Using Machine Learning to Perform Proximity Detection - Classifying Bluetooth Beacon RSSI Values

Karen Song
karen22@mit.edu

Abstract—This project focuses on using machine learning classification algorithms to determine whether two people are 6 feet apart or not. Two Raspberry Pis were used simulate smart phones. RSSI values of the Bluetooth beacons transmitted between the Raspberry Pis were collected and recorded to train the classifier. The Gaussian Support Vector Machine Classifier yielded the highest testing accuracy of 79.670 and the Decision Tree Classifier yielded the highest AUC of 0.80.

Keywords—Bluetooth, RSSI, Classification, Machine Learning

I. INTRODUCTION

A. Project Description

This project addresses the feasibility of using machine learning classification algorithms to detect whether two Raspberry Pis (simulating phones held by humans) are ≤ 6 feet apart or not. The Center for Disease Control (CDC) has advised people to social distance when near other people at a distance of at least 6 feet apart, so contact tracing platforms must be able to perform proximity detection between people [4]. This project was executed by designating one Raspberry Pi to be a Bluetooth beacon advertiser, the other to scan for beacons, and collecting measured RSSI values of the beacons.

B. Background Information

A Bluetooth low energy beacon transmits a universally unique identifier (UUID) which is picked up by compatible devices [4]. The beacon also broadcasts “a Major number identifying a subset of beacons within a large group, a Minor number identifying a specific beacon, and a TX power level indicating the signal strength one meter from the device.” [4]. RSSI, or “Received Signal Strength Indicator,” is a measurement of how well a device can hear a signal from an access point [3].

II. HYPOTHESIS

A machine learning classifier algorithm can be trained to accurately predict whether two Raspberry Pis are 6 feet apart or not based on RSSI values.

- Bluetooth-based contact tracing must be able to detect whether users are 6 feet apart or closer in order to report possible COVID-19 exposure.

- Large amounts of RSSI and distance data will need to be collected from the Raspberry Pi. Raspberry Pis will need to be placed at varying distances apart and RSSI values measured at those distances.

III. EXPERIMENT AND DATA COLLECTIONS

A. Plan and Execution

The experiment was conducted by placing the Raspberry Pis at a measured distance apart and then recording the RSSI values measured by the scanner Pi. Figure 1 shows the setup of the 2 Pis, separated by a set distance and connected to power sources. The Pis were separated at a distance of 3 feet, 6 feet, and other arbitrary values both inside and outside the “6 feet apart rule”. Multiple trials were taken to collect data. All RSSI data was compiled into a CSV file. 10 trials of each distance were taken.

- During each trial, 60 seconds of scanning and advertising of Bluetooth beacons took place.
- One Raspberry Pi was set up as a Bluetooth beacon advertiser that transmitted Bluetooth beacons once every 1 second. The other Raspberry Pi was set up as a Bluetooth scanner that scanned for beacons every 1 second.
- The experiment was conducted in a home setting due to the Raspberry Pis requiring power sources.

B. Data Relevance

The distance between Raspberry Pis must be measured in order to determine what RSSI values are associated with distances greater than or within 6 feet.
C. Examples

Fig. 1 Experiment Setup

Fig. 2 "pipact_distdata.csv" contains RSSI values in the y-column and the distance between the Raspberry Pis (in inches) in the x-column.

Fig. 3 "pipact_databinary.csv" contains RSSI values in the y-column and a binary number (0 or 1) in the x-column. 0 indicates that the Pis were separated by a distance greater than 6 feet, 1 indicates that the Pis were separated by 6 feet or less.

IV. ANALYSIS AND ALGORITHMS

A. Description

I trained four different classifiers to classify the data collected into two classes: within 6 feet or outside 6 feet. Initially, I trained the models using the “pipact_distdata.csv” to try and predict the distance between beacons given RSSI values, but this yielded very low accuracies so I instead tried to predict whether beacons were within 6 feet apart or not using “pipact_databinary.csv” (Fig. 3). All models were programmed in Python. Python libraries used include Numpy, Pandas, Matplotlib, scikit-learn, and Seaborn. Sklearn’s train_test_split to create an 80-20 train-test split of the dataset.

B. Results and Examples

Support Vector Machine

I implemented SVM using 4 different kernels: Gaussian (RBF), Linear, Polynomial (degree=4), and Sigmoid.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Training Accuracy</th>
<th>Validation Accuracy</th>
<th>Testing Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian (rbf)</td>
<td>76.117</td>
<td>72.603</td>
<td>79.670</td>
</tr>
<tr>
<td>Linear</td>
<td>67.010</td>
<td>62.329</td>
<td>67.582</td>
</tr>
<tr>
<td>Poly (deg = 4)</td>
<td>67.010</td>
<td>63.699</td>
<td>67.582</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>55.670</td>
<td>57.534</td>
<td>58.791</td>
</tr>
</tbody>
</table>

Fig. 4 Training, Validation, and Testing Accuracies of SVM model by kernels.

Fig. 5 Gaussian (RBF) SVM Confusion Matrix
Fig. 6 AUROC Curve for Gaussian SVM

Fig. 7 Linear SVM Confusion Matrix

Fig. 8 AUROC Curve for Linear SVM

Fig. 9 Polynomial SVM Confusion Matrix
A logistic regression model was also implemented to classify the dataset.

- Training Accuracy = 59.10%
- Training Accuracy = 53.84%
- Validation Accuracy = 52.05%

Fig. 10 AUROC Curve for Polynomial SVM

Fig. 11 Sigmoid SVM Confusion Matrix

Fig. 12 AUROC Curve for Sigmoid SVM

Fig. 13 Logistic Regression Confusion Matrix
The next model tested was the k-Nearest Neighbors classifier. I experimented with different n values, and accuracies did not improve beyond n=3.

- Training Accuracy = 78.179
- Testing Accuracy = 76.923
- Validation Accuracy = 78.082

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>Predicted</td>
<td>0.30</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Normalized Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>Predicted</td>
<td>0.39</td>
<td>0.61</td>
</tr>
</tbody>
</table>

The final model tested was the Decision Tree Classifier. A max depth of 5 and a minimum number of leaves of 5 was chosen as accuracies did not improve beyond these values.

- Training Accuracy = 78.694
- Testing Accuracy = 78.571
- Validation Accuracy = 76.027

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>Predicted</td>
<td>0.30</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Normalized Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>Predicted</td>
<td>0.39</td>
<td>0.61</td>
</tr>
</tbody>
</table>
VI. NEXT STEPS

The experiment was conducted under near ideal circumstances (no weather fluctuations, no obstacles, etc). With the presence of interferences such as clothing fabric, humidity, and other Bluetooth devices, the machine learning model would most likely yield lower accuracies. In the future, I will collect data under different weather conditions, cover the Pis in different types of fabric, and also attempt to send phone notifications or pings from Raspberry Pis to a user’s smart phone about their proximity to other people from RSSI values. I also plan on exploring metrics other than RSSI values to detect proximity, as well as other hardware additions that can add functionality to the Raspberry Pis.

REFERENCES

