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Abstract

We use a system biology approach to translate the interaction of Bacillus Calmette-Gurin (BCG) + interleukin 2 (IL-2) for
the treatment of bladder cancer into a mathematical model. The model is presented as a system of differential equations with
the following variables: number of tumor cells, bacterial cells, immune cells, and cytokines involved in the tumor-immune
response. This work investigates the delay effect induced by the proliferation of tumor antigen-specific effector cells after the
immune system destroys BCG-infected urothelium cells following BCG and IL-2 immunotherapy in the treatment of bladder
cancer. For the proposed model, three equilibrium states are found analytically. The stability of all equilibria is analyzed using
the method of Lyapunov functionals construction and the method of linear matrix inequalities (LMIs).

Key words: cancer modeling, combined treatment model; discrete time delay; stability conditions; Lyapunov functionals;
linear matrix inequalities (LMIs).

1 Introduction

Bladder cancer (BC) is the fourth most common cancer in males after prostate, lung, and colorectal cancers, ac-
counting for 6.6% of all cancer cases [1,2] and the 11th most common cancer in women [1]. The global prevalence of
BC is estimated at more than one million and is steadily increasing [2].

The risks of BC appear to vary across world regions, correlating with smoking and occupational exposures to
carcinogens in developed countries [3], and with chronic bladder urothelial irritation from Schistosoma hematobium
infection in Africa and the Middle East [4]. This disease places an enormous economic burden on the U.S. health
care system due to its requirements of surgical resection, repeated intravesical therapies, and lifelong medical follow-
up. Transurethral resection of BC (TURBT) is the standard primary treatment for Ta and T1 stages; however,
recurrence rates for TURBT alone can be as high as 70% with up to 30% progressing to muscle-invasive disease
requiring cystectomy [3]. The high rates of recurrence and significant risk of progression in higher-grade tumors
mandate additional therapy with intravesical agents. To date, intravesical therapy has been used as an adjuvant
treatment after TURBT to prevent recurrence and progression of the disease.

Chemotherapeutic agents such as mitomycin C, doxorubicin, and epirubicin have long been used as intravesical
therapies for BC [3,4]. Immunotherapy, BCG, a live attenuated strain of Mycobacterium bovis widely used as a
vaccine against tuberculosis, was first introduced as an intravesical therapy for BC in 1976 year by Morales and
associates [5]. Since then, BCG has been extensively evaluated and demonstrated to be superior to any other single
chemotherapeutic agent for reducing recurrence and preventing the progression of the disease [3,6]. To date, BCG has
become the mainstay of therapy for BC and remains the most effective treatment [3,6]. However, despite its favorable
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effects, a significant proportion of patients do not respond to BCG or tolerate treatment. Besides, recurrence and
side effects are common. Therefore, research has been pursued and efforts made to improve BCG therapy. During
the past decades, cytokine-based therapies have been developed [7]. To date, multiple cytokines, such as IFN-α, IL-2
and IL-12, have been evaluated, alone, or in combination with BCG for the treatment of BC. In addition, pre-clinical
research continues, aiming to identify new BCG therapeutic modalities.

This research is based on the model of BC immunotherapy [35], focusing on the clinical use of BCG and IL-2,
considering the in second phase of the immune response after BCG instillations. Delays in biological systems can
be used to model events for which it is impossible to accurately observe the underlying dynamics or to provide
an abstraction of some system behavior, which leads to more compact models [8,34]. The historically deterministic
modeling of biological systems with delays is based on differential equations with delay, an extension of the usual
ones, where the derivative of an unknown function depends on the past states of the system [5,6].

The purpose of the current research is to analyze the stability of BCG model in Delay Differential Equations.
The stability of equilibria is analyzed using the classical Lyapunov-Krasovskii functionals method together with
Kolmanovskii-Shaikhet general method of Lyapunov functionals construction [9,10] and the method of linear matrix
inequalities (LMIs) [11–14].

The considered BCG-model is described by a system of nonlinear differential equations with delays and an order of
nonlinearity higher than one. A stability investigation of systems of this type can be reduced to stability investigation
of the linear part of a nonlinear system. The obtained sufficient conditions for asymptotic stability of the zero solution
of an auxiliary linear system, at the same time, are sufficient conditions for the local stability of the corresponding
equilibrium of the initial nonlinear system. Here standard definitions of stability are used (see, for instance [15]).

2 Description of the model

Our model describes the effects of combining BCG and IL-2 as immunotherapy for BC treatment. Based in part
upon previous study [16,35,36], we further optimized the model to account for the delayed immune response that
occurs due to the effector cell proliferation to specific to the tumor antigen (Ag) after the immune system eradicates
BCG infected urothelium cells. The equations of our model are as follows:

Ȧ(t) =γ − (p1 − η)A(t)B(t)− µAA(t)− θp3EB(t)Ti(t)A(t− τ(t)),

Ḃ(t) =b− p1A(t)B(t)− p2B(t)Tu(t)− µBB(t),

ȦB(t) =p1A(t)B(t)− (β + µA1)AB(t),

ȦT (t) =θp3EB(t)Ti(t)A(t− τ(t))− λAT (t− τ(t))Tu(t)

(
I2(t)

I2(t) + gI

)
− (β + µA1)AT (t),

ĖB(t) =
βBAB(t)I2(t)

AB(t) + g
− p3Ti(t)EB(t)− µEEB(t),

ĖT (t) =
βTAT (t− τ(t))I2(t)

AT (t− τ(t)) + g
− p3Tu(t)ET (t− τ(t))− µEET (t),

İ2(t) =(AB(t) +AT (t) + EB(t) + ET (t))

(
q1 −

q2I2(t)

I2(t) + gI

)
+ i2 − µI2I2(t),

Ṫi(t) =p2B(t)Tu(t)− p4EB(t)Ti(t),

Ṫu(t) =rTu(t)

(
1− Tu(t)

K

)
− p2B(t)Tu(t)−

(
λAT (t− τ(t))Tu(t)

+ αET (t− τ(t))Tu(t)
αT,βFβ(t) + eT,β

Fβ(t) + eT,β

)(
I2(t)

I2(t) + gI

)(
gT

Tu(t) + gT

)
,

Ḟβ(t) =αβ,TTu(t)− µβFβ(t).

(2.1)

Here it is supposed that the delay τ(t) is given by the equality τ(t) = ν0 + ν1e
−ν2t, νi ≥ 0, i = 0, 1, 2. So, the delay

is decreasing and τ(0) = ν0 + ν1, τ(∞) = ν0. τ(t) is a time-varying function, representing the delay in immune
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response following treatment, and expressing the number of effector cells in the cancer region. The delay is measured
in reference to the beginning of BCG treatment (t = 0), with a maximum delay of approximately 10 days. The
influence of BCG tends towards zero over time.

Equations (2.1) describe rates of change in concentrations of molecules or cell populations using the following
notations:
-BCG bacteria within the bladder as B;
-APCs (dendritic cells (DCs) and macrophages) as A;
-activated/matured APCs after BCG internalization and processing as AB;
-activated/matured APCs specific to tumor Ag as AT ;
-effector T lymphocytes consisting mostly of CTLs that react to BCG as EB ;
-effector T lymphocytes consisting mostly of CTLs that react to tumor Ags as ET ;
-IL-2 units injected inside the bladder as I2;
-tumor cells infected with BCG as Ti;
-tumor cells not infected by BCG as Tu;
-transforming growth factor-beta (TGF-β) denotes as Fβ .

Mathematical and biological interpretation of equations (2.1) are examined below:

dA

dt
is the dynamic of non-activated APCs, as described in Bunimovich-Mendrazitsky et al. [16], it is governed by

two positive terms and three negative terms. The first positive term describes the normal influx of APCs to the
tumor at a constant rate γ. The second positive term describes the recruitment of APCs due to bacterial infection
at a rate coefficient η. The first negative term describes the activation of APCs by BCG at the rate coefficient
p1. The second negative term is natural cell death at the rate coefficient µA. The last negative term accounts for
the two-stage elimination of tumor cells, according to recent knowledge, first by effector CTL activity upon BCG
-infected tumor cells, which leads to lysis of these cells and flooding of the tumor micro-environment with tumor
antigens. Activation of APC cells with tumor-specific antigens occurs with a delay of τ(t) after the destruction of
infected tumor cells. The localized inflammatory response then attracts APCs, such as macrophages, which in turn
eliminate uninfected tumor cells, according to the rate θp3.

dB

dt
is the dynamical rate of BCG level changes with time. It is comprised of a positive term corresponding to BCG

instillations, and of negative terms corresponding to the elimination of BCG by antigen-presenting cells (APCs)
according to the rate coefficient p1, BCG tumor cell infection at a rate coefficient p2, and bacteria cell death with
rate coefficient µB . A quantity b of BCG is instilled into the bladder via a catheter inserted through the urethra
once in a week during 6-8 weeks. In this study, we have chosen to simplify the problem by assuming that BCG is
introduced into the bladder at a constant rate b.

dAB

dt
is the dynamic of BCG-activated APCs. It is described by one positive term and two negative terms. The

positive term is proportional to the numbers of non-activated APCs as well as BCG bacteria, with rate coefficient

p1 (as in
dA

dt
). The first negative term is the migration of the infected, activated APCs to the draining lymphoid

tissues, at a rate of coefficient β1. The second negative term is the death of activated APCs at a rate of coefficient
µA1 .

dAT

dt
is the tumor-Ag-activated APC (TAA-APC) dynamic. It is comprised of one positive term and three negative

terms. The positive term describes the APCs which were activated by tumor antigen after eradication of infected
tumor cells with the same τ(t) delay function. The first negative term represents the tumor-Ag-activated APCs
cells which destroy the uninfected tumor cells, with a rate coefficient λ after (t) delay. This term is multiplied by
an IL-2-dependent parameter with a saturation constant gI , to propose that in the absence of IL-2, AT production
ceases, while in the presence of external IL-2, the production term is close to 1. The second negative term describes
the migration of TAA-APC to the draining lymphoid tissues at a rate of coefficient β1. The third negative term
denotes the natural death of TAA-APC at a rate coefficient µA1

.

dEB

dt
is the dynamic of effector CTLs that react to BCG infection. It is comprised of their migration rate, determined

by their creation in the lymph node and subsequent migration to the bladder, inactivation rate, and their death rate.
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The migration element is proportional to AB and IL-2, with a maximal rate of coefficient βB. This rate is brought
to saturation by large numbers of AB , using a Michaelis-Menten saturation function, with Michaelis parameter g.
The first negative term is inactivation of effector CTLs via their encounter with infected tumor cells (Ti) at a success
rate coefficient p3. The second negative term corresponds to the BCG-effector CTL (EB) cells’ natural death rate
µE .

dET

dt
is the dynamic of effector cells reacting to tumor Ag after delay τ(t) time due to the eradication of infected

tumor cells. It is comprised of their migration rate, inactivation rate, and death rate. The migration element is
proportional to AT and IL-2 with a maximal rate coefficient βT . This rate is brought to saturation by large numbers

of AT using a Michaelis-Menten saturation function, with Michaelis parameter g (as in
dEB

dt
). The first negative

term describes the inactivation of effector CTLs via their encounter with uninfected tumor cells (Tu), at success rate
coefficient p3. The second negative term describes the ET natural death rate, with a rate coefficient µE .

dI2
dt

is the IL-2 dynamic. It is driven by a natural source, an external source, as well as sink and degradation courses.

The first two processes are positive and the last two are negative. They assume equal expression at the constant
rate coefficient q1. They reflect the IL-2 external source i2, which is injected into the bladder every τ time units. I2
is consumed by APCs and CTLs. They assume that the rate of consumption is similar for both types of cells and
denote its coefficient by q2. The consumption depends on I2 and is limited in a Michaelis-Menten fashion, with the
Michaelis constant gI . They also introduce µI2 , the I2 degradation rate coefficient.

dTi

dt
is the dynamic of infected tumor cells depend on two mechanisms. The first corresponds only to the rate of

bacterial infection of uninfected tumor cells, (Tu), according to rate coefficient p2. The second mechanism is the
elimination of infected tumor cells (Ti) by their interaction with BCG-CTL effector cells (represented by EB), at
rate coefficient p4.

dTu

dt
is the dynamic of uninfected tumor cells. It is comprised of three processes: one positive term, corresponding to

natural tumor growth, and two negative terms, corresponding to tumor infection by bacteria and tumor elimination
by immune cells. The natural tumor growth is characterized by a maximal growth rate coefficient, r, which is limited
by the maximal tumor cell number, K. The first negative term, due to bacterial infection, is characterized by a
coefficient rate of p2. The second negative term is attributed both to the capture and elimination of Tu cells by
APCs cells, which were activated by tumor-Ag at rate coefficient λ, and to the activity of TAA-CTL effectors, (ET ),
which destroy uninfected tumor cells, (Tu), at a rate coefficient α. Two These two processes take place after delay
τ(t). The dependence in the equation of Tu on Fβ is decreasing from 1 to aT,β with Michaelis constant eT,β [17]. And
then there is a multiplication of those terms by an I2-dependent Michaelis-Menten term, with Michaelis parameter
gI , to propose that in the absence of I2, Tu cellular death does not occur. Since the tumor produces a variety of
mechanisms in the biological settings that curtail the success of effector cell activity, they multiply I2/(I2 + gI) by
gT /(Tu+ gT ), to denote the inversely proportional reduction in effector cell activity rate, such that when Tu = 0 the
term is equal to 1 and when limTu→∞ gT /(Tu + gT ) = 0. Note that although this factor can, in principle, nullify the
efficacy of CTLs, this is not observed in cases of interest because Tu ≤ K [16].

dFβ

dt
is the dynamic of a TGF-β, as proportional to the tumor cell population, Tu, with aβ,T as a proportion coeffi-

cient and is destroyed at a rate of µβ proportional to Fβ .

The real values of the system (2.1) parameters are presented in Table 1.
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Table 1
List of all parameters

Parameters Physical Interpretation (units) Estimated value Reference

µA APC half life [days−1] 0.038 [18]

µA1 Activated APC half life [days−1] 0.138 [19]

µE1 Effector cells mortality rate w/o IL-2 [days−1] 0.19 [17] and calculated

µE2 Effector cells mortality rate with IL-2 [days−1] 0.034 [20]

µB BCG half life [days−1] 0.1 [21]

p1 The rate of BCG binding with APC [cells−1][days−1] 1.25× 10−4 [22] adjusted for liters

p2 Infection rate of tumor cells by BCG [cells−1][days−1] 0.028× 10−6 From model simulation

p3 Rate of E deactivation after binding with infected tumor cells
[cells−1][days−1]

1.03× 10−10 [23]

p4 Rate of destruction of infected tumor cells by effector cells
[cells−1][days−1]

1.1× 10−6 [23]

λ Production rate of TAA-APC [days−1] 10−8 [24]

βB Recruitment rate of effector cells in response to signals released
by BCG-infected and activated APC [cells−1][days−1][I−1

2 ]
1.45× 108 [25]

βT Recruitment rate of effector cells in response to signals released
by TAA-infected and activated APC [cells−1][days−1][I−1

2 ]
1.514× 106 [26]

γ Initial APC cell numbers [cells−1][days−1] 4700 [19]

η Rate of recruited additional resting APCs [cells−1][days−1] 2.8× 10−6 [18]

r Tumor growth rate [days−1] 0.0048− 0.0085 [27]

b Bio-effective dose of BCG [c.f.u./week] 2.2× 108 From clinical data provided by
Dr. Sarel Halachmi

β Migration rate of TAA-APC and bacteria activated APC to the
lymph node [cells−1][days−1]

0.034 [18]

α Efficacy of an effector cell on tumor cell [cells−1][days−1] 3.7× 10−6 [28]

g Michaelis-Menten constant for BCG activated CTLs and for
TAA-CTLs[cells]

1013 From model simulation

gT Michaelis-Menten constant for tumor cells[cells] 5200 [16]

K Maximal tumor cell population [cells] 1011 [29]

q1 Rate of IL-2 production IU [cells−1][days−1] 0.007 [30] and simulations

q2 The proportion of IL-2 used for differentiation of effector cells
IU [cells−1][days−1]

1.2× 10−3 [26]

µI2 Degradation rate [days−1] 11.5 [26,31]

θ Recruitment rate of Tumor-Ag-activated APC cells in response
to signals released after binding effector cells, that react to BCG
infection, with infected tumor cells [1/cell−1]

0.01 From model simulation

αβ,T The release term per tumor cell [pg/cell−1 ∗ d−1] 1.38× 10−4 [17]

αT,β Michaelis-Menten saturation dynamics. The dependence on Fβ

is decreasing from 0 to αT,β [none]
0.69 [17]

eT,β Michaelis constant [pg] 10000 [17]

µβ The constant rate, accounts for degradation of Fβ [d−1] 166.32 [17]

gI Michaelis-Menten constant for IL-2 [cells] 10000 From model calculations

i2 Rate of external source [units per treatment] 8×105−7.7×106 [32]
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3 Equilibria

Equilibria of the model (2.1) are defined by the system of the algebraic equations

(1′) γ = [(p1 − η)B + µA + θp3EBTi]A,

(2′) b = (p1A+ p2Tu + µB)B,

(3′) p1AB = (β + µA1
)AB ,

(4′) θp3EBTiA = λATTu

(
I2

I2 + gI

)
+ (β + µA1)AT ,

(5′)
βBABI2
AB + g

= (p3Ti + µE)EB,

(6′)
βTAT I2
AT + g

= (p3Tu + µE)ET ,

(7′) (AB +AT + EB + ET )

(
q1 −

q2I2
I2 + gI

)
+ i2 = µI2I2,

(8′) p2BTu = p4EBTi,

(9′) rTu

(
1− Tu

K

)
= p2BTu + Tu

(
λAT + αET

αT,βFβ + eT,β

Fβ + eT,β

)(
I2

I2 + gI

)(
gT

Tu + gT

)
,

(10′) αβ,TTu = µβFβ ,

(3.1)

that follows from (2.1) by the assumption that A(t), B(t), AB(t), AT (t), EB(t), ET (t), I2(t), Ti(t), Tu(t), Fβ(t) are
constants.

Note that the solution of the system (3.1) can be not unique. Let us get some solutions of the system (3.1) in two
different situations: b > 0 and b = 0.

3.1 Equilibrium with b > 0, i2 ≥ 0

Consider the following way to get a solution of the system (3.1), i.e., an equilibrium of the system (2.1) for the
”‘tumor-free” case:
1) From (9’) it follows that one of the possible Tu is Tu = 0.
2) From (10’) it follows Fβ = 0 (via Tu = 0).
3) From (8’) it follows EBTi = 0 (via Tu = 0).
4) From (4’) it follows AT = 0 (via Tu = 0 and EBTi = 0).
5) From (6’) it follows ET = 0 (via Tu = 0 and AT = 0).
6) From (1’), (2’) the system for A, B it follows (via EBTi = 0 and Tu = 0)

(p1A+ µB)B = b,

[(p1 − η)B + µA]A = γ,
(3.2)

with the solution (see Appendix 7.1)

A∗ =

√
a21 + 4a0a2 − a1

2a0
, B∗ =

b

p1A∗ + µB
,

a0 = p1µA, a1 = b(p1 − η) + µAµB − γp1, a2 = γµB .

7) From (3’) it follows A∗
B =

p1
β + µA1

A∗B∗ (via A∗, B∗).

8) From (5’) it follows that if EB = 0 then I2 = 0 but via (7’) it is impossible. So, from EBTi = 0 it follows Ti = 0.
9) From (5’) and (7’) the system for E∗

B , I
∗
2 it follows (via AT = ET = Ti = 0)

βBA
∗
BI2

A∗
B + g

= µEEB , (A∗
B + EB)

(
q1 −

q2I2
I2 + gI

)
+ i2 = µI2I2, (3.3)
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with the solution (see Appendix 7.2)

I∗2 =

√
c21 + 4c0c2 − c1

2c0
, E∗

B = νI∗2 ,

c0 = µI2 − ν(q1 − q2), c1 = (µI2 − νq1)gI − i2 −A∗
B(q1 − q2),

c2 = (i2 +A∗
Bq1)gI , ν =

βBA
∗

µE(A∗
B + g)

.

As a result we obtain a tumor-free equilibrium

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(A∗, B∗, A∗
B , 0, E

∗
B , 0, I

∗
2 , 0, 0, 0).

(3.4)

3.2 Equilibria with b = 0, i2 ≥ 0

Consider another way to get equilibria of the system (2.1):
1) From (2’) it follows B = 0.
2) From (3’) it follows AB = 0 (via B = 0).
3) From (5’) it follows EB = 0 (via AB = 0).
4) From (4’) it follows AT = 0 (via EB = 0).
5) From (6’) it follows ET = 0 (via AT = 0).

6) From (1’) it follows A =
γ

µA
(via B = EB = 0).

7) From (7’) it follows I2 =
i2
µI2

(via AB = AT = EB = ET = 0).

8) From (9’) it follows Tu = 0 or Tu = K (via B = AT = ET = 0).

9) From (10’) it follows Fβ = 0 or Fβ =
αβ,T

µβ
K (via Tu = 0 or Tu = K).

10) From (8’) it follows Ti = C = const (via B = EB = 0).

As a result we obtain two following equilibria:
1) tumor-free (T ∗

u = 0)

E2 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=

(
γ

µA
, 0, 0, 0, 0, 0,

i2
µI2

, C, 0, 0

)
,

(3.5)

2) not tumor-free (T ∗
u ̸= 0)

E3 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=

(
γ

µA
, 0, 0, 0, 0, 0,

i2
µI2

, C,K,
αβ,T

µβ
K

)
.

(3.6)

Remark 1 Suppose that EB = ET = 0. Then from the equations (5’) and (6’) of the system (3.1) it follows that
AB = AT = 0. From (7’) it follows that I2 = i2/µI2 . From (3’) it follows that AB = 0. From (1’) it follows that A
cannot be zero by γ > 0 and from (2’) it follows that B is zero by b = 0. So, we obtain again the equilibria E2, E3.

4 Centralization and linearization

Let (A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β ) be a solution of the system (3.1), i.e., one of the possible equilibria of

the system (2.1). Using the new variables y1 = A−A∗, y2 = B−B∗, y3 = AB −A∗
B , y4 = AT −A∗

T , y5 = EB −E∗
B,

y6 = ET −E∗
T , y7 = I2 − I∗2 , y8 = Ti − T ∗

i , y9 = Tu − T ∗
u , y10 = Fβ − F ∗

β , we centralize the system (2.1) around the

considered equilibrium (see Appendix 7.3):
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ẏ1(t) =− [(p1 − η)B∗ + µA]y1(t)− (p1 − η)A∗y2(t)− θp3A
∗T ∗

i y5(t)

− θp3A
∗E∗

By8(t) + θp3E
∗
BT

∗
i y1(t− τ(t)) +N1(y),

ẏ2(t) =− p1B
∗y1(t)− (p1A

∗ + p2T
∗
u + µB)y2(t)− p2B

∗y9(t) +N2(y),

ẏ3(t) =p1B
∗y1(t) + p1A

∗y2(t)− (β + µA1)y3(t) +N3(y),

ẏ4(t) =− (β + µA1)y4(t) + θp3A
∗T ∗

i y5(t)−
λA∗

TT
∗
ugI

(I∗2 + gI)2
y7(t) + θp3A

∗E∗
By8(t)

− λA∗
T I

∗
2

I∗2 + gI
y9(t) + θp3E

∗
BT

∗
i y1(t− τ(t))− λT ∗

uI
∗
2

I∗2 + gI
y4(t− τ(t)) +N4(y),

ẏ5(t) =
βBI

∗
2g

(A∗
B + g)2

y3(t)− (p3T
∗
i + µE)y5(t) +

βBA
∗
B

A∗
B + g

y7(t)− p3E
∗
By8(t) +N5(y),

ẏ6(t) =− µEy6(t) +
βTA

∗
T

A∗
T + g

y7(t)− p3ET y9(t) +
βT gI

∗
2

(AT + g)2
y4(t− τ(t))− p3E

∗
T y6(t− τ(t)) +N6(y),

ẏ7(t) =Q7y3(t) +Q7y4(t) +Q7y5(t) +Q7y6(t)−
[
µI2 + q2gI

A∗
B +A∗

T + E∗
B + E∗

T

(I∗2 + gI)2

]
y7(t) +N7(y),

ẏ8(t) =p2T
∗
uy2(t)− p4T

∗
i y5(t)− p4E

∗
By8(t) + p2B

∗y9(t) +N8(y),

ẏ9(t) =− p2T
∗
uy2(t)−

Q9T
∗
u

I∗2 + gI
y7(t)−

(
p2B

∗ +
Q9gT

T ∗
u + gT

+ r

(
2T ∗

u

K
− 1

))
y9(t)

+ αE∗
TR9

(1− αT,β)eT,β

(F ∗
β + eT,β)2

y10(t) + λR9y4(t− τ(t)) + αR9

αT,βF
∗
β + eT,β

F ∗
β + eT,β

y6(t− τ(t)) +N9(y),

ẏ10(t) =αβ,T y9(t)− µβy10(t).

(4.1)

Here

Q7 =q1 − q2
I∗2

I∗2 + gI
, R9 = T ∗

u

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
,

Q9 =

(
λA∗

T + αE∗
T

αT,βF
∗
β + eT,β

F ∗
β + eT,β

)(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
,

(4.2)

via Ni(y) in the differential equation for yi(t), i = 1, ..., 9, all nonlinear terms of the variables y = {y1, ..., y10} are
denoted, Ni(0) = 0.

It is clear that stability of the zero solution of the system (4.1) is equivalent to stability of the equilibrium of the
system (2.1). For the local stability in the first approximation it is enough to consider the linear part of the nonlinear
system (4.1). Thus, removing from (4.1) the nonlinear terms Ni(y), represent the linear part of this system in the
matrix form

ż(t) = Hz(t) +Dz(t− τ(t)), (4.3)
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where z = {z1, ..., z10}′, H and D are the matrices of the dimension 10× 10,

H =



a11 a12 0 0 a15 0 0 a18 0 0

a21 a22 0 0 0 0 0 0 a29 0

a31 a32 a33 0 0 0 0 0 0 0

0 0 0 a44 a45 0 a47 a48 a49 0

0 0 a53 0 a55 0 a57 a58 0 0

0 0 0 0 0 a66 a67 0 a69 0

0 0 a73 a74 a75 a76 a77 0 0 0

0 a82 0 0 a85 0 0 a88 a89 0

0 a92 0 0 0 0 a97 0 a99 a9,10

0 0 0 0 0 0 0 0 a10,9 a10,10



, D =



d11 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

d41 0 0 d44 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 d64 0 d66 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 d94 0 d96 0 0 0 0

0 0 0 0 0 0 0 0 0 0



, (4.4)

the nonzero elements aij and dij of these matrices respectively are

a11 =− [(p1 − η)B∗ + µA], a12 = −(p1 − η)A∗, a15 = −θp3A
∗T ∗

i , a18 = −θp3A
∗E∗

B ,

a21 =− p1B
∗, a22 = −(p1A

∗ + p2T
∗
u + µB), a29 = −p2B

∗,

a31 =p1B
∗, a32 = p1A

∗, a33 = −(β + µA1),

a44 =− (β + µA1), a45 = θp3A
∗T ∗

i , a47 = − λgIA
∗
TT

∗
u

(I∗2 + gI)2
, a48 = θp3A

∗E∗
B , a49 = − λA∗

T I
∗
2

I∗2 + gI
,

a53 =
βBgI

∗
2

(A∗
B + g)2

, a55 = −(p3T
∗
i + µE), a57 =

βBA
∗
B

A∗
B + g

, a58 = −p3E
∗
B ,

a66 =− µE , a67 =
βTA

∗
T

A∗
T + g

, a69 = −p3E
∗
T ,

a73 =Q7, a74 = Q7, a75 = Q7, a76 = Q7, a77 = −
(
µI2 + q2gI

A∗
B +A∗

T + E∗
B + E∗

T

(I∗2 + gI)2

)
,

a82 =p2T
∗
u , a85 = −p4T

∗
i , a88 = −p4E

∗
B , a89 = p2B

∗,

a92 =− p2T
∗
u , a97 = − Q9T

∗
u

I∗2 + gI
, a99 = −

(
p2B

∗ +
Q9T

∗
u

T ∗
u + gT

+ r

(
2T ∗

u

K
− 1

))
,

a9,10 =αE∗
TR9

(1− αT,β)eT,β

(F ∗
β + eT,β)2

, a10,9 = αβ,T , a10,10 = −µβ ,

(4.5)

and

d11 =θp3E
∗
BT

∗
i , d41 = θp3E

∗
BT

∗
i , d44 = −λgT ∗

uI
∗
2

I∗2 + gI
,

d64 =
βT gI

∗
2

(A∗
T + g)2

, d66 = −p3E
∗
T , d94 = λR9, d96 = αR9

αT,βF
∗
β + eT,β

F ∗
β + eT,β

.
(4.6)

5 Stability

In [10] stability conditions for the equation (4.3) are obtained in the form of nonlinear matrix Riccati equations. Via
Schur complement (see Appendix 7.4) similarly to [13,14] these conditions can be reformulated in the form of LMIs:

Lemma 1 Put Φ0(P ) = H ′P +PH. If τ̇(t) ≤ 0 and for some positive definite matrices P and R at least one of the
LMIs[

Φ0(P ) +R PD

D′P −R

]
< 0,

[
Φ0(P ) +R D′P

PD −R

]
< 0,

[
Φ0(P ) +D′RD P

P −R

]
< 0, (5.1)
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holds then the zero solution of the equation (4.3) is asymptotically stable.

Corollary 1 If at least one of the LMIs (5.1) holds then the appropriate equilibrium of the system (2.1) is locally
asymptotically stable.

Remark 2 For LMIs (5.1) the matrix H has to be the Hurwitz matrix.

Example 1 Let be r = 0.0048, i2 = 5 × 106, µE = 0.034 and all other parameters are given in Table 1. Via
the LMIs (5.1) and MATLAB it is shown that the equilibrium E1 is locally asymptotically stable for b ∈ B1 =
[2.2× 104, 58.9× 109]. In particular, the equilibria

b =2.2× 104,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(223.2, 1.72× 105, 2.790× 104, 0, 4.14× 104, 0, 4.348× 105, 0, 0, 0)

and

b =6× 106,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 118.96, 0, 4.348× 105, 0, 0, 0)

are locally asymptotically stable. For b ≤ 2.1× 104 and b ≥ 59× 109 the equilibrium E1 is unstable.

Example 2 Let be again r = 0.0048 but i2 = 0, µE = 0.19 and all other parameters are given in Table 1. Similarly
to Example 1 it is shown that the equilibrium E1 is locally asymptotically stable in the same interval b ∈ B1 =
[2.2× 104, 58.9× 109]. In particular, the equilibria

b =2.2× 104,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(223.2, 1.72× 105, 2.790× 104, 0, 0.289, 0, 16.98, 0, 0, 0)

and

b =6× 106,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 8.328× 10−4, 0, 17.01, 0, 0, 0)

are locally asymptotically stable.

Example 3 Let be r = 0.0085 and all other parameters as in Example 1. In this case, the equilibrium E1 is locally
asymptotically stable for b ∈ B2 = [3.6× 104, 53.9× 109]. In particular, the equilibria

b =3.6× 104,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(123.16, 3.12× 105, 2.792× 104, 0, 2.284× 104, 0, 4.348× 105, 0, 0, 0)

and

b =6× 106,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 118.96, 0, 4.348× 105, 0, 0, 0).

are locally asymptotically stable. For b ≤ 3.5× 104 and b ≥ 54× 109 the equilibrium E1 is unstable.
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Example 4 Let be again r = 0.0085 but but i2 = 0, µE = 0.19 and all other parameters as in Example 3. In this
case the equilibrium E1 is locally asymptotically stable for b ∈ B2 = [3.6×104, 53.9×109]. In particular, the equilibria

b =3.6× 104,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(123.16, 3.12× 105, 2.792× 104, 0, 0.1597, 0, 16.99, 0, 0, 0)

and

b =6× 106,

E1 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 8.328× 10−4, 0, 17.01, 0, 0, 0)

are locally asymptotically stable.

Remark 3 Note that in the equilibrium E1 we have A∗
T = E∗

T = T ∗
i = T ∗

u = F ∗
β = 0. From (4.6), (4.2) it follows

that d11 = d14 = d44 = d66 = d94 = d96 = 0. If i2 = 5× 106 then d64 = 0.0658 for both r = 0.0048 and r = 0.0085. If
i2 = 0 then d64 = 2.575× 10−6 for r = 0.0085 and d64 = 0 for r = 0.0048. So, one can see that dependence on delay
is low enough.

Example 5 By b = 0, i2 = 5 × 106, µT = 0.034 and the same values of all other parameters the following two
equilibria are unstable:

E2 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(123680, 0, 0, 0, 0, 0, 434783, 0, 0, 0),

E3 =(A∗, B∗, A∗
B , A

∗
T , E

∗
B , E

∗
T , I

∗
2 , T

∗
i , T

∗
u , F

∗
β )

=(123680, 0, 0, 0, 0, 0, 434783, 0, 1011, 82973).

(5.2)

Remark 4 If the matrix H is the Hurwitz matrix then det(H) > 0. For the equilibria E2 and E3 we have EB = 0.
From (4.5) it follows that a18 = a48 = a58 = a88 = 0, i.e., all elements of the eighth column of the matrix H are
zeros and therefore det(H) = 0. It means that the matrix H is not the Hurwitz matrix and the equilibrium E2 and
E3 are unstable for all values of the parameters.

6 Conclusions

In this work we present the improved model of combined therapy BCG+IL-2 immunotherapy in superficial BC with
constant instillations of BCG and IL-2. The current manuscript describes the outcome of analytical methods used
to derive the equilibria points and especially the tumor-free equilibrium point, at which cancer cells are effectively
eliminated. The model demonstrates several equilibria which depend on biologically related parameters and initial
conditions.

Adding BCG to the tumor-immune interaction may increase the immune response, which will be enhanced by the
addition of effector cells specific for tumor Ag. These effector cells appear only after a time delay caused by their
proliferation and maturation, and capture tumor cells containing this Ag. The entire reaction can only take place
with the presence of BCG. It is shown that the considered system has three equilibria describing the different states of
the patient. The stability of these states is investigated using the method of Lyapunov functionals and the method of
linear matrix inequalities (LMIs). Only in the E1 and E2 equilibria do get cancer cell eradication (Tu = 0), meaning
successful treatment. Stability analysis of the system (2.1) shows the equilibrium E1 is stable if the for BCG dose is
reflected in the condition depend on the growth of cancer cells (as indicated in Examples 1-4). In equilibrium E1 we
obtain a strong immune response because AB = 105 and I2 = 105 that help to arrive at a tumor-free fixed point.

The delay does not influence to the stability of the first equilibrium that is shown in the Remark 3. The system does
not stable in the equilibria E2 and E3 with IL-2 therapy only (see Example 5, Remark 4).

By registering the basic parameters of BCG, maximum tumor size, tumor growth rate, and immune response param-
eters, we found the BCG dose where E1 will be stable (Example 1-4). The ability to plan and predict by calculating
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a modulated dose of treatment may benefit patients who are unable to receive conventional treatment because of its
serious side effects, and as for patients who were previously considered refractory.

We would like to raise awareness in the community of urological-oncological doctors about the possibilities of mathe-
matical modeling and receive quantitative data to improve this model. The ability to plan and predict by calculating
a modulated dose of treatment can benefit patients who are unable to take routine treatment because of its serious
side effects, as well as to patients who were previously not considered treatable.

It is necessary to note also that three equilibria that are investigated in this work are equilibria obtained from the
system (3.1) in an analytical way. So, there is a possibility of continuing stability investigation of the considered
model via getting additional equilibria by numerical methods and using additional results of stability theory [10].
So, it will be the interest of experts in this direction to the obtained here results, and it is supposed to continue this
research.
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7 Appendix

7.1 Solution of (3.2)

From the second equation (3.2) we have B =
b

p1A+ µB
. Substituting it into the first equation (3.2), we obtain

γ = A

[
b(p1 − η)

p1A+ µB
+ µA

]
,

γp1A+ µBγ = Ab(p1 − η) + p1µAA
2 + µAµBA,

a0A
2 + a1A− a2 = 0, a0 = p1µA,

a1 = b(p1 − η) + µAµB − γp1, a2 = γµB,

A∗ =

√
a21 + 4a0a2 − a1

2a0
, B∗ =

b

p1A∗ + µB
.
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7.2 Solution of (3.3)

From the first equation (3.3) we have EB = νI2, ν =
βBA

∗

µE(A∗
B + g)

. Substituting EB into the second equation (3.3),

we obtain the equation for I2:

(A∗
B + νI2)

(
q1 −

q2I2
I2 + gI

)
= µI2I2 − i2,

(A∗
B + νI2)((q1 − q2)I2 + q1gI) = (µI2I2 − i2)(I2 + gI),

c0I
2
2 + c1I2 − c2 = 0, c0 = µI2 − ν(q1 − q2),

c1 = (µI2 − νq1)gI − i2 −A∗
B(q1 − q2), c2 = (i2 +A∗

Bq1)gI ,

I∗2 =

√
c21 + 4c0c2 − c1

2c0
, E∗

B = νI∗2 .

7.3 Centralization of the system (2.1)

For the first equation of the system (2.1) using (3.1) we have

ẏ1(t) =γ − (p1 − η)(y1(t) +A∗)(y2(t) +B∗)− µA(y1(t) +A∗)

− θp3(y1(t− τ(t)) +A∗)(y5(t) + E∗
B)(y8(t) + T ∗

i )

=− [(p1 − η)B∗ + µA]y1(t)− (p1 − η)A∗y2(t)− θp3A
∗T ∗

i y5(t)

− θp3A
∗E∗

By8(t) + θp3E
∗
BT

∗
i y1(t− τ(t)) +N1(y).

Similarly for the second and the third equations of (2.1) using (3.1) we have

ẏ2(t) =b− (p1(y1(t) +A∗) + p2(y9(t) + T ∗
u ) + µB)(y2(t) +B∗)

=− p1B
∗y1(t)− (p1A

∗ + p2T
∗
u + µB)y2(t)− p2B

∗y9(t) +N2(y),

ẏ3(t) =p1(y1(t) +A∗)(y2(t) +B∗)− (β + µA1
)(y3(t) +A∗

B)

=p1B
∗y1(t) + p1A

∗y2(t)− (β + µA1)y3(t) +N3(y).

For the fourth equation of (2.1) we obtain

ẏ4(t) =θp3(y1(t− τ(t)) +A∗)(y5(t) + E∗
B)(y8(t) + T ∗

i )

− λ(y4(t− τ(t)) +A∗
T )(y9(t) + T ∗

u )
y7(t) + I∗2

y7(t) + I∗2 + gI
− (β + µA1)(y4(t) +A∗

T )

=− (β + µA1)y4(t) + θp3A
∗T ∗

i y5(t) + θp3A
∗E∗

By8(t) + θp3E
∗
BT

∗
i y1(t− τ(t))− λG4 +N4(y),

where

G4 = (y4(t− τ(t)) +A∗
T )(y9(t) + T ∗

u )
y7(t) + I∗2

y7(t) + I∗2 + gI
− A∗

TT
∗
uI

∗
2

I∗2 + gI
.

Using Taylor’s expansion in the form f(y) = f(0) + f ′(0)y + o(y), we have

1

a+ y
=

1

a
− y

a2
+ o(y), limy→0

o(y)

y
= 0. (7.1)

Thus,

G4 =(y4(t− τ(t)) +A∗
T )(y7(t) + I∗2 )(y9(t) + T ∗

u )

(
1

I∗2 + gI
− y7(t)

(I∗2 + gI)2
+ o(y7)

)
− A∗

TT
∗
uI

∗
2

I∗2 + gI

=
A∗

TT
∗
ugI

(I∗2 + gI)2
y7(t) +

A∗
T I

∗
2

I∗2 + gI
y9(t) +

T ∗
uI

∗
2

I∗2 + gI
y4(t− τ(t)) +N4(y).
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As a result

ẏ4(t) =− (β + µA1)y4(t) + θp3A
∗T ∗

i y5(t)−
λA∗

TT
∗
ugI

(I∗2 + gI)2
y7(t) + θp3A

∗E∗
By8(t)−

λA∗
T I

∗
2

I∗2 + gI
y9(t)

+ θp3E
∗
BT

∗
i y1(t− τ(t))− λT ∗

uI
∗
2

I∗2 + gI
y4(t− τ(t)) +N4(y).

For the fifth equation of (2.1) via (3.1) we have

ẏ5(t) =
βB(y3(t) +A∗

B)(y7(t) + I∗2 )

y3(t) +A∗
B + g

− p3(y8(t) + T ∗
i )(y5(t) + E∗

B)− µE(y5(t) + E∗
B),

=− (p3T
∗
i + µE)y5(t)− p3E

∗
By8(t) + βBG5 +N5(y),

where

G5 =
(y3(t) +A∗

B)(y7(t) + I∗2 )

y3(t) +A∗
B + g

− A∗
BI

∗
2

A∗
B + g

.

Using (7.1), we obtain

G5 =(y3(t) +A∗
B)(y7(t) + I∗2 )

(
1

A∗
B + g

− y3(t)

(A∗
B + g)2

+ o(y3)

)
− A∗

BI
∗
2

A∗
B + g

=
I∗2g

(A∗
B + g)2

y3(t) +
A∗

B

A∗
B + g

y7(t) +N5(y).

As a result

ẏ5(t) =
βBI

∗
2g

(A∗
B + g)2

y3(t)− (p3T
∗
i + µE)y5(t) +

βBA
∗
B

A∗
B + g

y7(t)− p3E
∗
By8(t) +N5(y).

For the sixth equation of (2.1) we have

ẏ6(t) =
βT (y4(t− τ(t)) +A∗

T )(y7(t) + I∗2 )

y4(t− τ(t)) +A∗
T + g

− p3(y9(t) + T ∗
u )(y6(t− τ(t)) + E∗

T )− µE(y6(t) + E∗
T ),

=− µEy6(t)− p3E
∗
T y9(t)− p3E

∗
T y6(t− τ(t)) + βTG6 +N6(y),

where

G6 =
(y4(t− τ(t)) +A∗

T )(y7(t) + I∗2 )

y4(t− τ(t)) +A∗
T + g

− A∗
T I

∗
2

A∗
T + g

and via (7.1)

G6 =(y4(t− τ(t) +A∗
T )(y7(t) + I∗2 )

(
1

A∗
T + g

− y4(t− τ(t))

(A∗
T + g)2

+ o(y4)

)
− A∗

T I
∗
2

A∗
T + g

=
A∗

T

A∗
T + g

y7(t) +
gI∗2

(AT + g)2
y4(t− τ(t)) +N6(y).

Thus,

ẏ6(t) =− µEy6(t) +
βTA

∗
T

A∗
T + g

y7(t)− p3E
∗
T y9(t) +

βT gI
∗
2

(A∗
T + g)2

y4(t− τ(t))− p3E
∗
T y6(t− τ(t)) +N6(y).
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For the seventh equation of (2.1) we have

ẏ7(t) =(y3(t) +A∗
B + y4(t) +A∗

T + y5(t) + E∗
B + y6(t) + E∗

T )

(
q1 −

q2(y7(t) + I∗2 )

y7(t) + I∗2 + gI

)
+ i2 − µI2(y7(t) + I∗2 ).

Putting Q7 = q1 −
q2I

∗
2

I∗2 + gI
, via (7.1) we obtain

q1 −
q2(y7(t) + I∗2 )

y7(t) + I∗2 + gI
=q1 −

q2
I∗2 + gI

(y7(t) + I∗2 ) +
q2y7(t)

(I∗2 + gI)2
(y7(t) + I∗2 ) + o(y7)

=Q7 −
(

q2
I∗2 + gI

− q2I
∗
2

(I∗2 + gI)2

)
y7(t) + o(y7)

=Q7 −
q2gI

(I∗2 + gI)2
y7(t) + o(y7).

Thus,

ẏ7(t) =(y3(t) + y4(t) + y5(t) + y6(t) +A∗
B +A∗

T + E∗
B + E∗

T )

(
Q7 −

q2gI
(I∗2 + gI)2

y7(t) + o(y7)

)
+ i2 − µI2(y7(t) + I∗2 )

=Q7y3(t) +Q7y4(t) +Q7y5(t) +Q7y6(t)−
[
µI2 + q2gI

A∗
B +A∗

T + E∗
B + E∗

T

(I∗2 + gI)2

]
y7(t) +N7(y).

For the eighth equation of (2.1)

ẏ8(t) =p2(y2(t) +B∗)(y9(t) + T ∗
u )− p4(y5(t) + E∗

B)(y8(t) + T ∗
i )

=p2T
∗
uy2(t)− p4T

∗
i y5(t)− p4E

∗
By8(t) + p2B

∗y9(t) +N8(t).

For the ninth equation of (2.1) we have

ẏ9(t) =(y9(t) + T ∗
u )

[
r

(
1− y9(t) + T ∗

u

K

)
− p2(y2(t) +B∗)−G9

]
,

where

G9 =

(
λ(y4(t− τ(t)) +A∗

T ) + α(y6(t− τ(t)) + E∗
T )

αT,β(y10(t) + F ∗
β ) + eT,β

y10(t) + F ∗
β + eT,β

)

×

(
y7(t) + I∗2

y7(t) + I∗2 + gI

)(
gT

y9(t) + T ∗
u + gT

)
.

Note that via (7.1)

y7(t) + I∗2
y7(t) + I∗2 + gI

=(y7(t) + I∗2 )

(
1

I∗2 + gI
− y7(t)

(I∗2 + gI)2
+ o(y7)

)
=

I∗2
I∗2 + gI

+
y7(t)

I∗2 + gI
− I∗2y7(t)

(I∗2 + gI)2
+ o(y7)

=
I∗2

I∗2 + gI
+

gI
(I∗2 + gI)2

y7(t) + o(y7),

gT
y9(t) + T ∗

u + gT
=

gT
T ∗
u + gT

− gT
(T ∗

u + gT )2
y9(t) + o(y9)

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2020                   doi:10.20944/preprints202009.0474.v1

https://doi.org/10.20944/preprints202009.0474.v1


and

αT,β(y10(t) + F ∗
β ) + eT,β

y10(t) + F ∗
β + eT,β

= (αT,βy10(t) + αT,βF
∗
β + eT,β)

(
1

F ∗
β + eT,β

− y10(t)

(F ∗
β + eT,β)2

+ o(y10)

)

=
αT,βF

∗
β + eT,β

F ∗
β + eT,β

+
αT,βy10(t)

F ∗
β + eT,β

−
(αT,βF

∗
β + eT,β)y10(t)

(F ∗
β + eT,β)2

+ o(y10)

=
αT,βF

∗
β + eT,β

F ∗
β + eT,β

− (1− αT,β)eT,β

(F ∗
β + eT,β)2

y10(t) + o(y10).

Put

Q9 =

(
λA∗

T + αE∗
T

αT,βF
∗
β + eT,β

F ∗
β + eT,β

)(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
.

Then via (3.1) rT ∗
u

(
1− T ∗

u

K

)
= T ∗

u (p2B
∗ +Q9) and

G9 =

(
λ(y4(t− τ(t)) +A∗

T )

+ α(y6(t− τ(t)) + E∗
T )

(
αT,βF

∗
β + eT,β

F ∗
β + eT,β

− (1− αT,β)eT,β

(F ∗
β + eT,β)2

y10(t) + o(y10)

))

×

(
I∗2

I∗2 + gI
+

gI
(I∗2 + gI)2

y7(t) + o(y7)

)(
gT

T ∗
u + gT

− gT
(T ∗

u + gT )2
y9(t) + o(y9)

)

=

(
λA∗

T + αE∗
T

αT,βF
∗
β + eT,β

F ∗
β + eT,β

− αE∗
T

(1− αT,β)eT,β

(F ∗
β + eT,β)2

y10(t)

+ λy4(t− τ(t)) + α
αT,βF

∗
β + eT,β

F ∗
β + eT,β

y6(t− τ(t))

)

×

((
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
+

(
gI

(I∗2 + gI)2

)(
gT

T ∗
u + gT

)
y7(t)

−

(
I∗2

I∗2 + gI

)(
gT

(T ∗
u + gT )2

)
y9(t)

)
+N9(y)

=Q9 +
Q9

I∗2 + gI
y7(t)−

Q9

T ∗
u + gT

y9(t)− αE∗
T

(1− αT,β)eT,β

(F ∗
β + eT,β)2

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y10(t)

+ λ

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y4(t− τ(t))

+ α
αT,βF

∗
β + eT,β

F ∗
β + eT,β

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y6(t− τ(t))) +N9(y).

Thus,
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ẏ9(t) =T ∗
u

[
r

(
1− T ∗

u

K

)
− p2B

∗ − p2y2(t)−
r

K
y9(t)−Q9 −

Q9

I∗2 + gI
y7(t) +

Q9

T ∗
u + gT

y9(t)

+ αE∗
T

(1− αT,β)eT,β

(F ∗
β + eT,β)2

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y10(t) + λ

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y4(t− τ(t))

+ α
αT,βF

∗
β + eT,β

F ∗
β + eT,β

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y6(t− τ(t)))

]

+ y9(t)

[
r

(
1− T ∗

u

K

)
− p2B

∗ −Q9

]
+N9(y)

=T ∗
u

[
− p2y2(t)−

Q9

I∗2 + gI
y7(t) +

(
Q9

T ∗
u + gT

− r

K

)
y9(t)

+ αE∗
T

(1− αT,β)eT,β

(F ∗
β + eT,β)2

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y10(t)

]

+

[
r

(
1− T ∗

u

K

)
− p2B

∗ −Q9

]
y9(t) + λT ∗

u

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y4(t− τ(t))

+ αT ∗
u

αT,βF
∗
β + eT,β

F ∗
β + eT,β

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y6(t− τ(t)) +N9(y)

or

ẏ9(t) =− p2T
∗
uy2(t)−

Q9T
∗
u

I∗2 + gI
y7(t)−

(
p2B

∗ +
Q9gT

T ∗
u + gT

+ r

(
2T ∗

u

K
− 1

))
y9(t)

+ αE∗
TT

∗
u

(1− αT,β)eT,β

(F ∗
β + eT,β)2

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y10(t)

+ λT ∗
u

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y4(t− τ(t))

+ αT ∗
u

αT,βF
∗
β + eT,β

F ∗
β + eT,β

(
I∗2

I∗2 + gI

)(
gT

T ∗
u + gT

)
y6(t− τ(t)) +N9(y).

At last for the last equation of (2.1) via (3.1) we obtain

ẏ10(t) = αβ,T y9(t)− µβy10(t).

7.4 Schur complement

Schur complement [33]. The symmetric matrix

[
A B

B′ C

]
is negative definite if and only if C and A−BC−1B′ are

both negative definite.
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