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Abstract 

As the Autonomous Vehicle (AV) industry is rapidly advancing, classification of non-motorized 

(vulnerable) road users (VRUs) becomes essential to ensure their safety and to smooth operation 

of road applications. The typical practice of non-motorized road users’ classification usually takes 

numerous training time and ignores the temporal evolution and behavior of the signal. In this 

research effort, we attempt to detect VRUs with high accuracy be proposing a novel framework 

that includes using Deep Transfer Learning, which saves training time and cost, to classify images 

constructed from Recurrence Quantification Analysis (RQA) that reflect the temporal dynamics 

and behavior of the signal. Recurrence Plots (RPs) were constructed from low-power smartphone 

sensors without using GPS data. The resulted RPs were used as inputs for different pre-trained 

Convolutional Neural Network (CNN) classifiers including constructing 227×227 images to be 

used for AlexNet and SqueezeNet; and constructing 224×224 images to be used for VGG16 and 
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VGG19. Results show that the classification accuracy of Convolutional Neural Network Transfer 

Learning (CNN-TL) reaches 98.70%, 98.62%, 98.71%, and 98.71% for AlexNet, SqueezeNet, 

VGG16, and VGG19, respectively. The results of the proposed framework outperform other 

results in the literature (to the best of our knowledge) and show that using CNN-TL is promising 

for VRUs classification. Because of its relative straightforwardness, ability to be generalized and 

transferred, and potential high accuracy, we anticipate that this framework might be able to solve 

various problems related to signal classification. 

 

Keywords: Transportation Mode Classification; Vulnerable Road Users; Recurrence plots; 

Computer Vision; Image Classification System. 

Introduction 

Through the ongoing growth of the automated vehicles (AV) trade, the classification of 

non-motorized road users such as walkers is becoming crucial in developing safety applications 

for the Cooperative Intelligent Transportation System (C-ITS) to enhance the safety of 

non-motorized road users [1, 2]. The C-ITS has been widely investigate and used due to its ability 

to utilize the data and better manage the transportation networks. The C-ITS attempts to advance 

health, performance and comfort through various connectivity technologies such as 

vehicle-to-vehicle (V2V). C-ITS shares various forms of information, including knowledge about 

non-motorized road users, traffic congestion, incidents and road threats [3]. This helps C-ITS to 

create an integrated person, route, infrastructure, and vehicle network by implementing 

communications and other transportation technologies. Taking advantage of the new technology 

and available big datasets can create a fully functional, instant-time, precise, and secure transport 

facilities [2, 4]. While C-ITS is now taking attention globally, the academic community focused 
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primarily on motorized road users such as motor vehicles, expressing less interest for 

non-motorized road users  [5]. Major planning challenges faced by deploying AV is intermodal 

traffic control, where AV regulations and programming should be structured to value human life by 

reducing the likelihood of crashes and protecting non-motorized road users [6, 7]. 

The non-motorized road users are known to be one example of people intervening with 

AVs “humans that do not explicitly interact with the automated vehicle but still affect how the 

vehicle accomplishes its task by observing or interfering with the actions of the vehicle” [1]. The 

non-motorized road users, that is typically have lack of a shield protection, can be described as 

'vulnerable'. Those were identified in this research effort by the quantity of traffic safety they lack. 

The lethality of non-motorized road users, in particular walkers and bikers are greater than the 

norm. This is because of the discrimination factor for non-motorized road users’ collisions is small 

compared to motorized road users [8]. 

Conversely, the use of smartphones in data analysis has also lately gained attention of 

academics and policymakers. The smartphone applications (apps) were designed and used 

successfully in several fields to gather data from smartphones. Researchers can use smartphones in 

the transport industry to track and gather motion information such as velocity and motion vector 

from the integrated Global Positioning System (GPS). This information has the potential to  

identify the travel mode of the individual, that be used in a variety of different ways and may 

decrease the amount of time and expense of traditional travel surveys substantially. 

A very established practice in non-motorized road users’ classification and mode 

transportation recognition tasks is using the state-of-the-art algorithms for classification by 

integrating frame-level features over some period as an input. The common approach is to use the 

traditional statistic techniques such as mean and standard deviation, resulting in a less resolution 
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dataset and losing very valuable information such as the historical evolution and needs significant 

training time and expense. In this study, we explore the possibility of using Transfer Learning with 

Convolutionary Neural Network to classify non-motorized road users with high precision 

(CNN-TL), which saves training time and cost, to classify images constructed from Recurrence 

Quantification Analysis (RQA). This approach has the potential to be popular in the transportation 

mode recognition field due to the potential high accuracy and ease of implementation. 

Related work 

Scientists have established many methods to effectively differentiate between the modes of 

transport. Machine learning and artificial intelligence algorithms have shown outstanding 

performance in creating classification models with high precision, in particular with transportation 

mode classification. Throughout different experiments, supervised learning models such as 

Support Vector Machines (SVMs) [9-11], and Random Forests (RFs) [11, 12], Decision Trees [11, 

13-18],  have all been utilized in different research efforts. 

These research efforts have got various levels of accuracy in the classification. There are 

many variables that influence the precision of detecting modes of transport, as for example the 

monitoring time, the source of the data, number of modes, and others [12, 19]. A major factor 

influencing the precision of transportation mode recognition approach, however, is the classifier 

used in the approach. In most of the research conducted in the past, researchers used only one 

classification algorithm layer [12, 14, 15]. This is called a conventional framework. On the other 

side, a few researchers have used more than one classification algorithm layer, which is called , a 

hierarchical framework [11]. 

In addition to the number of classification layers, the domain of the extracted features is 

another important factor that needs to be considered in the transportation mode recognition 
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approach. The domain of the features can be classified into two categories: time and frequency. 

Several research efforts were conducted using both as in [9-12, 14, 15, 20] [9, 11, 15]. Both 

accomplished significant and high accuracy. 

Zadeh et al. [21] proposes a geometric approach to detect the risky circumstances that 

their built- in alert system on smartphones can secure non-motorized road users. This approach can 

estimate the probability of crash with the use of a fuzzy inference. In addition, a 3D photonic mixer 

camera was developed to provide pedestrian identification using a sensor device to meet a unique 

criteria for pedestrian safety in [22]. Anaya et al. [5] have used V2V communications to develop a 

novel Advanced Driver Assistance Program to prevent collisions between motorcyclists and bikes. 

A multi-sensor approach was developed to non-motorized road users’ security as part of the 

PROTECTOR project by detecting and identifying non-motorized road users from vehicles in 

motion in [23]. They explore the impact of using CNN-TL on the precision of the non-motorized 

road user’s classification, which was the first effort to the best of our knowledge in this respect. 

They aim at precisely detecting non-motorized road users through data obtained from sensors on 

the smartphone with low power. High level C-ITS protection relies on a specific classification of 

the non-motorized road users. A binary classifier was introduced to discriminate non-motorized 

road user’s modes (i.e. bicycling, running, and walking) from motorized road user’s modes 

(passenger car and taking bus). A binary classifier is useful in situations where there are higher 

threats to non-motorized road users. For instance, at an intersection, all subjects' smartphones 

detect non-motorized road users reports to C-ITS' roadside unit. The C-ITS’ roadside also receives 

messages from vehicles, if any, and then transmits this message onto a warning sign if it detects a 

potential conflict between non-motorized road users and the vehicle. 

We should emphasize that most of the methods proposed in the latest research efforts did 
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not consider the shortcomings of GPS data such as signal failure or data loss, resulting in 

unreliable location information. In addition, turning on GPS service in smartphones might quickly 

drain the battery, thus, this effort attempt to use of collected data of various sensors in a 

smartphone without GPS information. 

Data collection 

The dataset was obtained in Blacksburg, VA using a smartphone app by Jahangiri and Rakha [12]. 

Ten travelers were provided with the app to track their movement in five different modes of 

transportation, namely: car, bicycle, bus, running, and walking. Data was gathered from four 

different sensors in the smartphone: The Global Positioning System (GPS), accelerometer, 

gyroscope, and rotation-vector. Data was warehoused at the maximum viable frequency. Data 

gathering took place on working days (Mondays to Fridays) and during working hours: from 8:00 

AM to 6:00 PM). Several variables have been considered to gather meaningful data that represent 

natural behaviors. To ensure the sensor positioning has no impact on the data collected, travelers 

(i.e. participants) were asked to consider holding the smartphone in various positions with no 

limitations. The data was gathered on various road types, and some periods that indicate 

congestion conditions that occur in real- life circumstances. The gathering of 30-minute of data per 

person during the study period was considered appropriate for each mode. 

To equate the results of the analysis with results of previous research efforts [11, 12], the 

selected features extracted from the signals were assumed to have a significant association with the 

modes of travel for the study. In addition, features that could be derived from the rotation-vector 

values were omitted or the same purpose. Furthermore, GPS features were ignored in this study 

allowing this system to be applied in circumstance in which GPS data was unavailable and to relax 

the issue of battery depleting when GPS service is turned on. 
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RQA features 

Extracting features from the signal is the standard approach in solving mode classification 

problems in the literature, which can be then used as inputs into the various classification 

algorithms. The traditional method creates features mainly by using statistics such as the mean, 

median, and standard deviation values. This process might result in losing the temporal evolution 

and behavior of the signal, which are valuable information. Extracting features that represent this 

behavior maximizes the classification precision and accuracy, but it is not yet deeply 

investigated in the literature. In [24], we proposed extracting features using Recurrence 

Quantification Analysis (RQA), which we proved that it provided extensive temporal behavior of 

the obtained signal. RQA is a nonlinear method for analyzing complex dynamic systems by 

quantifying the recurrence properties of the signal. Eckmann et al. [25] implemented this as a 

visual tool for finding hidden recurring patterns, un-stationary and systemic shifts. RQA has 

proved to be a robust method for analyzing dynamic systems, and is capable of quantitatively 

characterizing the magnitude and complexity of nonlinear, non-stationary and small signals 

[26-32]. It seems that RQA may result in more subtle-kind of features to the variations in the signal 

and more robust against the noise in the signal data [30, 31]. 

In this study we used the extracted features using RQA to create images (we called them 

RQA images) that could be then used as inputs in a classification algorithm instead of using many 
numerical features. This has many benefits including the ability of using pretrained deep learning 

algorithms and representing the various features in one single image, which will save a significant 
time in computing and reduce the complexity of the system. However, before we introduce the 
proposed framework, the following is a brief description of how we extracted the features using 

quantification of patterns that occur in Recurrence Plots (RPs) and more information and details 
should be found here [24]. Extraction of RQA features involves the setting of three essential 

parameters: delay (𝜏) (i.e. lag), phase space dimension (𝐷), and threshold parameter (𝑇). Delay is 
chosen as the minimum value for the Average Mutual Knowledge (AMI) function. We averaged 

the collective average information function over all participants and modes in order to calibrate the 
delay parameter for each channel, as can be seen in  

Figure 1 (a). The phase space dimension is calculated using the False Nearest Neighbor 

(FNN) test, as seen in  

Figure 1 (b). 
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Figure 1: Results of (a) AMI function and (b) FNN test 

To calculate the value of 𝑇, the space dimension and the delay were used to create the RP 

and to extract RQA features at various 𝑇 values. We use the resulted RQA features of each stream 

from applying RF algorithm as inputs. Consequently, 𝑇 was calculated for each wave based on the 

precision of the classification.  

Jahangiri and Rakha [12] obtained measurements at a frequency approximately 25 Hz 

(a) 

(b) 
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from the various sensors. As the sensor output samples were not synchronized, a linear 

interpolation was implemented by the authors to generate continuous signals from the discrete 

samples. Subsequently, they sampled the designed sensor signals at 100 Hz and divided each 

sensor's output in each direction (𝑥, 𝑦, and 𝑧) into 1-s long, non-overlapping windows (𝑡). Using 

RQA, each point (𝑉𝑖) in the dimensional space is 𝑉𝑖 = 𝑝𝑖 + 𝑝𝑖+𝜏 + 𝑝𝑖+2𝜏 + ⋯ + 𝑝𝑖+(𝐷−1)𝜏, which 

means that each 1-s window (i.e. 100 sample) results in 70 × 70 RP for 𝐷 = 10 and 𝜏 = 4; and 

40 × 40 RP for 𝐷 = 30 and 𝜏 = 3. As a result, six RPs of 70 × 70 and three RP of 40 × 40 were 

extracted to be used in image classification. An example of the extracted RQA images of VRUs 

and non-VRUs modes are shown in Figure 2.  

 

Figure 2:  An example of a resulted RQA image of VRU (right) and non-VRU (left) 

Methods 

Convolutional neural network transfer learning (CNN-TL) 

Convolutional neural networks (CNN) is a Deep Learning algorithm that have recently shown 

outstanding performance in many computer vision applications such as image classification, 

object classification , and face recognition [33]. In this study, we used CNN as it takes images as 

inputs, and was proved to be able to process and classify it. Technically, each input image 
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processes through a series of convolution hidden layers with certain filters to classify it with a 

defined probabilistic value between 0 and 1. However, because training CNNs needs a relatively 

huge number of input image data and parameters to be processed, Transfer Learning (TL) was 

introduced as a pretrained method to expedite training and advance the performance of the CNN 

models. TL is defined as “a machine learning method where a model developed for a task is reused 

as the starting point for a model on a second task, which can be used in computer vision and natural 

language processing aiming to transfer knowledge between related source and target domains” 

[34, 35]. There are many benefits for using TL, it “overcomes the deficit of training samples for 

some categories by adapting classifiers trained for other categories and to cope with different data 

distributions in the source and target domains for the same categories” [33, 34]. 

In this study, we applied Convolutional Neural Network Transfer Learning (CNN-TL) to 

classify the resulted RQA images using: 1) AlexNet, which contains five convolutional, three fully 

connected, max-pooling, and dropout layers [36]; 2) SqueezeNet, which contains two convolution 

layers, eight Fire Modules, and max-pooling layers [37]; 3) VGG16 and 4) VGG19 [38], both of 

them contain three convolutional layers, max-pooling, and two fully-connected layers. However, 

the “16” and “19” stand for the number of weight layers in the network. 

Proposed Framework and Results 

In order to use CNN-TL for classifying VRU and non-VRU, we proposed the framework shown in 

Figure 3: . Following to extracting RPs using RQA analysis, we resized and concatenated the nine 

resulted RPs to construct 227𝑥227 images to be used for AlexNet and SqueezeNet, and 224𝑥244 

images to be used for VGG16 and VGG19. For each CNN method, we used 47.5% of the images 

for training the pre-trained deep neural network using transfer learning, 2.5% of the images were 

used for validation, and the remaining 50%  were used for testing. Consequently, as a key 
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advantage of the proposed framework, we used RF with varying number of trees from 10 to 200 

to capture the temporal dependencies between the consecutive non-overlapping windows (𝑡) of 1-s 

width and return the probability of a window/image being VRU. As this type of neural network 

fails to model the time dependency, RF aims to model this temporal relationship using the 

concatenating VRU probability of consecutive windows to form a vector of probabilities. In this 

study, we choose 3, 5 and 7 consecutive windows, which corresponds to 3, 5 and 7 seconds, 

respectively. 

 

 

Figure 3: Proposed framework for classifying VRU using CNN-TL and RF 

CNN-TL were trained and tested as a binary classifier (i.e. classifying whether the class is 

a VRU or a non-VRU). RQA images resulted from analyzing data collected using different 

smartphone sensors, namely: accelerometer, gyroscope, and rotation-vector. As Figure 3 shows, 

the classification results reaches the highest accuracy of 98.70%, 98.62%, 98.71% and 98.71% 

using only 7  consecutive non-overlapping windows for AlexNet, SqueezeNet, VGG16, and 

VGG19, respectively. Figure 3 shows the results of the different CNN-TL methods. 
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Figure 3: Classification results of VRU and non-VRU using AlexNet, SqueezeNet, VGG16, and 

VGG19. 

Conclusion  

As the AV industry is rapidly advancing, non-motorized road users’ (i.e. VRUs) classification has 

become key to enhancing their safety in the road. In this research, by investigating the use of a 

novel CNN-TL image classification framework, we investigated the impact of extracted RPs, 

which captures the temporal evolution, on the precision of non-motorized road users’ 

classification. We extracted RPs using data from smartphone sensors like gyroscope, 

accelerometer, and rotation vector, without GPS data (we assumed they might have some possible 
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issues such as quickly depleting the smartphone’s battery if the service is turned on). We proposed 

a framework consisting of CNN-TL as a pretrained algorithm to reduce training time and increase 

the classification accuracy. We also applied the RF algorithm to capture the temporal relationships 

between non-overlapping windows. We applied different CNNs including AlexNet, SqueezeNet, 

VGG16, and VGG19. The classification accuracy reached 98.70%, 98.62%, 98.71%, and 98.71% 

using 7 consecutive windows for AlexNet, SqueezeNet, VGG16, and VGG19, respectively.  

Results of the proposed framework proved that the proposed framework is promising, and 

it outperformed the results in the literature. Our experimental results show that using CNN-TL 

applied to extracted RQA images has a significant discriminating ability for VRUs classification, 

which seems to be not captured using other classification algorithms. Unlike other methods, 

images resulted from RQA would relax the assumptions about linearity, multicollinearity, or 

stationarity of the data that would be required using other features. Because of its relative 

straightforwardness, ability to be generalized and transferred, and potential high accuracy, we 

anticipate that this framework might be able to solve various problems related to signal 

classification and would become a popular choice in the future. 

Data availability  

The dataset used to support the findings of this study is owned by Virginia Tech Transportation 

Institute (VTTI), https://www.vtti.vt.edu/index.html, and available upon request. 
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