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Abstract: The k-means problem is to compute a set of k centers (points) that minimizes the sum of1

squared distances to a given set of n points in a metric space. Arguably, the most common algorithm to2

solve it is k-means++ which is easy to implement, and provides a provably small approximation error3

in time that is linear in n.4

We generalize k-means++ to support outliers in two sense (simultaneously): (i) non-metric spaces,5

e.g. M-estimators, where the distance dist(p, x) between a point p and a center x is replaced by6

min {dist(p, x), c} for an appropriate constant c that may depend on the scale of the input. (ii) k-means7

clustering with m ≥ 1 outliers, i.e., where the m farthest points from any given k centers are excluded8

from the total sum of distances. This is by using a simple reduction to the (k + m)-means clustering9

(with no outliers).10
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1. Introduction12

We first introduce the notion of clustering, the solution that is suggested by k-means++, and the13

generalization of the problem to support outliers in the input. We then describe our contribution in this14

context.15

1.1. Clustering16

For a given similarity measure, clustering is the problem of partitioning an input set of n objects17

into subsets, such that objects in the same group are more similar to each other, than to objects in the18

other sets. As mentioned in [1], clustering problems arise in many different applications, including data19

mining and knowledge discovery [2], data compression and vector quantization [3], pattern recognition20

and classification [4]. However, for most of its variants, it is an NP-Hard problem when the number k of21

clusters is part of the input, as elaborated and proved in [5,6]. In fact, the exponential dependency in k22

is unavoidable even for approximating the (regular) Euclidean k-means for clustering n points in the23

plane [7,8].24

Hence, a constant or near-constant (logarithmic in n or k) multiplicative factor approximations to25

the desired cost function were suggested over the years, whose running time is polynomial in both n and26

k. Arguably, the most common versions in both academy and industry is the k-means++ method that was27

suggested independently by [9] and [10], which provides an α ∈ O(log k) multiplicative approximation28

in time O(dnk) for the Euclidean d-dimensional space. It was also shown in [10] that the approximation29

factor is α = O(1), if the input data is well separated in some formal sense. The k-Means++ algorithm is30

based on the intuition that the centroids should be well spread out. Hence, it samples k centers iteratively,31

via a distribution that is called D2-sampling and is proportional to the distance of each input point to the32

centers that were already chosen. The first center is chosen uniformly at random from the input.33

It was proved in [11] that D2-sampling O(k) centers using this method yields a constant-factor34

approximation. Recently, [12] provided an α ∈ O(1) approximation for points in the d-dimensional35

Euclidean space via exactly k centers in time complexity of O(dnk2 log log k).36

The k-means++ algorithm supports any distance to the power of z ≥ 1 as explained in [9].37

Deterministic and other versions for the sum of (non-squared) distances were suggested in [13–15].38
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A more general approximations, called bi-criteria or (α, β) approximations, guarantee multiplicative39

factor α-approximation but the number of used center (for approximating the optimal k centers) is40

βk for some β > 1. The factors α and β might be depended on k and n, and different methods give41

different dependencies and running times. For example, [16] showed that sampling O(k log k) different42

randomized centers yields an O(1)-approximation, and leverage it to support streaming data. The43

analysis of [17] explore the value of α as a function of β.44

A coreset for the k-median/mean problem is a small weighted set (usually subset) of the input45

points that approximates the sum of distances or sum of squared distances from the original (big) set P46

to every given set of k centers, usually up to (1 + ε) multiplicative factor. In particular, we may compute47

an α-approximation on the coreset to obtain α(1 + ε)-approximation for the original data.48

For the special case of k-means in the Euclidean space we can replace d by O(k/ε), including for49

coresets constructions, as explained in [18]. Deterministic coresets for k-means of size independent of d50

were suggested in [19].51

1.2. Seeding52

As explained in [10], Lloyd [20–22] suggested a simple iterative heuristic that aims to minimize the53

clustering cost, assuming a solution to the case k = 1 is known. It is a special case of the EM (Expected54

Maximization) heuristic for computing a local minimum. The algorithm is initialized with k random55

points (seeds, centroids). At each iteration, each of the input points is classified to its closest centroid. A56

new set of k centroids is constructed by taking the mean (or solving the problem for k = 1, in the general57

case) of each of the current k clusters. This method is repeated until convergence or any given stopping58

condition.59

Due to its simplicity, and the convergence to a local minimum [23], this method is very common;60

see [3,24–29] and references therein. The method has further improved in [1,30–32].61

The drawback of this approach is that it converges to a local minimum - the one which is closest to62

the initial centers that had been chosen and may be arbitrarily far from the global minimum. There is63

also no upper bound for the convergence rate and number of iterations. Therefore, a lot of research has64

been done to choose good initial points, called “seeds” [33–39]. However, very few analytical guarantees65

were found to prove convergence.66

The initialization of the Lloyd’s k-means algorithm depends on its initial seeds, which might be67

far from the optimal centers. A natural solution is to use provable approximation algorithms such68

as k-means++ above, and then apply Lloyd’s algorithm as a heuristic that hopefully improves the69

approximation in practice. Since Lloyd’s algorithm can only improve the initial solution, the provable70

upper bound on the approximation factor is still preserved.71

1.3. Clustering with outliers72

In practice, data sets include some noise measurements which do not reflect a real part of the data.73

These are called outliers, and even a single outlier may completely change the optimal solution that74

is obtained without this outlier. One option to handle outliers is to change the distance function to a75

function that is more robust to outliers, such as M-estimators, e.g. where the distance dist(p, x) between76

a pair of points is replaced by min {dist(p, x), c} for some fixed c > 0 that may depend on the scaling77

or spread of the data. Another option is to compute the set of k centers that minimizes the objective78

function, excluding the farthest m points from the candidate k centers. Here, m ≥ 1 is a given parameter79

for the number of outliers. Of course, given the optimal k centers for this problem, the m outliers are80

simply the farthest m input points, and given these m outliers the optimal solution is the k-means for the81

rest of the points. However, the main challenge is to approximate the global optimum, i.e., compute the82

optimal centers and outliers simultaneously.83

As explained in [40], detecting the outliers themselves is also an NP-hard problem [41]. An intensive84

research has been done on this problem as explained in [42] since it has numerous applications in many85
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areas [43,44]. In the context of data mining, [45] proposed a definition of distance-based outlier, which is86

free of any distributional assumptions and it can be generalized to multidimensional datasets. Following87

[45], further variations have been proposed [45–47]. Consequently, [48] introduced paradigm of local88

outlier factor (LOF). This paradigm has been extended in [43,49] in different directions.89

As explained in [50], and following the discussion in [51], [52] provided an algorithm based on90

Lagrange-relaxation technique. Several algorithms [51,53,54] were also developed. The work of [55]91

gives a factor of O(1) and a running time of O(nm). Other heuristic was developed by [56]. Finally,92

[50] provided an O(1)-approximation for the k-median problem (sum of distances in a metric space) in93

O(k2(k + m)2n3 log n) time. In the context of k-means, [57] provided several algorithms of such constant94

factor approximation. However, the number of the points which approximate the outliers is much greater95

than m, and is dependent on the data, as well as the algorithm running time.96

2. Our contribution97

A natural open question is: “can we generalize the k-means++ algorithm to handle outliers"?98

This paper answers this question affirmably in two senses that may be combined together:99

(i) Provide a small modification of k-means++ that support M-estimators for handling outliers,100

with similar provable guarantees for both the running time and approximation factor. This101

family of functions includes most of the M-estimators, including non-convex functions such as102

M(x) = min {x, c} for some constant c, where x = dist(p, c) is the distance between an input point103

and its closest center c. In fact, our version in Algorithm 1 supports any pseudo-distance function104

or ρ-metric that approximates the triangle inequality, as formalized in Definition 1 and Theorem 13.105

106

(ii) A generalization of this solution to the case of k-mean/median problem with m outliers that takes107

time O(n) for constants k and m. To our knowledge, this is the first non-trivial approximation108

algorithm that takes time linear or even near-linear in n. The algorithm support all the109

pseudo-distance functions and ρ-metric spaces, including the above M-estimators. See Corollary 17.110

111

(iii) Weak coreset of size O(k + m) and larger strong coresets for approximating the sum of distances112

to any k-centers ignoring their farthest m input points. For detals and exact definition see next113

subsection and Theorem 15.114

2.1. Novel reduction from k-means to (k + m)-means.115

While the first result is a natural generalization of the original k-means++, the second result uses a116

simple but powerful general reduction from k-means with m outliers to (k + m)-means (without outliers),117

that we did not find in previous papers. More precisely, in Section 5, we prove that an approximation to118

the (k + m)-median with appropriate positive weight for each center (the size of its cluster), can be used119

to approximate the sum of distances from P to any k centers, excluding their farthest m points in P; see120

Corollary 16. This type of reductions is sometimes called "coreset", however we note that in our case, the121

approximation is additive, although the final result is a multiplicative constant factor. Nevertheless, the122

size of the suggested coreset is only O(k + m), i.e., independent of both n and d, for constant ρ-metric as123

the Euclidean space; see Theorem 15 for details.124

In particular, applying exhaustive search (in time that is exponential in k) on the result from the125

previous paragraph, implies an O(log k + m)-factor approximation for the k-median with m outliers, for126

any (P, ρ)-metric in O(n) time when the parameters m and k are constants; see Corollary 17.127

As stated in the previous section, the exponential dependency in k is unavoidable even for the128

(regular) k-means in the plane [7,8]. Nevertheless, constant factor approximations that take time that129

is polynomial in both k and m may be doable by applying more involved approximation algorithms130
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for the k-median with m outliers on our small “core-set" which contains only O(k + m) points. E.g., the131

polynomial time algorithm of [50].132

Theorem 15 also suggest a “traditional coreset" that yields (1 + ε)-approximation for the k-median133

with m outliers, i.e., that obtain (1 + ε)-approximation for the sum of distances from any set of k centers134

and their farthest m outliers. The price is that we need α < ε approximation to the (k + m)-means. As135

was proved in [58], this is doable by running k-means++ (1/ε)O(d)(k + m) log n times instead of only136

O(k + m) times. It was also proved in [58] that the exponential dependency on d is unavoidable in the137

worst case. See Section 5 for details.138

For the special case of k-means in the Euclidean space we can replace d by O(k/ε), including for139

coresets constructions, as explained in [18]. Deterministic version of our coresets for k-median with m140

outliers can be obtained via [19].141

3. Triangular Calculus142

The algorithms in this paper support a large family of distance and non-distance functions. To143

exactly define this family, and their dependency on both the approximation factors and running times144

of the algorithms, we need to introduce the notion of ρ-metric that generalizes the definition of metric145

space (P, f ).146

Definition 1 (ρ-metric). Let ρ ≥ 1, P be a finite set and f : P2 → [0, ∞) be a symmetric function such that
f (p, p) = 0 for every p ∈ P. The pair (P, f ) is a ρ-metric if for every p, q, x ∈ P the following "approximated"
triangle inequality holds:

f (q, x) ≤ ρ
(

f (q, p) + f (p, x)
)
. (1)

For example, and metric space (P, dist) is a ρ-metric for ρ = 1. If we define f (x, y) = (dist(x, y))2,147

as in the k-means case, it is easy to prove (1) for ρ = 2.148

The approximated triangle inequality also holds for sets as follows.149

Lemma 2. Let (P, f ) be a ρ-metric. Then, for every pair of points q, x ∈ P and a subset X ⊆ P we have

f (x, X) ≤ ρ( f (q, x) + f (q, X)). (2)

Our generalization of the k-means++ algorithm for other distance functions needs only the above150

definition of ρ-metric. However, to improve the approximation bounds for the case of k-means with m151

outliers in Section 5, we introduce the following variant of the triangle inequality.152

Definition 3 ((ρ, φ, ε) metric. ). Let (P, f ) be a ρ-metric. For φ, ε > 0, the pair (P, f ) is a (ρ, φ, ε)-metric if for
every x, y, z ∈ P we have

f (x, z)− f (y, z) ≤ φ f (x, y) + ε f (x, z). (3)

For example, for a metric (P, f ) the inequality holds by the triangle inequality for φ = 1 and every153

ε ≥ 0. For squared distance, we have φ = O(1/ε) for every ε > 0; see [18].154

The generalization for sets is a bit more involved as follows.155

Lemma 4. Let (P, f ) be a (ρ, φ, ε)-metric. For every set Z ⊆ P we have

| f (x, Z)− f (y, Z)| ≤ (φ + ερ) f (x, y) + ερ min { f (x, Z), f (y, Z)} .

Proof. Let zx, zy ∈ Z such that f (x, Z) = f (x, zx) and f (y, Z) = f (y, zy). The proof is by the following156

case analysis: (i) f (y, Z) < f (x, Z), and (ii) f (y, Z) ≥ f (x, Z).157
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Case (i): f (y, Z) < f (x, Z). We have

| f (x, Z)− f (y, Z)| = f (x, Z)− f (y, Z) = f (x, zx)− f (y, zy) ≤ f (x, zy)− f (y, zy)

≤ φ f (x, y) + ε f (x, zy),
(4)

where the last inequality is by (3).158

The last term is bounded by f (x, zy) ≤ f (y, zy) + φ f (x, y) + ε f (x, zy) via Definition 3, but this
bound is useless for the case ε > 1. Instead, we use (1) to obtain

f (x, zy) ≤ ρ
(

f (x, y) + f (y, zy)
)
= ρ f (x, y) + ρ f (y, Z).

Plugging the last inequality in (4) proves the case f (x, Z) > f (y, Z) as

| f (x, Z)− f (y, Z)| ≤ φ f (x, y) + ε(ρ f (x, y) + ρ f (y, Z))

Case (ii): f (x, Z) ≤ f (y, Z). We have

| f (x, Z)− f (y, Z)| = f (y, Z)− f (x, Z)

≤ (φ + ερ) f (y, x) + ερ f (x, Z) (5)

= (φ + ερ) f (y, x) + ερ min { f (x, Z), f (y, Z)} ,

where (5) is by switching x with y in Case (i).159

Any ρ-metric is also a (φ, ε)-metric for some other related constants as follows.160

Lemma 5. Let (P, f ) be a ρ-metric. Then (P, f ) is a (ρ, φ, ε)-metric, where φ = ρ and ε = ρ− 1.161

Proof. Let x, y, z ∈ P. We need to prove that

f (x, z)− f (y, z) ≤ φ f (x, y) + ε f (x, z).

Without loss of generality, f (x, z) > f (y, z), otherwise the claim is trivial. We then have

f (x, z)− f (y, z) ≤ ρ
(

f (x, y) + f (y, z)
)
− f (y, z) (6)

= ρ f (x, y) + (ρ− 1) f (y, z)

≤ ρ f (x, y) + (ρ− 1) f (x, z),

where (6) holds by the approximated triangle inequality in (1).162

How can we prove that a given function f : P2 → [0, ∞) satisfies the condition of ρ-metric or163

(ρ, φ, ε)-metric? If f is some function of a metric distance, say, f (x) = distr(x) or most M-estimators164

functions, this may be easy via the following lemma.165

Lemma 6 (Log-Log Lipschitz condition). Let g : [0, ∞)→ [0, ∞) be a monotonic non-decreasing function that
satisfies the following (Log-Log Lipschitz) condition: there is r > 0 such that for every x > 0 and ∆ > 1 we have

g(∆x) ≤ ∆rg(x). (7)

Let (P, dist) be a metric space, and f : P2 → [0, ∞) be a mapping from every p, c ∈ P to f (p, c) = g(dist(p, c)).166

Then (P, f ) is a (ρ, φ, ε)-metric where167

(i) ρ = max
{

2r−1, 1
}

,168
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(ii) φ =
(

r−1
ε

)r−1
and ε ∈ (0, r− 1), if r > 1, and169

(iii) φ = 1 and ε = 0, if r ≤ 1.170

Proof. We denote x = dist(p, c), y = dist(q, c) and z = dist(p, q).
(i) We need to prove that g(z) ≤ ρ(g(x) + g(y)). If y = 0 then q = c, so

g(z) = g(dist(p, q)) = g(dist(p, c)) = g(x), (8)

and Claim (i) holds for any ρ ≥ 1. Similarly, Claim (i) holds for x = 0 by symmetry. So we assume
x, y > 0. For every b ∈ (0, 1) we have

g(z) = g(dist(p, q))

≤ g(dist(p, c) + dist(c, q)) = g(x + y) = bg(x + y) + (1− b)g(x + y) (9)

= bg
(

x · x + y
x

)
+ (1− b)g

(
y · x + y

y

)
≤ bg(x)

(
x + y

x

)r
+ (1− b)g(y)

(
x + y

y

)r
(10)

= (x + y)r
(

bg(x)
xr +

(1− b)g(y)
yr

)
,

where (9) is by the triangle inequality, and (10) is by substituting x and y respectively in (7). Substituting
b = xr/(xr + yr) yields

g(z) ≤ (g(x) + g(y))
(x + y)r

xr + yr . (11)

We now compute the maximum of the factor h(x) = (x+y)r

xr+yr , whose derivative is zero when

r(x + y)r−1(xr + yr)− (x + y)r · rxr−1 = 0,

i.e., when x = y. In this case h(x) = 2r−1. The other extremal values of h are x = 0 and x = ∞
where h(x) = 1. Hence, maxx≥0 h(x) = 2r−1 for r ≥ 1 and maxx≥0 h(x) = 1 for r ∈ (0, 1). Plugging
these bounds in (11) yields Claim (i)

g(z) ≤ max
{

2r−1, 1
}
(g(x) + g(y)).

(ii)-(iii) We prove that g(x)− g(y) ≤ φg(z) + εg(x). If y > x then g(y)− g(x) ≤ φg(z) + εg(y) ≤.171

Without We need to prove that |g(x)− g(y)| ≤ φg(x) + εg(x). If y = 0 then g(z) = g(x) by (8), and
thus for every φ ≥ 1 and ε > 0 we have

g(x)− g(y) = g(x) = g(z) ≤ φg(z) + εg(y)

as desired. We thus need to prove the last inequality for y > 0.172

We assume
g(x) > φg(z), (12)

and x > y (so p 6= q and thus z > 0), otherwise the claim trivially holds. Let q = max {r, 1}. Hence,

g(x) = g(y · x/y) ≤ g(y) · (x/y)r ≤ g(y) · (x/y)q
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where the first inequality is by (7) and the second is by the definition of q and the assumption x > y ≥ 0.
Rearranging gives g(y) ≥ g(x) · (y/x)q, so

g(x)− g(y) ≤ g(x) · (1− (y/x)q). (13)

We now first prove that

g(x) · (1− (y/x)q) ≤ εg(x) +
φ

qq · g(x)(1− (y/x)q)q. (14)

Indeed, if q = 1 then r ≤ 1, ε = 0, φ = 1 and (14) trivially holds with equality. Otherwise (q > 1), we let
p = q

q−1 so that

g(x) · (1− (y/x)q) = (pεg(x))1/p ·
(
(g(x))1/q(1− (y/x)q)

(pε)1/p

)

≤ εg(x) +
g(x)(1− (y/x)q)q

q(pε)q/p

(15)

where the inequality is by Young’s inequality ab ≤ ap

p + bq

q for every a, b ≥ 0 and p, q > 0 such that

1/p + 1/q = 1. We then obtain (14) by substituting φ = (q− 1)q−1/εq−1 so that

φ

qq =
(q− 1)q−1

q(qε)q−1 =
1

q(pε)q/p .

Next, we bound the rightmost expression of (14). We have 1−wq ≤ q(1−w) for every w ≥ 0, since
the linear function q(1− w) over w ≥ 0 is tangent to the concave function 1− wq at the point w = 1,
which is their only intersection point. By substituting w = y/x we obtain

1− (y/x)q ≤ q(1− y/x). (16)

By the triangle inequality,

1− y/x =
x− y

x
≤ z

x
. (17)

Combining (16) and (17) yields

(1− (y/x)q)q ≤ (q(1− y/x))q ≤ qq(z/x)q. (18)

Since g(x) ≥ φg(z) ≥ g(z) by (12) and the definition of φ, we have x ≥ z, i.e., (x/z) ≥ 1 by the
monotonicity of g. Hence, g(x) = g(z · x/z) ≤ g(z) · (x/z)r ≤ g(z) · (x/z)q by (7), so

(z/x)q ≤ g(z)/g(x). (19)

By combining the last inequalities we obtain the desired result

g(x)− g(y) ≤ g(x) · (1− (y/x)q) (20)

≤ εg(x) +
φg(x)(1− (y/x)q)q

qq (21)

≤ εg(x) + φg(x)(z/x)q (22)

≤ εg(x) + φg(z), (23)

where (20) holds by (13), (21) is by (14), (22) holds by (18), and (23) is by (19).173
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4. k-Means++ for ρ-metric174

In this section we suggest a generalization of the k-means++ algorithm for every ρ-metric, and175

not only distance to the power of z ≥ 1 as claimed in the original version. In particular, we consider176

non-convex M-estimator functions. Our goal is then to compute an α-approximation to the k-median177

problem for α = O(log k).178

For a point p ∈ P and a set X ⊆ P, we define f (p, X) = minx∈X f (p, x). The minimum or sum
over an empty set is defined to be zero. Let w : P → (0, ∞) be called the weight function over P. For a
non-empty set Q ⊆ P we define

f (Q, X) = fw(Q, X) = ∑
p∈Q

w(p) f (p, X).

If Q is empty then f (Q, X) = 0. For brevity, we denote f (Q, p) = f (Q, {p}), and f 2(·) = ( f (·))2. For an179

integer k ≥ 1 we denote [k] = {1, · · · , k}.180

Definition 7 (k-median for ρ-metric spaces). Let (P, f ) be a ρ-metric, and k ∈ [n] be an integer. A set X∗ ⊆ P
is a k-median of P if

f (P, X∗) = min
X⊆P,|X|=k

f (P, X),

and this optimum is denoted by f ∗(P, k) := f (P, X∗). For α ≥ 0, a set Y ⊆ P is an α-approximation for the
k-median of P if

f (P, X∗) ≤ α f ∗(P, k).

Note that Y might have less or more than k centers.181

The following lemma implies that sampling an input point, based on the distribution of w, gives a182

2-approximation to the 1-mean.183

Lemma 8. For every non-empty set Q ⊆ P,

∑
x∈Q

w(x) fw(Q, x) ≤ 2ρ f ∗w(Q, 1) ∑
x∈Q

w(x). (24)

Proof. Let p∗ be the weighted median of Q, i.e., fw(Q, p∗) = f ∗w(Q, 1). By (1), for every q, x ∈ Q,

f (q, x) ≤ ρ
(

f (q, p∗) + f (p∗, x)
)
.

Summing over every weighted q ∈ Q yields

fw(Q, x) ≤ ρ
(

fw(Q, p∗) + f (p∗, x) ∑
q∈Q

w(q)
)
= ρ

(
f ∗w(Q, 1) + f (x, p∗) ∑

q∈Q
w(q)

)
.

Summing again over the weighted points of Q yields

∑
x∈Q

w(x) fw(Q, x) ≤ ρ ∑
x∈Q

w(x)
(

f ∗w(Q, 1) + f (x, p∗) ∑
q∈Q

w(q)
)
= 2ρ f ∗w(Q, 1) ∑

x∈Q
w(x).

184

We also need the following approximated triangle inequality for weighted sets.185
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Corollary 9 (Approximated triangle inequality). Let x ∈ P, and Q, X ⊆ P be non-empty sets. Then

f (x, X) ∑
q∈Q

w(q) ≤ ρ( fw(Q, x) + fw(Q, X)).

Proof. Summing (2) over every weighted q ∈ Q yields

f (x, X) ∑
q∈Q

w(q) ≤ ρ

(
∑

q∈Q
w(q) f (q, x) + ∑

q∈Q
w(q) f (q, X)

)
= ρ( fw(Q, x) + fw(Q, X)).

186

The following lemma states that if we use sampling from P and hit a point in an uncovered cluster187

Q, then it is a 2-approximation for f ∗(P, 1).188

Lemma 10. Let Q, X ⊆ P such that fw(Q, X) > 0. Then

1
fw(Q, X) ∑

x∈Q
w(x) f (x, X) · fw(Q, X ∪ {x}) ∑

q∈Q
w(q) ≤ 2ρ ∑

x∈Q
w(x) fw(Q, x).

Proof. By Corollary 9, for every x ∈ Q,

f (x, X) ∑
q∈Q

w(q) ≤ ρ( fw(Q, x) + fw(Q, X)).

Multiplying this by fw(Q,X∪{x})
fw(Q,X)

yields

f (x, X) · fw(Q, X ∪ {x})
fw(Q, X) ∑

q∈Q
w(q) ≤ ρ

(
fw(Q, x) · fw(Q, X ∪ {x})

fw(Q, X)
+ fw(Q, X ∪ {x})

)
≤ ρ

(
fw(Q, x) + fw(Q, X ∪ {x})

)
≤ 2ρ fw(Q, x).

After summing over every weighted point x ∈ Q we obtain

∑
x∈Q

w(x) f (x, X) · fw(Q, X ∪ {x})
fw(Q, X) ∑

q∈Q
w(q) ≤ 2ρ ∑

x∈Q
w(x) fw(Q, x).

189

Finally, this lemma is the generalization of the original lemma of the k-means++ versions.190

Lemma 11. Let t, u ≥ 0 be a pair of integers. If u ∈ [k] and t ∈ {0, · · · , u} then the following holds.
Let {P1, · · · , Pk} be a partition of P such that ∑k

i=1 f ∗(Pi, 1) = f ∗(P, k). Let U =
⋃u

i=1 Pi denote the union
of the first u sets. Let X ⊆ P be a set that covers P \U, i.e., X ∩ Pi 6= ∅ for every integer i ∈ [k] \ [u], and
X ∩U = ∅. Let Y be the output of a call to KMEANS++(P, w, f , X, t); see Algorithm 1. Then

E[ f (P, Y)] ≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht +
u− t

u
· f (U, X), (25)

where Ht =

{
∑t

i=1
1
i if t ≥ 1

1 if t = 0
, and the randomness is over the t sampled points in Y \ X.191
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Algorithm 1: KMEANS++(P, w, f , X, t); see Theorem 13.

Input :A ρ-metric (P, f ), a function w : P→ [0, ∞), a subset X ⊆ P, and an integer
t ∈ [0, |P| − |X|].

Output :Y ⊆ P.
1 Y := X
2 for i := 1 to t // If t = 0 then skip this "for" loop
3 do
4 For every p ∈ P, Pri(p) = w(p) f (p,Y)

∑
q∈P

w(q) f (q, Y)
// f (p, ∅) := 1.

5 Pick a random point yi from P, where yi = p with probability Pri(p) for every p ∈ P.
6 Y := X ∪ {y1, · · · , yi}
7 return Y

Proof. The proof is by the following induction on t ≥ 0: (i) the base case t = 0 (and any u ≥ 0), and (ii)192

the inductive step t ≥ 1 (and any u ≥ 0).193

(i) Base Case : t = 0. We then have

E[ f (P, Y)] = E[ f (P, X)] = f (P, X) = f (P \U, X) + f (U, X) = f (P \U, X) +
u− t

u
· f (U, X)

≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht +
u− t

u
· f (U, X),

where the first two equalities hold since Y = X is not random, and the inequality holds since t = 0,194

H0 = 1 and f ∗(U, u) ≥ 0. Hence, the lemma holds for t = 0 and any u ≥ 0.195

(ii) Inductive step: t ≥ 1. Let y ∈ P denote the first sampled point that was inserted to Y \ X during
the execution of Line 5 in Algorithm 1. Let X′ = X ∪ {y}. Let j ∈ [k] such that y ∈ Pj, and U′ = U \ Pj
denote the remaining "uncovered" u′ = | {P1, · · · , Pu} \ Pj| clusters, i.e, u′ ∈ {u, u− 1}. The distribution
of Y conditioned on the known sample y is the same as the output of a call to KMEANS++(P, w, f , X′, t′)
where t′ = t− 1. Hence, we need to bound

E[ f (P, Y)] = Pr(y ∈ P \U)E[ f (P, Y) | y ∈ P \U] + Pr(y ∈ U)E[ f (P, Y) | y ∈ U]. (26)

We will bound each of the last two terms by expressions that are independent of X′ or U′.196

Bound on E[ f (P, Y) | y ∈ P \U]. Here u′ = u ∈ [k], U′ = U (independent of j), and by the inductive
assumption that the lemma holds after replacing t with t′ = t− 1, we obtain

E[ f (P, Y) | y ∈ P \U] ≤
(

f (P \U′, X′) + 4ρ2 f ∗(U′, u′)
)

Ht′ +
u′ − t′

u′
· f (U′, X′)

=
(

f (P \U, X′) + 4ρ2 f ∗(U, u)
)

Ht−1 +
u− t + 1

u
· f (U, X′)

≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht−1 +
u− t + 1

u
· f (U, X).

(27)

Bound on E[ f (P, Y) | y ∈ U]. In this case, U′ = U \ Pj and u′ = u− 1 ∈ {0, · · · , k− 1}. Hence,

E[ f (P, Y) | y ∈ U] =
u

∑
m=1

Pr(j = m)E[ f (P, Y) | j = m]

=
u

∑
m=1

Pr(j = m) ∑
x∈Pm

Pr(y = x)E[ f (P, Y) | x = y].
(28)
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Put m ∈ [u] and x ∈ Pm. We remove the above dependency of E[ f (P, Y) | y ∈ U] upon x and then m.197

We have

E[ f (P, Y) | y = x] ≤
(

f (P \U′, X′) + 4ρ2 f ∗(U′, u′)
)

Ht−1 +
u′ − t′

max {u′, 1} · f (U′, X′)

=
(

f (P \U, X′) + f (Pm, X′) + 4ρ2 f ∗(U, u)− 4ρ2 f ∗(Pm, 1)
)

Ht−1 +
u− t

max {u′, 1} · f (U′, X′)

≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht−1 +
u− t

max {u′, 1} · f (U \ Pm, X)

+
(

f (Pm, X′)− 4ρ2 f ∗(Pm, 1)
)

Ht−1, (29)

where the first inequality holds by the inductive assumption if u′ ≥ 1, or since U′ = U \ Pj = ∅ if u′ = 0.198

The second inequality holds since X ⊆ X′ = X ∪ {x}, and since f ∗(U \ Pm, u− 1) = f ∗(U, u)− f ∗(Pm, 1).199

Only the term f (Pm, X′) = f (Pm, X ∪ {x}) depends on x, and not only on m. Summing it over every
possible x ∈ Pm yields

∑
x∈Pm

Pr(y = x) fw(Pm, X′) =
1

fw(Pm, X) ∑
x∈Pm

w(x) f (x, X) fw(Pm, X ∪ {x})

≤ 2ρ

∑q∈Pm w(q) ∑
x∈Pm

w(x) fw(Pm, x)

≤ 2ρ

∑q∈Pm w(q)
· 2ρ f ∗w(Pm, 1) ∑

x∈Pm

w(x) ≤ 4ρ2 f ∗(Pm, 1),

where the inequalities follow by substituting Q = Pm in Lemma 10 and Lemma 8, respectively. Hence,
the expected value of (29) over x is non-positive as

∑
x∈Pm

Pr(y = x)
(

f (Pm, X′)− 4ρ2 f ∗(Pm, 1)
)
= −4ρ2 f ∗(Pm, 1) + ∑

x∈Pm

Pr(y = x) fw(Pm, X′) ≤ 0.

Combining this with (28) and then (29) yields a bound on E[ f (P, Y) | y = x] that is independent upon x,

E[ f (P, Y) | y ∈ U] =
u

∑
m=1

Pr(j = m) ∑
x∈Pm

Pr(y = x)E[ f (P, Y) | y = x]

≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht−1 +
u− t

max {u′, 1}

u

∑
m=1

Pr(j = m) f (U \ Pm, X),

(30)

It is left to remove the dependency on m, which occurs in the last term f (U \ Pm, X) of (30). We have

u

∑
m=1

Pr(j = m) f (U \ Pm, X) =
u

∑
m=1

f (Pm, X)

f (P, X)

(
f (U, X)− f (Pm, X)

)
=

1
f (P, X)

(
f 2(U, X)−

u

∑
m=1

f 2(Pm, X)

)
.

(31)

By Jensen’s (or power-mean) inequality, for every convex function g : R → R, and a real vector
v = (v1, · · · , vu) we have (1/u)∑u

m=1 g(vm) ≥ g((1/u)∑u
m=1 vm) . Specifically, for g(z) := z2 and

v =
(

f (P1, X), · · · , f (Pu, X)
)
,

u

∑
m=1

1
u

f 2(Pm, X) ≥
(

1
u

u

∑
m=1

f (Pm, X)

)2

.
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Multiplying by u yields
u

∑
m=1

f 2(Pm, X) ≥ f 2(U, X)

u
.

Plugging this in (31) gives the desired bound on the term f (U′, X),

u

∑
m=1

Pr(j = m) f (U \ Pm, X) ≤
(

1− 1
u

)
f 2(U, X)

f (P, X)
=

u′

u
f 2(U, X)

f (P, X)
≤ max {u′, 1}

u
f (U, X),

where the last inequality holds since f (U, X) ≤ f (P, X). Plugging the last inequality in (30) bounds
E[ f (P, Y) | y ∈ U] by

E[ f (P, Y) | y ∈ U] ≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht−1 +
u− t

u
f (U, X). (32)

Bound on E[ f (P, Y)]. Plugging (32) and (27) in (26) yields

E[ f (P, Y)] ≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht−1

+ f (U, X)

(
Pr(y ∈ P \U) · u− t + 1

u
+ Pr(y ∈ U) · u− t

u

)
. (33)

Firstly, we have

Pr(y ∈ P \U) · u− t + 1
u

+ Pr(y ∈ U) · u− t
u

=
u− t

u
+ Pr(y ∈ P \U) · 1

u
≤ u− t

u
+ Pr(y ∈ P \U) · 1

t
,

where the last inequality holds as u ≥ t. Secondly, since U ⊆ P,

f (U, X)Pr(y ∈ P \U) = f (U, X)
f (P \U, X)

f (P, X)
≤ f (P \U, X).

Hence, we can bound (33) by

f (U, X)

(
Pr(y ∈ P \U)

u− t + 1
u

+ Pr(y ∈ U) · u− t
u

)
≤ u− t

u
· f (U, X) + f (U, X)Pr(y ∈ P \U) · 1

t

≤ u− t
u
· f (U, X) +

(
f (P \U, X) + 4ρ2 f ∗(U, u)

)
· 1

t
.

This proves the inductive step and bounds (33) by

E[ f (P, Y)] ≤
(

f (P \U, X) + 4ρ2 f ∗(U, u)
)

Ht +
u− t

u
· f (U, X).

200

Corollary 12. Let δ ∈ (0, 1] and let q0 be a point that is sampled at random from a non-empty set Q ⊆ P such
that q0 = q with probability w(q)

∑
q′∈Q

w(q′)
. Then with probability at least 1− δ,

f (Q, {q0}) ≤
2
δ

ρ f ∗(Q, 1).

Proof. By Markov’s inequality, for every non-negative random variable G and δ > 0 we have

Pr{G <
1
δ

E[G]} ≥ 1− δ. (34)
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Substituting G = f (Q, {q0}) yields

Pr
{

f (Q, {q0}) <
1
δ ∑

q0∈Q

w(q0)

∑
q∈Q

w(q)
f (Q, {q0})

}
≥ 1− δ. (35)

By Lemma 8 we have

∑
q0∈Q

w(q0)

∑
q∈Q

w(q)
f (Q, {q0}) ≤ 2ρ · f ∗(Q, 1). (36)

Plugging (36) in (35) yields,

Pr
{

f (Q, {q0}) <
2
δ

ρ · f ∗(Q, 1)
}
≥ Pr

{
f (Q, {q0}) <

1
δ ∑

q0∈Q

w(q0)

∑
q∈Q

w(q)
f (Q, {q0})

}
≥ 1− δ.

201

The following theorem is a particular case of Lemma 11. It proves that the output of KMEANS++;202

see Algorithm 1, is a O(log k)-approximation of its optimum.203

Theorem 13. Let (P, f ) be a ρ-metric, and k ≥ 2 be an integer; See Definition 1. Let w : P→ (0, ∞), δ ∈ (0, 1)
and let Y be the output of a call to KMEANS++(P, w, f , ∅, k); See Algorithm 1. Then |Y| = k, and with
probability at least 1− δ,

f (P, Y) ≤ 8ρ2

δ2 (1 + ln k) f ∗(P, k).

Moreover, |Y| can be computed in O(ndk) time.204

Proof. Let δ′ = δ/2 and let {P1, · · · , Pk} be an optimal partition of P, i.e., ∑k
i=1 f ∗(Pi, 1) = f ∗(P, k).

Let p0 be a point that is sampled at random from Pk such that p0 = p with probability
w(p)

∑p′∈Pk
w(p′)

.

Applying Lemma 11 with u = t = k− 1 and X = {p0} yields,

E[ f (P, Y)] ≤
(

f (Pk, {p0}) + 4ρ2 f ∗(P \ Pk, k− 1)
)
·

k−1

∑
i=1

1
i

(37)

≤
(

f (Pk, {p0}) +
2ρ2

δ′
f ∗(P \ Pk, k− 1)

)
·

k−1

∑
i=1

1
i

(38)

=
(

f (Pk, {p0}) +
2ρ2

δ′
f ∗(P, k)− 2ρ2

δ′
f ∗(Pk, 1)

)
·

k−1

∑
i=1

1
i

, (39)

where (39) holds by the definition of f ∗ and Pk. By plugging Q = Pk in Corollary 12, with probability at
least 1− δ′ over the randomness of p0, we have

f (Pk, {p0})−
2ρ

δ′
f ∗(Pk, 1) ≤ 0, (40)
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and since ρ ≥ 1, with probability at least 1− δ′ we also have

f (Pk, {p0})−
2ρ2

δ′
f ∗(Pk, 1) ≤ 0. (41)

Plugging (41) in (39) yields that with probability at least 1− δ′ over the randomness of p0,

E[ f (P, Y)] ≤ 2ρ2

δ′
f ∗(P, k) ·

k−1

∑
i=1

1
i
≤ 2ρ2

δ′
f ∗(P, k) · (1 + ln k). (42)

Relating to the randomness of Y, by Markov’s inequality we have

Pr{ f (P, Y) <
1
δ′

E[ f (P, Y)]} ≥ 1− δ′. (43)

By (42) we have,

Pr
{

1
δ′

E[ f (P, Y)] ≤ 2ρ2

δ′2
(1 + ln k) f ∗(P, k)

}
≥ 1− δ′. (44)

Using the union bound on (43) and (44) we obtain

Pr
{

f (P, Y) <
2ρ2

δ′2
(1 + ln k) f ∗(P, k)

}
≥ 1− 2δ′,

and thus

Pr
{

f (P, Y) <
8ρ2

δ2 (1 + ln k) f ∗(P, k)
}
≥ 1− δ.

205

5. k-Means with m outliers206

In this section we consider the problem of k-means with m outliers of a given set P, i.e., where the207

cost function for a given set X of k centers is f (PX, X) instead of f (P, X), and PX is the subset of the208

closest n−m points to the centers. Ties are broken arbitrarily. That is, P \ PX can be considered as the set209

of m outliers that are ignored in the summation of errors.210

Definition 14 (k-median with m outliers). Let (P, f ) be a ρ-metric, n = |P|, and k, m ∈ [n] be a pair of
integers. For every subset Q ⊆ P of points in P and a set X ⊆ P of centers, denote by QX the closest n−m points
to P. A set X∗ of k centers (points in P) is a k-median with m outliers of P if

f (PX∗ , X∗) ≤ min
X⊆P,|X|=k

f (PX , X).

For α ≥ 0, a set Y is an α-approximation to the k-median of P with m outliers if

f (PY, Y) ≤ α min
X⊆P,|X|=k

f (PX , X).

Note that we allow Y to have |Y| > k centers.211

This is a harder and more general problem, since for m = 0 we get the k-median problem from the212

previous sections.213
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We prove in this section that our generalized k-means++ can be served as a “weaker" type of coreset214

which admits an additive error that yields a constant factor approximation for the k-means with m215

outliers if ρ is constant.216

In fact, we prove that any approximated solution to the (k + m)-median of P implies such a coreset,217

but Algorithm 1 is both simple and general for any ρ-distance. Moreover, by taking more than k + m218

centers, e.g., running Algorithm 1 additional iterations, we may reduce the approximation error α219

of the coreset to obtain “strong" regular coreset, i.e., that introduces a (1 + ε)-approximation for any220

given query set X of k centers. This is by having an α < ε approximation for the (k + m) median; see221

Theorem 15. Upper and lower bounds for the number |X| of centers to obtain such α < ε is the subject222

of [58]. They prove that a constant approximation to the |X| = O(1/ε)dk log n)-means of P yields such223

α = O(ε)-approximation to the k-means. This implies that running Algorithm 1 O(1/ε)d(k + m log n)224

times would yield a coreset that admits (1 + ε)-approximation error for any given set of k-center with225

their farthest m outliers, as traditional coresets. Unfortunately, the lower bounds of [58] shows that the226

exponential dependency in d is unavoidable. However, the counter example is extremely artificial. In227

real world data, we may simply run Algorithm 1 until the approximation error f (P, |X|) is sufficiently228

small and hope this will happen after few |X| iterations due to the structure of the data.229

We state our result for the metric case and unweighted input. However, the proof essentially uses230

only the triangle inequality and its variants of Section 3. For simplicity of notation, we use the term231

multi-set C instead of a weighted set (C, w), where C ⊆ P, and w : P → [0, ∞) denote the number of232

copies of each item in C. The size |C| of a multi-set denote its number of points (including duplicated233

points), unless stated otherwise.234

Unlike the case of k-means/median, there are few solution to k means with m outliers. In [50] there235

was provided a (multiplicative) constant factor approximation for the k-median with m outliers on any236

metric space (that satisfies the triangle inequality, i.e., with ρ=1) that runs in time O(dk2(k + m)2n3 log n),237

i.e., polynomial in both k and m. Applying this solution on our suggested coreset as explained in Theorem238

15 might reduce this dependency on n from cubic to linear, due to the fact that its construction time which239

is linear in n and also polynomial in k + m. In order to obtain a more general result for any ρ-distance, as240

in the previous section, we use a simple exhaustive search that takes time exponential in k + m but still241

O(n) for every constant k, m and ρ. Our solution also implies streaming, parallel algorithm for k-median242

with m outliers on distributed data. This is simply because many k-median algorithms exist for these243

computation models, and they can be used to construct the “coreset" in Theorem 15 after replacing k244

with k + m. An existing off-line non-parallel solution for the k-median with m outliers, e.g. from the245

previous paragraph, may then be applied on the resulting coreset to extract the final approximation as246

explained in Theorem 15. For every point p ∈ P, let proj(p, Y) ∈ Y denote its closest point in Y. For a247

subset Q of P, define proj(Q, Y) = {proj(p, Y) | p ∈ Q} to be the union (multi-set) of its |Q| projection248

on Y. Ties are broken arbitrarily. Recall the definition of PX , CX and α-approximation from Definition 7.249

We now ready to prove the main technical result for the k-median with m outliers.250

Theorem 15 (coreset for k-median with m outliers). Let (P, f ) be a (ρ, φ, ε) metric space, and let n = |P|. Let
k, m ∈ [n], and let Y be an α-approximation for the (k + m)-median of P (without outliers). Let C := proj(P, Y).
Then for every set X ⊆ P of |X| = k centers, we have

| f (PX , X)− f (CX , X)| ≤ ((φ + ερ)α + ερ) f (PX , X), (45)

and
f (PX , X) ≤ (1 + ερ) f (CX , X) + (φ + ερ)α f ∗(P, k + m). (46)

Proof. Let X ⊆ P be a set of |X| = k centers. The multi-set proj(PX, Y) contains n−m points that are251

contained in the k centers of Y. However, we do not know how to approximate the number of copies of252
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each center in proj(PX , Y) without using PX . One option is to guess (1 + ε) approximation to the weight253

of each of these k + m points, by observing that it is (1 + ε)i for some i ∈ O(log(n)/ε), and then using254

exhaustive search. However, the running time would be exponential in k + m and the weights depend255

on the query X.256

Instead, we observe that while we cannot compute proj(PX, Y) via C, we have the upper bound
f (CX , X) ≤ f (proj(PX , Y), X). It follows from the fact that

proj(PX , Y) ⊆ proj(P, Y) = C,

and |proj(PX , Y)| = n−m, so

f (CX , X) = min
Q⊆C,|Q|=n−m

f (Q, X) ≤ f (proj(PX , Y), X). (47)

We now bound the rightmost term.257

For a single point p ∈ P we have

| f (p, X)− f (proj(p, Y), X)| ≤ (φ + ερ) f (p, proj(p, Y)) + ερ min { f (p, X), f (proj(p, Y), X)} (48)

= (φ + ερ) f (p, Y) + ερ min { f (p, X), f (proj(p, Y), X)} , (49)

where (48) holds by substituting x = f (p, X) and y = f (proj(p, Y), X) (or vice vera) and Z = X in258

Lemma 4, and (49) holds by the definition of f (p, Y).259

Summing (49) over every p ∈ Q for some set Q ⊆ P yields

| f (Q, X)− f (proj(Q, Y), X)| =
∣∣∣∣∣∑p∈Q

(
f (p, X)− f (proj(p, Y), X)

)∣∣∣∣∣ (50)

≤ ∑
p∈Q
| f (p, X)− f (proj(p, Y), X)| (51)

≤ ∑
p∈Q

((φ + ερ) f (p, Y) + ερ min { f (p, X), f (proj(p, Y), X)}) (52)

≤ (φ + ερ) f (Q, Y) + ερ min { f (Q, X), f (proj(Q, Y), X)} , (53)

where (50) holds by the definition of f , (51) holds by the triangle inequality, and (52) is by (49). The last
term is bounded by

f (Q, Y) ≤ f (P, Y) ≤ α f ∗(P, k + m), (54)

where the first inequality holds since Q ⊆ P, and the last inequality holds since Y is an α-approximation
for the (k + m)-median of P. Plugging (54) in (52) yields

| f (Q, X)− f (proj(Q, Y), X)| ≤ (φ + ερ) f (Q, Y) + ερ min { f (Q, X), f (proj(Q, Y), X)}
≤ (φ + ερ)α f ∗(P, k + m) + ερ min { f (Q, X), f (proj(Q, Y), X)} .

(55)

The rest of the proof is by the following case analysis: (i) f (CX , X) ≥ f (PX , X), and (ii) f (CX , X) <260

f (PX , X).261

Case (i): f (CX , X) ≥ f (PX , X). The bound for this case is

f (CX , X)− f (PX , X) ≤ f (proj(PX , Y), X)− f (PX , X) (56)

≤ (φ + ερ)α f ∗(P, k + m) + ερ f (PX , X) (57)

where (56) holds by (47),and (57) holds by substituting Q = PX in (55). This bounds (45) for the case that262

f (CX , X) ≥ f (PX , X).263
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Case (ii): f (CX , X) < f (PX , X). In this case, denote the n−m corresponding points to CX in P by

proj−1(CX) := {p ∈ P | proj(p, Y) ∈ CX} .

Similarly to (47),
proj−1(CX) ⊆ proj(P, Y) = C,

and |proj−1(CX)| = n−m, so

f (PX , X) = min
Q⊆P,|Q|=n−m

f (Q, X) ≤ f (proj−1(CX), X). (58)

Hence,

f (PX , X)− f (CX , X) ≤ f (proj−1(CX), X)− f (CX , X) (59)

≤ (φ + ερ)α f ∗(P, k + m) + ερ f (CX , X) (60)

≤ (φ + ερ)α f ∗(P, k + m) + ερ f (PX , X), (61)

where (59) holds by (58), (60) is by substituting Q = proj−1(CX) in (55), and (61) follows from the264

assumption f (CX , X) < f (PX , X) of Case (ii).265

Combining all together, using (57) and (61) we can bound (45) by

| f (PX , X)− f (CX , X)| ≤ (φ + ερ)α f ∗(P, k + m) + ερ f (PX , X) (62)

≤ (φ + ερ)α f (PX , X) + ερ f (PX , X) (63)

≤ ((φ + ερ)α + ερ) f (PX , X), (64)

and (46) follows from (60), assuming f (CX , X) < f (PX , X) (otherwise (46) trivially holds).266

The motivation for (45) is to obtain a traditional coreset, in the sense of (1 + ε)-approximation to267

any given set of k centers. To this end, we need to have ((φ + ερ)α) < ε. For the natural case where268

ρ = O(1) this implies α < ε approximation to the (k + m)-mean f ∗(P, k + m) of P. This is doable for269

every input set P in the Euclidean space and many others as was proved in [58] but in the price of taking270

(1/ε)dk log n centers.271

This is why we also added the bound of (46), which suffices to obtain a "weaker" coreset that yields272

only constant factor approximation to the k-means with m outliers, but using only k + m centers, as273

explained in the following corollary.274

Corollary 16 (From (k + m)-median to k-median with m outliers. ). Let (P, f ) be a (ρ, φ, ε)-metric, n = |P|,
α, β > 0 and k, m ∈ [n]. Suppose that, in T(n, k + m) time, we can compute an α-approximation Y for the
(k + m)-median of P (without outliers). Suppose also that we can compute in t(|Y|) time, a β-approximation
X ⊆ C of the k-median with m outliers for any given multi-set C ⊆ Y of |C| = n (possibly duplicated) points.
Then, X is a

(φα + β(1 + ε) (1 + ε + φα))

approximation for the k-median with m outliers of P, and can be computed in T(n, k + m) + t(|Y|) time.275

Proof. We compute Y in T(n, k + m) time and then project P onto Y to obtain a set C := proj(P, Y) of |Y|
distinct points, as defined in the proof of Theorem 15. We then compute a β approximation X ⊆ C for
the k-median with m outliers of P,

f (CX , X) ≤ β min
Z⊆C,|Z|=k

f (CZ, Z), (65)
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in t(|Y|) time. For a given set X ⊆ P of centers and a subset Q ⊆ P of points, we denote by QX the
closest n−m points in Q to X. Let X∗ denote the k-median with m outliers of P. Hence,

f (PX , X) ≤ (1 + ερ) f (CX , X) + (φ + ερ)α f ∗(P, k + m) (66)

≤ (1 + ερ)β f (CX∗ , X∗) + (φ + ερ)α f (PX∗ , X∗) (67)

≤ (1 + ερ)β (1 + φα + ερ) f (PX∗ , X∗) + (φ + ερ)α f (PX∗ , X∗) (68)

= (φα + β(1 + ε) (1 + ε + φα)) f (PX∗ , X∗), (69)

where (66) and (68) hold by Theorem 45, and (67) is by (65).276

To get rid of the so many parameters in the last theorems, in the next corollary we assume that they277

are all constant and suggest a simple solution to the k-median with m outliers by running exhaustive278

search on our weaker coreset. The running time is exponential in k but this may be fixed by running279

the more involved polynomial-time approximation of Ke-Chen [50] for k-means with m outliers on our280

coreset.281

Corollary 17. Let k, m ∈ [n] and ρ ≥ 1 be constants. Let (P, f ) be a ρ-metric. Then, a set X ⊆ P can be282

computed in O(n) time such that, with probability at least 0.99, X is a O(ln(k + m))-approximation for the283

k-median with m outliers of P.284

Proof. Given a set Q of |Q| = n′ points, it is easy to compute its k-median with m outliers in nO(k) time285

as follows. We run exhaustive search over every subset Y of size |Y| = k in Q. For each such subset Y,286

we compute its farthest m points Z in Q. The set Y that minimizes f (Q \ Z, Y) is an optimal solution,287

since one of these sets of k centers is a k-median with m outliers of P. Since there are such (n′
k ) = (n′)O(k)

288

subsets, and each check requires O(nk) = O(n) time, the overall running time is t(n′) = (n′)O(k).289

Plugging δ = 0.01 in Theorem 13 implies that we can compute a set Y ⊆ P of size |Y| = k + m290

which is, with probability at least 1− δ = 0.99, an O(ln(k + m))-approximation to the (k + m)-median of291

P in time T(n, k + m) = O(nd(k + m)) = O(n). By Lemma 5, (P, f ) is a (ρ, φ, ε)-metric for φ = ρ, and292

ε = ρ− 1. Plugging n′ = |Y| = k and β = 1 in Corollary 16 then proves Corollary 17.293

6. Conclusion294

We proved that the k-Means++ algorithm can be generalized to handle outliers by generalizing it295

to ρ-metric that support M-estimators, and also show how it can be used as some kind of core-set for296

the k-means with m outliers. Open problems include generalizations of k-Means++ for other shapes,297

such as k lines or k multi-dimensional subspaces, and using these approximations for developing coreset298

algorithms for these problems. Other directions include improving or generalizing the constant factor299

approximations for the original k-Means++ and its variants in this paper.300
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