

1 Type of the Paper (Article)

2 **Suboptimal Health Status of High School Students in**
3 **Guangzhou, Shanxi, and Tibet, China: A Cross-Sectional**
4 **Study**

5 **Gehendra Mahara^{1†}, Jiazhi Liang^{2†}, Zhirong Zhang³, Qi Ge¹, Jinxin Zhang^{1,*}**

6 1. Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-
7 sen University, Guangzhou 510080, China; gbmahara@hotmail.com(G.M.);
8 geqi0777@163.com (GQ), zhjinx@mail.sysu.edu.cn (JZ)

9 2. Center for disease control and Prevention at Haizhu, Guangzhou, Guangdong, 510288
10 China. jiazhi5413@163.com (JL)

11 3. Nanhai District People's Hospital of Foshan City, Foshan, Guangdong, China:
12 Zhangzhirong613@126.com (ZZ)

13 * Correspondence: zhjinx@mail.sysu.edu.cn; Tel.: +86-20-87332453.

14 † Gehendra Mahara and Jiazhi Liang both are equally contributed for this work.

15
16 **Abstract:** Suboptimal health status (SHS) is a state between health and disease, has
17 several associated factors, although, its underlying mechanism is still unclear. This
18 study aimed to investigate the status of SHS and its associated factors of high school
19 students in three areas of China (Shanxi, Guangzhou, and Tibet). A
20 multidimensional sub-health questionnaire of adolescent (MSQA) is used to
21 evaluate SHS. Among 1461 respondents, females proportion 56.47% was higher than
22 males 43.53% where SHS was higher in Shanxi, followed by Tibet and then
23 Guangzhou. The rural area, grade, lack of sleep, home visit in a week, lack of
24 exercise, a heavy burden of study, smoking, drinking, and fewer friends were the
25 risk factors of SHS, while, families living status, seeking help, and extroversion were
26 the protective factors. SHS is significantly associated with different influencing
27 factors. For comprehensive prevention and control measures, reduce the risk factors,
28 and enhance the protective factors.

29

30 **Keywords:** suboptimal health status; associated factors; high school students;
31 Shanxi; Guangzhou; Tibet; China
32

33 **1. Introduction**

34 Health is the functional phenomenon of human-being. The condition of being
35 sound in body, mind, spirit, and free from disease or pain is the meaning of health
36 [1]. In 1946s, The World Health Organization (WHO) defined that "health is a state
37 of complete physical, mental, and social well-being and, not merely the absence of

38 disease or infirmity”[2]. Likewise, the suboptimal health or sub-health status, also
39 known as suboptimal health status (SHS)[3] is the physical state of people which is
40 generally undiagnosed [4], however, some changes in psychological behavior or
41 physical characteristics can observe [5], In fact, SHS is an intermediate state between
42 health and disease condition [6]. In this state, there are no organic lesions in the body,
43 only characterized by persistent and recurrent fatigue, headaches, dizziness,
44 anxiety, depression, as well as a series of symptoms including non-specific pain and
45 sleep disorders [6–8].

46 Several studies suggested that SHS is as an intermediate state between health
47 and disease, which is due to the physical, psychological, and social stress of an
48 individual [4,9–12]. Due to the physical and psychological behavior, the overall
49 coordination of the body system become imbalance and dysfunction e.g. the nervous
50 system, endocrine system, and immune system that lead to the decline of
51 physiological, psychological, and social functions; however, the body has not yet
52 reached the disease stage [6,8]. Therefore, it is also regarded as a subclinical,
53 reversible stage of chronic diseases [3,6]. Because, it has been known that SHS is a
54 potential risk factor for chronic diseases such as type-II diabetes mellitus,
55 cardiovascular and stroke etc [6,11,13]. A number of studies have revealed that SHS
56 is mainly influenced by lifestyle factors [4,9,14]; these factors have a close
57 relationship with psychological symptoms or behavior of individuals [12,15]. Over
58 time, with the rapid development of technology and changes in environment and
59 lifestyles in China, the risk of SHS has been increasing consistantly[11]. Thus, SHS
60 has been recognized as a public health challenge globally, including China
61 [10,11,13,16].

62 In addition, some scholars believe that the changes in the living environment, over
63 work-load, interpersonal relationship, lack of sleep time, excessive psychological
64 stress, unbalanced diet, and an inappropriate exercise may lead to the formation of
65 SHS. Likewise, a study reported that socio-cultural factors are the key determinants
66 of SHS of students [9]. Furthermore, a survey conducted by Xie et al. among the
67 middle school students' found that school environmental and psychological factors,
68 life events, lifestyle, social, natural, and family factors are the risk factors for SHS
69 [17]. Similarly, Tu et al. [18], reported that the causes of SHS among
70 teenagers/adolescence are excessive academic burden, family stress, noise, sleep
71 time, less exercise, social and living environmental impacts, lifestyle, and
72 physiological factors. Similarly, Fang et al. [19], found that drug abuse, eating habits,
73 weight loss, exercise, internal injury, suicide, and internet addiction are the major
74 risk factor for the psychological SHS in middle school students. To date, there has
75 not been found the exact cause of the SHS. It has believed that SHS occurs due to
76 different associated factors, although, its underlying mechanism is remaining
77 unclear.

78 Previous studies have quantified that SHS is a public health problem in China.
79 However, studies regarding SHS and its associated factors of high school students

80 in the study settings are limited. Therefore, this study aimed to examine the SHS of
81 High School Students in Guangzhou, Shanxi, and Tibet, and we also quantify the
82 associated factors of SHS among participants.

83 **2. Materials and Methods**

84 A community based, cross-sectional study conducted in China to investigate the
85 SHS and its associated factors among high school students. We first selected three
86 regions in China by means of convenient sampling (central areas in the central part:
87 Shanxi Yuci, developed coastal areas: Guangzhou, Guangdong, remote areas in the
88 west: Linzhi, Tibet) [20]. We selected key high school and ordinary high school. In
89 each school, two classes from each grade student (High-I, II & III) were randomly
90 selected by a stratified cluster sampling method. The sample size of this survey was
91 calculated based on the National Normal Model Survey, where the detection rate of
92 physical SHS and psychological SHS of high school students in China were
93 (34.6%~53.9%) [21], the relative error was not more than 20%, and the confidence
94 level reached 95%. The requirements are calculated by substituting the formula to
95 obtain a minimum sample size of 182 in each region and 546 in three regions. In this
96 survey, a total of 1472 high school students were surveyed. Excluded the
97 questionnaires having missing items (leakage rate >10%), 1461 students were
98 effectively surveyed with a 99.25% effective rate, which could meet the sample size
99 requirements for this study.

100 **2.1. SHS evaluation**

101 Since our study was based on the Chinese population, we used the
102 "Multidimensional sub-health Questionnaire of Adolescents (MSQA)" to know the
103 SHS of respondents [21]. MSQA is an effective, sensitive, and validated SHS tool for
104 adolescents [22]. The adolescent's degree of SHS was evaluated by the level of
105 physiological SHS and psychological SHS. MSQA questionnaire has 71 items; each
106 item has 6 levels. The score of SHS is 1 to 6 points. The higher score of the point
107 indicates the more serious SHS [21]. (Appendix-1)

108

109 **2.2. Associated factors of SHS**

110 The researcher from other countries has been using chronic fatigue as a syndrome
111 in the research content [23], while its definition is different from the SHS. Therefore,
112 this study combined the actual situation of Chinese students based on the Chinese
113 scholars' studies and the current knowledge of sub-health theories regarding factors
114 affecting the SHS [21,24]. The factors affecting SHS are divided into *self-factors*
115 (Gender, ethnicity, BMI index, grade, whether they are only children, time spent on
116 school, sleep time, learning burden, frequency on exercise, internet surfing, smoking
117 habit, alcohol consumption, diet, seeking help, personality, etc), *family factors* (family
118 location, family structure, parental expectations, parental education, the annual
119 income of family, level), *school factors* (key high school and ordinary high school),
120 and *other factors* (student source, interpersonal relationship) etc (S.Table 1).

121 **2.3. Data collection**

122 The pre-test is conducted prior to the formal investigation. The first grade of an
123 ordinary high school in Guangzhou was selected by means of convenient sampling
124 for the pre-test. The information associated with survey questions and calculated
125 scales were revised after getting feedback from the pre-test and then finalized the
126 questionnaire for the final study.

127 Students are filled with information anonymously by means of centralized filling,
128 independent answering, on-the-spot recycling, and on-the-spot investigation. At the
129 spot, the local education authorities and their subordinate schools co-operated
130 closely. Investigators collect all filled questionnaires after the survey is completed.
131 The interview/survey was excluded from those participants who declined to
132 participate in the survey. The questionnaire was finished by each respondent within
133 20 min. All information of the respondents was kept strictly confidential.

134 **2.4. Ethical Approval**

135 Ethical approval had been approved by the Ethics Committee of the School of Public
136 Health, Sun Yat-Sen University, Guangzhou, China. The ethical approval number is
137 2018 (050). The written and verbal sign was taken with each respondent in an
138 informed consent form at the beginning of each survey.

139 **2.5. Statistical analysis**

140 Epidata-3.1 software is used to record the database. Normality distributed
141 quantitative data were displayed as mean and standard deviations, where non-
142 normally distributed data were represented as medians and quartiles (P₂₅~P₇₅).
143 Qualitative data were presented as a rate or percentage. A Pearson chi-square (χ^2)
144 test was applied to compare between groups. The influencing factor of SHS was
145 estimated using logistic regression analysis for multivariate analysis, by adjusted
146 Odds ratios (AOR) and 95% confidence interval (CI). All statistical analyses carried
147 out using SPSS 23.0 software. All reported P values were two-sided, and P<0.05 was
148 considered statistically significant.

149 **3. Results**

150 **3.1. Basic characteristics of respondents**

151 A total of 1472 respondent, 11 participants were excluded due to missing items or
152 information in the questionnaire. Finally, 1461 high school students were enrolled
153 in this survey. There were 43.53% (636) male and 56.47% (825) female with the mean
154 age of 17.30 ± 1.27 years, and participants from Shanxi 31.76% (464), Guangzhou
155 33.61% (491), and Tibet 34.63% (506) (STable. 2). The result showed that tiredness
156 and fatigue were high (11.98%) observe in physical SHS, while challenging to study
157 at home (19.10%) in psychological SHS, among other symptoms, detail about the
158 symptoms of both groups is displayed in Table1.

159 **Table 1. Symptoms of SHS and Mental SHS**

160

Symptoms	Sub-health symptoms		Mental sub-health symptoms		
	Respondent	Detection rate (%)	Symptoms	Respondent No.	Detection rate (%)
Tiredness, Fatigue	175	11.98	It's hard to study at home	279	19.10
Dry eyes	149	10.20	Concentration on study	233	15.95
Nasal congestion	128	8.76	Unwilling to talk to others	215	14.72
I can't sleep well.	121	8.28	I don't want to see help	209	14.31
Drink more and eat more	120	8.21	Hesitate	207	14.17
Wake up too early	115	7.87	Difficult to remember learning content	205	14.03
Difficulty falling asleep	112	7.67	Unnecessary thoughts	203	13.89
Sore eyes	102	6.98	Irritable	200	13.69
Weak limbs	99	6.78	No hope in the future	170	11.64
			Do not trust others	165	11.29
			Worried about the teacher asking questions	164	11.23
			Feel difficulty of learning	163	11.61

161

162 The survey results showed that there were significant differences in the physical SHS
 163 and psychological SHS along with different detection rates among the high school
 164 students in the three regions. Psychological SHS was higher in Shanxi (20.69%)
 165 followed by Tibet (18.77%) and Guangzhou (13.03%) among surveyed populations
 166 (S.Table 3).

167

168 **3.2. SHS detection Score and rate by gender**

169 The results of this study showed that the detection rate of physical SHS symptoms
 170 and the Psychological SHS of females was higher than that of males, which is the
 171 statistically significant (STable 3,4,5).

172 **3.3. Multiple logistic regression analysis of influencing factors with SHS and** 173 **Psychological SHS**

174 In order to know the comprehensive effect of the factors affecting the SHS, a stepwise
 175 multi-factor unconditional logistic regression analysis was carried out. The result of
 176 this analysis showed that the region, lack of sleep time, heavy learning burden, lack
 177 of exercise, drinking alcohol, lack of frequent home visit, and eating habit were the

178 statistically significant associated risk factors of SHS, while an hour of daily internet
 179 access was found to be a protective factor for the SHS (Table 2).

180 **Table 2. Detection of SHS in different regions**

Area	Number of respondents	Sub-health		Psychological SHS	
		Symptom check-out	Status check out	Symptom check-out	Status check out
Shanxi	464	207(44.61)	115(24.78)	242(52.16)	96(20.69)
Guangdong	491	188(38.29)	88(17.93)	203(41.34)	64(13.03)
Tibet	506	199(39.33)	106(20.95)	229(45.26)	95(18.77)
Chi test	χ^2	4.520	6.754	11.459	10.640
	P	0.104	0.034	0.003	0.005
		Shanxi,	Shanxi ^b	Shanxi ^b ,	Shanxi ^b ,
Comparison	—	Guangdong, Tibet	Guangdong, Tibet	Guangdong ^a , Tibet	Guangdong ^a , Tibet ^{ab}

181 Note: a: is compared with Shanxi, and the difference is statistically significant; b: is compared with Guangdong, and the difference is
 182 statistically significant.

183
 184 Similarly, the results of logistic regression analysis exhibited that the region (rural),
 185 grade of class, lack of sleep time, heavy learning burden, less than one time per week
 186 home visit, lack of exercise, smoking, drinking, and fewer friends were the risk
 187 factors for psychological SHS, while females (gender), family, township, seeking
 188 help, and extroversion were the protective factors for the occurrence of
 189 psychological SHS (Table 3-4).

190 **Table 3. A multi-factor unconditional logistic regression model of associated factors of
 191 psychological SHS**

Variables	Number (%)	OR	AOR	95% CI		P-value
				Lower	Upper	
Area						
Guangzhou	491(33.61)	—	—	—	—	0.009
Shanxi	464(31.76)	1.908	1.887	1.239	2.874	0.003
Tibet	506(34.63)	1.239	1.285	0.699	2.399	0.430
Gender						
Female	825(56.47)	0.583	0.679	0.470	0.980	0.039
Grade						
High-I	521(35.67)	—	—	—	—	0.029
High-II	536(36.68)	1.811	1.728	1.097	2.720	0.018
High-III	404(27.65)	1.738	1.752	1.128	2.723	0.013
Residence						
Urban	465(31.82)	—	—	—	—	0.037
Rural	77(5.27)	0.402	0.588	0.351	0.983	0.043
Township	138(9.45)	0.856	1.141	0.541	2.406	0.730
County	69(4.74)	1.391	1.450	0.772	2.723	0.248

Suburb	712(48.74)	0.709	0.802	0.350	1.837	0.602
Home visits						
No visit	238(16.29)	—	—	—	—	0.013
3 or more days	205(14.03)	3.155	2.478	1.295	4.745	0.006
1-2 visit	1018(69.68)	1.759	1.410	0.757	2.627	0.279
Sleep time						
>8 hours	158(10.81)	—	—	—	—	0.002
<6 hours	1234(84.46)	11.417	9.459	2.035	43.971	0.004
6-8 hours	69(4.72)	6.715	5.077	1.148	22.459	0.032
Learning burden						
Very light	307(21.01)	—	—	—	—	<0.001
Light	556(38.06)	0.379	0.232	0.018	2.965	0.261
General	536(36.69)	2.074	2.084	0.828	5.244	0.119
Heavy	40(2.74)	2.289	2.427	1.566	3.761	<0.001
Very heavy	22(1.51)	0.919	0.990	0.674	1.454	0.960
Frequency of movement						
2-3 hours	329(22.52)	—	—	—	—	<0.001
3 or more times	575(39.36)	2.507	2.472	1.629	3.750	<0.001
No movement	557(38.12)	0.933	0.914	0.611	1.369	0.663
Smoking						
105(7.19)	2.202	2.138	1.170	3.906	0.013	
Drinking						
246(16.83)	1.969	2.344	1.558	3.526	<0.001	
Seeking help						
1329(90.96)	0.386	0.378	0.227	0.630	<0.001	
Interpersonal communication						
>6 and above	36(2.46)	—	—	—	—	<0.001
No.	367(25.12)	14.232	10.324	3.902	27.314	<0.001
1-2	629(43.05)	2.701	2.543	1.580	4.092	<0.001
3-5	429(29.36)	1.842	1.839	1.196	2.828	0.006
Personal Behaviour	1040(71.18)	0.576	0.647	0.456	0.917	0.014

192

193 **4. Discussion**

194 This study aimed to distinguish the SHS and its associated influential factors
 195 among high school students in three geographic regions of China. The study found
 196 that the overall detection rate of SHS was 55.10%, where the detection rates of
 197 physical SHS and Psychological SHS were 25.80% and 46.13%. Compared with the
 198 previous studies among high school students by using MSQA scale [24,25], their
 199 detection rates of SHS symptoms ranged from 27.00% to 75.30%, and the detection
 200 rate was 12.40%~in the range of 41.12%, except for the symptoms of the physical SHS
 201 which was slightly lower. The results of the above surveys are almost the same as
 202 the results of our study, which indicates that the SHS occurrence stages among the
 203 high school students were ubiquitous. The detection rate of physical and
 204 psychological SHS was lower than the national level (physical SHS-34.60%,

205 Psychological SHS-46.84%, and overall detection rate at the national level SHS-
206 53.92%) [21]. An earlier study conducted in our study area found that the overall
207 SHS detection rate in urban high school students in Guangzhou City was 38.53%
208 [25]. The detection rate difference might be due to the difference between the survey
209 method and the measurement scale.

210 Several SHS measuring tools have been established. Additional, a
211 comprehensive and validated tool for SHS stands the Suboptimal Health Status
212 Questionnaire (SHSQ-25) [3], predominantly targeted at the Physiological and
213 Psychological status of people, has been widely applying at the national or
214 international level in different ethnic groups (Asian, African, and Caucasians),
215 which is also a new mechanism to enables people for early intervention in terms of
216 Predictive, Preventive and Personalized Medicine (PPPM) [26–28]. Similarly, MSQA
217 scale evaluates the SHS of adolescents, which is a valid and approved tool in China,
218 which is formulated by Tao et al. [21]. The test-retest reliability, Cronbach alpha (α)
219 coefficient, and split-half reliability coefficient were 0.87, 0.96, and 0.94, respectively,
220 which was conducted among 7104 middle school students [22]. The study of Xing
221 Chao confirmed that MSQA is a credible, effective, and sensitive SHS tool for
222 adolescents. Therefore, to assess the SHS of adolescents, MSQA is a suitable
223 measuring scale; thus, we applied in our study.

224 The study result showed that the geographical region, rural area, lack of sleep
225 time, heavy learning burden, drinking alcohol, lack of frequent home visit, and
226 eating habit were significant risk factors for SHS, similarly the region (rural), the
227 grade of class, lack of sleep time, heavy learning burden, personal behaviour, less
228 than one time per week home visit, lack of exercise, smoking, and drinking, were
229 risk factors for psychological SHS. Interestingly, only an hour of daily internet access
230 was found to be a protective factor for physical SHS, whereas, seeking help, and
231 extroversion were the protective factors for the psychological SHS. Consisting, Zhao
232 [29] and Hou et, al [12], reported that the main physiological problems of middle
233 school students are fatigue, dizziness, gastrointestinal discomfort, and poor sleep
234 tendency. Proper and active exercise, a balanced diet, avoid alcohol, and tobacco
235 habit is the best way to overcome from SHS.

236 Notably, this study found that surfing the internet for no more than an hour in
237 a day was a protecting factor for SHS for high school students. This finding is
238 supported by a study that long-term internet access, high frequency of internet
239 access, and internet addiction are the significant risk factors for SHS [30], which is
240 consistent with our study. The short-term internet access can alleviate the student's
241 stressful learning pressure to a certain extent so that their life rhythm can be slowed
242 down.

243 An earlier study [30] suggested that, in terms of gender, females have their own
244 physiological characteristics, those are more sensitive, delicate as well as the more
245 complex during the physical and psychological changes of adolescence period, thus
246 difficult to guide them at this period, which makes females more likely to have SHS.

247 Our study also found that SHS was high among female students, which is also
248 supported by the study of Cao H, et al [19] and Yao Y et al [15]. The number of
249 friends or pair groups is a very important influencing factor for the psychological
250 SHS of young students. The results of previous studies [30,31] displayed that the
251 relationship with classmates, the number of friends, misunderstanding between
252 friends of the middle school students had more SHS, which are closely similar to our
253 study. Interpersonal relationships and the number of friends showed a positive
254 relationship with students; in this stage, students are more willing to share their
255 inner world with others, resulting in they can exchange social support. When they
256 encounter difficulties, they can flexibly use the surrounding interpersonal
257 relationships to enhance their confidence, strength, and overcome.

258 Similarly, poor lifestyle behaviors such as; smoking and drinking are the main
259 influencing factors of Psychological SHS [4]. A study of Lolokote et al reported that
260 significant relationship between SHS and the use of tobacco and alcohol in the
261 college students [9]. Our study also found that smoking and drinking are risk factors
262 for SHS of high school students. A study to investigate the risky health behavior of
263 middle school students reported [31] that smoking behaviors among adolescent
264 students are often accompanied by drinking behavior, by which they show obvious
265 psychological issues such as depression, anxiety, nervousness, and temper, because
266 it has well known that SHS is highly influenced by unhealthy lifestyle [32].

267 This survey analyzed the status of SHS among high school students in three
268 economic, geographical, cultural, and environmentally different regions of China,
269 including associated factors of SHS, and results provided a holistic picture of both
270 subjective and objective health measures from the perspective of PPPM [12]. PPPM
271 is a new comprehensive approach in the healthcare sector that allows predicting
272 individual predisposition before the onset of the disease, also provide targeted
273 preventive methods, and create personalized treatment procedures tailored to the
274 person [27]. In recent days, treatment for the non-communicable disease (NCD) are
275 executed after disease onset, which is a very much slow approach from the PPPM
276 perspective [12]. Therefore, timely diagnosis and management of SHS in the society
277 is the holistic approach in terms of PPPM.

278 However, some limitations must be considered when interpreting the findings
279 of this study. This study used a prospective questionnaire survey method, which is
280 difficult to avoid bias and errors caused by differences in understanding an ability
281 among students from different regions or ethnic groups. This was a cross-sectional
282 survey, which did not allow us to assess accurate causality between psychological
283 symptoms and physical SHS. And data was obtained by the self-rating
284 questionnaire, which might have led to information bias. The participants were
285 selected by a convenient sampling method, which leaves the potential for selection
286 bias, and limited generalizability, the relevancy of results to other populations.

287 **5. Conclusions**

288 This study evaluated the SHS of high school students in three regions in
289 China, where SHS was found high in Shanxi, followed by Tibet and Guangzhou.
290 The SHS among females was high than that of males. Rural areas, grades of class,
291 lack of sleep time, heavy study burden, low number of home visits per week, lack of
292 exercise, smoking, drinking, and fewer friends were risk factors for SHS, while,
293 family in townships, seeking help, extroversion person were a protective factor for
294 the occurrence of SHS. Through the comprehensive prevention and control
295 measures of the school and family of the student, promote students to develop good
296 habits, promptly guide various psychological problems and adjust social
297 adaptability, timely detect and treat the sub-health symptoms that have emerged,
298 and effectively prevent and control the student's health.

299 **Supplementary Materials:** The following supplementary including appendixes files are
300 available online at www.mdpi.com/xxx/s1, Supplementary file 1(Appendix-1 Youth Sub
301 Health Status Questionnaire, Appendix-1: Appendix 2: Introduction to the study locations);
302 Supplementary-2 (Table S1: Indicators of SHS used in questionnaire, Table S2: Basic
303 characteristics of the study groups, Table S3: Distribution of physical SHS and Psychological
304 SHS in different regions, Table S4: The genders score of SHS symptoms, Table S5: A SHS
305 detection rate by gender)

306 **Author Contributions:** Conceptualization, Gehendra Mahara and Jinxin Zhang; Data
307 curation, Jiazhi Liang; Formal analysis, Gehendra Mahara, Jiazhi Liang and Zhirong Zhang;
308 Funding acquisition, Jinxin Zhang; Investigation, GeQi; Methodology, Gehendra Mahara,
309 Jiazhi Liang, and Zhirong Zhang; Project administration, Qi Ge and Jinxin Zhang;
310 Resources, Qi Ge; Software, Zhirong Zhang; Supervision, Jinxin Zhang; Writing – original
311 draft, Gehendra Mahara; Writing – review & editing, Gehendra Mahara, and Jinxin Zhang.

312 **Funding:** This work was supported by the National Natural Science Foundation of China
313 (NSFC, 81773545); and the Natural Science Foundation of Guangdong Province, China
314 (2016A030313365). The funders had no role in study design, data collection and analysis,
315 decision to publish, or preparation of the manuscript.

316 **Acknowledgments:** The authors thank the Ministry of Science and Technology, National
317 Natural Science Foundation of China and, Natural Science Foundation of Guangdong
318 Province, China, China for providing us the fund and technical support for this study.

319

320 **Conflicts of Interest:** We the authors declare that we have no conflict of interests.

321 **References**

- 322 1. Merriam-Webster Definition of HEALTH Available online: [https://www.merriam-
webster.com/dictionary/health](https://www.merriam-
323 webster.com/dictionary/health) (accessed on Mar 21, 2019).
- 324 2. World Health Organization *Preamble to the Constitution of the World Health Organization as adopted by the*
325 *International Health Conference. New York: Official Records of the World Health Organization , no.2, p.100, and*
326 *entered into force on 7 April 1948; 1946. www.who.int/bulletin/archives/80(12)981. pdf WHO definition of health;*

327 3. Yan, Y.-X.; Liu, Y.-Q.; Li, M.; Hu, P.-F.; Guo, A.-M.; Yang, X.-H.; Qiu, J.-J.; Yang, S.-S.; Shen, J.; Zhang, L.-
328 P.; et al. Development and Evaluation of a Questionnaire for Measuring Suboptimal Health Status in
329 Urban Chinese. *J Epidemiol* **2009**, *19*, 333–341, doi:10.2188/jea.JE20080086.

330 4. Ma, C.; Xu, W.; Zhou, L.; Ma, S.; Wang, Y. Association between lifestyle factors and suboptimal health
331 status among Chinese college freshmen: a cross-sectional study. *BMC Public Health* **2018**, *18*,
332 doi:10.1186/s12889-017-5002-4.

333 5. Li, G.; Xie, F.; Yan, S.; Hu, X.; Jin, B.; Wang, J.; Wu, J.; Yin, D.; Xie, Q. Subhealth: definition, criteria for
334 diagnosis and potential prevalence in the central region of China. *BMC Public Health* **2013**, *13*, 446,
335 doi:10.1186/1471-2458-13-446.

336 6. Wang, W.; Yan, Y. Suboptimal health: a new health dimension for translational medicine. *Clin Transl Med*
337 **2012**, *1*, 28, doi:10.1186/2001-1326-1-28.

338 7. Tavel, M.E. Somatic Symptom Disorders Without Known Physical Causes: One Disease with Many
339 Names? *The American Journal of Medicine* **2015**, *128*, 1054–1058, doi:10.1016/j.amjmed.2015.04.041.

340 8. Wang, W.; Zhou, M.; Wang, L. The concept and characteristics of sub-health and its relationship with
341 chronic fatigue syndrome. *Chinese Journal of Behavioral Medicine and Brain Science* **2010**, *19*.

342 9. Lolokote, S.; Hidru, T.H.; Li, X. Do socio-cultural factors influence college students' self-rated health status
343 and health-promoting lifestyles? A cross-sectional multicenter study in Dalian, China. *BMC Public Health*
344 **2017**, *17*, 478, doi:10.1186/s12889-017-4411-8.

345 10. Wang, Y.; Ge, S.; Yan, Y.; Wang, A.; Zhao, Z.; Yu, X.; Qiu, J.; Alzain, M.A.; Wang, H.; Fang, H.; et al. China
346 suboptimal health cohort study: rationale, design and baseline characteristics. *Journal of translational
347 medicine* **2016**, *14*, 291–291, doi:10.1186/s12967-016-1046-y.

348 11. Wang, Y.; Liu, X.; Qiu, J.; Wang, H.; Liu, D.; Zhao, Z.; Song, M.; Song, Q.; Wang, X.; Zhou, Y.; et al.
349 Association between Ideal Cardiovascular Health Metrics and Suboptimal Health Status in Chinese
350 Population. *Scientific reports* **2017**, *7*, 14975–14975, doi:10.1038/s41598-017-15101-5.

351 12. Hou, H.; Feng, X.; Li, Y.; Meng, Z.; Guo, D.; Wang, F.; Guo, Z.; Zheng, Y.; Peng, Z.; Zhang, W.; et al.
352 Suboptimal health status and psychological symptoms among Chinese college students: a perspective of
353 predictive, preventive and personalised health. *EPMA Journal* **2018**, *9*, 367–377, doi:10.1007/s13167-018-
354 0148-4.

355 13. Adua, E.; Roberts, P.; Wang, W. Incorporation of suboptimal health status as a potential risk assessment
356 for type II diabetes mellitus: a case-control study in a Ghanaian population. *The EPMA journal* **2017**, *8*,
357 345–355, doi:10.1007/s13167-017-0119-1.

358 14. Bi, J.; Huang, Y.; Xiao, Y.; Cheng, J.; Li, F.; Wang, T.; Chen, J.; Wu, L.; Liu, Y.; Luo, R.; et al. Association of
359 lifestyle factors and suboptimal health status: a cross-sectional study of Chinese students. *BMJ Open* **2014**,
360 *4*, doi:10.1136/bmjopen-2014-005156.

361 15. Yao, Y.; Wang, L.; Chen, Y.; Kang, Y.; Gu, Q.; Fang, W.; Qing, R.; Lu, W.; Jin, Y.; Ren, X.; et al. Correlation
362 analysis of anxiety status and sub-health status among students of 13–26 years old. *Int J Clin Exp Med* **2015**,
363 *8*, 9810–9814.

364 16. Alzain, M.A.; Asweto, C.O.; Zhang, J.; Fang, H.; Zhao, Z.; Guo, X.; Song, M.; Zhou, Y.; Chang, N.; Wang,
365 Y.; et al. Telomere Length and Accelerated Biological Aging in the China Suboptimal Health Cohort: A
366 Case–Control Study. *OMICS: A Journal of Integrative Biology* **2017**, *21*, 333–339, doi:10.1089/omi.2017.0050.

367 17. Xie, W.; Wu, Y.; Wang, A. Analysis of related factors of sub-health status of middle school students. *China
368 Advanced Health Care* **2000**, *14*, 53–54.

369 18. Tu, C.; Xing, C.; He, B. Analysis of the status of adolescents' sub-health in Shaoxing and its influencing
370 factors. . *Chinese Journal of School Health*, 2010,31(12):1409-1412. **2010**, *31*, 1409–1412.

371 19. Cao, H.; Cui, W.; Zhao, H. Epidemiological analysis of the relationship between life events and sub-health
372 in 1483 middle school students. *Journal of Medical Science Yanbian University* **2013**, *1*, 34–37.

373 20. National Bureau of Statistics of China Available online: <http://www.stats.gov.cn/english/> (accessed on Oct
374 10, 2018).

375 21. Tao, F.; Hu, C.; Sun, Y.; Hao, J. The development and application of multidimensional sub-health
376 questionnaire of adolescents (MSQA). *Chin J Dis Control Prev* **2008**, *12*, 309–314.

377 22. Xing, C.; Tao, F.; Yuan, C.; Wan, Y.; Qi, X.; Hu, C.; Hao, J.; Yao, R. Evaluation of reliability and validity of
378 the multidimensional sub-health questionnaire of Adolescents. *China Journal of Public Health* **2008**, *24*,
379 1031–1033.

380 23. Crawley, E.; Sterne, J.A.C. Association between school absence and physical function in paediatric chronic
381 fatigue syndrome/myalgic encephalopathy. *Arch Dis Child* **2009**, *94*, 752, doi:10.1136/adc.2008.143537.

382 24. Fang, Q.; Wang, H.; Li, L. Analysis of sub-health status and risk behaviors of middle school students in a
383 county of Chongqing. *China Public Health* **2013**, *1*, 94–96.

384 25. Liu, C.; Li, Z.; Ma, G. Investigation and Analysis of Sub-health Status of Middle School Students in
385 Guangzhou City. *Journal of Guangdong College of Pharmacy* **2004**, *6*, 676–677.

386 26. Kupaev, V.; Borisov, O.; Marutina, E.; Yan, Y.-X.; Wang, W. Integration of suboptimal health status and
387 endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease. *The EPMA journal*
388 **2016**, *7*, 19–19, doi:10.1186/s13167-016-0068-0.

389 27. Wang, W.; Russell, A.; Yan, Y. Traditional Chinese medicine and new concepts of predictive, preventive
390 and personalized medicine in diagnosis and treatment of suboptimal health. *EPMA Journal* **2014**, *5*, 4,
391 doi:10.1186/1878-5085-5-4.

392 28. Yan, Y.-X.; Wu, L.-J.; Xiao, H.-B.; Wang, S.; Dong, J.; Wang, W. Latent class analysis to evaluate
393 performance of plasma cortisol, plasma catecholamines, and SHSQ-25 for early recognition of suboptimal
394 health status. *EPMA Journal* **2018**, *9*, 299–305, doi:10.1007/s13167-018-0144-8.

395 29. Zhao, S.; Sun, C.; Wang, D. Analysis of the status of body subhealth in 1324 middle school students. *Journal*
396 *of Qiqihar Medical College* **2009**, *30*, 2169–2171.

397 30. Ren, L.; Li, J. Analysis of sub-health status and related factors of a high school student in Weinan City.
398 *China Science and Technology Information* **2013**, *5*, 78–79.

399 31. Jiang, C.; Fu, X.; Yang, H. Investigation on Health Risk Behavior of Middle School Students in Urban
400 District of Hangzhou. *Chinese Journal of School Health* **2006**, *27*, 1037–1038.

401 32. Chen, J.; Xiang, H.; Jiang, P.; Yu, L.; Jing, Y.; Li, F.; Wu, S.; Fu, X.; Liu, Y.; Kwan, H.; et al. The Role of
402 Healthy Lifestyle in the Implementation of Regressing Suboptimal Health Status among College Students
403 in China: A Nested Case-Control Study. *Int. J. Environ. Res. Public Health* **2017**, *14*, 240,
404 doi:10.3390/ijerph14030240.

405

406