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Abstract: The k-means problem is to compute a set of k centers (points) that minimizes the sum of
squared distances to a given set of 1 points in a metric space. Arguably, the most common algorithm to
solve it is k-means++ which is easy to implement, and provides a provably small approximation error
in time that is linear in #.

We generalize k-means++ to support outliers in two sense (simultaneously): (i) non-metric spaces,
e.g. M-estimators, where the distance dist(p, x) between a point p and a center x is replaced by
min {dist(p, x), c} for an appropriate constant ¢ that may depend on the scale of the input. (ii) k-means
clustering with m > 1 outliers, i.e., where the m farthest points from any given k centers are excluded
from the total sum of distances. This is by using a simple reduction to the (k 4 m)-means clustering
(with no outliers).
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1. Introduction

We first introduce the notion of clustering, the solution that is suggested by k-means++, and the
generalization of the problem to support outliers in the input. We then describe our contribution in this
context.

1.1. Clustering

For a given similarity measure, clustering is the problem of partitioning an input set of n objects
into subsets, such that objects in the same group are more similar to each other, than to objects in the
other sets. As mentioned in [1], clustering problems arise in many different applications, including data
mining and knowledge discovery [2], data compression and vector quantization [3], pattern recognition
and classification [4]. However, for most of its variants, it is an NP-Hard problem when the number k of
clusters is part of the input, as elaborated and proved in [5,6]. In fact, the exponential dependency in k
is unavoidable even for approximating the (regular) Euclidean k-means for clustering #n points in the
plane [7,8].

Hence, a constant or near-constant (logarithmic in n or k) multiplicative factor approximations to
the desired cost function were suggested over the years, whose running time is polynomial in both n and
k. Arguably, the most common versions in both academy and industry is the k-means++ method that was
suggested independently by [9] and [10], which provides an « € O(log k) multiplicative approximation
in time O(dnk) for the Euclidean d-dimensional space. It was also shown in [10] that the approximation
factor is &« = O(1), if the input data is well separated in some formal sense. The k-Means++ algorithm is
based on the intuition that the centroids should be well spread out. Hence, it samples k centers iteratively,
via a distribution that is called D?-sampling and is proportional to the distance of each input point to the
centers that were already chosen. The first center is chosen uniformly at random from the input.

It was proved in [11] that D?-sampling O(k) centers using this method yields a constant-factor
approximation. Recently, [12] provided an a € O(1) approximation for points in the d-dimensional
Euclidean space via exactly k centers in time complexity of O(dnk? loglogk).

The k-means++ algorithm supports any distance to the power of z > 1 as explained in [9].
Deterministic and other versions for the sum of (non-squared) distances were suggested in [13-15].
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A more general approximations, called bi-criteria or («, ) approximations, guarantee multiplicative
factor a-approximation but the number of used center (for approximating the optimal k centers) is
Bk for some B > 1. The factors & and g might be depended on k and 7, and different methods give
different dependencies and running times. For example, [16] showed that sampling O(klogk) different
randomized centers yields an O(1)-approximation, and leverage it to support streaming data. The
analysis of [17] explore the value of « as a function of §.

A coreset for the k-median/mean problem is a small weighted set (usually subset) of the input
points that approximates the sum of distances or sum of squared distances from the original (big) set P
to every given set of k centers, usually up to (1 + &) multiplicative factor. In particular, we may compute
an a-approximation on the coreset to obtain a(1 + ¢)-approximation for the original data.

For the special case of k-means in the Euclidean space we can replace d by O(k/¢), including for
coresets constructions, as explained in [18]. Deterministic coresets for k-means of size independent of d
were suggested in [19].

1.2. Seeding

As explained in [10], Lloyd [20-22] suggested a simple iterative heuristic that aims to minimize the
clustering cost, assuming a solution to the case k = 1 is known. It is a special case of the EM (Expected
Maximization) heuristic for computing a local minimum. The algorithm is initialized with k random
points (seeds, centroids). At each iteration, each of the input points is classified to its closest centroid. A
new set of k centroids is constructed by taking the mean (or solving the problem for k = 1, in the general
case) of each of the current k clusters. This method is repeated until convergence or any given stopping
condition.

Due to its simplicity, and the convergence to a local minimum [23], this method is very common;
see [3,24-29] and references therein. The method has further improved in [1,30-32].

The drawback of this approach is that it converges to a local minimum - the one which is closest to
the initial centers that had been chosen and may be arbitrarily far from the global minimum. There is
also no upper bound for the convergence rate and number of iterations. Therefore, a lot of research has
been done to choose good initial points, called “seeds” [33-39]. However, very few analytical guarantees
were found to prove convergence.

The initialization of the Lloyd’s k-means algorithm depends on its initial seeds, which might be
far from the optimal centers. A natural solution is to use provable approximation algorithms such
as k-means++ above, and then apply Lloyd’s algorithm as a heuristic that hopefully improves the
approximation in practice. Since Lloyd’s algorithm can only improve the initial solution, the provable
upper bound on the approximation factor is still preserved.

1.3. Clustering with outliers

In practice, data sets include some noise measurements which do not reflect a real part of the data.
These are called outliers, and even a single outlier may completely change the optimal solution that
is obtained without this outlier. One option to handle outliers is to change the distance function to a
function that is more robust to outliers, such as M-estimators, e.g. where the distance dist(p, x) between
a pair of points is replaced by min {dist(p, x), c} for some fixed ¢ > 0 that may depend on the scaling
or spread of the data. Another option is to compute the set of k centers that minimizes the objective
function, excluding the farthest m points from the candidate k centers. Here, m > 11is a given parameter
for the number of outliers. Of course, given the optimal k centers for this problem, the m outliers are
simply the farthest m input points, and given these m outliers the optimal solution is the k-means for the
rest of the points. However, the main challenge is to approximate the global optimum, i.e., compute the
optimal centers and outliers simultaneously.

As explained in [40], detecting the outliers themselves is also an NP-hard problem [41]. An intensive
research has been done on this problem as explained in [42] since it has numerous applications in many
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areas [43,44]. In the context of data mining, [45] proposed a definition of distance-based outlier, which is
free of any distributional assumptions and it can be generalized to multidimensional datasets. Following
[45], further variations have been proposed [45-47]. Consequently, [48] introduced paradigm of local
outlier factor (LOF). This paradigm has been extended in [43,49] in different directions.

As explained in [50], and following the discussion in [51], [52] provided an algorithm based on
Lagrange-relaxation technique. Several algorithms [51,53,54] were also developed. The work of [55]
gives a factor of O(1) and a running time of O(n™). Other heuristic was developed by [56]. Finally,
[50] provided an O(1)-approximation for the k-median problem (sum of distances in a metric space) in
O(k?(k + m)?n3 log n) time. In the context of k-means, [57] provided several algorithms of such constant
factor approximation. However, the number of the points which approximate the outliers is much greater
than m, and is dependent on the data, as well as the algorithm running time.

2. Our contribution

A natural open question is: “can we generalize the k-means++ algorithm to handle outliers"?
This paper answers this question affirmably in two senses that may be combined together:

(i) Provide a small modification of k-means++ that support M-estimators for handling outliers,
with similar provable guarantees for both the running time and approximation factor. This
family of functions includes most of the M-estimators, including non-convex functions such as
M(x) = min {x, c} for some constant ¢, where x = dist(p, c) is the distance between an input point
and its closest center c. In fact, our version in Algorithm 1 supports any pseudo-distance function
or p-metric that approximates the triangle inequality, as formalized in Definition 1 and Theorem 13.

(ii) A generalization of this solution to the case of k-mean/median problem with m outliers that takes
time O(n) for constants k and m. To our knowledge, this is the first non-trivial approximation
algorithm that takes time linear or even near-linear in n. The algorithm support all the
pseudo-distance functions and p-metric spaces, including the above M-estimators. See Corollary 17.

(iii) Weak coreset of size O(k + m) and larger strong coresets for approximating the sum of distances
to any k-centers ignoring their farthest m input points. For detals and exact definition see next
subsection and Theorem 15.

2.1. Nowvel reduction from k-means to (k + m)-means.

While the first result is a natural generalization of the original k-means++, the second result uses a
simple but powerful general reduction from k-means with m outliers to (k 4 m)-means (without outliers),
that we did not find in previous papers. More precisely, in Section 5, we prove that an approximation to
the (k + m)-median with appropriate positive weight for each center (the size of its cluster), can be used
to approximate the sum of distances from P to any k centers, excluding their farthest m points in P; see
Corollary 16. This type of reductions is sometimes called "coreset", however we note that in our case, the
approximation is additive, although the final result is a multiplicative constant factor. Nevertheless, the
size of the suggested coreset is only O(k + m), i.e., independent of both n and d, for constant p-metric as
the Euclidean space; see Theorem 15 for details.

In particular, applying exhaustive search (in time that is exponential in k) on the result from the
previous paragraph, implies an O(log k + m)-factor approximation for the k-median with m outliers, for
any (P, p)-metric in O(n) time when the parameters m and k are constants; see Corollary 17.

As stated in the previous section, the exponential dependency in k is unavoidable even for the
(regular) k-means in the plane [7,8]. Nevertheless, constant factor approximations that take time that
is polynomial in both k and m may be doable by applying more involved approximation algorithms
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for the k-median with m outliers on our small “core-set” which contains only O(k + m) points. E.g., the
polynomial time algorithm of [50].

Theorem 15 also suggest a “traditional coreset" that yields (1 + €)-approximation for the k-median
with m outliers, i.e., that obtain (1 + €)-approximation for the sum of distances from any set of k centers
and their farthest m outliers. The price is that we need & < ¢ approximation to the (k + m)-means. As
was proved in [58], this is doable by running k-means++ (1/¢&)°@ (k + m) log n times instead of only
O(k + m) times. It was also proved in [58] that the exponential dependency on d is unavoidable in the
worst case. See Section 5 for details.

For the special case of k-means in the Euclidean space we can replace d by O(k/¢), including for
coresets constructions, as explained in [18]. Deterministic version of our coresets for k-median with m
outliers can be obtained via [19].

3. Triangular Calculus

The algorithms in this paper support a large family of distance and non-distance functions. To
exactly define this family, and their dependency on both the approximation factors and running times
of the algorithms, we need to introduce the notion of p-metric that generalizes the definition of metric

space (P, f).

Definition 1 (o-metric). Let p > 1, P be a finite set and f : P2 — [0,00) be a symmetric function such that
f(p,p) = 0forevery p € P. The pair (P, f) is a p-metric if for every p,q, x € P the following "approximated”
triangle inequality holds:

fla,x) <p(f(q,p) + f(p.x)). 1)

For example, and metric space (P, dist) is a p-metric for p = 1. If we define f(x,y) = (dist(x,vy))?,
as in the k-means case, it is easy to prove (1) for p = 2.
The approximated triangle inequality also holds for sets as follows.

Lemma 2. Let (P, f) be a p-metric. Then, for every pair of points q,x € P and a subset X C P we have

f(x,X) <p(f(g,x)+ f(q,X)). )

Our generalization of the k-means++ algorithm for other distance functions needs only the above
definition of p-metric. However, to improve the approximation bounds for the case of k-means with m
outliers in Section 5, we introduce the following variant of the triangle inequality.

Definition 3 ((p, ¢, €) metric. ). Let (P, f) be a p-metric. For ¢, > 0, the pair (P, f) is a (p, ¢, €)-metric if for
every x,Y,z € P we have

fx2) = f(y,2) < ¢f(x,y) +ef (x,2). ®)

For example, for a metric (P, f) the inequality holds by the triangle inequality for ¢ = 1 and every
e > 0. For squared distance, we have ¢ = O(1/¢) for every ¢ > 0; see [18].
The generalization for sets is a bit more involved as follows.

Lemma 4. Let (P, f) bea (p, ¢, €)-metric. For every set Z C P we have

lf(x,Z2) = f(y, 2)| < (¢ +ep)f(x,y) +eomin{f(x,Z),f(y,Z)}.

Proof. Let zy,z, € Z such that f(x,Z) = f(x,zx) and f(y, Z) = f(y,zy). The proof is by the following
case analysis: (i) f(y,Z) < f(x,Z), and (ii) f(y,Z) > f(x, Z).
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Case (): f(y,Z) < f(x,Z). We have

f(x,2) = fy, D) = f(x,2) = f(y, 2) = f(x,22) = fy,2y) < fx,29) = f(y,2y)

4)
< ¢f(xy) +ef (x,zy),

where the last inequality is by (3).
The last term is bounded by f(x,z,) < f(y,zy) + ¢f(x,y) + &f(x,z,) via Definition 3, but this
bound is useless for the case ¢ > 1. Instead, we use (1) to obtain

flxzy) <p(f(xy) + fy.2y) = pf(xy) +pf(y, Z).

Plugging the last inequality in (4) proves the case f(x,Z) > f(y,Z) as

f(xZ) = fy, 2)| < ¢f (x,y) +e(of(x,y) +pf (v, Z))
Case (ii): f(x,Z) < f(y,Z). We have
[f(x,Z2) = f(y, 2)| = f(y, 2) = f(x, Z)

< (¢p+eo)f(y,x) +epf(x,Z) (5)
= (¢+e0)f(y,x) +epmin{f(x,Z2),f(y,2)},

where (5) is by switching x with y in Case (i). O

Any p-metric is also a (¢, €)-metric for some other related constants as follows.
Lemma 5. Let (P, f) be a p-metric. Then (P, f) is a (p, ¢, €)-metric, where ¢ = pande = p — 1.
Proof. Let x,,z € P. We need to prove that

f(x2) = f(y,2) < ¢f(x,y) +ef (x,2).
Without loss of generality, f(x,z) > f(y,z), otherwise the claim is trivial. We then have
fx,2) = f(y.2) < p(f(x,y) + f(v,2)) = f(y,2) (6)

=pf(x,y)+(—-1)f(y,2)
<pf(xy)+(e—1)f(xz2),

where (6) holds by the approximated triangle inequality in (1). O

How can we prove that a given function f : P> — [0, ) satisfies the condition of p-metric or
(p, ¢, €)-metric? If f is some function of a metric distance, say, f(x) = dist’(x) or most M-estimators
functions, this may be easy via the following lemma.

Lemma 6 (Log-Log Lipschitz condition). Let g : [0,00) — [0, 00) be a monotonic non-decreasing function that
satisfies the following (Log-Log Lipschitz) condition: there is v > O such that for every x > 0 and A > 1 we have

g(Ax) < A'g(x). 7)

Let (P, dist) be a metric space, and f : P> — [0, 00) be a mapping from every p,c € P to f(p,c) = g(dist(p,c)).
Then (P, f) is a (p, ¢, €)-metric where

(i) p = max {2’71,1},
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-1
(ii) ¢ = (r;l)r ande € (0,r —1),ifr > 1,and
(iii) ¢ =1land e =0, ifr < 1.

Proof. We denote x = dist(p, c), y = dist(g,c) and z = dist(p, q).
(i) We need to prove that g(z) < p(g(x) +g(y)). f y = 0theng = ¢, so

g(z) = g(dist(p,q)) = g(dist(p,c)) = g(x), ®)

and Claim (i) holds for any p > 1. Similarly, Claim (i) holds for x = 0 by symmetry. So we assume
x,y > 0. Forevery b € (0,1) we have

8(z) = g(dist(p, q))

< g(dist(p,c) +dist(c,9)) = g(x +y) = bg(x +y) + (1 = b)g(x +y) )
_ Xty _ Xty

og (x50 ) + 1= (-2

<) (22 + -yt (1Y) (10
— (x+y) (ng(f) L= ;)g(y)),

where (9) is by the triangle inequality, and (10) is by substituting x and y respectively in (7). Substituting
b=x"/(x"+y") yields

¢(2) < (s(x) + gy BT a1

_ (xty)

We now compute the maximum of the factor h(x) = Tl whose derivative is zero when

rx+y) TN Y - ()T =0,

i.e,, when x = y. In this case h(x) = 2"~!. The other extremal values of & are x = 0 and x = oo
where h(x) = 1. Hence, max,>qh(x) = 2! for r > 1 and max,>oh(x) = 1 for r € (0,1). Plugging
these bounds in (11) yields Claim (i)

3(z) < max {271, 1} (2(x) + g (y)-

(ii)-(iii) We prove that g(x) — g(y) < ¢g(z) +
Without We need to prove that [g(x) — g(y)| <
thus for every ¢ > 1 and & > 0 we have

eg(x). If y > x then g(y) — g(x) < ¢g(z) +eg(y) <
$g(x) +eg(x). Ify = 0 then ¢(z) = g(x) by (8), and

g(x) —g(y) = g(x) = g(z) < ¢pg(z) +8(y)

as desired. We thus need to prove the last inequality for y > 0.
We assume

g(x) > ¢g(z), (12)
and x > y (so p # g and thus z > 0), otherwise the claim trivially holds. Let g4 = max {r,1}. Hence,

g(x) =gy -x/y) <gy)  (x/y) <gy) - (x/y)"
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where the first inequality is by (7) and the second is by the definition of 4 and the assumption x > y > 0.
Rearranging gives ¢(y) > g(x) - (y/x)1, so

8(x) —g(y) = g(x) - (1 = (y/x)1). (13)
We now first prove that
80 (1 (y/2)7) < eg(x) + - g(3) (1~ (y/x)7). 14
Indeed, if g = 1thenr < 1,¢ =0, ¢ = 1 and (14) trivially holds with equality. Otherwise (g > 1), we let
=1 h
p = 7= so that

1/ .
§(x) - (1= (y/x)7) = (peg(x))"/" - ((g(x)) (‘;(£1>1/p(y/x)‘7)>

glx)(1 = (y/x)1)1
q(pe)1'v

(15)

<eg(x) +

where the inequality is by Young’s inequality ab < % + % for every a,b > 0 and p,q > 0 such that
1/p +1/g = 1. We then obtain (14) by substituting ¢ = (g — 1)1 /¢7~1 so that
¢ _(q—1)! 1

7 qlge) T T q(pe)i/r

Next, we bound the rightmost expression of (14). We have 1 — w7 < q(1 — w) for every w > 0, since
the linear function g(1 — w) over w > 0 is tangent to the concave function 1 — w7 at the point w = 1,
which is their only intersection point. By substituting w = y/x we obtain

1= (y/x)T <q(1-y/x). (16)

By the triangle inequality,
1—y/x:x;y§§. (17)

Combining (16) and (17) yields
(1= (y/x)N7T < (q(1 —y/x))T < q(z/x)". (18)

Since g(x) > ¢g(z) > g(z) by (12) and the definition of ¢, we have x > z, i.e., (x/z) > 1 by the
monotonicity of g. Hence, g(x) = g(z-x/z) < g(z) - (x/2)" < g(z) - (x/z)7 by (7), so

(z/x)1 < g(2)/8(x). (19)

By combining the last inequalities we obtain the desired result

g(x) —g(y) <g(x)-(1—(y/x)7) (20)
< egla) + HLAZ LI e
< eg(x) + pg(x)(z/x)" (22)
< eg(x) +¢g(z), (23)

where (20) holds by (13), (21) is by (14), (22) holds by (18), and (23) is by (19). O
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4. k-Means++ for p-metric

In this section we suggest a generalization of the k-means++ algorithm for every p-metric, and
not only distance to the power of z > 1 as claimed in the original version. In particular, we consider
non-convex M-estimator functions. Our goal is then to compute an a-approximation to the k-median
problem for « = O(logk).

For a point p € P and a set X C P, we define f(p, X) = minycx f(p, x). The minimum or sum
over an empty set is defined to be zero. Let w : P — (0, c0) be called the weight function over P. For a
non-empty set Q C P we define

f( ) waX Zw

peQ

If Q is empty then f(Q, X) = 0. For brevity, we denote f(Q, p) = f(Q, {p}), and f%(-) = (f(+))?. For an
integer k > 1 we denote [k] = {1, - ,k}.

Definition 7 (k-median for p-metric spaces). Let (P, f) be a p-metric, and k € [n] be an integer. A set X* C P
is a k-median of P if
f(P,X") = min_ f(P,X),

XCP,|X|=k

and this optimum is denoted by f*(P,k) := f(P,X*). For a > 0, aset Y C P is an a-approximation for the
k-median of P if
F(P,X) < af*(P,K).

Note that Y might have less or more than k centers.

The following lemma implies that sampling an input point, based on the distribution of w, gives a
2-approximation to the 1-mean.

Lemma 8. For every non-empty set Q C P,

%W(X)fw(Q,x) <20fp(Q,1) %W(x)- (24)

Proof. Let p* be the weighted median of Q, i.e., f,,(Q, p*) = fu(Q,1). By (1), for every q,x € Q,

fla,x) < p(f(q.p*) + f(p*,x)).

Summing over every weighted g € Q yields

fu(Qx) < p(fu(Q P + f(p",x) L w(a)) = p(fu(Q1) + f(x,p") Y w(a)).

q€Q q€Q

Summing again over the weighted points of Q yields

Y 0@ fu(Qx) <p Y, w)(f(Q 1)+ fx,p7) ) w(q) =20f3(Q1) ) w(x)

xeQ xeQ qeQ x€Q
O

We also need the following approximated triangle inequality for weighted sets.
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Corollary 9 (Approximated triangle inequality). Let x € P, and Q, X C P be non-empty sets. Then

f,X) ) w(q) < p(ful(Q x) + fu(Q X)).

7€Q
Proof. Summing (2) over every weighted g € Q yields

fx, X)) w(g) <p <Z w(q)f(q,x)+ ), w(q)f(q,X)>

9€Q 9€Q 1eQ
= p(fuw(Q %) + fu(Q, X)).

O

The following lemma states that if we use sampling from P and hit a point in an uncovered cluster
Q, then it is a 2-approximation for f*(P,1).

Lemma 10. Let Q, X C P such that f,(Q, X) > 0. Then

1
( ) ( rX)' w(QrXU ) <2 w Qr
FolQ, %) &y O ) Gh L wle) <20 ), wl)f

Proof. By Corollary 9, for every x € Q,

f(x,X) ) w(q) < p(fu(Q x) + fu(Q X)).

q€Q

Multiplying this by W yields

fw(Q XU {x}) fw(Q XU {x})
fle X) =5, qEZQW(q)Sp(fw(Q,X) T rox  Tf@Xuix)

< P(fw(er) + fu(Q, XU {x})) < 20fuw(Q, x).

After summing over every weighted point x € Q we obtain

fw(Q XU {x}) w(x
L et x) QA 3w <20 3 w0

O

Finally, this lemma is the generalization of the original lemma of the k-means++ versions.

Lemma 11. Let f,u > 0 be a pair of integers. Ifu € [kland t € {0,--- ,u} then the following holds.

Let {Py,---, P} be a partition of P such that YX_, f*(P;, 1) = f*(P,k). Let U = U, P; denote the union
of the first u sets. Let X C P be a set that covers P\ U, i.e., X N\ P; # @ for every integer i € [k] \ [u], and
XNU=Q. Let Y be the output of a call to KMEANS++ (P, w, f, X, t); see Algorithm 1. Then

EF(PY)) < (F(P\UX) + 42 (U ) Hy + * 2 F(U,X), 25)

£l
17 ift>1
where Hy = {1 17 ftz , and the randomness is over the t sampled points in'Y \ X.

ift =0
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Algorithm 1: KMEANS++(P, w, f, X, t); see Theorem 13.
Input :A p-metric (P, f), a functionw : P — [0, 00), a subset X C P, and an integer

t e [0,|P] — |X]].
Output:Y C P.
1Y:=X
2 fori:=1tot// If +t =0 then skip this "for" loop
3 do
(p) = —2Wf(pY) —
4 | Foreveryp € P, Pri(p) Z}Jw(q)f(qu) /! f(p,D):=1.
7€

5 Pick a random point y; from P, where y; = p with probability Pr;(p) for every p € P.
6 YZIXU{yl,"',yi}
7 return Y

Proof. The proof is by the following induction on t > 0: (i) the base case t = 0 (and any u > 0), and (ii)
the inductive step t > 1 (and any u > 0).

(i) Base Case : t = 0. We then have

u—t

E[f(P,Y)] = E[f(P,X)] = f(P,X) = f(P\U,X) + f(U,X) = f(P\ U, X) + - f(U, X)

" u—t
< (FP\UX) +492f (W) Hy+ L fu, x),
where the first two equalities hold since Y = X is not random, and the inequality holds since t = 0,
Hy =1and f*(U,u) > 0. Hence, the lemma holds for t = 0 and any u > 0.

(ii) Inductive step: t > 1. Let y € P denote the first sampled point that was inserted to Y \ X during
the execution of Line 5 in Algorithm 1. Let X" = X U {y}. Let j € [k] such thaty € Pj,and U’ = U \ P;
denote the remaining "uncovered" u’ = | {Py,---, Py} \ Pj| clusters, i.e, u’ € {u,u — 1}. The distribution
of Y conditioned on the known sample y is the same as the output of a call to KMEANS++(P, w, f, X', ')
where t' =t — 1. Hence, we need to bound

E[f(P,Y)] = Pr(y € P\W)Ef(P,Y) |y € P\ U] + Pr(y € WE[F(P,Y) [y U.  (26)

We will bound each of the last two terms by expressions that are independent of X’ or U'.
Bound on E[f(P,Y) |y € P\ U]. Here u’ = u € [k], U’ = U (independent of j), and by the inductive

assumption that the lemma holds after replacing t with ' = t — 1, we obtain

ELF(P,Y) |y € PAUL < (F(P\ U, X') + 402 (U ) Hy + =5 pur x)

u—t+1
u

= (fF(P\U,X') +40°f*(U,u))Hy_1 + (U, X" (27)

< (FP\U,X) + 492 (U ) Hioy + 2250 f(u, ),

Bound on E[f(P,Y) | y € U]. In this case, U’ = U\ P;jand ' = u —1 € {0,--- ,k —1}. Hence,

Ef(P,Y) [y eUl= ), Pr(j=m)E[f(P,Y)]|]=m]

™=

3
Il
—

(28)

I
1=

Pr(j=m) ) _ Pr(y=x)E[f(P,Y)]x =y

xePy,

3
Il
—
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Putm € [u] and x € P,,. We remove the above dependency of E[f(P,Y) | y € U] upon x and then m.
We have

ELF(P,Y) |y = 3] < (F(P\U, X))+ 492" (U, Hooa + 2l (), X)

— (f(P\ U,X’) +f(Pm, X’) +4p2f*(u,u) *4P2f*(Pm/1))Ht—1 + #_uf,l} ,f(u/,X/)

u—t

max {u/,1} f
+ (f (P, X') = 40f (P, 1)) Hi1, (29)

< (f(P\U, X) +40%f*(U,u)) Hy 1 + U\ Py, X)

where the first inequality holds by the inductive assumption if ' > 1, or since U’ = U \ P = @if u' =0.
The second inequality holds since X C X’ = XU {x}, and since f*(U \ Py, u — 1) = f*(U,u) — f*(Pp,1).

Only the term f(P,,, X') = f(Py, X U {x}) depends on x, and not only on m. Summing it over every
possible x € Py, yields

N L w(x)f(x X
I Prly = (B X) = s T 0 ) fulB XU

_ w(x X
= Lyep, o) 2, el

< 2"@ 20£5(Pu 1) T w(x) < 402 F (P 1),

qupm w XEPy,

where the inequalities follow by substituting Q = P, in Lemma 10 and Lemma 8, respectively. Hence,
the expected value of (29) over x is non-positive as

Y Pr(y = ) (f(P, X') — 402" (P 1)) = —40%f* (P, 1) + Y Pr(y = ) fuo( P, X') < 0,

XEPy, xePy,

Combining this with (28) and then (29) yields a bound on E[f(P,Y) | y = x] that is independent upon x,

EU(P,Y)Weu]szr m) Y Pr(y E[f(P,Y) |y = x]
m=1 XEPy, (30)
< (f(P\UX) +40°f* (U, u)) Hyy + ———— {u, 7o 2 Pr(j = m)f(U\ Py, X),

It is left to remove the dependency on m, which occurs in the last term f(U \ Py, X) of (30). We have

f fUN Py, X Z f (P, X) P’"’ ) (U, X) — f(Pw, X))
" 1 . (31)
_ 2 . 2

By Jensen’s (or power-mean) inequality, for every convex function g : R — R, and a real vector
v = (v1, -+ ,v,) we have (1/u) Y% _1 ¢(vm) > ¢((1/u) X% _,om) . Specifically, for g(z) := z> and
0= (f(Plrx)/ s /f(PM/X>)/

2
u 1 1 u
Zaf‘z(Pmr 2(1/[ prm/ ) .

m=1



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020

Multiplying by u yields

u 2

Y £(Bx) > LX)
m=1

Plugging this in (31) gives the desired bound on the term f(U’, X),

2 max {u’
- (1-2) B0 B

where the last inequality holds since f(U, X) < f(P, X). Plugging the last inequality in (30) bounds
E[f(P,Y) |y € U] by

ELF(P,Y) |y € U] < (F(P\U,X) + 402" (U,u)) Hy 1+ F(U,X). (32)
Bound on E[f(P,Y)]. Plugging (32) and (27) in (26) yields
ELF(P,Y)] < (F(P\U,X) + 462 (U, 1)) Hy 1

+ (U, X) (Pr(y e P\ U)- ”_Tt“ +Pr(y e U)- “;t) . (33)

Firstly, we have

Pr(yeP\U)~u_Tt+1+Pr(y€U)-u;t= Tl by e P\U)- —<—+Pr(y€P\U)

H-\b—‘

where the last inequality holds as # > t. Secondly, since U C P,

f(P\U, X)

f(U,X)Pr(y € P\ U) = f(U, X) 7,5 < f(P\ U, X).
Hence, we can bound (33) by
£(U, X) <Pr(y e\ = ey e ”;t> <" h A x) 1 f(UX)Pr(y € P\ ) %
< ”;t CF(UX) + (f(P\u X) + 402 f*(U, u)) %

This proves the inductive step and bounds (33) by
" u—t
ELF(P,Y)] < (F(P\ U, X) + 402" (U, ) Hy + *— - (U, X).
O

Corollary 12. Let 5 € (0,1] und let qo be a point that is sampled at random from a non-empty set Q C P such
that qo = q with probability Z ) . Then with probability at least 1 — 9,

q'eQ

F(QAq0)) < 2pf*(Q.1).

Proof. By Markov’s inequality, for every non-negative random variable G and § > 0 we have

YeGy > 1-0. (34)

P
r{G<(5
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Substituting G = f(Q, {qo}) yields

Pr{F(Q {a0}) < %2 g fQah}=1-6 (35)
0<Q qeQ
By Lemma 8 we have
) Z ) £(Q{q0}) <20 F(Q1). (36)
g0€Q =0

Plugging (36) in (35) yields,

PrF(Q {a0}) < 30- 1@ D)} = Pr{A(Q {0}) < ,%;Q i"(%) f(Q b}

>1-9.

O

q€Q

The following theorem is a particular case of Lemma 11. It proves that the output of KMEANS++;

see Algorithm 1, is a O(log k)-approximation of its optimum.

Theorem 13. Let (P, f) be a p-metric, and k > 2 be an integer; See Definition 1. Let w : P — (0,00), d € (0,1)
and let Y be the output of a call to KMEANS++(P,w, f,D,k); See Algorithm 1. Then |Y| = k, and with

probability at least 1 — 6,
80* )
f(P,Y) < 792(1+1nk)f (P,k).

Moreover, |Y| can be computed in O(ndk) time.

Proof. Let & = §/2 and let {Py,---, P} be an optimal partition of P, i.e, Y'X_, f*(P,1) = f*(P,k).

Let pg be a point that is sampled at random from Py such that pg = p with probability ZW(P)
P'ER

Applying Lemma 11 withu =t =k —1and X = {p¢} yields,

E[f(P,Y)] < (f(Pu {po}) +40°f*(P\ P,k —1)) -

< (F(P o)) + %’izf*w\Pk,k— )

202
= (f(Pe {po}) + f (P k) =~ f*

w(p')
k—1
) : (37)
k—1
1. (38)
=1t
(Pe1) X = (39)

i=1

where (39) holds by the definition of f* and Py. By plugging Q = Py in Corollary 12, with probability at

least 1 — ¢’ over the randomness of py, we have

F(Po Apo}) - 22 £ (B1) <0,

(40)
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and since p > 1, with probability at least 1 — 6’ we also have

20* .
f(PeApod) =~ f* (P 1) < 0. (41)

Plugging (41) in (39) yields that with probability at least 1 — ¢’ over the randomness of py,

E[f(P,Y)] < f (P, k) Z < f (P, k) (1+1Ink). (42)
Relating to the randomness of Y, by Markov’s inequality we have

Pr{f(P,Y) < ZEF(P,Y)]} 210 3)

By (42) we have,

2

PI‘{;, [f(P,Y)] < zé,l,)z(l-i-lnk)f*(P’k)} >1 Y (44)

Using the union bound on (43) and (44) we obtain

Pr {f(P, Y) < 25‘,’2 (1+Ink)f* (P,k)} >1-24,

and thus
8p \
Prf(P,Y) < =5 (1+Ink)f*(P,k) p =10,

O

5. k-Means with m outliers

In this section we consider the problem of k-means with m outliers of a given set P, i.e., where the
cost function for a given set X of k centers is f(Px, X) instead of f(P, X), and Px is the subset of the
closest n — m points to the centers. Ties are broken arbitrarily. Thatis, P\ Px can be considered as the set
of m outliers that are ignored in the summation of errors.

Definition 14 (k-median with m outliers). Let (P, f) be a p-metric, n = |P|, and k,m € [n] be a pair of
integers. For every subset Q C P of points in P and a set X C P of centers, denote by Qx the closest n — m points
to P. A set X* of k centers (points in P) is a k-median with m outliers of P if

f(Pxs, X*) < Xcrﬁ‘&‘\ kf(Px, X).

For w > 0, a setY is an a-approximation to the k-median of P with m outliers if

P,,Y) < Py, X
f(Py )—"‘xcﬂ?‘&‘\ kf(x ).

Note that we allow Y to have |Y| > k centers.

This is a harder and more general problem, since for m = 0 we get the k-median problem from the
previous sections.
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We prove in this section that our generalized k-means++ can be served as a “weaker" type of coreset
which admits an additive error that yields a constant factor approximation for the k-means with m
outliers if p is constant.

In fact, we prove that any approximated solution to the (k + m)-median of P implies such a coreset,
but Algorithm 1 is both simple and general for any p-distance. Moreover, by taking more than k 4 m
centers, e.g., running Algorithm 1 additional iterations, we may reduce the approximation error «
of the coreset to obtain “strong" regular coreset, i.e., that introduces a (1 + ¢)-approximation for any
given query set X of k centers. This is by having an « < ¢ approximation for the (k + m) median; see
Theorem 15. Upper and lower bounds for the number | X| of centers to obtain such a < ¢ is the subject
of [58]. They prove that a constant approximation to the | X| = O(1/¢)%k log n)-means of P yields such
a = O(e)-approximation to the k-means. This implies that running Algorithm 1 O(1/¢)?(k 4 mlogn)
times would yield a coreset that admits (1 + ¢)-approximation error for any given set of k-center with
their farthest m outliers, as traditional coresets. Unfortunately, the lower bounds of [58] shows that the
exponential dependency in d is unavoidable. However, the counter example is extremely artificial. In
real world data, we may simply run Algorithm 1 until the approximation error f(P,|X|) is sufficiently
small and hope this will happen after few |X| iterations due to the structure of the data.

We state our result for the metric case and unweighted input. However, the proof essentially uses
only the triangle inequality and its variants of Section 3. For simplicity of notation, we use the term
multi-set C instead of a weighted set (C, w), where C C P, and w : P — [0, 00) denote the number of
copies of each item in C. The size |C| of a multi-set denote its number of points (including duplicated
points), unless stated otherwise.

Unlike the case of k-means/median, there are few solution to k means with m outliers. In [50] there
was provided a (multiplicative) constant factor approximation for the k-median with m outliers on any
metric space (that satisfies the triangle inequality, i.e., with p=1) that runs in time O(dk?(k + m)?n®log n),
i.e., polynomial in both k and m. Applying this solution on our suggested coreset as explained in Theorem
15 might reduce this dependency on 7 from cubic to linear, due to the fact that its construction time which
is linear in n and also polynomial in k + m. In order to obtain a more general result for any p-distance, as
in the previous section, we use a simple exhaustive search that takes time exponential in k + m but still
O(n) for every constant k, m and p. Our solution also implies streaming, parallel algorithm for k-median
with m outliers on distributed data. This is simply because many k-median algorithms exist for these
computation models, and they can be used to construct the “coreset” in Theorem 15 after replacing k
with k 4+ m. An existing off-line non-parallel solution for the k-median with m outliers, e.g. from the
previous paragraph, may then be applied on the resulting coreset to extract the final approximation as
explained in Theorem 15. For every point p € P, let proj(p,Y) € Y denote its closest point in Y. For a

subset Q of P, define proj(Q,Y) = {proj(p,Y) | p € Q} to be the union (multi-set) of its |Q| projection
on Y. Ties are broken arbitrarily. Recall the definition of Px, Cx and a-approximation from Definition 7.
We now ready to prove the main technical result for the k-median with m outliers.

Theorem 15 (coreset for k-median with m outliers). Let (P, f) bea (p, ¢, €) metric space, and let n = |P|. Let
k,m € [n], and let Y be an a-approximation for the (k 4+ m)-median of P (without outliers). Let C := proj(P,Y).
Then for every set X C P of | X| = k centers, we have

f(Px, X) = f(Cx, X)| < ((¢ + ep)a +¢p) f(Px, X), (45)

and
f(Px,X) < (1+¢€p)f(Cx, X) + (¢ +ep)af* (P, k+m). (46)

Proof. Let X C P be a set of | X| = k centers. The multi-set proj(Px, Y) contains n — m points that are
contained in the k centers of Y. However, we do not know how to approximate the number of copies of
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each center in proj(Pyx, Y) without using Px. One option is to guess (1 + ¢) approximation to the weight
of each of these k + m points, by observing that it is (1 + ¢)’ for some i € O(log(n)/e), and then using
exhaustive search. However, the running time would be exponential in k 4 m and the weights depend
on the query X.

Instead, we observe that while we cannot compute proj(Px, Y) via C, we have the upper bound
f(Cx, X) < f(proj(Px, Y), X). It follows from the fact that

proj(Px,Y) C proj(P,Y) = C,
and |proj(Px,Y)| =n —m, so

f(Cx, X) = Qgcﬁ?jin_mf(Q'X) < f(proj(Px, Y), X). (47)

We now bound the rightmost term.
For a single point p € P we have

(P, X) = f(proj(p, Y), X)| < (¢ +ep) f(p, proj(p, Y)) + epmin {f(p, X), f(proj(p, Y), X)}  (48)
= (¢+ep)f(p,Y) +epmin{f(p, X), f(proj(p,Y), X)}, (49)
where (48) holds by substituting x = f(p, X) and y = f(proj(p,Y), X) (or vice vera) and Z = X in

Lemma 4, and (49) holds by the definition of f(p,Y).
Summing (49) over every p € Q for some set Q C P yields

1£(Q,X) — f(proj(Q,Y), X)| = Z;,g (f(p, X) — f(proj(p,Y), X)) (50)
pe
< Y 1f(p.X) = f(proj(p, Y), X)| (51)
peQ
< Zé (9 +ep)f(p,Y) +epmin{f(p, X), f(proj(p,Y), X)})  (52)
pe
< (@ +e0)f(QY) +eomin{f(Q,X), f(proj(Q,Y),X)}, (53)
where (50) holds by the definition of f, (51) holds by the triangle inequality, and (52) is by (49). The last
term is bounded by
fQY) < f(P,Y) < af*(P,k+m), (54)

where the first inequality holds since Q C P, and the last inequality holds since Y is an a-approximation
for the (k + m)-median of P. Plugging (54) in (52) yields

1£(Q X) = fproj(Q,Y), X)| < (¢ +¢0)f(Q,Y) +epmin {£(Q, X), f(proj(Q, Y), X)}
< (¢ +ep)af (P k+m) +epmin{f(Q, X), f(proj(Q,Y), X)} .

The rest of the proof is by the following case analysis: (i) f(Cx, X) > f(Px, X), and (ii) f(Cx, X) <
Case (i): f(Cx, X) > f(Px, X). The bound for this case is

(55)

£(Cx, X) — £(Px, X) < f(proj(Px, Y), X) — f(Px, X) (56)
< (¢ +ep)af (P k+m)+epf(Px, X) (57)

where (56) holds by (47),and (57) holds by substituting Q = Px in (55). This bounds (45) for the case that
f(Cx, X) = f(Px, X).
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Case (ii): f(Cx, X) < f(Px, X). In this case, denote the n — m corresponding points to Cx in P by

proj '(Cx) := {p € P | proj(p,Y) € Cx}.

Similarly to (47),
proj }(Cx) C proj(P,Y) =C,

and |proj ! (Cx)| = n —m, so

fPeX)= min  f(QX)< f(proj ! (Cx), X). (58)
Hence,
f(Px, X) = f(Cx, X) < f(proj '(Cx), X) — f(Cx, X) (59)
< (¢p+ep)af*(P,k+m)+eof(Cx, X) (60)
< (¢ +ep)af*(P,k+m)+eof(Px,X), (61)

where (59) holds by (58), (60) is by substituting Q = proj_l(CX) in (55), and (61) follows from the
assumption f(Cx, X) < f(Px, X) of Case (ii).
Combining all together, using (57) and (61) we can bound (45) by

|f(Px, X) — f(Cx, X)| < (¢ +ep)af (P, k+m) +epf(Px, X) (62)
< (¢ +ep)af(Px, X) +eof(Px, X) (63)
< (¢ +ep)a+ep) f(Px, X), (64)

and (46) follows from (60), assuming f(Cx, X) < f(Px, X) (otherwise (46) trivially holds). O

The motivation for (45) is to obtain a traditional coreset, in the sense of (1 + ¢)-approximation to
any given set of k centers. To this end, we need to have ((¢ + ¢p)a) < e. For the natural case where
p = O(1) this implies &« < € approximation to the (k + m)-mean f*(P,k + m) of P. This is doable for
every input set P in the Euclidean space and many others as was proved in [58] but in the price of taking
(1/¢)klog n centers.

This is why we also added the bound of (46), which suffices to obtain a "weaker" coreset that yields
only constant factor approximation to the k-means with m outliers, but using only k + m centers, as
explained in the following corollary.

Corollary 16 (From (k + m)-median to k-median with m outliers. ). Let (P, f) bea (p, ¢, €)-metric, n = |P|,
a,p > 0and k,m € [n]. Suppose that, in T(n,k + m) time, we can compute an w-approximation Y for the
(k + m)-median of P (without outliers). Suppose also that we can compute in t(|Y|) time, a B-approximation
X C C of the k-median with m outliers for any given multi-set C C Y of |C| = n (possibly duplicated) points.
Then, X isa

(pa+B(1+¢€)(1+e+¢pa))

approximation for the k-median with m outliers of P, and can be computed in T(n, k + m) + t(|Y|) time.

Proof. We compute Y in T(n,k + m) time and then project P onto Y to obtain a set C := proj(P,Y) of |Y]|
distinct points, as defined in the proof of Theorem 15. We then compute a  approximation X C C for
the k-median with m outliers of P,

f(Cx, X)<pB , gg}lig:kf (Cz,2), (65)
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in t(|Y]) time. For a given set X C P of centers and a subset Q C P of points, we denote by Qx the
closest n — m points in Q to X. Let X* denote the k-median with m outliers of P. Hence,

f(Px, X) < (1+¢p)f(Cx, X) + (¢ +ep)af (P, k + m) (66)
< (1+¢0)Bf(Cx+, X*) + (¢ +ep)af(Px+, X*) (67)
< (1+ep)B(1+¢a+ep) f(Pxs, X*) + (¢ +ep)af(Px-, X*) (63)
= (pa+B(1+¢)(1+e+¢u)) f(Px:, X¥), (69)

where (66) and (68) hold by Theorem 45, and (67) is by (65). O

To get rid of the so many parameters in the last theorems, in the next corollary we assume that they
are all constant and suggest a simple solution to the k-median with m outliers by running exhaustive
search on our weaker coreset. The running time is exponential in k but this may be fixed by running
the more involved polynomial-time approximation of Ke-Chen [50] for k-means with m outliers on our
coreset.

Corollary 17. Let k,m € [n] and p > 1 be constants. Let (P, f) be a p-metric. Then, a set X C P can be
computed in O(n) time such that, with probability at least 0.99, X is a O(In(k + m))-approximation for the
k-median with m outliers of P.
Proof. Given a set Q of |Q| = n’ points, it is easy to compute its k-median with m outliers in n°%) time
as follows. We run exhaustive search over every subset Y of size |Y| = k in Q. For each such subset Y,
we compute its farthest m points Z in Q. The set Y that minimizes f(Q \ Z,Y) is an optimal solution,
since one of these sets of k centers is a k-median with m outliers of P. Since there are such (V,’(/) = (n")OW)
subsets, and each check requires O(nk) = O(n) time, the overall running time is t(n') = (n’)°(®).
Plugging 6 = 0.01 in Theorem 13 implies that we can compute a set Y C P of size |Y| = k+m
which is, with probability at least 1 — § = 0.99, an O(In(k + m))-approximation to the (k + m)-median of
Pin time T(n,k+ m) = O(nd(k+ m)) = O(n). By Lemma 5, (P, f) is a (p, ¢, €)-metric for ¢ = p, and
¢ = p — 1. Plugging n’ = |Y| = kand B = 1 in Corollary 16 then proves Corollary 17. [

6. Conclusion

We proved that the k-Means++ algorithm can be generalized to handle outliers by generalizing it
to p-metric that support M-estimators, and also show how it can be used as some kind of core-set for
the k-means with m outliers. Open problems include generalizations of k-Means++ for other shapes,
such as k lines or k multi-dimensional subspaces, and using these approximations for developing coreset
algorithms for these problems. Other directions include improving or generalizing the constant factor
approximations for the original k-Means++ and its variants in this paper.
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