Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2020 d0i:10.20944/preprints202009.0474.v1

Stability Analysis of Delayed Tumor-Antigen-Activated
Immune Response in combined BCG and IL-2
Immunotherapy of Bladder Cancer

Svetlana Bunimovich-Mendrazitsky, Leonid Shaikhet

Department of Mathematics, Ariel University, Ariel 40700, Israel

Abstract

We use a system biology approach to translate the interaction of Bacillus Calmette-Gurin (BCG) + interleukin 2 (IL-2) for
the treatment of bladder cancer into a mathematical model. The model is presented as a system of differential equations with
the following variables: number of tumor cells, bacterial cells, immune cells, and cytokines involved in the tumor-immune
response. This work investigates the delay effect induced by the proliferation of tumor antigen-specific effector cells after the
immune system destroys BCG-infected urothelium cells following BCG and IL-2 immunotherapy in the treatment of bladder
cancer. For the proposed model, three equilibrium states are found analytically. The stability of all equilibria is analyzed using
the method of Lyapunov functionals construction and the method of linear matrix inequalities (LMIs).

Key words: cancer modeling, combined treatment model; discrete time delay; stability conditions; Lyapunov functionals;
linear matrix inequalities (LMIs).

1 Introduction

Bladder cancer (BC) is the fourth most common cancer in males after prostate, lung, and colorectal cancers, ac-
counting for 6.6% of all cancer cases [1,2] and the 11th most common cancer in women [1]. The global prevalence of
BC is estimated at more than one million and is steadily increasing [2].

The risks of BC appear to vary across world regions, correlating with smoking and occupational exposures to
carcinogens in developed countries [3], and with chronic bladder urothelial irritation from Schistosoma hematobium
infection in Africa and the Middle East [4]. This disease places an enormous economic burden on the U.S. health
care system due to its requirements of surgical resection, repeated intravesical therapies, and lifelong medical follow-
up. Transurethral resection of BC (TURBT) is the standard primary treatment for Ta and T1 stages; however,
recurrence rates for TURBT alone can be as high as 70% with up to 30% progressing to muscle-invasive disease
requiring cystectomy [3]. The high rates of recurrence and significant risk of progression in higher-grade tumors
mandate additional therapy with intravesical agents. To date, intravesical therapy has been used as an adjuvant
treatment after TURBT to prevent recurrence and progression of the disease.

Chemotherapeutic agents such as mitomycin C, doxorubicin, and epirubicin have long been used as intravesical
therapies for BC [3,4]. Immunotherapy, BCG, a live attenuated strain of Mycobacterium bovis widely used as a
vaccine against tuberculosis, was first introduced as an intravesical therapy for BC in 1976 year by Morales and
associates [5]. Since then, BCG has been extensively evaluated and demonstrated to be superior to any other single
chemotherapeutic agent for reducing recurrence and preventing the progression of the disease [3,6]. To date, BCG has
become the mainstay of therapy for BC and remains the most effective treatment [3,6]. However, despite its favorable
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effects, a significant proportion of patients do not respond to BCG or tolerate treatment. Besides, recurrence and
side effects are common. Therefore, research has been pursued and efforts made to improve BCG therapy. During
the past decades, cytokine-based therapies have been developed [7]. To date, multiple cytokines, such as IFN-a, IL-2
and IL-12, have been evaluated, alone, or in combination with BCG for the treatment of BC. In addition, pre-clinical
research continues, aiming to identify new BCG therapeutic modalities.

This research is based on the model of BC immunotherapy [35], focusing on the clinical use of BCG and IL-2,
considering the in second phase of the immune response after BCG instillations. Delays in biological systems can
be used to model events for which it is impossible to accurately observe the underlying dynamics or to provide
an abstraction of some system behavior, which leads to more compact models [8,34]. The historically deterministic
modeling of biological systems with delays is based on differential equations with delay, an extension of the usual
ones, where the derivative of an unknown function depends on the past states of the system [5,6].

The purpose of the current research is to analyze the stability of BCG model in Delay Differential Equations.
The stability of equilibria is analyzed using the classical Lyapunov-Krasovskii functionals method together with
Kolmanovskii-Shaikhet general method of Lyapunov functionals construction [9,10] and the method of linear matrix
inequalities (LMIs) [11-14].

The considered BCG-model is described by a system of nonlinear differential equations with delays and an order of
nonlinearity higher than one. A stability investigation of systems of this type can be reduced to stability investigation
of the linear part of a nonlinear system. The obtained sufficient conditions for asymptotic stability of the zero solution
of an auxiliary linear system, at the same time, are sufficient conditions for the local stability of the corresponding
equilibrium of the initial nonlinear system. Here standard definitions of stability are used (see, for instance [15]).

2 Description of the model

Our model describes the effects of combining BCG and IL-2 as immunotherapy for BC treatment. Based in part
upon previous study [16,35,36], we further optimized the model to account for the delayed immune response that
occurs due to the effector cell proliferation to specific to the tumor antigen (Ag) after the immune system eradicates
BCG infected urothelium cells. The equations of our model are as follows:

At) =y = (p1 = AWM B(t) — paA(t) = Ops Ep()T; () A(t — 7(8)),
B(t) =b—p1A(t)B(t) — p2 B(t)Tu(t) — upB(1),
Ap(t) =p1A()B(t) — (B + pa,)An(2),

Ar(t) =0psEp()Ti() A(t — 7(1)) — M (t — 7(8))Tu(t) <Ig(t)> — (B+ pa)Ar(t),

Ir(t) + g1
Bio(t) =222 1)) - e (o)
Erlt) =L HE TR (0Bt~ 7(0) - s Er (), o)

_q2Da(t)
I(t) + gr

)
Io(t) =(Ap(t) + Ar(t) + Ep(t) + Ex(t)) <q1
Ti(t) =p2 B(t)Tu(t) — paEp(t)Ti(t),
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M O R ) <I2<t> ¥ gz> (Tuu) ¥ gT> ’
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- p2B(t)Tu(t) — | M7 (t - T(t))Tu (t)

Here it is supposed that the delay 7(¢) is given by the equality 7(t) = vo + v1e7"2%, 1; > 0,7 = 0,1,2. So, the delay
is decreasing and 7(0) = vy + v, 7(00) = vy. T(t) is a time-varying function, representing the delay in immune
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response following treatment, and expressing the number of effector cells in the cancer region. The delay is measured
in reference to the beginning of BCG treatment (t = 0), with a maximum delay of approximately 10 days. The
influence of BCG tends towards zero over time.

Equations (2.1) describe rates of change in concentrations of molecules or cell populations using the following
notations:

-BCG bacteria within the bladder as B;

-APCs (dendritic cells (DCs) and macrophages) as A;

-activated/matured APCs after BCG internalization and processing as Ap;
-activated /matured APCs specific to tumor Ag as Ar ;

-effector T lymphocytes consisting mostly of CTLs that react to BCG as Ep;
-effector T lymphocytes consisting mostly of CTLs that react to tumor Ags as Er;
-IL-2 units injected inside the bladder as Is;

-tumor cells infected with BCG as T;;

-tumor cells not infected by BCG as Ty;

-transforming growth factor-beta (TGF-3) denotes as Fp.

Mathematical and biological interpretation of equations (2.1) are examined below:

dA
s is the dynamic of non-activated APCs, as described in Bunimovich-Mendrazitsky et al. [16], it is governed by

two positive terms and three negative terms. The first positive term describes the normal influx of APCs to the
tumor at a constant rate . The second positive term describes the recruitment of APCs due to bacterial infection
at a rate coefficient 7. The first negative term describes the activation of APCs by BCG at the rate coefficient
p1. The second negative term is natural cell death at the rate coefficient p 4. The last negative term accounts for
the two-stage elimination of tumor cells, according to recent knowledge, first by effector CTL activity upon BCG
-infected tumor cells, which leads to lysis of these cells and flooding of the tumor micro-environment with tumor
antigens. Activation of APC cells with tumor-specific antigens occurs with a delay of 7(t) after the destruction of
infected tumor cells. The localized inflammatory response then attracts APCs, such as macrophages, which in turn
eliminate uninfected tumor cells, according to the rate 0ps.

dB
g is the dynamical rate of BCG level changes with time. It is comprised of a positive term corresponding to BCG

instillations, and of negative terms corresponding to the elimination of BCG by antigen-presenting cells (APCs)
according to the rate coefficient p;, BCG tumor cell infection at a rate coefficient po, and bacteria cell death with
rate coefficient up. A quantity b of BCG is instilled into the bladder via a catheter inserted through the urethra
once in a week during 6-8 weeks. In this study, we have chosen to simplify the problem by assuming that BCG is
introduced into the bladder at a constant rate b.

dAp

dt
positive term is proportional to the numbers of non-activated APCs as well as BCG bacteria, with rate coefficient

is the dynamic of BCG-activated APCs. It is described by one positive term and two negative terms. The

A
p1 (as in E) The first negative term is the migration of the infected, activated APCs to the draining lymphoid

tissues, at a rate of coefficient 8;. The second negative term is the death of activated APCs at a rate of coefficient
KA, -

dAr

is the tumor-Ag-activated APC (TAA-APC) dynamic. It is comprised of one positive term and three negative

terms. The positive term describes the APCs which were activated by tumor antigen after eradication of infected
tumor cells with the same 7(¢) delay function. The first negative term represents the tumor-Ag-activated APCs
cells which destroy the uninfected tumor cells, with a rate coefficient A after (t) delay. This term is multiplied by
an IL-2-dependent parameter with a saturation constant gy, to propose that in the absence of IL-2, Ay production
ceases, while in the presence of external IL-2, the production term is close to 1. The second negative term describes
the migration of TAA-APC to the draining lymphoid tissues at a rate of coefficient $;. The third negative term
denotes the natural death of TAA-APC at a rate coefficient pi4,.

dEp

is the dynamic of effector CTLs that react to BCG infection. It is comprised of their migration rate, determined

by their creation in the lymph node and subsequent migration to the bladder, inactivation rate, and their death rate.
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The migration element is proportional to A and IL-2, with a maximal rate of coefficient S5. This rate is brought
to saturation by large numbers of Ap, using a Michaelis-Menten saturation function, with Michaelis parameter g.
The first negative term is inactivation of effector CTLs via their encounter with infected tumor cells (7;) at a success
rate coefficient ps. The second negative term corresponds to the BCG-effector CTL (Eg) cells’ natural death rate

HE.-

dEr

is the dynamic of effector cells reacting to tumor Ag after delay 7(¢) time due to the eradication of infected

tumor cells. It is comprised of their migration rate, inactivation rate, and death rate. The migration element is
proportional to A7 and IL-2 with a maximal rate coefficient Sr. This rate is brought to saturation by large numbers

E
of Ar using a Michaelis-Menten saturation function, with Michaelis parameter g (as in Tf) The first negative

term describes the inactivation of effector CTLs via their encounter with uninfected tumor cells (T,,), at success rate
coefficient p3. The second negative term describes the Er natural death rate, with a rate coefficient ug.

dl.
=2 s the IL-2 dynamic. It is driven by a natural source, an external source, as well as sink and degradation courses.

The first two processes are positive and the last two are negative. They assume equal expression at the constant
rate coefficient g;. They reflect the IL-2 external source i, which is injected into the bladder every 7 time units. I
is consumed by APCs and CTLs. They assume that the rate of consumption is similar for both types of cells and
denote its coefficient by gs. The consumption depends on I3 and is limited in a Michaelis-Menten fashion, with the
Michaelis constant g;. They also introduce py,, the Iy degradation rate coefficient.

%

is the dynamic of infected tumor cells depend on two mechanisms. The first corresponds only to the rate of

bacterial infection of uninfected tumor cells, (T}, ), according to rate coefficient ps. The second mechanism is the
elimination of infected tumor cells (7;) by their interaction with BCG-CTL effector cells (represented by Eg), at
rate coefficient py.

dT,
d—tu is the dynamic of uninfected tumor cells. It is comprised of three processes: one positive term, corresponding to

natural tumor growth, and two negative terms, corresponding to tumor infection by bacteria and tumor elimination
by immune cells. The natural tumor growth is characterized by a maximal growth rate coefficient, r, which is limited
by the maximal tumor cell number, K. The first negative term, due to bacterial infection, is characterized by a
coefficient rate of ps. The second negative term is attributed both to the capture and elimination of T cells by
APCs cells, which were activated by tumor-Ag at rate coefficient A, and to the activity of TAA-CTL effectors, (Er),
which destroy uninfected tumor cells, (Ty,), at a rate coefficient a. Two These two processes take place after delay
7(t). The dependence in the equation of T, on Fj is decreasing from 1 to ar g with Michaelis constant er g [17]. And
then there is a multiplication of those terms by an Is-dependent Michaelis-Menten term, with Michaelis parameter
g1, to propose that in the absence of Iy, T, cellular death does not occur. Since the tumor produces a variety of
mechanisms in the biological settings that curtail the success of effector cell activity, they multiply Is/(I2 + gr) by
gr/(Tw + gr), to denote the inversely proportional reduction in effector cell activity rate, such that when T,, = 0 the
term is equal to 1 and when limr, o g7/(T + g7) = 0. Note that although this factor can, in principle, nullify the
efficacy of CTLs, this is not observed in cases of interest because T;, < K [16].

dF,
=5 is the dynamic of a TGF-f3, as proportional to the tumor cell population, T,,, with ag r as a proportion coeffi-

cient and is destroyed at a rate of ug proportional to Fjg.

The real values of the system (2.1) parameters are presented in Table 1.
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Table 1
List of all parameters
Parameters | Physical Interpretation (units) Estimated value | Reference
HA APC half life [days ™) 0.038 [18]
LA, Activated APC half life [days™?] 0.138 [19]
WE, Effector cells mortality rate w/o IL-2 [days™ "] 0.19 [17] and calculated
WE, Effector cells mortality rate with TL-2 [days ™) 0.034 [20]
1B BCG half life [days™] 0.1 [21]
D1 The rate of BCG binding with APC [cells™!][days '] 1.25 x 1074 [22] adjusted for liters
D2 Infection rate of tumor cells by BCG [cells™!][days™!] 0.028 x 1076 From model simulation
D3 Rate of E deactivation after binding with infected tumor cells | 1.03 x 107*° [23]
[cells™ ) [days™?]
D4 Rate of destruction of infected tumor cells by effector cells | 1.1 x 1076 [23]
[cells™ ) [days™?]
A Production rate of TAA-APC [days™'] 1078 [24]
BB Recruitment rate of effector cells in response to signals released | 1.45 x 10® [25]
by BCG-infected and activated APC [cells™|[days™*][I5 ]
Br Recruitment rate of effector cells in response to signals released | 1.514 x 10° [26]
by TAA-infected and activated APC [cells™!]|[days ][I ]
v Initial APC cell numbers [cells™!][days™!] 4700 [19]
n Rate of recruited additional resting APCs [cells ™ !][days '] 2.8x107° [18]
T Tumor growth rate [days™"] 0.0048 — 0.0085 | [27]
b Bio-effective dose of BCG [c.f.u./week] 2.2 x 10® From clinical data provided by
Dr. Sarel Halachmi
Jé] Migration rate of TAA-APC and bacteria activated APC to the | 0.034 [18]
lymph node [cells~!][days™!]
a Efficacy of an effector cell on tumor cell [cells™!][days™!] 3.7x107° [28]
Michaelis-Menten constant for BCG activated CTLs and for | 10'3 From model simulation
TAA-CTLs]cells]
gr Michaelis-Menten constant for tumor cells[cells] 5200 [16]
K Maximal tumor cell population [cells] 10M [29]
Q1 Rate of IL-2 production TU [cells™!][days™"] 0.007 [30] and simulations
q2 The proportion of IL-2 used for differentiation of effector cells | 1.2 x 1073 [26]
TU [cells™!][days™!]
LIy Degradation rate [days™"] 11.5 [26,31]
0 Recruitment rate of Tumor-Ag-activated APC cells in response | 0.01 From model simulation
to signals released after binding effector cells, that react to BCG
infection, with infected tumor cells [1/cell "]
ag,T The release term per tumor cell [pg/cell™ * d™*] 1.38 x 1074 [17]
ar,g Michaelis-Menten saturation dynamics. The dependence on Fg | 0.69 [17]
is decreasing from 0 to ar,g [none]
er,s Michaelis constant [pg] 10000 [17]
ua The constant rate, accounts for degradation of Fjg [d™] 166.32 [17]
g1 Michaelis-Menten constant for IL-2 [cells] 10000 From model calculations
iz Rate of external source [units per treatment] 8x10°—7.7x10°% | [32]
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3 Equilibria
Equilibria of the model (2.1) are defined by the system of the algebraic equations

(1) v=[(p1 —n)B + pa + 0p3ETi] A,
(2') b= (p1A+ p2Tu+ 1uB)B,
(3") p1AB = (B + pa,)As,

I

Agl
(5) % = (psTi + pE)EB,
A 3.1
(6") ijﬂi 2 = (psTy + pg)Er, (3.1)
N (An+ A G2y .
(7)Y (Ap+Ar+Ep+ Er)| a1 + 19 = pr, 1o,
I, + g1

(8') p2BT, = psEBT;,

T, arsFs+erp I gr
9) rTy|1— = | =pBT,, + T, | NMAr + aF d d ,
(%) < K) b2 ( r r g +erp Iy +gr T+ gr

(10") ap,rTu = pskp,

that follows from (2.1) by the assumption that A(t), B(t), Ag(t), Ar(t), Eg(t), Er(t), Ia(t), T;(t), Tu(t), Fa(t) are
constants.

Note that the solution of the system (3.1) can be not unique. Let us get some solutions of the system (3.1) in two
different situations: b > 0 and b = 0.

3.1  Equilibrium with b > 0, i5 >0

Consider the following way to get a solution of the system (3.1), i.e., an equilibrium of the system (2.1) for the
7‘tumor-free” case:
1) From (9’) it follows that one of the possible T}, is T,, = 0.

2) From (10”) it follows Fz = 0 (via T3, = 0).
3) From (8’) it follows EpT; =0 (via T;, = 0).
4) From
5) From
6) From

8’)

(4") it follows Ap =0 (via T,, = 0 and ET; = 0).

(6”) it follows Er =0 (via T,, = 0 and At = 0).

(17), (2’) the system for A, B it follows (via EgT; = 0 and T,, = 0)
(p1A+ pp)B =1,

[(p1 =) B + palA =1, (3.2)

with the solution (see Appendix 7.1)
A= «/a%—i—4aoag—al7 B b 7
2a0 p1A* + up
ap =pipa, a1 =>b(p1—n)+papp —Yp1, a2 =YuB.

7) From (3’) it follows A% = EE A*B* (via A*, B*).

A
8) From (5’) it follows that if Eg = 0 then I, = 0 but via (7) it is impossible. So, from ET; = 0 it follows T; = 0.
9) From (5°) and (7’) the system for Ey, I3 it follows (via Ap = Ep =T; = 0)

BeARI>
A*B +

I .
=pupkp, (A + EB)(Ql - B ) +iz2 = pr, 1o, (3.3)
Ir + g1
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with the solution (see Appendix 7.2)

2 4 _
I = vl +deger — By = vif,

200 ’

co=pr, — V(@ —q2), c1=(ur, —va)gr —iz — Az(q1 — @),
BpA*

co = (i2 + Apq1)gr, Vv=—r—.
( B ue(As + 9)

As a result we obtain a tumor-free equilibrium

Ey :(A*)B*, *BvA;"’EEaE’;’I;’T‘*aT:,FE)

K2

A4
(AL B, A%,0, iy, 0, 13,0,0,0). (34)

3.2 Equilibria with b =0, i3 >0

Consider another way to get equilibria of the system (2.1):

From (7°) it follows I = f2 (via Ap = Ar = Egp = Ep =0).
123¢
From (9’) it follows T,, =0 or T,=K (vin B=Ar = Epr =0).

9) From (10°) it follows Fj = 0 or Fj = %K (via T, = 0 or T, = K).
B
10) From (8’) it follows T; = C' = const (via B = Ep = 0).

[0.¢]
— " —

As a result we obtain two following equilibria:
1) tumor-free (T = 0)

E, =(A", B”, *B,A;,EE,E;,I;,T*,T:,FE)

K2

- (”,o,o,o,o,o, ”,O,o,0> , (3:5)
HA 12328

2) not tumor-free (7, # 0)

s Lo

- (7,0,0,0,0,07 2 oK, O‘“K) . (3.6)
na 1232 12063

B3 =(A*,B*, Az, AT, ER, B, 13,17, T, F§)

Remark 1 Suppose that Eg = Er = 0. Then from the equations (5°) and (6°) of the system (3.1) it follows that
Ap = Ar = 0. From (7°) it follows that Iy = is/py,. From (8°) it follows that AB = 0. From (1) it follows that A
cannot be zero by v > 0 and from (2°) it follows that B is zero by b = 0. So, we obtain again the equilibria Es, E3.

4 Centralization and linearization

Let (A", B*, Ag, AT, ER, Ex, 13,17, Ty, F;) be a solution of the system (3.1), i.e., one of the possible equilibria of
the system (2.1). Using the new variables yy = A— A*, yo =B —B*,y3 = Ap — A%, ya = Ar — Ak, ys = Ep — E},
Yo = Er — B, yr =1 — I3, ys =T; = T}, yo = Tu — Ty}, y10 = F — I, we centralize the system (2.1) around the

considered equilibrium (see Appendix 7.3):
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v1(t) == [(p1 =) B + palyi(t) — (p1 — 1) A%y2(t) — Opzs AT y5(2)

— Op3 A" ERys(t) + Ops ERT v (t — 7(t)) + Na(y),
U2(t) = = p1B*y1(t) — (A" + p2Ty + pB)ya(t) — p2 B yo(t) + Na(y),
Y3(t) =p1 B y1(t) + prATy2(t) — (B + pa,)ys(t) + N3(y),

9a(t) = — (B4 pa,)ya(t) + Ops AT} ys5(t) — 7(1*1 919)12 yr(t) + Ops A" Epys(t)
5
AL NI
- 1)+ Ops BTy (t — 7(1) — %2y, (¢ — 7(t)) + Na(y),
Ig+eg9() p3sERT yi (t — 7(t)) 5 +gzy4( (1)) 4(y)
. Belsg X BBAg X
Us(t) :mw(t) — (p3T + pp)ys(t) + An g?ﬁ(t) —p3ERys(t) + Ns(y), -
. A I . 4.1
U6(t) = — neys(t) + j; +Tgy7(t) —p3BErys(t) + (A'BTTng)Zy;L(t —7(t)) — psETys(t — 7(t)) + Ne(v),
U7(t) =Qrys(t) + Qrya(t) + Qrys(t) + Qryes(t) — [/uz + g1 —2 (I*T+ 91;3; T} y7(t) + Nz (y),
2
Us(t) =p2Tyya(t) — paTi ys(t) — paERys(t) + p2B*ys(t) + Ns(y),
. . QoTy . Qogr (QTJ )
t) = —pT t) — ——— t) — B+ —— + — —1 t
Yo (t) P21y, y2(1) I;+g,y7() P2 Titor T\ K Yo(t)
(1—O¢T,g)eT,g aTﬂFﬁ*—FeTﬁ
ErRg-————2 22 t AR t—T1(t Ro——————ys(t — 7(t N,
+aET Ry (F5 +erp) Y10(t) + ARoya(t — 7(t)) + aRyg i+ erp ye(t — 7(t)) + No(y),
Y10(t) =ap Tyo(t) — ppyio(t).
Here
1 , I3 gr
— — s R — Tu s
Q7 =q1 QQIS_’_gI 9 (I;+gl><T;j+gT>
(4.2)

arsFs +erp I3 gr
= \NA% + aE% )
@0 ( P Fiters J\I5+or J\Ti+or

via N;(y) in the differential equation for y;(t), ¢ = 1,...,9, all nonlinear terms of the variables y = {1, ..., y10} are
denoted, N;(0) = 0.

It is clear that stability of the zero solution of the system (4.1) is equivalent to stability of the equilibrium of the
system (2.1). For the local stability in the first approximation it is enough to consider the linear part of the nonlinear
system (4.1). Thus, removing from (4.1) the nonlinear terms N;(y), represent the linear part of this system in the
matrix form

A(t) = Ha(t) + Dz(t — (1), (4.3)
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where z = {21, ..., 210}/, H and D are the matrices of the dimension 10 x 10,

00 dgs 0dgg 0000
00 0 00 00O00O0]

ag2 0 0 0 0 agy 0 agg A9,10

ai1ai2 0 0 a5 0 0 a5 0 0 [d,;00 0 0 0 0000]

asiaszz 0 0 0 0 0 0 a O 0000000000

aspaszazz 0 0 0 0O 0 0O 0 0000000000

0 0 0 agass O agr ass asg O dn 00dy 0 0 0000

g |0 0 s 0 as 0 asras 00 o 000000 00007 4)

0 0 0 0 0 agagr 0 ag O 00 dgs 0dgsg 0000

0 0 arsamgarsagarm 0 0 0 000000000

0 agg 0 0 ags 0 O agg asgg 0

0

0

0
0
0 000O0O0OO0OO0CO0O
0
0

0 0 0 0 0 0 0 @10,9 10,10 |

the nonzero elements a;; and d;; of these matrices respectively are

ain =—[(pr =m)B* + pal, a2 =—(p1 —)A", a5 = —OpsA"T}, a5 = —OpsA*Ejp,
azi1 = —p1B*, ax = —(p1 A" +pT; + pB), az = —p2B*,
asi1 =p1B*, azs =p1AY, azs=—(8+pa,),

AgrALTY MNAGIS
= 5= Ops AT}, agr = — T2 gy — Opg A"E),  asy = — 7
ayq (B+pa,), as p3AL;,  aar 05 +91)° a4g = 0p3 B> Q49 T+
/GBQIQ< * /BBAg *
as3 =————5, as5 = —(p3T; + pE), as7= — , asg = —p3lbp,
(A5 + 9P ( A+ B
BTA* *
66 = — HE, Qg7 = o +Tg, agg = —p3 L, (4.5)
A% + AL+ E% + EX
ar3 =Q7, an=Q7, ars=0Q7, aw=CQ7, arr=— (:U’Iz + g —2——2= T) ;
(I3 +9g1)
ago =p2T,,, ags = —paT;, asg = —pslp, agg = p2B™,
QoT> QoT> (QT* ))
g2 = — quj? agy = — u7 agg = — B*+ C +r —2 -1 ;
92 D2 97 G+ g1 99 D2 T + o7 %
«pn (L—arglers
9,10 :OKETRQW7 a10,9 = &1, A10,10 = —H3,
and
diy =Ops BT}, duy = Ops BRTY,  dug = =5 L
2 I
, 4.6)
Brgl argks +erp (

deys =———=—, dgg = —p3E7 dos = AR dog = aRg————"—.

64 (A5 + )%’ 66 p3Lip, 94 9, 96 = Qg FE terg

5 Stability

In [10] stability conditions for the equation (4.3) are obtained in the form of nonlinear matrix Riccati equations. Via
Schur complement (see Appendix 7.4) similarly to [13,14] these conditions can be reformulated in the form of LMIs:

Lemma 1 Put ®y(P)= H'P+ PH. If7(t) <0 and for some positive definite matrices P and R at least one of the
LMIs

®y(P)+ R PD
D'P  -R

®y(P)+ R D'P
PD  -R

®y(P)+ D'RD P

<0, 5.1
P n (5.1)

)



https://doi.org/10.20944/preprints202009.0474.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2020 d0i:10.20944/preprints202009.0474.v1

holds then the zero solution of the equation (4.3) is asymptotically stable.

Corollary 1 If at least one of the LMIs (5.1) holds then the appropriate equilibrium of the system (2.1) is locally
asymptotically stable.

Remark 2 For LMIs (5.1) the matriz H has to be the Hurwitz matriz.

Example 1 Let be r = 0.0048, is = 5 x 105, up = 0.034 and all other parameters are given in Table 1. Via
the LMIs (5.1) and MATLAB it is shown that the equilibrium Ey is locally asymptotically stable for b € By =
[2.2 x 10%,58.9 x 10°]. In particular, the equilibria

b=2.2x 10*,
Ey :(A*7B*’ *BvA;’EEaE;7I;’ﬂ*aT:,FE)

=(223.2,1.72 x 10°,2.790 x 10%,0,4.14 x 10*,0,4.348 x 10°,0,0,0)
and

b =6 x 10°,
Ey =(A*,B*, Ay, A}, By, By 13, T, T Fy)

=(0.6415,5.995 x 107, 2.795 x 10*,0,118.96, 0, 4.348 x 10°,0,0,0)
are locally asymptotically stable. For b < 2.1 x 10* and b > 59 x 10° the equilibrium E; is unstable.

Example 2 Let be again r = 0.0048 but i = 0, ug = 0.19 and all other parameters are given in Table 1. Similarly
to Example 1 it is shown that the equilibrium E; is locally asymptotically stable in the same interval b € By =
[2.2 x 10%,58.9 x 10°]. In particular, the equilibria

b=2.2x 10,
El :(A*yB*vAgvA;"yEEaE’}7I;77;*aT:7FE)

=(223.2,1.72 x 10°,2.790 x 104,0, 0.289,0,16.98,0,0,0)
and

b =6 x 10°,
Ey :(A*7B*7 *BvA;7EEaE;,I;7ﬂ*aT;7FE)

=(0.6415,5.995 x 107,2.795 x 10%,0,8.328 x 107%,0,17.01,0,0,0)
are locally asymptotically stable.

Example 3 Let be r = 0.0085 and all other parameters as in Example 1. In this case, the equilibrium FEq is locally
asymptotically stable for b € By = [3.6 x 10%,53.9 x 10°]. In particular, the equilibria

b=3.6 x 10,
Ey :(A*7B*’ *BvA;’EEaE;7I;’ﬂ*aT:,FE)

=(123.16,3.12 x 10°,2.792 x 10%,0,2.284 x 10*,0,4.348 x 10°,0,0,0)
and

b =6 x 10°,
By =(A*,B*, Ay, Ay, Eg, B}, 13,17, T, F})

U

=(0.6415,5.995 x 107,2.795 x 10%,0,118.96,0, 4.348 x 10°,0,0,0).

are locally asymptotically stable. For b < 3.5 x 10* and b > 54 x 10° the equilibrium E; is unstable.
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Example 4 Let be again r = 0.0085 but but 12 = 0, ug = 0.19 and all other parameters as in Example 3. In this
case the equilibrium E1 is locally asymptotically stable for b € By = [3.6 x 10%,53.9 x 10°]. In particular, the equilibria

b =3.6 x 10*,
El :(A*vB*7A*B7A’§’,E}k37E%7I§72*aT:7FE>
=(123.16,3.12 x 10°,2.792 x 10%,0,0.1597, 0, 16.99, 0, 0, 0)

and

b =6 x 108,
El :(A*,B*a *BvA;’EEaE;’I;7ﬂ*7T:,FE)
=(0.6415,5.995 x 107,2.795 x 10%,0,8.328 x 107%,0,17.01,0,0,0)

are locally asymptotically stable.

Remark 3 Note that in the equilibrium E1 we have A} = Ep =17 =Ty = Fj = 0. From (4.6), (4.2) it follows

that d11 = d14 = d44 = d66 = d94 = d96 =0. If i2 =5x 106 then d64 = 0.0658 fO’I“ both r = 0.0048 and r = 0.0085. [f
i = 0 then dgg = 2.575 x 1076 for r = 0.0085 and dgs = 0 for r = 0.0048. So, one can see that dependence on delay
is low enough.

Example 5 By b = 0, is, = 5 x 10%, ur = 0.034 and the same values of all other parameters the following two
equilibria are unstable:

E, =(A", B, *BvA;’EEaE;»I;’E*vT:’FE)
(123680, 0,0,0,0,0,434783,0,0,0),
Es :(A*7B*7A*BvA;"7EEaE;’I;’ﬂ*athvFE)
=(123680,0,0,0,0,0,434783,0, 1011, 82973).

(5.2)

Remark 4 If the matriz H is the Hurwitz matriz then det(H) > 0. For the equilibria Ey and E3 we have Eg = 0.
From (4.5) it follows that ajg = ass = ass = ags = 0, i.e., all elements of the eighth column of the matriz H are
zeros and therefore det(H) = 0. It means that the matriz H is not the Hurwitz matriz and the equilibrium Es and
E3 are unstable for all values of the parameters.

6 Conclusions

In this work we present the improved model of combined therapy BCG+IL-2 immunotherapy in superficial BC with
constant instillations of BCG and IL-2. The current manuscript describes the outcome of analytical methods used
to derive the equilibria points and especially the tumor-free equilibrium point, at which cancer cells are effectively
eliminated. The model demonstrates several equilibria which depend on biologically related parameters and initial
conditions.

Adding BCG to the tumor-immune interaction may increase the immune response, which will be enhanced by the
addition of effector cells specific for tumor Ag. These effector cells appear only after a time delay caused by their
proliferation and maturation, and capture tumor cells containing this Ag. The entire reaction can only take place
with the presence of BCG. It is shown that the considered system has three equilibria describing the different states of
the patient. The stability of these states is investigated using the method of Lyapunov functionals and the method of
linear matrix inequalities (LMIs). Only in the E; and E5 equilibria do get cancer cell eradication (T, = 0), meaning
successful treatment. Stability analysis of the system (2.1) shows the equilibrium FEj is stable if the for BCG dose is
reflected in the condition depend on the growth of cancer cells (as indicated in Examples 1-4). In equilibrium F; we
obtain a strong immune response because Ap = 10° and I, = 10° that help to arrive at a tumor-free fixed point.

The delay does not influence to the stability of the first equilibrium that is shown in the Remark 3. The system does
not stable in the equilibria Ey and E3 with IL-2 therapy only (see Example 5, Remark 4).

By registering the basic parameters of BCG, maximum tumor size, tumor growth rate, and immune response param-
eters, we found the BCG dose where E; will be stable (Example 1-4). The ability to plan and predict by calculating
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a modulated dose of treatment may benefit patients who are unable to receive conventional treatment because of its
serious side effects, and as for patients who were previously considered refractory.

We would like to raise awareness in the community of urological-oncological doctors about the possibilities of mathe-
matical modeling and receive quantitative data to improve this model. The ability to plan and predict by calculating
a modulated dose of treatment can benefit patients who are unable to take routine treatment because of its serious
side effects, as well as to patients who were previously not considered treatable.

It is necessary to note also that three equilibria that are investigated in this work are equilibria obtained from the
system (3.1) in an analytical way. So, there is a possibility of continuing stability investigation of the considered
model via getting additional equilibria by numerical methods and using additional results of stability theory [10].
So, it will be the interest of experts in this direction to the obtained here results, and it is supposed to continue this
research.
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7 Appendix

7.1  Solution of (3.2)

From the second equation (3.2) we have B = . Substituting it into the first equation (3.2), we obtain

P1A+ up

b(Pl - 77) }
= A _ 4 s
! [plA +uB pa

Y1 A + ppy = Ab(pr — 1) + pruaA® + pappA,
apA% +a1A—ay =0, ag=pipa,
ay =b(p1 —n) + paps —Yp1, G2 = VB,

A=V a3 +4agag — ay B b

2a0 ’ i A* Fpup’
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7.2 Solution of (3.3)

A*
From the first equation (3.3) we have Ep = vly, v = ﬂ+. Substituting Ep into the second equation (3.3),
ne(Ap +9)
we obtain the equation for Is:
q21> .
A% 4 vl - = up, Iy — o,
( B 2) <Q1 12+g1) Iy 12 2

(A +vh)((q1 — @2)I2 + q191) = (pr, 12 —i2) (L2 + g1),
cold +c1ly —c2 =0, co=pr, —v(g — q2),

c1 = (pr, —vq)gr — iz — Az(q1 — q2), c2 = (i2 + AZq1)9r,

2 4 _
p=YatioeTa  pe

- )

200

7.8 Centralization of the system (2.1)

For the first equation of the system (2.1) using (3.1) we have

y1(t) =y = (p1 =) (w1 (t) + A")(y2(t) + B*) — pa(yi(t) + A*)
— Opa(yr(t — 7(t)) + A")(ys(t) + E5)(ys(t) + T7)
=—[(pr =m)B* + palyi(t) — (pr —n)A%y2(t) — Op3 AT ys (1)
— Ops A" ERys(t) + Ops ERT y1(t — 7(t)) + N1(y).

Similarly for the second and the third equations of (2.1) using (3.1) we have

y2(t) =b — (pr(y1(t) + A%) + pa(yo(t) + T7) + 1) (y2(t) + B¥)
=—p1B*yi(t) — (p1 A" + p2Ty, + p)y2(t) — p2B yo(t) + Na(y),

=p1(y1(t) + A")(y2(t) + B*) — (B + pa, ) (ys(t) + Ap)
=p1B*y1(t) + p1A%ya(t) — (B + pa,)ys(t) + N3(y).
For the fourth equation of (2.1) we obtain
Ya(t) =Ops(y1(t — 7(t)) + A")(ys(t) + Ep)(ys(t) + T7)
At — (8) + A7) (g (t) + ) — I3
(

~

y3(t

0 2 (B4 pa, t) + A%
=~ (B+pa,)ya(t) + Ops A" T ys(t) + Op3s A" Epys(t) + Ops ERT yi (t — 7(t)) — AG4 + Na(y),
where

() +13 AP
yr(t) + 15 +9r  I5+gr

Ga = (ya(t = 7(1)) + A7) (yo () + T7)

Using Taylor’s expansion in the form f(y) = f(0) + f/(0)y + o(y), we have

1 1y : o(y)
=—-—-= 1 —= =0. 7.1
a+y a a2 + O(y)a 1y —0 y ( )
Thus,
1 yr(t) A Tels
Gy = t—7(t)) + A; t)+ 15 t)+ T - +o0 — =
1 =(ya( () ) (Y7 (t) 5) (Yo (1) )<I§ Tar (I; Tg1)2 (y7) I +a1
AT igr Ayl T3
=——=y7(t) + t) + t—7(t)) + N .
(I§+91)2y7() I§+gly9() I§+gfy4( (t) 1(y)
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As a result

—(I*i 1) y7(t) + Ops A" ERys(t)
2

ya(t = 7(1)) + Na(y)-

AL
I3+ g1

9a(t) = — (B + pa, )ya(t) + Ops A" T ys(t) — Yo (t)
AT I3

O BT = (0) —
2

For the fifth equation of (2.1) via (3.1) we have

in(t) =22 LS IO L) (1) ) 0n(8) + ) — i (as(8) + ).

= — (p3T; + pe)ys(t) — psEpys(t) + BpGs + Ns(y),

where

(ys(t) + AB)(yz () + I5)  ABl3

Gy = .
° ys(t) + A% + g A%+ g

Using (7.1), we obtain

1 y3(t) AT
Gs = t) + A% t)+ I — —
I5g Ag
=27  _4a(t t Y .
As a result
. Bplsg . BAR .
Ys(t) =~ + g7 +g)2y3(t) — (psT3 + pE)ys (1) + i +gy7(15) — p3ERys(t) + Ns(y).

For the sixth equation of (2.1) we have

() ~Zr OB O TE) 1)+ 72) 0~ 7(0) + E5) = slon(6)+ ),

= — ppys(t) — psBrys(t) — psEpys(t — 7(t)) + BrGs + Ne(y),

where

(yalt —7(t) + Ap)(yz(H) + I3)  ATL3
ya(t —7(t) + A% + g A +yg

Ge¢ =

and via (7.1)

1 ya(t —7(t)) ALy
- +
A +g9 (A5 +9)? o(ya)

Ar+yg
Thus,
U6(t) = — ueys(t) + p gy7(t) — p3Eryo(t) + w%(t —7(t)) — p3E7ye(t — 7(t)) + No(y).
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For the seventh equation of (2.1) we have

Ir(0) =(on(0) + A +a0) + A7 +150) + B +00) + 53 (a0 — ZUO D )
2 = g (1) + 15).

*

q215

Puttin =q; —
gQr=q I +gr

, via (7.1) we obtain

q2(y7(t) + 13) q2 . q2y7(t)
- —q — t)+ 1) + e
y7(t) + 15 + g1 o I3+ g1 (e () + 1) (I3 + g1)?

Q2 G215
=Q7 — - t)+o
o (13‘ +9r (I3 +91)2> r(8) + olur)

=Q7 — (1'2*q—2|——g;1)2y7(t) + o(yr).

(y7(t) + 13) + o(yr)

Thus,

Ur(t) =(ys(t) + ya(t) +ys(t) + ye(t) + A + Ar + Ef + ET) <Q7 - (I;f]i—g;])gm(t) + o(y7)>
iy — pr, (yr(t) + 13)

Ay + AN+ BS + B
=Q7y3(t) + Qrya(t) + Qrys(t) + Qrys(t) — [MZ) + qgr =2 L 5 L

(I3 +91)°

] y7(t) + Nz(y).

For the eighth equation of (2.1)

Us(t) =p2(y2(t) + B*)(yo(t) + To) — pa(ys(t) + Ex)(ys(t) + T7)
=p2T,y2(t) — paT; ys(t) — PaEpys(t) + p2B ys(t) + Ns(t).

For the ninth equation of (2.1) we have

Jo(t) =(yo(t) + T) |7 (1 IOk M

where

Go = (/\(y4(t —7(t)) + A7) + a(ys(t — 7(t)) + E7)

y y7(t) + 13 gr
yr(t)+I5 + g1 ) \yo(t) + T3 + g7

Note that via (7.1)

arg(yo(t) + F5) +erp
ylo(t) + FE +er s

yr(t) + 15 . ( 1 y7(t) )
— IR T2 (g (t) 4 T -~ +o
I3 yr(t) Ly (t)
= —_ —|—0
Gro  TGte (0Grap oW
I3 gr

= * + * t +Oy ’

gr __9r gr
Yo(t) + Ty +gr Tp+gr (Tr+gr)

5Yo(t) + o(yo)
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and
ar,s(yio(t) + F5) +enp 1 yro(8)
= (& t)+arglFs +e — +o0
y10(t) + Fj+erg (ar,5y10(1) T.54p ) F +ers (FB* terp)? (y10)
arpFi+ers argyo(t)  (orsFs +erp)yio(t)
- * T 7 - m 2 +0(y10)
Fgterg Fyterp (F5 +erp)
OéT7ﬁFE + 6T7ﬂ (]. — QT B)@T B
= * - Yy + o(Y10)-
Fi +erp (F5 +erp)? 10(t) + 0(y10)
Put

ar gk +erp I3 gr
= | MY+ aFs .
@ ( ’ T Fiterg I3 +gr J\T; +gr

T*
Then via (3.1) #T7* (1 - %) = T (p2B* + Q) and

Go =| Mya(t —7(t)) + A7)

argFi +e —arge
+a@deﬁD+E%< T U+ﬂ@w0>

I3 g1 gt gr
X + t)+o — t)+o
(I;Jrgf (I;+g,)2y7() (y7)> (TJJFQT (TJ+gT)2y9() (o)

argly +erp

MG + aBj opp 0 0ra)rs,

F*—FeTg (FE—Fe )2y0
TﬂFﬁ-l-eTg
Aya(t — 7(t) t—T1(t
+ Aya(t = 7(1)) Fr +ers sl T()))

_l’_
gr gr
NPT
_<%+W>Qﬁ+g>> ”>+%<>

Qo Qo (1 —-arglers I g7
=Qy + t) — —<2 yo(t) — aF} 6T, ¢
Qo I;—i—gfy?() T,j‘—i—gTyg() Ty terp)? \I+91 )\ T3 +or Y10(t)

I3 gr
+A 2 t—1(t
(I; +91> (T;: +gT>y4( )

o OrpEs Ferp ( I3 > < T )ye(t —7(t))) + No(y).

Fi +erp I3 4+9r J\TF +gr

Thus,
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. T r Qo
t) =T* 1— =% | —pB* — t) — —=vyo(t) — —
in(0) =T | (1= 55) = paB = panelt) = o) = Qo = 220
(I—oarglerg (13 gr 13
taE: B)°T, OED)
T (Fyters)? \ L+ )\ Ts +or vl + M g

argki +erg I3 gr
a—2Fb — - ye(t — 7(t)))
Fg+erpg \1I3+gr J\Ti+gr

*

+yo(t) [7" (1 - TKu> —p2B* — Q9‘| + No(y)

Qo Qo r
=T | — poya(t) — D+ 22— )yt
u p2ya(t) I;Jrgly?() Tr +gr K Yo(t)
.(I—arpglerg I3 gr
taE B)°T, t
T (F;+erp)? \I3+91 )\ T +9gr yro(t)

ya(t —7(1))

T* I gr
+ 1— =% ) —poB* — t) + NI 2
’I“( ) P2 Q9]y9() “<I§+gz><Ti+gT>
LoarpFg +erp I3 gr
T t—1(t)) + N,
« I +or T* + g7 yﬁ( 7'( )) 9(3/)

“ FE—I—eTﬁ

or

. . QoT; # Qoyg 273
Uo(t) = — p2Tya(t) — I*igjm(t) — | p2B* + ﬁ +7r x = 1
2 U

* *(l_aTﬂ)eTﬂ I; gr
+ BT B°T, t
T F ers)? \ T +ar J\Ts +ar )00

I gr
+ AT 2 t—7(t
“(Ié‘+gz><T;+gT>y4( ®)
LorpFg +€T,B< I;

+aT gr

“ FE+€T7B

At last for the last equation of (2.1) via (3.1) we obtain

910(t) = ag,1ys(t) — pay1o(t).

7.4 Schur complement

A B
Schur complement [33]. The symmetric matrix

both negative definite.
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