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Abstract: In Brazil, malaria transmission is mostly confined to the Amazon, where substantial 

progress has been achieved towards disease control in the past decade. Vector control has been 

historically considered a fundamental part of the main malaria control programs implemented in 

Brazil. However, the conventional vector-control tools have been insufficient to eliminate local 

vector populations due to the complexity of the Amazonian rainforest environment and ecological 

features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination 

in Brazil and worldwide eradication will require a combination of conventional and new 

approaches that takes into account the regional specificities of vector populations and malaria 

transmission dynamics. Here we present an overview on both conventional and novel promising 

vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and 

employed, these new vector-based approaches may improve the implementation of malaria-control 

programs, particularly in remote or difficult-to-access areas and in regions where existing 

interventions have been unable to eliminate disease transmission. However, much effort still has to 

be put on research expanding the knowledge of neotropical malaria vectors to set the steppingstones 

for the development of such innovative tools. 
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1. INTRODUCTION 

Malaria eradication, defined as the permanent reduction to zero of the worldwide incidence of 

malaria infection, has been a major global and public health objective for decades. Progress toward 

eradication includes efforts for controlling and eventually eliminating malaria in specific geographic 

areas or countries. While control measures aim at reducing the number of new infections and the 

number of people infected in local settings, malaria elimination is accomplished when transmission 

ceases completely to occur locally. To achieve malaria elimination in Brazil and worldwide 

eradication, a combination of conventional and new approaches and tools will be necessary [1, 2]. 

 In 2015, the World Health Organization (WHO) adopted The Global Technical Strategy for 

Malaria 2016–2030 providing guidance to countries in their efforts to achieve malaria elimination and 

setting a goal of reducing global malaria incidence and mortality rates by at least 90% by 2030 [3]. 

The Pan American Health Organization (PAHO) followed with the resolution CD55.R7, a Plan of 

action for malaria elimination in the Americas [4]. In the same year, the Brazilian National Malaria 

Control Program (NMCP) of the Ministry of Health launched the Plan for Elimination of the malaria-

causing parasite Plasmodium falciparum in Brazil [5], acknowledging that Plasmodium vivax elimination 

is more challenging and may take longer, requiring specific tools and strategies for its containment, 

especially regarding the prevention of relapses [6]. 

Malaria is a vector-borne disease transmitted by anopheline mosquitoes [7]. Hence, vector 

control is a vital component of malaria prevention, control and elimination strategies [7, 8]. Here we 

review malaria control measures focused on mosquito vectors presently applied in the Brazilian 

Amazon and discuss their advantages and limitations. Furthermore, we discuss progresses in 

innovative vector control approaches aimed at curbing malaria transmission, which once fully 

developed may be incorporated into integrated mosquito management programs. 

2. Malaria in Brazil, a brief history and current status 

In Brazil, malaria affecting members of the native Tupinambá people was first reported in 1587, 

however, no epidemics were reported during the colonial period [9, 10]. By the end of the 19th 

century and beginning of the 20th century, in a changed scenario, malaria was endemic throughout 

the country, with approximately six million cases per year [9]. Since then, the disease was virtually 

eliminated in the southern areas, where nowadays only a few cases of autochthonous malaria 

transmission are reported annually [11, 12]. In contrast, malaria remains a major public health 

problem in Northern Brazil, mostly in the Amazon region where more than 99% of malaria cases 

currently occur [13, 14].  

The first noticeable increase in the number of malaria cases in the Amazon region occurred 

during the Amazon Rubber Boom (1879 to 1912), when approximately half million immigrants 

moved to the area attracted by job opportunities in latex extraction, natural rubber industrial 

processing and related activities. Railroads were built to facilitate the transport and export of rubber 

products and improve accessibility to settled but isolated areas. One of these, the Madeira Mamoré 

railway, built between 1907 and 1912, was nicknamed the “Devil Railway” because thousands of 

workers died during its construction [9], largely due to the high number of mosquitoes spreading 

malaria in the settlements [15]. Just a few decades later, in the 1930s, Anopheles arabiensis, coming from 

Africa by sea, was introduced in Brazil [16, 17]. The spread of this efficient vector throughout 

Northeastern Brazil resulted in an epidemic with more than 150,000 cases and 14,000 deaths from 

malaria between 1938 and 1939. Fortunately, the invasive mosquito population was eliminated in 

1940, thanks to management of breeding sites and insecticides sprayed in homes and vehicles [18, 19, 

20]. 

Despite the elimination of An. arabiensis in the early 1940s, malaria continued to be transmitted 

in the Amazonian states by local anopheline vectors, with estimates of six to eight million people 

infected and 80,000 deaths annually during that decade [12]. In 1947, the Brazilian National Malaria 

Service implemented the use of dichlorodiphenyltrichloroethane (DDT) for vector control, and in 

1950 of chloroquine for the treatment of patients infected with parasites [21, 22]. These measures 

resulted in significant reduction of malaria transmission, with only 36,900 cases reported in 1961 [18, 
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21]. The spread of malaria in the Brazilian Amazon raised again in the 60's with the building of new 

roads, followed in the 70's with the establishment of hydroelectric projects and in the 80's with the 

emergence of the gold prospecting sites [23, 24]. 

In the early 1970’s another immigratory flow was triggered by land ownership opportunities in 

the Amazon region, when the National Institute for Colonization and Agrarian Reform - INCRA was 

donating plots nearby the new road network [25, 26]. These immigrants, unprepared and unaware, 

entered a region infested by mosquitoes, resulting in an epidemic with numbers that reached 300 

thousand cases in a population of one million inhabitants in Rondônia state alone [18, 24, 25, 27]. In 

addition to the migratory wave, between 1970 and 1980, the increase in malaria cases in the 

Amazonian region was fueled by cuts in funding to sustain the social sectors, including vector control 

programs [28]. 

From 1990 to 2006, an average of 600,000 malaria cases were recorded annually [18, 19], however, 

intensification of vector control and other malaria prevention and treatment measures in the 

following years resulted in a steady and significant reduction in the incidence of malaria [27, 29]. 

Transmission intensity was maintained at 140 thousand cases yearly in 2014, 2015 and 2016. 

However, in 2017 and 2018, 197 and 207 thousand cases were registered respectively, a considerable 

growth compared to previous years [7]. The recent increase in reported malaria cases is mostly due 

to transmission occurring near the borders between Brazil and its neighbors French Guiana and 

Venezuela [30, 31, 32]. A timeline of malaria in the Brazilian Amazon is presented in figure 1. 

 

Figure 1. A brief timeline of the main events concerning malaria transmission and control in the 

Brazilian Amazon. 

3. Malaria vectors in the Brazilian Amazon and the importance of vector population surveillance 

Effective vector control in the Amazon is a complex and multifactorial task because of the sheer 

geographical scale of the region, its markedly heterogeneous ecology and complex human 

demographic aspects [33]. Urban, peri-urban and rural environments and areas of special interest 

(see below) present their unique challenges for controlling malaria transmission. It is clear that 

mosquito density and ecology as well as environmental conditions and human activity must be 

considered when designing vector-control measures adapted to regional specificities (Figure 2). 
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Figure 2. Main challenges for the development of novel vector-focused malaria control tools. Created 

with BioRender.com. 

For instance, malaria control in areas of special interest such as native people settlements, areas 

of mining and national borders, present their own challenges. Malaria incidence in Brazilian native 

people is associated with environmental changes, their difficulty in accessing health services, and 

their mobility, at times resulting in migration to areas of more intense malaria transmission [34, 35]. 

Furthermore, culturally determined activities such as hunting, fishing, working in the fields, bathing 

along rivers and streams expose indigenous people to the risk of malaria infection. Gold mining plays 

a major role in spreading malaria in the area [36] since this activity creates puddles of water, ideal 

habitat for the reproduction of Anopheles mosquitoes. Transmission of malaria among miners 

(garimpeiros) is greatly affected by their constant mobility, and a work regime that coincides with 

the peak of biting activity of vector mosquitoes. Populations of border towns are generally more 

vulnerable, especially those living in remote areas, as recently observed along the border between 

French Guiana and Brazil where local inhabitants were affected by a malaria outbreak [37]. Recent 

events in Venezuela, causing mass migrations, has been responsible for an increase in malaria 

transmission across the frontier between Brazil and Venezuela [30, 31]. Each one of these scenarios 

demand unique malaria control programs, that include vector-control measures adapted to the 

regional context. 

A total of fifty-four species of Anopheles are known to occur in Brazil, 33 of which are found in 

the Amazon region [38, 39]. Anopheles darlingi, An. albitarsis, An. braziliensis, An. argyritarsis, An. 

nunesztovari, An. oswaldoi, An. triannulatus, An. mattogrossensis, An. mediopunctatus and An. peryassui 

among other anopheline species are found throughout the Amazonian region [27] (Figure 3). All of 

those listed above are susceptible to natural Plasmodium infection, as demonstrated by using ELISA 

detection of the circumsporozoite protein (CSP), microscopy and/or PCR [27, 40]. Among those, the 

primary vector in the Amazonian Rainforest malaria transmission system is An. darlingi [27], which 

is abundant and highly anthropophilic [41, 42]. An. darlingi readily adapts to environmental changes 
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caused by human activity and can easily develop in either artificial breeding sites such as fish farm 

tanks or in the midst of nature [43, 44]. 

Vector surveillance is essential to inform vector control strategies and evaluate their impact on 

malaria transmission. In the Amazon, vector surveillance has evidenced geographical and temporal 

differences in mosquito densities and species composition in malaria endemic areas [38, 45]. Factors 

driving this diversity are environmental [46, 47], anthropogenic [44] and biological [38, 48]. 

Hydrological cycles of the Amazon region include heavy rainfall between the months of November 

and June, resulting in the flooding of approximately 85,000 km2 of the Amazonian plain [49]. The 

end of each flooding cycle creates numerous large and small pools of water and slow-flowing streams 

suitable for mosquito breeding, as water levels slowly recede along rivers [44]. The large-scale climate 

interaction caused by environmental phenomena like the El Niño are associated with warmer 

temperatures, higher dew points, as well as reduced precipitation and river discharge in the Amazon, 

which may influence the dynamics of malaria transmission [50, 51]. 

Figure 3. Distribution of the main anopheline species known to occur in the Brazilian Amazon, with 

emphasis in Anopheles darlingi, the main malaria vector in the region. 

Anthropic activity in the Amazon has been associated with “Frontier malaria” a term commonly 

used to describe malaria transmission associated with deforestation and with the unplanned 

development of new agricultural settlements [52]. Newly deforested areas create multiple new An. 

darlingi breeding sites, favoring malaria transmission [53, 54]. However, anthropic activity may favor 

other vector species too. In Macapa, such changes reduced the suitability of breeding sites for An. 

darlingi and led to an increased density of An. marajoara [55]. 

Phenotypic plasticity, including features such as anthropophily, and endo-exophily, have been 

revealed by entomological surveys of neotropical malaria vectors [56, 57]. An. darlingi typically 

displays a single peak of biting activity before midnight [58, 59, 60, 61, 62, 63], however, in certain 

areas two peaks of biting activity are observed: one at dusk and another at dawn [64, 65, 66, 67, 68]. 

Furthermore, An. darlingi biting activity may occur in three peaks at sunset, midnight and dawn [69]. 

Observations at one locality showed considerable plasticity of this species' biting patterns as well, 

indicating that intra-population variation of biting activity can be as significant as inter-population 
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variation [70]. Single or multiple blood meals in each gonotrophic cycle, determined by biological or 

environmental factors also may influence the vectorial capacity of malaria mosquitoes [71]. 

The investigation of cryptic species among neotropical malaria vectors is essential for a better 

understanding of species distributions, behavior and population dynamics, leading to a better 

understanding of malaria transmission and adequate strategies for effective vector control in the 

Amazon. In Africa and in Asia several of the major malaria vectors belong to species complexes, 

including cryptic species that differ in host feeding preference, breeding sites, feeding behavior and 

role in malaria transmission [72, 73, 74]. These complexes may include both malaria vectors and non-

vector species, which may either occur sympatrically or have distinct geographical 

distributions.  While An. darlingi, the major malaria vector in the Brazilian Amazon is a monotypic 

species, other neotropical malaria vectors such as An. nuneztovari, An. albitarsis, An. triannulatus and 

An. oswaldoi are complexes of closely related, morphologically similar species [75]. For instance, An. 

konderi is often mistaken for An. oswaldoi [76], however An. konderi is present in human impacted or 

open areas, whereas An. oswaldoi is restricted to forested ones [77]. Marrelli et al. (1999) observed that 

both An. oswaldoi and An. konderi developed P. vivax oocysts in their midgut, but the complete cycle 

of the parasite, with sporozoites reaching the salivary glands, was only observed in An. oswaldoi, 

suggesting these species differ in vector competence [78]. Therefore, the refinement of taxonomic 

tools, including molecular taxonomic tools [79, 80] is paramount for the knowledge and 

understanding of the biology of these neotropical species complexes and for the investigation of 

malaria epidemiology. Furthermore, proper identification of species and knowledge of their ranges, 

often affected by changes in land use and lately in the climate, is vital for appropriate allocation of 

vector control resources. 

4. Conventional measures for vector control and their limitations 

The core and supplemental interventions for malaria vector control advocated by the World 

Health Organization and the Brazilian Ministry of Health are very similar as they represent a set of 

evidence-based guidelines (Table 1). The Brazilian Health Ministry acknowledges that not all areas 

should be subject to the same malaria control programs and follows a decentralized system in which 

each municipality adopts different control strategies. Also, it recognizes the existence of areas of 

special importance, particularly vulnerable and with limited access to interventions including. These 

include: Indigenous areas/indigenous tribes; gold mining camps; settlement areas; and frontier areas 

in the northern and western Brazilian Amazon rainforest. 

Table 1. Current guidelines for malaria vector control in the world and in Brazil. 

World Health Organization Brazilian ministry of health 

GUIDELINES FOR MALARIA VECTOR CONTROL 

2019 

https://apps.who.int/iris/bitstream/handle/10665/310862

/9789241550499-eng.pdf?ua=1 

 

Malaria vector control, Policy guidance, 

Recommendations, accessed on May 5, 2020 

https://www.who.int/malaria/policy-guidance/vector-

control#tab=tab_2 

 

Malaria vector control, Policy guidance, Operational 

manuals, accessed on May 5, 2020 

https://www.who.int/malaria/policy-guidance/vector-

control#tab=tab_3 

Malaria: what it is, causes, symptoms, treatment, 

diagnosis and prevention, accessed on May 5, 2020 

https://saude.gov.br/saude-de-a-z/malaria 

 

Plano de Eliminação da malária no Brasil 2016 

https://www.saude.gov.br/images/pdf/2017/janeiro/04/

Plano-eliminacao-malaria-pub.pdf 

 

Guia de tratamento da malária no Brasil 2020 

https://portalarquivos2.saude.gov.br/images/pdf/2020/j

aneiro/29/af-guia-tratamento-malaria-28jan20-isbn.pdf 

Core interventions 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints202009.0552.v1

https://apps.who.int/iris/bitstream/handle/10665/310862/9789241550499-eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/310862/9789241550499-eng.pdf?ua=1
https://www.who.int/malaria/policy-guidance/vector-control#tab=tab_2
https://www.who.int/malaria/policy-guidance/vector-control#tab=tab_2
https://www.who.int/malaria/policy-guidance/vector-control#tab=tab_3
https://www.who.int/malaria/policy-guidance/vector-control#tab=tab_3
https://saude.gov.br/saude-de-a-z/malaria
https://www.saude.gov.br/images/pdf/2017/janeiro/04/Plano-eliminacao-malaria-pub.pdf
https://www.saude.gov.br/images/pdf/2017/janeiro/04/Plano-eliminacao-malaria-pub.pdf
https://portalarquivos2.saude.gov.br/images/pdf/2020/janeiro/29/af-guia-tratamento-malaria-28jan20-isbn.pdf
https://portalarquivos2.saude.gov.br/images/pdf/2020/janeiro/29/af-guia-tratamento-malaria-28jan20-isbn.pdf
https://doi.org/10.20944/preprints202009.0552.v1


 

INSECTICIDE-TREATED NETS - Pyrethroid-only 

Long-lasting insecticidal nets (LLINs) prequalified by 

WHO are recommended for deployment as a core 

intervention in all malaria-endemic settings. Pyrethroid-

PBO nets prequalified by WHO are conditionally 

recommended for deployment instead of pyrethroid-

only LLINs where the principal malaria vector(s) 

exhibit pyrethroid resistance.  

Strongly recommended as an intervention of public 

health value, high-certainty evidence. 

INSECTICIDE-TREATED NETS - Use of long-lasting 

impregnated mosquito nets in priority locations for 

each municipality and increase coverage in locations 

where LLIN is already used, together with monitoring 

of LLIN replacement plan to ensure availability. 

 

INDOOR RESIDUAL SPRAYING (IRS) - 

IRS deploying a product prequalified by WHO is 

recommended as a core intervention in all malaria-

endemic settings. DDT has not been prequalified; it 

may be used for IRS if no equally effective and 

efficient alternative is available, and if it is used in line 

with the Stockholm Convention on Persistent Organic 

Pollutants. 

Strongly recommended as an intervention of public 

health value, low-certainty evidence. 

INDOOR RESIDUAL SPRAYING - IRS following 

technical recommendations of 

the Brazilian Health Surveillance Secretariat (SVS), in 

buildings located in areas responsible for 80% of 

malaria transmission by 

Infection, and in cycles that allow residual insecticide 

to be maintained throughout 

the year. 

 

--- 

HOUSING AND WORKING PLACE 

IMPROVEMENT - doors and windows screen 

installation and maintenance. 

Supplementary interventions 

LARVICIDING - Regular application of biological or 

chemical insecticides to water bodies is recommended 

in areas where high coverage with a core intervention 

has been achieved, where aquatic habitats of the 

principal malaria vector(s) are few, fixed and findable, 

and where its application is both feasible and cost-

effective. Conditionally recommended as an 

intervention of public health value, low-certainty 

evidence. 

LARVICIDING - Carrying out management of water 

collections to eliminate breeding sites 

of anopheles in urban locations with malaria 

transmission. Drainage; minor sanitation work to 

eliminate vector breeding sites; landfill; cleaning the 

margins of breeding sites; modification of water flow; 

control of aquatic vegetation. 

 

Personal protection measures 

TOPICAL REPELLENTS - Deployment of topical 

repellents is not recommended as a public health 

intervention; however, topical repellents may be 

beneficial as an intervention to provide personal 

protection. 

Conditionally recommended against deployment as an 

intervention with public health value, low-certainty 

evidence. 

TOPICAL REPELLENTS -  

DEET (N-N-dietilmetatoluamida)  

INSECTICIDE-TREATED CLOTHING - Use of 

insecticide-treated clothing is not recommended as an 

intervention with public health value; however, 

insecticide-treated clothing may be beneficial as an 

intervention to provide personal protection in specific 

population groups. 

Conditionally recommended against deployment as an 

intervention with public health value, low-certainty 

evidence. 

CLOTHING - Clothing that protects legs (pants) and 

arms (long sleeve) 
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SPACE SPRAYING - Space spraying should not be 

undertaken for malaria control, and IRS or LLINs 

should be prioritized instead. 

Conditionally recommended against deployment, very 

low-certainty evidence. 

SPACE SPRAYING - Performing chemical spatial 

control, when in outbreak situations.  

4.1. Long-lasting insecticidal nets (LLINs) 

The use of LLINs is a highly cost-effective strategy for malaria prevention which has contributed 

to a significant reduction in disease morbidity and mortality worldwide. Until 2007, the WHO 

advocated distribution of LLINs only to pregnant women, children, and human immunodeficiency 

virus (HIV)-positive individuals. Since then, LLINs are recommended by WHO to all individuals at 

risk in endemic areas [81]. Accordingly, in Brazil, the Ministry of Health recommends the distribution 

and installation of LLINs, which are intended for personal overnight protection. Currently, LLINs 

impregnated with pyrethroid have a shelf life of 2-3 years [82]. Insecticide-treated bed-net 

incorporating a mixture of the pyrethroid alpha-cypermethrin and pyriproxyfen, an insect growth 

regulator, has been proposed as an alternative to pyrethroid only nets. Experimental evaluations 

showed more than 80% mortality and higher than 90% blood-feeding inhibition in the African 

malaria vector An. gambiae exposed to these LLINs. Furthermore, blood-fed female mosquitoes 

surviving net exposure suffered 83% reduction in oviposition and 95% reduction in offspring, 

indicating a potential improvement of malaria vector control when compared to standard pyrethroid-

only LLINs [83]. 

Three hundred thousand LLINs were purchased by the Ministry of Health between 2015 and 

today. Despite the advantages of using LLINs subsidized by the government, data regarding the 

actual distribution and use of impregnated mosquito nets in this region is scarce [84, 85]. Local 

surveys indicate negative perceptions of LLINs, as they may cause skin irritations and allergies and 

are not effective in preventing malaria transmission occurring outdoors [86]. Low compliance, nets 

misuse, lack of LLIN replacement program, and local epidemiological factors may curtail the efficacy 

of impregnated bed nets for malaria control in the Amazon region.  

4.2. Indoor residual spraying (IRS) 

Another core measure for malaria vector control consists of spraying the walls of commercial 

buildings and residences with insecticides that remain on the applied surfaces [87]. Etofenprox PM 

20% is the insecticide used in Brazil for residual spraying for malaria vector control. This product has 

a residual effect for 4 months requiring three annual applications [82]. In the Amazon, factors such 

as the operational cost of mobilizing teams to perform insecticide spraying, the difficulty in accessing 

remote areas at adequate frequency, the variability of dwellings, and variable environmental 

conditions, may compromise the efficacy of IRS [88]. In fact, few systematic evaluations on the impact 

these measures have on suppressing anopheline populations and reducing levels of malaria 

transmission in the Brazilian Amazon have been performed [82, 88]. While IRS is applicable and 

effective in urban and peri-urban environments, issues need to be addressed regarding gold miners 

who often live in huts without walls, continuously exposed to mosquito bites, unconventional 

indigenous house architecture that may not favor IRS and the lack of studies regarding the stability 

of insecticides applied on unconventional surfaces and under extreme humidity and temperature 

environmental conditions [89]. 

4.3. Larvae control 

Supplemental interventions based on larval control are effective in reducing vector density and 

malaria transmission where aquatic habitats of the principal malaria vector(s) are few, fixed and 

findable, and where its application is both feasible and cost-effective [90, 91, 92]. Historical 

interventions largely based on larval control, including the previously mentioned eradication of An. 

arabiensis from Brazil [93], suggest that this approach may be an important asset in the battle for 

achieving malaria elimination and eradication. 
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Early larvicidal interventions involved environmentally damaging measures including 

elimination of breeding sites by filling depressions or draining swamps and application of toxic diesel 

or Paris green, impacting all organisms living in ponds, swamps, and other breeding sites. 

Nowadays, environmentally friendly alternatives are widely available. For example, biolarvicides 

based on the bacteria Bacillus thuringiensis israelensis (Bti)  and/or Lysinibacillus sphaericus,  (syn. 

Bacillus sphaericus, Bs), have been successfully applied for mosquito control in various ecological 

settings in sub Saharan Africa [94], Europe [95], Asia [96] and South America [97]. Aquatic insect 

predators and larvivorous fish have also been proposed as mosquito biocontrol agents, however, 

there is only limited evidence of their impact on disease transmission [98]. Density, diversity and 

habitat effects on the efficacy of natural mosquito larvae enemies must be considered. For instance, 

the presence of alternative preys, normally present in the extremely biodiverse Amazonian 

environment, together with the scarce selectivity of predators may limit the impact of such 

approaches on mosquito population [99].  

Larvae control interventions require substantial knowledge of larval ecology due to the effects 

of weather and physical and biological characteristics of larval habitats on their efficacy. Furthermore, 

larviciding interventions are labor-intensive and to be effective must cover multiple Anopheles larval 

habitats often dispersed in vast areas to be effective [94]. Therefore, the effectiveness of larvicides in 

the Amazon, is limited to urban and peri urban environments, during the dry season and where the 

number of mosquito breeding sites is limited and easily accessible. Larviciding is not recommendable 

when and where breeding sites are inaccessible and countless, and in rural and frontier 

environments. Because of the territorial dimensions of the Amazon and the characteristics of breeding 

sites, in rural areas this procedure is restricted to the vicinity of inhabited settlements in ranches and 

farms and fishponds [100]. Recent developments using unmanned aerial vehicles coupled with high-

resolution multispectral imagery to locate anopheline breeding sites could contribute to lower costs 

and improve coverage of larvae control programs in the Amazonian region [101].  

4.4. Personal protection 

Supplementary prophylactic measures against malaria include personal protection such as 

screens installed in windows and doors, clothing covering exposed parts of the body during biting 

periods, mosquito repellents, insecticides and   air-conditioning [102]. Although highly 

recommended for travelers entering malaria endemic areas [103], most types of continuous personal 

protection may be neither reasonable nor affordable for local inhabitants due to economic and 

cultural issues. The typical climate conditions of the Amazon, with both high temperature and 

humidity, makes wearing long sleeves shirts and pants uncomfortable as a way of mosquito bite 

protection. Insecticide impregnated clothing is expensive and requires replacement or special 

treatment to maintain its protective function [104]. Mosquito repellents (DEET) require continuous 

reapplication and costs may be prohibitive. In Brazil DEET-based products (100 ml, of 6.7–7.1% 

DEET) costs on average 15.80 BRL equivalent to US$3.84 [105]. Furthermore, the efficacy of 

commercially available repellents in protecting people from neotropical anophelines bites is still 

largely unknown. Local insecticide spraying is only manageable, sustainable and effective in confined 

environments, and its continuous application harms the environment [106]. Finally, housing 

improvements including netting and air conditioning are dependent on traditional architecture, 

windows and doors, as well as access to electricity and sufficient income that allows purchase, 

installation and maintenance of such home improvements. 
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5. Promising novel for vector control approaches 

In view of the limitations of conventional techniques for vector-focused malaria control in the 

Amazon, novel and promising approaches to curb malaria transmission are under investigation and 

consideration.  

5.1. Genetic control of malaria vectors 

Genetic engineering of mosquitoes offers solutions and novel strategies to tackle the challenges 

encountered by current vector control interventions, i.e.; difficulties in deploying control measures 

to the affected regions, largely rural and dispersed in large areas; broad-spectrum activity of available 

insecticides and increasing spread of insecticide resistance. Such strategies rely on the release of 

modified insects carrying specific genetic traits, which act upon mating with the compatible species. 

This limits their impact on the ecosystem and, at the same time, facilitates the deployment of the 

intervention by taking advantage of the dispersal and mate-seeking behavior of the released 

mosquitoes.  

5.1.1. Population suppression or replacement 

Genetic control strategies can be aimed either to the “suppression” of the overall number of 

vectors or to their “replacement” with modified insects that are incapable or refractory to the 

transmission of the pathogen. Suppression strategies usually exploit the engineering of genetic traits 

that interfere with the reproductive capacity of insects and/or their fitness. Conversely, genetic 

modification for population replacement involves the introduction and expression of exogenous 

antiparasitic genes or the editing of the genetic components involved in vector-pathogen interactions 

to block or reduce the parasite development within the vector. Replacement modifications can be also 

intended to hinder the host-seeking behavior of insects thereby reducing their vector competence 

[107, 108, 109]. 

5.1.2. Self-limiting or sustaining strategies 

The genetic control traits carried by the modified insect can be engineered to achieve different 

levels of persistence in the population after being released; this may vary from one, up to a virtually 

unlimited number of generations. Classic sterile insect technique (SIT) rely on repeated inundative 

releases of radio or chemical-sterilized males which can suppress the targeted populations by 

exploiting the single-mating capacity of female mosquitoes [110]. However, poor survival and mating 

competitiveness of the sterile males released are detrimental for the efficacy of these strategies [111].  

The availability of genomic sequences and tools for the genetic modification of the mosquito 

genome allowed the engineering of alternative approaches based on the release of genetically 

modified male insects carrying a dominant lethal gene (RIDL), with the added benefit of a reduced 

impact on the fitness of released males compared to the classic methods [112]. With both approaches 

(SIT and RIDL), the sterile or dominant lethal traits carried by released males are not transmitted to 

the following generations minimizing long-term impacts and simplifying the risk assessment process 

leading to field applications. Both these technologies have been successfully applied for suppression 

of agricultural pests and vectors [112, 113, 114, 115] including the New World screwworm fly 

Cochliomyia hominivorax (cause of myiasis) in several American and African countries [116, 117], the 

malaria vector Anopheles albimanus in El Salvador [118], the dengue virus-transmitting Aedes aegypti 

in Brazil [119] and tsetse flies (Glossina spp.) carriers of the African trypanosomiasis (sleeping 

sickness) in the Zanzibar Island Unguja [120] among other examples. However, self-limiting 

methods, such as SIT and RIDL, require repeated mass releases of the modified insects, challenging 

their use for the treatment of large or remote geographic regions and/or non-isolated vector 

populations.  

Beside the dominant sterility phenotype associated with these specific methods, genetic 

modifications are at best neutral or, in most of the cases, conferring a reduction of fitness to the 

carriers, resulting in a gradual removal of these traits from the population after release [121]. 
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Approaches to overcome these limitations were theorized in the first half of the 20th century when 

both threshold-dependent and self-sustaining strategies were initially proposed [110, 122]. 

Threshold-dependent strategies, such as genetic underdominance, involve the introduction of genetic 

elements able to invade a population only if seeded above a certain frequency, which depend upon 

the fitness of released insects relative to wildtype [123]. On the other hand, self-spreading 

technologies such as gene drives (GD) offer the advantage of reducing the size of releases necessary 

to either suppress the targeted population or replace it with insects unable to transmit the parasite 

[121, 124, 125]. 

GD elements can be engineered to bias their own transmission by hijacking the mendelian 

partition of genetic material during germline formation of the vectors hosting such modification in 

their genome. For example, site-specific endonucleases, such as the increasingly popular CRISPR-Cas 

system, can be inserted into specific genomic sequences to disrupt the function of haplosufficient 

genes with role on female development [126, 127] or fertility [128]. The same endonuclease, active 

during the diploid stages of germline formation, is programmed to cut the target site on the 

homologous chromosome (not containing the CRISPR drive element). The double-strand DNA break 

stimulates the homology directed repair (HDR) machinery of the germ cell to repair the broken 

chromosome by using its homologous twin, carrying the GD, as a genetic template. As a result, the 

GD element is copied (“homed”) to the homologous chromosome and transmitted to the entire 

progeny, instead of only half, thereby increasing in frequency over generations.  

The short life cycle of mosquitoes allows a rapid increment of individuals heterozygous for the 

GD element (and the associated genetic disruption) in the population, even if released at low 

frequencies, progressively reducing the number of wildtypes. Mating between GD heterozygous 

mosquitoes generates individuals without functional copies of the targeted haplosufficient gene 

manifesting the disruptive phenotype; e.g. female sterile [128] or intersex XX individuals [126], 

causing suppression of the population. The same CRISPR-based gene drive element was also linked 

to a second nuclease targeting the X chromosome during male meiosis [129] to bias transmission of 

sperm in favor of those carrying the Y. As a result, super-mendelian transmission of the GD is 

accompanied by male biased progenies, thus presenting the advantage of reducing the fraction of 

biting females whilst suppressing the population [127]. Similarly, CRISPR-based GD constructs 

homing in neutral genetic loci were also engineered to spread anti-parasite molecules through caged 

mosquito populations [130, 131]. 

5.1.3. Challenges, alternatives and transfer to neotropical species (e.g. An. darlingi)  

Besides the technical challenges, such as the selection of genetic resistance to the driving 

component or to the anti-malarial molecule, consistent research efforts have been focused over the 

last few years towards the development of new methods to limit or mitigate the spread of gene drive 

elements. The flexibility and modularity of CRISPR endonucleases prompted a variety of genetic 

control flavors with reduced penetrance as well as the development of novel countermeasures to 

gene drive spread [132, 133, 134, 135, 136]. The rapid progress in the laboratory and the potentials 

offered by these technologies are progressively shifting challenges towards the assessment of risk 

and ecological impact, regulation and acceptance prior field applications [137]. 

The flexibility offered by the molecular components used for genetic control offer the 

opportunity to transfer, with relative ease, these technologies to other species, such as An. darlingi, 

albeit the following resources being available: a laboratory-adapted inbred colony for genetic 

manipulation and testing in the laboratory; annotated genome and, favorable but not essential, a 

transcriptome for the selection of candidate genes and regulatory sequences for the expression of 

molecular effectors in the mosquitoes. Ad hoc transcriptomes may be unnecessary in the case 

orthologous genes may be retrievable from sibling species [138, 139, 140, 141, 142]. Successes with 

An. darlingi colonization [143, 144, 145] and genome sequence and annotation [146] and similar 

advances with other neotropical anophelines [147, 148, 149, 150] offer optimism that these 

technologies will soon be transferred to neotropical Amazonian malaria vectors. 
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5.2. Microbial-based approaches to control malaria transmission and malaria vector populations 

5.2.1. Entomopathogenic organisms 

Mosquitocidal microorganisms, including viruses, fungi and bacteria have been investigated as 

potential ecologically friendly alternatives to chemical insecticides [151, 152, 153, 154]. Bacillus 

thuringiensis var. israelensis (Bti) and Lysinibacillus sphaericus or Bacillus sphaericus (Bs) selectively kill 

mosquito larvae and have been used for decades with high efficacy and safety records [155, 156]. 

However, conventional Bti and Bs have low residual activity requiring repeated applications and 

increasing the cost of interventions [157, 158]. Long lasting microbial larvicide formulations with 

sustained release of Bti and Bs active ingredients for up to six months are currently commercially 

available [91, 159, 160, 161]. These new long-lasting larvicidal formulations associated with the use 

of drones to identify and map mosquito breeding sites, associated with aerial application of granular 

or aqueous Bti formulations may assist reducing the complex operational challenges that affect 

mosquito control in the Amazon environments [101, 162]. Besides Bti and Bs, microorganisms such 

as the bacteria Chromobacterium sp. Panama [163, 164] and the fungi Beauveria bassiana [165] and 

Metarhizium anisopliae [166], among others, have mosquitocidal activities. The present challenge is to 

convert these promising observations into products that are ready to be incorporated in mosquito 

control interventions. 

Genetic engineering methods have been proposed to increase the pathogenicity, improve 

longer-term efficacy, and prevent or delay insect resistance to entomopathogenic microorganisms 

[166, 167]. The addition of Bti genes into Bs genomes to increase infectivity to mosquitoes [168, 169] 

and the expression of Bt and non-Bt derived mosquito toxins in readily transformable 

microorganisms such as Chlorella desiccate, Pichia pastoris and Saccharomyces cerevisiae have been 

investigated as alternatives to develop new microbial products for mosquito control [170, 171, 172].  

5.2.2. Naturally occurring symbiotic microorganisms with anti-pathogen activity  

Mosquito microbiomes modulate insect immunity and some naturally occurring symbiotic 

microorganisms are capable of hampering or blocking malaria parasites development within their 

vectors [173, 174, 175]. These symbionts have been proposed as agents to render mosquito 

populations refractory to Plasmodium [176]. For example, the Serratia marcescens strain Y1 promotes 

the activation of the insect immune system resulting in a reduction of the number of developing 

oocysts after mosquitoes are challenged with an infective blood meal [177]. Similarly, a S. marcescens 

strain isolated from An. albimanus impairs P. vivax infection in that vector [178]. Enterobacter species 

isolated from wild mosquito populations in Zambia also show anti-Plasmodium activity, likely 

through the production of reactive oxygen species (ROS) [173, 178, 179]. Bacteria of the genus Asaia 

induce a basal immunity in Anopheles mosquitoes leading to a decrease in the development of malaria 

parasites within their vectors [180]. 

The symbiotic yeast Wickerhamomyces anomalus strain (WaF17.12), isolated from the malaria 

vector mosquito Anopheles stephensi, has shown strong in-vitro anti-plasmodial activity. Mosquitoes 

colonized with WaF17.12 developed 65.2% fewer parasites than the control group [181]. More 

recently, a symbiont microsporidian (Microsporidia MB ) that colonizes An. arabiensis from Kenya, 

were shown capable of blocking P. falciparum development and transmission, providing a new 

prospect for malaria control [182]. Host-baited traps, odour-baited traps, resting traps and sugar-

baited traps have been proposed as possible ways of delivering these agents to mosquitoes [183]. 

5.2.3. Paratransgenesis 

Paratransgenesis consists in genetically transformed mosquito symbionts such as fungi, viruses 

or bacteria to disrupt the transmission of vector-borne pathogens [184]. The perspective of applying 

paratransgenesis for malaria control has driven exciting research with promising results. 

Recombinant densovirus such as AgDNV, isolated from An. gambiae, can be used to infect mosquitoes 

and drive expression of anti-Plasmodium peptides to block parasite transmission or insect-specific 

toxins to reduce mosquito population density or mosquito lifespan [185]. Fungi carrying effector 
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genes that hinders Plasmodium development have been created [186]. Among the symbiotic bacteria 

found in malaria vectors, Asaia, Pantoea, Serratia, Pseudomonas and Thorsellia have been evaluated as 

candidates for paratransgenesis [187, 188, 189]. 

Proof-of-principle experiments conducted with An. gambiae and An. stephensis [190, 191, 192] 

suggest paratransgenesis can be developed in an actual tool for malaria control. Engineered Pantoea 

agglomerans expressing anti-plasmodial genes inhibit the development of malaria parasites by up to 

98% and reduce the proportion of infected mosquitoes by 84% in lab settings [191]. Similar results 

were obtained with Serratia, strain AS1 [190]. With this in mind, the microbial flora associated with 

An. darlingi and other neotropical malaria vectors have been investigated [178, 193, 194, 195, 196, 197, 

198, 199, 200, 201, 202]. Expanding the knowledge of culturable bacteria associated with this malaria 

vector and identifying symbiotic bacterial strains that are amenable to genetic manipulation, colonize 

An. darlingi efficiently and are transferred from adult females to their progeny, is essential for moving 

forward and testing the viability of paratransgenesis for malaria control in the Amazon. Recent 

detection of Asaia sp in An. darlingi further supports the prospect of using these bacteria as tools for 

malaria control through paratransgenesis in the Amazon [193, 199] although several challenges 

remain to be addressed for field applications (i.e. effectiveness, safety and release methods). 

5.2.4. Wolbachia 

Wolbachia are common intracellular endosymbiont bacteria present in up to 60% of insect species, 

including mosquitoes [203, 204, 205]. They are maternally inherited and can cause three kinds of 

reproductive alterations in their hosts: cytoplasmic incompatibility (CI), parthenogenesis and 

feminization [204, 206, 207, 208]. Furthermore, Wolbachia can inhibit the replication of pathogens in 

its arthropod hosts making these organisms a promising tool to combat mosquito-transmitted 

diseases [209, 210]. The successes of Wolbachia-based biocontrol of dengue and other arboviruses [211] 

suggest the possibility of similar Wolbachia-based strategies for malaria control. 

Evidences of natural Wolbachia infections in malaria vectors [212, 213, 214] triggered 

investigations on the possible use of Wolbachia–Anopheles associations to limit malaria transmission. 

These efforts generated remarkable results showing reduced egg laying (population reduction) and 

a significantly reduced Plasmodium prevalence in mosquitoes carrying native Wolbachia infection 

(population replacement) [213, 215]. However, challenges remain for naturally occurring Wolbachia 

to be applicable as tools for malaria control. These strategies must rely on CI for Wolbachia to spread 

in natural populations and at present, it is not clear whether native Wolbachia can induce CI in 

anophelines. Induction of CI was not observed in caged experiments using wAnga-BF-infected An. 

coluzzii [215]. Nonetheless, Wolbachia-based malaria control strategies, such as population 

suppression or blocking of parasite development, are not only reliant on Wolbachia symbionts 

naturally associated with a given mosquito species. Successful dengue control was achieved with 

Aedes aegypti mosquitoes artificially infected with Wolbachia from a different insect species. Hence, 

the Wolbachia-based vector population suppression and disease transmission blocking can work in 

species not commonly infected with Wolbachia in the wild [216]. So far, the only Anopheles species 

amenable to Wolbachia transinfection in the laboratory is An. stephensi [217]. The wAlbB strain was 

used to stably infect An. stephensi, inducing complete CI, and conferring resistance to malaria 

parasites [218]. Recent studies suggest paratransgenesis could be exploited to circumvent difficulties 

in infecting malaria vectors with living Wolbachia strains. Wolbachia-derived molecules able to 

stimulate the immune system and modulate the mosquito vector competence, can be expressed in 

symbiotic bacteria affecting parasite development [219]. 

Wolbachia-based approaches for malaria control in the Amazon have not been investigated to 

date. Successful laboratory colonization of An. darlingi and other local malaria vectors [143, 144, 145], 

will allow attempts to transinfect these mosquitoes with Wolbachia. However, Wolbachia-based 

approaches for malaria control in the Amazon will depend on vertical transmission of Wolbachia to 

offspring. Additionally, research is needed to investigate if CI, parthenogenesis or feminization could 

be induced by Wolbachia infected and to identify Wolbachia strains which affect malaria parasites 

development in these mosquitoes.  
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6. Final remarks and perspectives 

Despite the WHO's global efforts to control and eliminate malaria, the present malaria situation 

is still alarming, with an estimated 228 million of yearly cases of malaria occurring worldwide, 

causing more than 400 thousand deaths and predominantly affecting the poor and underprivileged 

(7WHO, 2019). While most malaria cases and related deaths occur in the World Health Organization 

(WHO) African Region (213 million or 93%), in 2018 the Americas reported more than 750 thousand 

confirmed malaria cases, with 130 million people living in areas at risk of malaria transmission. 

Approximately 200 thousand malaria cases were registered in the Brazilian Amazon in 2018. With 

the goal of providing the deserved health care to the thousands of people living in the Amazon, and 

in accordance with United Nations Sustainable Development Goal (SDG) 3, “ensure healthy lives and 

promote well-being for all at all ages” [220], increased investment and adequate planning will be 

necessary to eliminate malaria transmission in the area. Investments in malaria elimination and 

eradication are worthwhile, resulting in millions of lives saved, stimulating the economy and 

fostering prosperity, ensuring return on investment of billions of dollars [221, 222, 223, 224, 225, 226].  

While malaria elimination in Brazil in the near future remains unlikely [6], researchers are 

exploring and developing novel and promising vector-based approaches to curb malaria 

transmission. Along with improvements of vaccines, drugs, diagnostic tools and 

insecticide-treated nets, these new vector-based approaches may prove crucial for the 

implementation of malaria-control programs, especially in regions where 

existing interventions have been unable to eliminate disease transmission. The 

efficacy and biosafety concerning these new technologies will need to be addressed via a stepwise 

regulatory framework before they can be incorporated into malaria control programs. Meanwhile, 

research expanding the knowledge of neotropical malaria vectors biology, ecology, behavior, 

physiology, genetics, biochemistry and insecticide resistance, primarily An. darlingi, is warranted as 

the basis on which vector-based malaria control in the Amazon may be founded. 
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