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Abstract: Understanding the detailed timing of crop phenology and their variability enhances grain 

yield and quality by providing precise scheduling of irrigation, fertilization, and crop protection 

mechanisms. Advances in information and communication technology (ICT) provide a unique 

opportunity to develop agriculture-related tools that enhance wall-to-wall upscaling of data outputs 

from point-location data to wide-area spatial scales. Because of the heterogeneity of the worldwide 

agro-ecological zones where crops are cultivated, it is unproductive to perform plant phenology 

research without providing means to upscale results to landscape-level while safeguarding field-

scale relevance. This paper presents an advanced, reproducible, and open-source software for plant 

phenology prediction and mapping (PPMaP) that inputs data obtained from multi-location field 

experiments to derive models for any crop variety . This information can then be applied 

consecutively at a localized grid within a spatial framework to produce plant phenology predictions 

at the landscape level. This software supports the development of process -oriented and 

temperature-driven plant phenology models by intuitively and interactively leading t he user 

through a step-by-step progression to the production of spatial maps for any region of interest. 

Maize (Zea mays L.) was used to demonstrate the robustness, versatility, and high computing 

efficiency of the resulting modeling outputs of the PPMaP. The framework is implemented in R, 

providing a flexible and easy‐to‐use GUI interface. Since this allows appropriate scaling to the larger 

spatial domain, the software can effectively be used to determine the spatially explicit length of 

growing period (LGP) of any variety.   

Keywords: Plant development rate, temperature-dependent, landscape, multi-location trials 

 

1. Introduction 

The recent rise and evolution of data analytics have greatly modernized the worldwide 

agriculture environment thereby improving the efficiency of monitoring farming environments [1,2]. 
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Mathematical and statistical modeling tools embedded within computer programs and packages 

have been used intensively over the last decade with the intent to enhance agricultural production at 

scale [3–8]. The output of such technologies has revolutionized the empirical optimization of 

production and accurate predictions of output which has aided in precision agriculture planning and 

management [7,9,10]. 

This paper contributes a reproducible and practical software capable of providing plant 

phenological phase period prediction and mapping (PPMaP). The PPMaP package, freely available 

at https://github.com/Atoundem/PPMaP, combines data obtained from multi-location field experiments 

for plant phenology to derive temperature-dependent models for any crop variety. This information 

is then applied consecutively at an individual grid-level within a spatial framework to produce 

predictions at scale [8]. Unlike the majority of the available plant analysis tools such as the North 

Carolina State University/Animal and Plant Health Inspection Service Plant Pest Forecasting System 

(NAPPFAST) [9] that uses the degree-day, this software supports the development of process-

oriented temperature-driven plant phenology models and interactively leads the user through a step-

by-step progression until the production of a spatial ASCII (American Standard Code for Information 

Interchange) file for any region of interest.  

The modules with which the PPMaP software was developed were cognizant of the nexus 

between stages of plant development and the various variables that influence each stage. Plant 

development denotes the scheduling of occurrences in the life cycle of a plant that can be described 

as the increase in weight, volume, length, or area of some of the parts or the whole plant [11]. These 

plant growth and developmental processes are used to delineate the phenological stages of a crop. 

However, for modeling purposes, it is essential to separate the two main processes i.e. rate of biomass 

accumulation and the length of growth, as they are affected by different environmental variables  

even within intra-species [12,13]. On one hand, the rate of biomass accumulation is primarily 

determined by the amount of light captured by plants over a range of temperatures, whereas the 

length of growth for a specific variety is typically dependent on daily temperatures. It has been 

insinuated that the probable rate of biomass growth is comparatively constant ov er space and time 

when temperature values are within the range for plant growth, while the period of growth , changes 

in space and time [11,12].  

Naturally, plants are considered as chemical “machines” that are sensitive to the temperature 

that characterizes the environment in which they are grown. In this context, earlier research has 

reported that each mechanism of plant development (enzyme reaction, metabolic sequence, and 

physiological process) is temperature-dependent [14–17]. Therefore, it follows that temperature 

determines the progression of processes to the next developmental stage and their respective rate of 

development [18]. Numerous relationships have been established to portray the way temperature 

influences plant development [19–21]. These comprise degree-days, day-degrees, heat units, heat 

sums, thermal units, and growing degree-days [8,16,17]. Depending on the geographic location, there 

is a dissimilar weighting to the night and day periods for a specific crop, hence a variety might have 

different periods of growth as determined by these locational temperature variations. Additionally, 

this is also in consideration of the specific developmental characteristics of a crop, for instance, maize 

(Zea mays L.) which stops development when it reaches physiological maturity regardless of the 

success in development [22]. Therefore, the formulation of mathematical expressions to represent the 

development of plants and insects has evolved with emphasis placed on determining the lowest 

temperature at which development is zero (base temperature (Tb)) and the optimum temperature 

(To) above which development ceases to increase or begins to decline.  

Motivated by this postulate, several models have been formulated towards enhancing 

understanding of these phenomena, for which each model has its strengths and weaknesses 

[13,19,20]. In general, relationships have been established between the time of development (duration 

between life-phases) of plant and temperature either empirically or through process -based methods. 

Process-based equations are formulated and parameterized with the biological knowledge of the 

plant, while empirical models only capture the trends of the data [20]. Despite the abundance of 

literature on the use of temperature-dependent models for the prediction of plant developmental 
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phases [20,22,23], no simple tool exists to help develop and project the phenological phases of plants 

at the landscape level. Besides, the majority of web services applications and analytics, which are 

currently available, are often tailored for the developed world with nothing to support the majority 

of farmers in developing countries [9]. 

For instance, the complex role of genetic factors in determining the performance of genotypes in 

different environments and selecting superior genotypes in target environments was demonstrated 

by Dia et al. (2016) [7].  In their study, the Genotype x Environment interaction (G×E) analysis was 

applied to describe the stability of genotypes and the response of crop in a multiplication context. 

This method helps to estimate the statistical parameters which guide on the selection of genes that 

have more adapted environmental and agronomic traits [7]. Additionally, other several applications 

and online tools for plant image identification, analy sis, and sharing of leaf images to interpret and 

predict potential yield have been proposed [10,24,25]. All these tools provide mechanisms to handle 

large datasets and further facilitate the distribution of information among the growing scientific 

community. Additional examples of efforts and software that were developed to improve 

agricultural modeling include the CN-CLASS [21] that was initially developed to study Carbon (C) 

stock in forest ecosystems but was later modified to link crop phenological development and C 

allocation during the growth of maize. Also, CropScape is a web service-based application for 

discovering and disseminating geospatial cropland data products for decision making [4]. Other 

software include the LEAF-E that was developed to analyze plant leaf growth through function 

fitting, while TIPS is an automated computer system for processing image-based phenotyping of 

maize tassels [26]. However, the weakness of all these methods is that they generalize and facilitate 

the extrapolation of the potential areas for the optimum growth of the variety based on the known 

genotype, thus missing the fundamental location-specific parameters.   

Therefore, we introduce new software that solves the limitations of the existing phenology  

determining platforms. The PPMaP is a framework that enables multi-location field experiments for 

plant phenology to derive temperature-dependent models for any crop variety and then provide a 

grid specific recommendation domain for the variety . This enables the successful extrapolation of the 

length of growing periods (LGPs) for any varieties with high levels of accuracy with the lowest 

potential risk of failure [14]. This software also counters the traditional methods in which breeders 

find the best varieties by planting them in a diverse set of locations to measure performance over 

many seasons. The number of locations that these breeders can test the new varieties is however 

limited and can cause uncertainty when trying to choose the best genotypes for farmers  [27,28]. Thus 

using PPMaP breeders can accurately predict the performance of each genotype in untested 

environments and therefore make better decisions on which genotypes to move forward and provide 

to farmers [14]. Ultimately this results in better decision making and increased crop production to 

help address food security threats at a global level. In this current study, the phenology model was 

developed for maize to demonstrate resulting modeling outputs using data collected in high maize 

producing regions in Ethiopia and Nigeria. In sub-Saharan African, maize stands out as an essential 

staple food, providing approximately 25% of total calories in the average diet of the majority of the 

population [29,30]. 

2. Materials and Methods  

The software analytics used in the development of PPMaP was founded on the following four 

principles: i) local, regional and global relevance, ii) representativeness of the major agro-ecological 

zones within the region of interest, iii) dependence on high attribute and smallest datasets, and iv) 

adequate validation of the results with field trial results.  

2.1 PPMaP input datasets 

2.1.1 Plant phenology datasets 

The cycle of a plant is split into different development stages or phases. Maize (crop used as to 

test the software) growth is divided into the vegetative (VP) and the reproductive (RP) phases. The 
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VP commences at emergence, goes through the nth leaf, and ends with tasseling and flower [15]. The 

RP starts at flowering and is comprised of silking, blister, milk, dough, and dent stages, and stops at 

physiological maturity, which is reached when all kernels have maximum dry weight [31]. 

Input data into PPMaP for modeling the developmental rate of a plant are the duration of the 

individual phase of phenology. The data are collected from multi-locations characterized by a large 

temperature gradient to estimate how the duration of each phenological phase responds to diverse 

growing conditions. Main observations to be recorded include the sowing date, days to emergence, 

days to flowering, and days to physiological maturity. Days to emergence can be recorded by 

counting the number of maize plants daily while the emergence date is when 50% of the plants in the 

plot have emerged above the soil surface. A few days after the emergence of all plants, many plants 

can be randomly selected and tagged for use to record the duration of the VP and RP.  The flowering 

date is recorded when 50% of tagged plants produced male or female flowers. Similarly, days to 

physiological maturity are recorded when 50% of tagged plants attain physiological maturity. A 

sample of how the data are organized before inputting into the software is shown in Figure 1.  

 

Figure 1.(A) Example of developmental phase start and end dates of a maize variety in five locations 

(Dedessa, Uke, Bako, Ambo, and Holleta) of Ethiopia, and (B) captures the average values of 

maximum and minimum temperatures in the five locations. Both files are saved as a txt-file  (tab-

delimited) and are used as input to PPMaP software . In (A), the first column indicates the 

developmental phase (vegetative or reproductive) of maize, the second column indicates the starting 

date of the phase, and the third column is the end date of the phase. Column four is the location in 

which the experimental trial was conducted. In (B), column one is the date of capture, column two, 
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and three the minimum and maximum values of temperature respectively, while  column four is the 

name of the location where the trails were conducted. 

2.1.2 Temperature datasets 

The software uses two distinct sets of temperature. The first set of temperatures is directly 

obtained from the weather stations within the vicinity of each field experiment. Minimum and 

maximum temperature for the trial period are required. The information is processed to yield the 

average seasonal temperature for the site during crop growth. It is associated with  the duration of 

each plant phase when loading into the software (Figure. 1). The second type of dataset needed by 

PPMaP for landscape mapping is the minimum and maximum weekly/monthly temperature 

organized in raster files with a .flt file format. The data can be obtained from any climate-based 

repositories and databases. To demonstrate the functionalities of the tool applicable to tropical maize, 

temperature data were extracted from the Worldclim website (www.worldclim.org). These datasets 

are presented in raster with “Float” file format (.flt and .hdr file) and consist of sets of climate layers 

(grids) with a spatial resolution ranging from 30 arc-seconds (~ 1km) to 10 arc-minutes.  

2.2 PPMaP software components and data processing mechanisms  

2.2.1 PPMaP modeling component 

The modeling component is comprised of 82 factor-process based development rate functions 

obtained from literature; which have been applied in agricultural production, either in the context of 

insect or crop phenology modeling [13,20,32]. A plant developmental rate model predicts the average 

proportion of development at a certain temperature or the fraction of development completed per 

unit time. These fractions are then accumulated under field conditions and are treated as independent 

variables during the factor-based modeling formulation. Model expressions in the PPMaP database 

are classified by the form of relationship and structure (linear, logistic, exponen tial, sigmoid, 

logarithmic, polynomial, and square root expressions).  

Modeling with PPMaP starts with data standardization by dividing the development period of 

the individual phase by the mean development period of each field experimental site average 

temperature. This allows data obtained from multiple location trials with similar average 

temperature values to be merged for unique scrutiny. Because the direct selection of an appropriate 

mathematical expression to represent the development phase of a crop is challenging [13,20,33], 

PPMaP software model component uses its in-built statistical criteria to compare, select and display 

equations with the respective parameters and graph. Parameter values are estimated by fitting model 

equations to the field data. The Levenberg-Marquardt (LM) algorithm [34] is implemented in the 

software for the estimation of the model parameters. This algorithm combines both the ‘steepest 

descent’ and the Gauss-Newton method to appraise equations. It works iteratively to find the 

minimum of a function expressed as the sum of squares between the nonlinear model output and the 

observed datasets [34]. The PPMaP software offers an interactive process, in which initial parameter 

values for the selected model are altered; followed by the matching of model output to observed data. 

After the initialization of the models, the LM algorithm is launched and the goodness of fit procedure 

is used to find the parameters of the model. The model parameter comparison is done by the 

coefficient of determination adjusted r-squared (R2_Adj) [13,20]; while the Akaike’s Information 

Criterion (AIC) and the Model Selection Criterion (MSC) [20] are used to choose the model that best 

fits the input datasets (Figure. 2).  
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Figure 2: Flow chart demonstrating the steps within the PPMaP software from fitting plant phenology 

data obtained from multi-trails location to model selection and mapping. The thick, thin and dashed 

arrows are the essential steps, substeps, and feedback respectively. Akaike’s Information Criterion 

(AIC), Model Selection Criterion (MSC), Likelihood Ratio Test (LRT), Bayesian Information Criterion 

(BIC) (Adapted from Archontoulis and Miguez, 2015).   

2.2.2 PPMaP mapping component 

A shapefile representing the boundaries of the region of interest is divided into grids and loaded 

into the software. The model obtained during the modeling step is run at each grid of the raster file. 

The gridded temperature data is also loaded and with an in-built function, the values are extracted 

from the database simultaneously and then arranged in a matrix format using longitude as a column 

and latitude as a row. A point object picks the model representing the plant development rate for a 

specific phase, and then sequentially replaces the variable temperature in each grid by the value 

obtained from the database. After computation in each grid, a new matrix is generated with the 

values of the development rate in the respective grid of the raster file. These values are then inversed 

(1/development rate) to estimate the number of days used to complete each phase of plant 
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development. The results are converted into ASCII files and can be transferred to any geographical 

information system (GIS) [35] software for better visualization.  

2.3 PPMaP software implementation 

The following two programming methods were encompassed and combined to implement the 

PPMaP software: (i) a procedural approach that employed the R [36] constituent for model fitting 

and estimation of statistical criteria [37], and (ii) Java object-oriented programming language was 

used to interconnect the software components and develop the graphic user interface (GUI). This was 

developed on the Eclipse platform [38]. The R constituent of the PPMaP comprises of R-scripts used 

to code mathematical expressions (models), processes for parameter estimation and model selection, 

and the mapping environment. Many R packages such as ‘minpack.lm’ [39], ‘MASS’ [40]; ‘maptools’ 

[41], and ‘maps’ [42] are employed to handle nonlinear regression analysis and model fitting and to 

carry out spatial operations leading to the generation of maps.  

The Java object-oriented programming allows the development of a rapid and reliable end-user 

interface with objects, subclasses of image, color, and font integrated into the Eclipse workbench. The 

‘Rserve’ is a tool that is used to evaluate R codes and ensure their integration into the Java application 

[43]. The ‘Rserve’ was applied within the PPMaP software to ensure two-way communication 

between the R constituent and the Java object-oriented codes. When a request is made, ‘Rserve’ 

unlocks the link to collect details of the request, and then creates another link with the R constituent 

to transfer information for execution and sends back the result to the GUI for display. The GUI offers 

a direct connection between the user and PPMaP software system. Numerous utilities are developed 

to bring PPMaP functionalities together in a stop screen layout to make it operate intuitively. The 

PPMaP software iteratively helps the user to create a project (Figure. 3); import, modify, plot, and 

visualize data (Figure. 4); carry out modeling (Figures. 5 and 6), and to project the temperature-

dependent model at scale (Figure. 7).  
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Figure 3: Display of the  PPMaP software  window for project creation. Under project info, there is the 

project name (Maize Crop Ethiopia), the maize variety name (Melkasa -2), the author (Henri 

TONNANG), and the date (18/11/2017) in which the project was created. Phase file  designates the 

path to load file  A (Figure. 2). The temperature file  is the path to load file  B (Figure. 2). Project location 

designates the folder in which all project files are stored. A well-created project prompts the software 

to display the message “Your project was successfully created”. 

 

Figure 4. PPMaP data file  display window. It contains the compilation of data of the vegetative phase 

of a maize variety. The columns on the left box contain, the ID, average temperature, numerical values 

of the development rate, and the locations. The right box shows in two dimensions the data recorded 

in the left box.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2020                   doi:10.20944/preprints202009.0563.v1

https://doi.org/10.20944/preprints202009.0563.v1


 9 of 17 

 

 

Figure 5. Illustrates the user interface of the “modeling component” of the  PPMaP software . It shows 

the  library of mathematical expressions that are used to describe the relationship between plant phase 

development and temperature. The left box contains the models characterized by the name of the 

author that pioneers the formulation. The center box contains the sub-models, which are derivative 

of the models from the left box. The right box contains the models selected for fitting. For example, in 

Briere i, the index i represents the number of the  derived model from the original Briere model. 
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Figure 6. (A) Window of the PPMaP software  presenting diverse models, each with corresponding 

model selection criteria for comparison; usually the best model has the smallest value of Akaike’s 

Information Criterion (AIC). (B) Example of points of data (blue) for a variety of maize at the 

vegetative phase fitted by Briere  temperature-dependent mathematical expression (red curve). (C) 

The statistical criteria for model selection, the model parameters, and the (ANOVA) analysis of 

variances are shown.  

 

Figure 7. PPMaP window showing the mapping section of the software. The paths for inputting 

minimum and maximum temperatures are shown. Below these paths are the geographical 

coordinates of the region chosen for mapping. The  map of Ethiopia showing the number of days a 
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maize variety could spend during the vegetative phase appeared in a box at right. Depending on the  

location, this maize variety can spend from 50 to 130 days to start flowering.  

2.4 PPMaP model validation and performance at scale 

PPMaP software considers the validation as the level to which a selected model rightly predicts 

the duration of an individual phase of the plant when compared to experimental data. To carry out 

this procedure, independent data acquired from various field trial sites that were not used during 

model development and calibrations are recommended for use. The temperature at  point location is 

replaced in the expression of the inverse of development rate to estimate the duration of the 

individual phase of the plant, and the result is compared with actual recorded data from the field 

trial. A well-validated model is used to measure the performance at scale. 

Figure. 8 shows the phenology maps of two maize varieties (MV-1 and MV-2) that are grown 

both in Ethiopia and Nigeria respectively. The period to complete the individual phase during the 

growing period in each country differs considerably due to variability in the temperatures. The 

growing period of variety MV-1 in Nigeria is predicted between 40 to 50 days, whereas in Ethiopia it 

could take from 50 to 130 days. MV-2 also presents a similar difference in the growing period in 

Nigeria (59 – 64 days) and Ethiopia (60 to 170 days).  These results demonstrate the high level of 

variability that exists in agro-ecological areas in an individual country. It is noted that both maize 

varieties (MV-1 and MV-2) can successfully grow in most parts of Nigeria and Ethiopia.  However, 

the time each variety will take to reach maturity will differ from one location to another. With 

Ethiopia having wider variability in altitude compared to Nigeria, this translates to diverse 

temperature regimes and the time taken by both maize varieties to reach maturity is longer than in 

Nigeria. At higher altitudes, the temperatures are lower, making the duration of development longer 

than at lower altitudes. 

 

 

Figure 8. Maps of Nigeria and Ethiopia showing the number of days 2 maize varieties (MV-1 and MV-

2) would take during each phase (vegetative or reproductive) of development in different agro-

ecologies. The small white  dots are areas with missing values of temperature 
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3. PPMaP software usefulness and discussion 

Phenology is an area of research that assesses the cyclical recurrence of events in the growth and 

development of plants and insects [12]. Thus, predicting plant phenology is important as it can be 

used to improve crop productivity. Precisely, forecasting stages of crop development duration is 

needed to find genotypes with the desired growth period that allows growers to optimize yields. 

Adequate forecast of plant phenological events further guides in management decision making like 

the timing of pesticide application, scheduling the timely harvest of crops, or synchronizing the 

flowering of cross-pollination crops for seed production [11].  

Notwithstanding the multitude of literature [11,12,20] on the use of temperature-dependent 

models for modeling plant developmental phases, no software can help non-modelers to establish 

mathematical expressions for useful prediction of plant phenological events. The PPMaP software 

presented here is a unique computer-aided tool capable of analyzing multi-location field trial 

information of plants to yield complete phenology models. PPMaP encompasses a full library of 

mathematical expressions and statistical criteria that guide users to discovery and to select the best 

model to describe the temperature dependence of the development for each phase of the plant. The 

starting point in developing plant phenology models with PPMaP is data standardization and 

grouping according to stage and site-specific characterized by the average temperature in which the 

trials were conducted. Fitting the developmental rate curves directly to the reciprocal of 

developmental duration follows this step. To account for variability among plants, PPMaP applies 

the distributional concept demonstrated in [44,45], which assumes that variation in developmental 

rates at constant temperature is the direct result of variability in the concentration of rate-controlling 

enzymes while the developmental rate variance is proportional to the mean developmental rate.  

An important attribute of PPMaP is the relative ease and speed with which the overall process 

of producing the model and projecting at scale to yield the phenology map of the crop is done. The 

software environment makes programming and coding unnecessary, and hence allows the estimates 

of the duration of plant phases effortlessly available to researchers. PPMaP has a graphical user 

interface and a collection of appropriate models for representing different processes that determine 

the plant life cycle. Selection is based on analytic and adequate evaluation criteria. Fitting 

mathematical expressions using either maximum likelihood estimation (MLE) or least -squares 

estimation (LSE) and treatment medians is difficult and sometimes often leads to over 

parameterization and convergence [20]. Therefore, PPMaP offers a solution to the problem whereby 

a user may be requested to increase the number of data points or use the in -built software features 

that allow the use of censored data to facilitate the analysis. In some cases, model convergence with 

certain initial parameters may remain an issue. However, PPMaP provides an option to automatically 

modify the initial parameters of models to ease the convergence of the fitting algorithm. However, fitting 

mathematical expressions remains a complicated task and should be done carefully. There is no 

standard method to choose among competing equations; that is, the decision on choosing a model 

should not be left to a computer program, and thus the user of PPMaP needs to critically consider 

and identify an appropriate equation that best delivers biologically meaningful and statistically 

significant parameters suited to their objective and species or variety[20].  

In Rykiel, (1996), validation is defined as the degree to which a model output matches 

independent data sets. Thus, PPMaP uses the same concept and has a mechanism for using 

independent datasets (not used for model development and calibration) obtained from diverse field 

trials and sites to make predictions and compare results. In this context, validation is an important 

instrument for scaling life cycle events of plants over a wide spatial and temporal range and for 

examining the crop reactions to changing or novel climatic conditions, and it provides some level of 

understanding and adaptation in different agro-ecological zones. 

Taking crop research to scale requires a change in the way studies are conducted as well as the 

extent to which essential advice to farmers can be provided. Two types of frameworks exist the top-

down approach consisting of analyzing grid cells to cover a wide area and then downscaling the 

results, and the bottom-up approach in which several sites representing major crop production areas 

are selected for analysis followed by a spatial upscale [47]. Consequently, PPMaP software supports 
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the concept of researching to the appropriate scale by using the bottom-up approach. Inputting 

phenological data of plants to carry out analysis with geospatial representation is thus a critical step 

to tailoring solutions at the landscape level. Considering the diversity of agro-ecological zones where 

crops are cultivated, we argue that it is unproductive to conduct research studies on plant phenology 

without providing means of upscaling results to landscape-level while still safeguarding field 

relevance. Herein, we presented software embedded with a method that allows appropriate scaling 

to larger spatial domain research findings for decision-making. Global warming might be affecting 

the phenology of plants in their respective natural environments.   

Tools based on hyperspectral imaging exist for differentiating crop phenology and seed varieties 

[10,24]. Plant phenotyping [10,27] is an emerging field of research that links genomics with plant 

ecophysiology and agronomy. It demonstrates that the functional plant body (phenotype) is 

produced during plant growth and development from the dynamic interaction between the genetic 

setting (genotype) and the physical area in which plants develop (environment). The understanding 

of the connections and feedbacks mechanisms existing between phenotype, genotype, and the 

environment is paramount for increasing crop productivity, therefore, we hope that PPMaP which 

helps to understand how genotype can respond to environmental conditions will contribute towards 

improving knowledge on this topic.  

In several countries of sub-Saharan Africa (SSA), information on crop seed packages is often 

incomplete; crop varieties are classified by altitude (low, medium, and high) and maturity groups 

(early, intermediate, and late). PPMaP is a tool that could help provide location specific and near 

accurate length of crop growth duration of different varieties. Consequently, we propose to compact 

the phenology maps of different maize varieties produced by PPMaP, add features such as the name, 

type, color, potential yield, maturity class, ecology, resistance, and tolerance level to pests/diseases 

for individual varieties to develop applications.  This software can be used to enhan ce the capacity 

of extension and agribusiness service providers (agro-dealers) in providing recommendations at 

various scales especially in countries where the landscape varies considerably in altitude such as 

Ethiopia. When a new variety is developed, the norm is to conduct multi-environmental trials to 

evaluate the performance of the variety before release. Such trials are very expensive and PPMaP can 

be a starting point for reducing the number of experimental sites and thus associated costs.  

4. Conclusions 

This study has demonstrated that PPMaP is a tool that has vast potential to provide a location-

specific and near accurate length of crop growth duration of different varieties  by supporting the 

concept of researching to the appropriate scale. It is an object‐oriented reproducible and extensible 

framework for phenology mapping at scale. Besides, PPMaP provides an easy‐to‐use comprehensive 

framework to perform the entire modeling process without the extensive nee for programing skills 

hence user friendly to potential users of any computer skills level. The software is thus designed to 

enable users to extend it and share the new data, methods, or procedures to reproduce them by other 

users. 
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Appendix A 

The appendix is an optional section that can contain details and data supplemental to the main 

text. For example, explanations of experimental details that would disrupt the flow of the main text, 

but nonetheless remain crucial to understanding and reproducing the research shown; figures of 

replicates for experiments of which representative data is shown in the main text can be added here 

if brief, or as Supplementary data. Mathematical proofs of results not central to the paper ca n be 

added as an appendix. 

Appendix B 

All appendix sections must be cited in the main text. In the appendixes, Figures, Tables, etc. 

should be labeled starting with ‘A’, e.g., Figure A1, Figure A2, etc.  
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