this
study, we choose 3, 5 and 7 consecutive windows, which corresponds to 3, 5 and 7 seconds,

respectively.

Collecting Smartphone Constructing
sensors data and dividing it and resizing
into one second Recurrence the image for
non-overlapping windows plot the CNN
construction
Construct feat ¢ o
onstruct features vectors
VRU /data Random Forest ’ _ .
p( / )o classifier with capturing the temporal Transfer
dependency Leaming

Figure 3: Proposed framework for classifying VRU using CNN-TL and RF

CNN-TL were trained and tested as a binary classifier (i.e. classifying whether the class is
a VRU or a non-VRU). RQA images resulted from analyzing data collected using different
smartphone sensors, namely: accelerometer, gyroscope, and rotation-vector. As Figure 3 shows,
the classification results reaches the highest accuracy of 98.70%, 98.62%, 98.71% and 98.71%
using only 7 consecutive non-overlapping windows for AlexNet, SqueezeNet, VGG16, and

VGG19, respectively. Figure 3 shows the results of the different CNN-TL methods.
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Figure 3: Classification results of VRU and non-VRU using AlexNet, SqueezeNet, VGG16, and

VGG19.

Conclusion

As the AV industry is rapidly advancing, non-motorized road users’ (i.e. VRUs) classification has
become key to enhancing their safety in the road. In this research, by investigating the use of a
novel CNN-TL image classification framework, we investigated the impact of extracted RPs,
which captures the temporal evolution, on the precision of non-motorized road users’
classification. We extracted RPs using data from smartphone sensors like gyroscope,

accelerometer, and rotation vector, without GPS data (we assumed they might have some possible
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issues such as quickly depleting the smartphone’s battery if the service is turned on). We proposed
a framework consisting of CNN-TL as a pretrained algorithm to reduce training time and increase
the classification accuracy. We also applied the RF algorithm to capture the temporal relationships
between non-overlapping windows. We applied different CNNs including AlexNet, SqueezeNet,
VGG16, and VGG19. The classification accuracy reached 98.70%, 98.62%, 98.71%, and 98.71%
using 7 consecutive windows for AlexNet, SqueezeNet, VGG16, and VGG19, respectively.
Results of the proposed framework proved that the proposed framework is promising, and
it outperformed the results in the literature. Our experimental results show that using CNN-TL
applied to extracted RQA images has a significant discriminating ability for VRUs classification,
which seems to be not captured using other classification algorithms. Unlike other methods,
images resulted from RQA would relax the assumptions about linearity, multicollinearity, or
stationarity of the data that would be required using other features. Because of its relative
straightforwardness, ability to be generalized and transferred, and potential high accuracy, we
anticipate that this framework might be able to solve various problems related to signal

classification and would become a popular choice in the future.

Data availability
The dataset used to support the findings of this study is owned by Virginia Tech Transportation

Institute (VTTI), https//www.vtti.vt.edw/index.html, and available upon request.
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