Supplementary Tables

Table 1: List of Genes implicated in the entry and pathogenesis of Human coronaviruses

Genes	Reference (PMID/PMCID)	Evidence
ACE2	32418199	Angiotensin-converting enzyme 2 (ACE2) has been established as the functional host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
CCL2	15919935	SARS-CoV induced the expression of chemokines such as CXCL10/IFN-gamma-inducible protein 10 and CCL2/monocyte chemotactic protein 1
CD40	24845462	A poor virus-specific CD4 and CD8 T cell response is attributed to an inefficient immune activation by SARS-CoV-MA15, particularly of respiratory DC (rDCs), as shown by reduced expression of MHC-II, CD86 and CD40 on cells harvested from the lung
CLTC	17522231	These results suggest that when SARS-CoV binds ACE2 it is internalized and penetrates early endosomes in a clathrin-dependent manner and that the cytoplasmic tail of ACE2 is not required for the penetration of SARS-CoV.
CRP	32243911	In the early stage of COVID-19 CRP levels were positively correlated with lung lesions and could reflect disease severity.
CSF2	32513566	In the short time since the emergence of COVID-19, numerous studies have described abnormal levels of the following cytokines and chemokines in the patients: IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, M-CSF, G-CSF, GM-CSF, IP-10, IFN-γ, MCP-1, MIP 1-α, hepatocyte growth factor (HGF), TNF-α, and vascular endothelial growth factor (VEGF)
CSF3	32513566	In the short time since the emergence of COVID-19, numerous studies have described abnormal levels of the following cytokines and chemokines in the patients: IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, M-CSF, G-CSF, GM-CSF, IP-10, IFN-γ, MCP-1, MIP 1-α, hepatocyte growth factor (HGF), TNF-α, and vascular endothelial growth factor (VEGF)
CTSA	32221306	Depending on virus strains and cell types, CoV S proteins may be cleaved by one or several host proteases, including furin, trypsin, cathepsins, transmembrane protease serine protease-2 (TMPRSS-2), TMPRSS-4, or human airway trypsin-like protease (HAT)
CTSB	32221306	Depending on virus strains and cell types, CoV S proteins may be cleaved by one or several host proteases, including furin, trypsin, cathepsins, transmembrane protease serine

		protease-2 (TMPRSS-2), TMPRSS-4, or human airway
		trypsin-like protease (HAT)
CTSD	32221306	Depending on virus strains and cell types, CoV S proteins
CISD	32221300	may be cleaved by one or several host proteases, including
		furin, trypsin, cathepsins, transmembrane protease serine
		protease-2 (TMPRSS-2), TMPRSS-4, or human airway
CTC~	22221206	trypsin-like protease (HAT)
CTSg	32221306	Depending on virus strains and cell types, CoV S proteins
		may be cleaved by one or several host proteases, including
		furin, trypsin, cathepsins, transmembrane protease serine
		protease-2 (TMPRSS-2), TMPRSS-4, or human airway
CTTG1	22221207	trypsin-like protease (HAT)
CTSk	32221306	Depending on virus strains and cell types, CoV S proteins
		may be cleaved by one or several host proteases, including
		furin, trypsin, cathepsins, transmembrane protease serine
		protease-2 (TMPRSS-2), TMPRSS-4, or human airway
~~~~	22224204	trypsin-like protease (HAT)
CTSS	32221306	Depending on virus strains and cell types, CoV S proteins
		may be cleaved by one or several host proteases, including
		furin, trypsin, cathepsins, transmembrane protease serine
		protease-2 (TMPRSS-2), TMPRSS-4, or human airway
		trypsin-like protease (HAT)
CXCL10	28466096	SARS-CoV-infected airway epithelial cells (AECs) also
		produce large amounts of CCL3, CCL5, CCL2, and
		CXCL10
CXCL5	32446778	SARS-CoV-2 upregulated only five of them, (namely,
		CXCL10, IL6, CCL2, CXCL1, CXCL5
DPP4	32224164	Antibodies directed against DPP4 inhibited human
		coronavirus-Erasmus Medical Center (hCoV-EMC)
		infection of primary human bronchial epithelial cells and
_		Huh-7 cells.
FURIN	32362314	The host cell protease furin cleaves the SARS-CoV-2 spike
		protein at the S1/S2 site
IFNA10	26410416	The nucleocapsid protein (N protein) of SARS-CoV plays
		an important role in inhibition of type I interferon (IFN)
		production via an unknown mechanism
IFNA14	26410416	The nucleocapsid protein (N protein) of SARS-CoV plays
		an important role in inhibition of type I interferon (IFN)
		production via an unknown mechanism
IFNA16	26410416	The nucleocapsid protein (N protein) of SARS-CoV plays
		an important role in inhibition of type I interferon (IFN)
		production via an unknown mechanism
IFNA2	26410416	The nucleocapsid protein (N protein) of SARS-CoV plays
		an important role in inhibition of type I interferon (IFN)
		production via an unknown mechanism
IFNA21	26410416	The nucleocapsid protein (N protein) of SARS-CoV plays
	t	

		an important role in inhibition of type I interferon (IFN)
IFNA8	26410416	production via an unknown mechanism  The nucleocapsid protein (N protein) of SARS-CoV plays
IFNAO	20410410	an important role in inhibition of type I interferon (IFN)
		production via an unknown mechanism
IFNAR1	32275914	IFN-I are thus among the first cytokines produced during a
IIINANI	32273914	viral infection. They are recognized by the IFNAR receptor
		present at the plasma membrane in most cell types.
IFNAR2	32275914	IFN-I are thus among the first cytokines produced during a
ITMAKZ	32213914	viral infection. They are recognized by the IFNAR receptor
		present at the plasma membrane in most cell types.
IFNB1	15476870	Interferon-beta and Interferon-Gamma Synergistically
IIIIDI	13470070	Inhibit the Replication of Severe Acute Respiratory
		Syndrome-Associated Coronavirus (SARS-CoV)
IFNG	15476870	Interferon-beta and Interferon-Gamma Synergistically
II'NO	134/06/0	Inhibit the Replication of Severe Acute Respiratory
		Syndrome-Associated Coronavirus (SARS-CoV)
IKBKB	32194980	melatonin indirectly targets several HCoV cellular targets,
IKDKD	32194900	including ACE2, BCL2L1, JUN, and IKBKB
IKBKE	32531085	Along with interferon and innate immune signalling
IKDKE	32331063	components, such as interferon regulatory factor 3 (IRF3),
		transmembrane protein 173 (TMEM173), TANK binding
		kinase 1 (TBK1), inhibitor of nuclear factor kappa B kinase
		subunit epsilon (IKBKE), tripartite motif containing 25
		(TRIM25), mitochondrial antiviral signalling protein
		(MAVS) or DExD/H-box helicase 58 (DDX58), C1-INH is
		one of the proteins with the highest connectivity in the
IVDVC	28355270	merged CoV-1 and CoV-2 interactomes
IKBKG	28333270	Compared to treatment with the prototypical inflammatory
		cytokine interleukin(IL)-1, HCoV-229E replication was found to attenuate the inducible activity of the transcription
		factor (TF) NF- $\kappa$ B and to restrict the nuclear concentration
		of NF-κB subunits by (i) an unusual mechanism involving
		partial degradation of IKK $\beta$ , NEMO and IkB $\alpha$ and (ii)
		upregulation of TNFAIP3 (A20), although constitutive IKK
		activity and basal TNFAIP3 expression levels were shown
		to be required for efficient virus replication.
IL10	32169119	A few plasma cytokines and chemokines were observed
ILIU	32107117	ascended in COVID-19 patients, including IL-1, IL-2, IL-4,
		IL-7, IL-10, IL-12, IL-13, IL-17, GCSF, macrophage
		colony-stimulating factor (MCSF), IP-10, MCP-1, MIP-1α,
		hepatocyte growth factor (HGF), IFN- $\gamma$ and TNF- $\alpha$
IL10RB	24751921	Type III IFNs signal through a different receptor, which is
ILIUND	24/J1721	composed of IFNLR1 and IL10RB. Upon binding to their
		cognate receptors, type I and type III IFNs induce the same
		Jak/STAT pathway: the transphosphorylation and activation
		Jan/51/A1 paurway. the transphosphorylation and activation

		of recentor associated Jok 1 and Tyle? leads to the
		of receptor-associated Jak1 and Tyk2 leads to the
		phosphorylation of STAT1 and STAT2 transcription
1	22221127	factors.
IL1B	32291137	Evidence suggests that CRS might play a major role in
		severe COVID-19. Inflammatory cytokines and
		chemokines, including interleukin-6 (IL-6), interleukin-1β
		(IL-1β), induced protein 10 (IP10) and monocyte
		chemoattractant protein-1 (MCP-1) were significantly
		elevated in COVID-19 patients, and some were more
		commonly seen in severe patients than in nonsevere patients
IL6	32291137	Elevated IL-6 levels were observed in patients with SARS
		and were correlated with disease severity
IL7	32169119	A few plasma cytokines and chemokines were observed
		ascended in COVID-19 patients, including IL-1, IL-2, IL-4,
		IL-7, IL-10, IL-12, IL-13, IL-17, GCSF, macrophage
		colony-stimulating factor (MCSF), IP-10, MCP-1, MIP-1α,
		hepatocyte growth factor (HGF), IFN- $\gamma$ and TNF- $\alpha$
IL9	32561873	Concentrations of IL-4, IL-9 and IL-13, which are
	32301073	associated with type 2 immunity, bronchial hypersensitivity
		and increased mucus production, are also high in patients
		with COVID-19
IRF3	25093995	The cellular pathways mediated by interferon regulatory
IKF3	23093993	
		factor (IRF)-3 and -7, activating transcription factor (ATF)-
		2/jun, activator protein (AP)-1, nuclear factor kappa-light-
		chain-enhancer of activated B cells (NF-κB), and nuclear
		factor of activated T cells (NF-AT), are the main drivers of
		the inflammatory response triggered after viral infections,
	2272222	with NF-κB pathway the most frequently activated
IRF5	32733388	Researchers hypothesized that after COVID-19 infects
		human cells, the virus utilizes an excess of glucose for a fast
		viral replication from the hexosamine biosynthetic pathway
		(HBP) hijacking substrates from the metabolic environment.
		This process induces overexpression of interferon IRF5,
		leading to a massive inflammatory gene overexpression,
		endoplasmic reticulum (ER) stress, and cytokine
		dysregulation profile.
IRF7	25093995	The cellular pathways mediated by interferon regulatory
		factor (IRF)-3 and -7, activating transcription factor (ATF)-
		2/jun, activator protein (AP)-1, nuclear factor kappa-light-
		chain-enhancer of activated B cells (NF-κB), and nuclear
		factor of activated T cells (NF-AT), are the main drivers of
		the inflammatory response triggered after viral infections,
		with NF-κB pathway the most frequently activated
IRF9	25093995	Type I IFN signaling starts with its binding to IFNAR
	25075775	receptors at the cell surface, which leads to the activation of
		<u> </u>
		the JAK–STAT pathway . The members of the Janus Kinase

		(JAK) family JAK-1 and protein tyrosine kinase 2 (TYK-2) phosphorylate the signal transducer and activators of transcription (STATs) which become activated. Phosphorylated STAT1 and STAT2 recruit IRF-9, to form the IFN stimulated gene factor 3 (ISGF3) complex. The ISGF3 heterotrimer translocates to the nucleus and triggers the transcription of IFN-stimulated genes (ISGs) that will drive the antiviral response.
JAK1	25093995	Type I IFN signaling starts with its binding to IFNAR receptors at the cell surface, which leads to the activation of the JAK–STAT pathway. The members of the Janus Kinase (JAK) family JAK-1 and protein tyrosine kinase 2 (TYK-2) phosphorylate the signal transducer and activators of transcription (STATs) which become activated. Phosphorylated STAT1 and STAT2 recruit IRF-9, to form the IFN stimulated gene factor 3 (ISGF3) complex. The ISGF3 heterotrimer translocates to the nucleus and triggers the transcription of IFN-stimulated genes (ISGs) that will drive the antiviral response.
MAP3K7	28933406	Phosphorylation of all three MAPK members has been detected in cells infected with SARS-CoV
MAPK1	22936401	Results point to SARS -C oV PL pro triggering TGF -β1 production via ubiquitin proteasome, p38 MAPK, and ERK 1/2-mediated signaling.
MAPK14	22936401	Results point to SARS -C oV PL pro triggering TGF -β1 production via ubiquitin proteasome, p38 MAPK, and ERK 1/2-mediated signaling.
MAPK3	28933406	Expression of SARS-CoV PLpro was shown to increase ERK1 ubiquitin-mediated degradation to suppress IFN-induced responses
MYD88	19079579	MyD88 Is Required for Protection from Lethal Infection with a Mouse-Adapted SARS-CoV
NFKB1	24198408	Inhibition of NF-κB-mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival
NFKB2	24198408	Inhibition of NF-kB-mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival
NLRP3	32574259	Due to this crucial role in triggering inflammatory response to infection, the NLRP3 inflammasome appears to be a potential drug target in the treatment of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2
PCSK1	32099652	Diabetes is associated with an increase in furin, which is a type-1 membrane-bound protease, belonging to the proprotein convertase subtilisin/kexin family (PCSK). It is involved in the entry of coronaviruses into the cell and

		increased Furin has been reported in diabetes, which might
		facilitate viral replication
PCSK2	32099652	Diabetes is associated with an increase in furin, which is a type-1 membrane-bound protease, belonging to the proprotein convertase subtilisin/kexin family (PCSK). It is involved in the entry of coronaviruses into the cell and increased Furin has been reported in diabetes, which might facilitate viral replication
PCSK5	PMC7122180	the furin-like PCs PACE4, PC5, and PC7 may selectively compensate the activation of viral glycoproteins in furin-deficient cells and tissues with different efficiencies.
PCSK6	32838164	furin is likely to be a functional complementarity or redundancy of PCSK6
PCSK7	PMC7122180	the furin-like PCs PACE4, PC5, and PC7 may selectively compensate the activation of viral glycoproteins in furin-deficient cells and tissues with different efficiencies.
PIAS1	PMC7129356	The nucleocapsid protein of SARS CoV interacts with PIAS1 and affects the NFkappaB pathway
PIAS3	9724754	Inhibition of Stat1-mediated Gene Activation by PIAS1
RARG	32459003	RA is the biologically active retinoid metabolite that, acting through its cognate receptors RA receptors (RAR $\alpha$ , $\beta$ and $\gamma$ ), regulates the expression of genes involved numerous biological pathways including both adaptive and innate immune responses
RARRES3	30988429	Thus, while we cannot exclude additional antiviral actions, RARRES3 likely exerts an antiviral effect by downregulating mTOR
REL	28933406	Mammalian NF-κB family composes of five members, RelA (also named p65), RelB, c-Rel, NF-κB1 p50, and NF-κB2 p52, which form dimers in the cytoplasm,A recent study reported an enhanced nuclear NF-κB activity in PBMCs treated with a purified and recombinant SARS-CoV S protein
RELA	28933406	Mammalian NF-κB family composes of five members, RelA (also named p65), RelB, c-Rel, NF-κB1 p50, and NF-κB2 p52, which form dimers in the cytoplasm,A recent study reported an enhanced nuclear NF-κB activity in PBMCs treated with a purified and recombinant SARS-CoV S protein
RELB	28933406	Mammalian NF-κB family composes of five members, RelA (also named p65), RelB, c-Rel, NF-κB1 p50, and NF- κB2 p52, which form dimers in the cytoplasm, A recent
		study reported an enhanced nuclear NF-κB activity in PBMCs treated with a purified and recombinant SARS-CoV S protein

		antiviral responses is also observed in other viruses, such as SARS-CoV
SOCS3	16482545	Induction level of suppressor of cytokine signaling-3 (SOCS3) by SARS-CoV was significantly lower than that by RSV in spite of the significant production of IL-6
STAT1	25093995	Type I IFN signaling starts with its binding to IFNAR receptors at the cell surface, which leads to the activation of the JAK–STAT pathway (Samuel, 2001) (Fig. 2). The members of the Janus Kinase (JAK) family JAK-1 and protein tyrosine kinase 2 (TYK-2) phosphorylate the signal transducer and activators of transcription (STATs) which become activated. Phosphorylated STAT1 and STAT2 recruit IRF-9, to form the IFN stimulated gene factor 3 (ISGF3) complex. The ISGF3 heterotrimer translocates to the nucleus and triggers the transcription of IFN-stimulated genes (ISGs) that will drive the antiviral response.
STAT2	25093995	Type I IFN signaling starts with its binding to IFNAR receptors at the cell surface, which leads to the activation of the JAK–STAT pathway (Samuel, 2001) (Fig. 2). The members of the Janus Kinase (JAK) family JAK-1 and protein tyrosine kinase 2 (TYK-2) phosphorylate the signal transducer and activators of transcription (STATs) which become activated. Phosphorylated STAT1 and STAT2 recruit IRF-9, to form the IFN stimulated gene factor 3 (ISGF3) complex. The ISGF3 heterotrimer translocates to the nucleus and triggers the transcription of IFN-stimulated genes (ISGs) that will drive the antiviral response.
STAT3	26199948	Severe acute respiratory syndrome coronavirus (SARS-CoV) infection results in STAT3 dephosphorylation.
TBK1	25093995	ARS-CoV membrane (M) protein impairs the formation of TRAF3/TANK/TBK1/IKKε complex, inhibiting IFN-β production
TLR3	26015500	Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection
TLR4	30571771	Mice lacking TLR4 had either similar survival rates or even more severe disease than wild-type mice infected with DENV, EBOV, SARS-CoV, or RSV
TLR7	32342146	The prominent ligand for TLR7 and 8 is viral ssRNA
TLR8	32342146	The prominent ligand for TLR7 and 8 is viral ssRNA
TMPRSS11D	32221306	Expression of TMPRSS 2, 4, 11 A, 11D, and 11E on 293/hACE2 cells enhanced SARS-CoV-2 S protein-mediated cell–cell fusion similarly to SASR-CoV S
TMPRSS11E	32221306	Expression of TMPRSS 2, 4, 11 A, 11D, and 11E on 293/hACE2 cells enhanced SARS-CoV-2 S protein-mediated cell–cell fusion similarly to SASR-CoV S

TMPRSS2	32221306	Expression of TMPRSS 2, 4, 11 A, 11D, and 11E on 293/hACE2 cells enhanced SARS-CoV-2 S protein-
		mediated cell-cell fusion similarly to SASR-CoV S
TMPRSS4	32221306	Expression of TMPRSS 2, 4, 11 A, 11D, and 11E on
		293/hACE2 cells enhanced SARS-CoV-2 S protein-
		mediated cell-cell fusion similarly to SASR-CoV S
TRAF3	19380580	Severe Acute Respiratory Syndrome Coronavirus M Protein
		Inhibits Type I Interferon Production by Impeding the
		Formation of TRAF3·TANK·TBK1/IKK€ Complex*
TRAF6	27164085	SARS Coronavirus Papain-Like Protease Inhibits the TLR7
		Signaling Pathway Through Removing Lys63-Linked
		Polyubiquitination of TRAF3 and TRAF6
TYK2	25093995	Type I IFN signaling starts with its binding to IFNAR
		receptors at the cell surface, which leads to the activation of
		the JAK-STAT pathway (Samuel, 2001) (Fig. 2). The
		members of the Janus Kinase (JAK) family JAK-1 and
		protein tyrosine kinase 2 (TYK-2) phosphorylate the signal
		transducer and activators of transcription (STATs) which
		become activated. Phosphorylated STAT1 and STAT2
		recruit IRF-9, to form the IFN stimulated gene factor 3
		(ISGF3) complex. The ISGF3 heterotrimer translocates to
		the nucleus and triggers the transcription of IFN-stimulated
		genes (ISGs) that will drive the antiviral response.

## **Supplementary Figures**

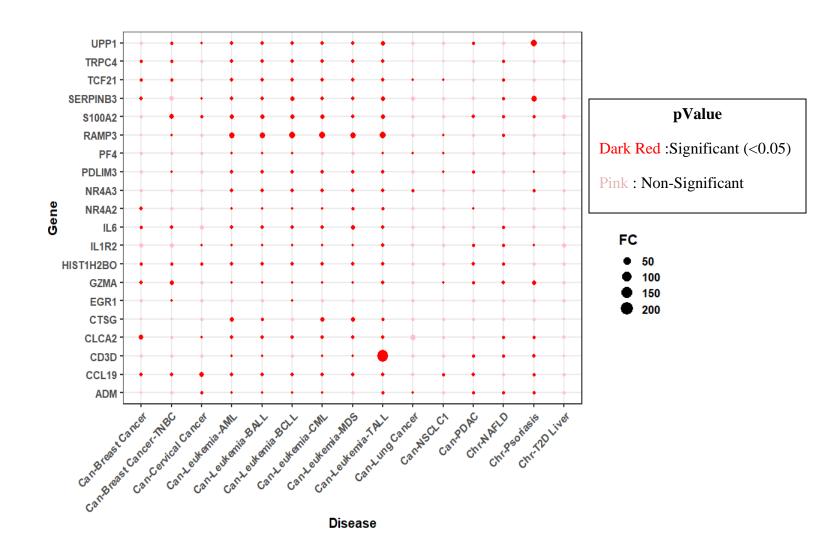



Figure 1: Bubble plot of expression pattern, in select disease types, of top 20 genes that are differentially expressed in SARS-CoV-2 patients.