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Abstract: Hasselmann and coauthors proposed the discrete interaction approximation (DIA) as the 
best tool replacing the nonlinear evolution term in a numerical wind-wave model. Much later, 
Polnikov and Farina radically improved the original DIA by means of location all the interacting 
four wave vectors, used in the DIA configuration, exactly at the nodes of the numerical 
frequency-angular grid. This provides nearly two-times enhancing the speed of numerical 
calculation for the nonlinear evolution term in a wind-wave model. For this reason, the proposed 
version of the DIA was called as the fast DIA (FDIA). In this paper we demonstrate all details of the 
FDIA concept for several frequency-angular numerical grids of high resolution, with the aim of 

active implementation the FDIA in modern versions of world-wide used wind-wave models. 

Keywords: wind-wave modeling; nonlinear waves; kinetic integral; interacting waves; optimal 
configuration. 

 

1. Introduction 

Nonlinear interactions between waves play a very important role in description of wind wave 
evolution governed by the equation[1] 

( , , ) ( ) ( ) ( )D N t IN N NL N DISS N
Dt

= + −k k kk x , 

where D/Dt is the total derivative, ( , , )N N t≡k k x  is the wave-action spectrum in the wave vector 

k-space, at location x, and time t; IN, NL, DISS are the evolution terms responsible for the input, 
conservative nonlinear transfer among wave components, and dissipation of wave action, 
respectively. The nonlinear evolution term NL is described by the six-fold Hasselmann kinetic 

integral NLI  with a very complicated integrand [2]  
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where 2 2
1 2 3 4 0 1 2 3, , ,M M ( , , , )≡ k k k k  is the second power of the matrix elements corresponding to 

the four-wave nonlinear interactions, 1 2 3 4δ + − − ≡ 1 2 3 4 1 2 3 4( ) ( )δ σ σ σ σ δ+ − − + − −k k k k  is the 

Dirac delta-functions responsible for the resonant feature of the four-wave interactions, and 
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( )i iσ σ= k  is the radian frequency of the wave component with wave vector ik . Due to this 

complicity, the integral should be replaced by some theoretically justified approximation, to be used 
in a practical numerical wind-wave model. The best approximation was proposed by Hasselmann et 

al. [3}, based on replacing integral NLI by the only configuration of four interacting waves, located at 

the vicinity of a singular subsurface. This subsurface in the six-fold k-space is defined by the 
resonance conditions 

1 2 3 4+ = +k k k k ,         (2a) 

4321 σσσσ +=+ .          (2b) 

The wave vectors ik are usually represented in the frequency-angular space, ),( θσ , where the 

wave frequencies iσ  are related to ik by the dispersion relation, in the deep-water case having the 

kind 
1 2( ) ( ) /

i i igkσ σ= =k .                (3) 

The proposed approximation is called as the discrete interaction approximation (DIA). Example 
of the four vectors configuration used in the original DIA [3] is schematically shown in Figure 1. 

Figure 1. The configuration used in the original DIA. 
 

2. Details of the discrete interaction approximation 

The configuration used in the original DIA in the polar coordinates ),( θσ  has the following 

parameters (see Figure 1): 

1) 1 2= =k k k , where wave vector ( , )σ θ=k  is located at the node of the numerical grid { }ji θσ , ; 

2) 3 +=k k ,      where +k  is represented by )1( λσσ +=+  and ++ ∆+= θθθ ;   (4a) 

3) 4 −=k k ,      where −k  is represented by )1( λσσ −=−  and −− ∆−= θθθ ;  

4) In consistency with the resonant conditions (2) , the parameters of the configuration are  
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          λ  = 0.25, +∆θ  = 11.5 o, and  −∆θ  = 33.6o.        (4b) 

The nonlinear transfer at all the mentioned k-points takes the form [3] 

  NL I− + −=(k ) (k, k , k ) ,  ( ) ( , , )NL I+ + −=k k k k , ( ) 2 ( , , )NL I + −= −k k k k ,   (5) 

where 

( )8 19 2( , , ) ( ) ( ) ( ) 2 ( ) ( ) ( )I Cg N N N N N Nσ−
+ − + − + − = + − k k k k k k k k k .       (6) 

In Eq. (6), the fitting constant, C, has value C =3000 which is valid for the integration grid used by 
Hasselmann et al, [3].1 The net nonlinear transfer at any fixed ),( θσ -point of the numerical grid is 

found by running Eqs. (5, 6) through all the points of the frequency-angle integration grid { }ji θσ , . 

The main advantage of this approximation is its evident simplicity and rather good accuracy for a 
certain initial spectrum [3]. For this reason, it is widely used in practical wind-wave modeling [1]. 
The third generation wind-wave numerical models, WAM [4] and WAVEWATCH(WW) [5], are the 
examples of successful implementation of the DIA. One technical shortages of the DIA routine is a 
presence of intermediate and cumbersome interpolation procedures induced by the mismatch of the 
spectral grid nodes and vectors +k , −k . This leads to the time-consuming about 50% CPU for the 
nonlinear evolution-term calculation during the numerical simulation of wave-field evolution.  

The radical improvement of the DIA was done by Polnikov and Farina [6], based on locating all 
the interacting wave vectors of the DIA configuration exactly at the nodes of the frequency-angular 
grid used in both the kinetic integral and numerical model, { }ji θσ , . This provides nearly two-times 

enhancing the speed of numerical calculation for the NL term in a wind-wave model. For this reason, 
the proposed version of the DIA was called as the fast DIA (FDIA). Below, we demonstrate all details 
of the FDIA elements, based on several frequency-angular numerical grids of high resolution, with 
the aim of active implementation of the FDIA in modern wind-wave models. 

3. The concept of the FDIA 

In the original version of DIA [3], two of four interacting vectors (i.e., +k , −k ) are not located 

at the nodes of integrating grid, what leads to necessity of the spectrum interpolation. For this reason, 
the speed of numerical wave forecast calculations is reduced remarkably. The main idea of the fast 
DIA (FDIA) is to use four-wave configurations which are adjusted to the integration grid for the 
kinetic integral. To specify this idea, first of all, one should introduce the principal parameters of the 
grid. Then, the features of configurations in FDIA could be described. 
     Integration grid for kinetic integral will be considered in the polar co-ordinates where each of 

interacting wave vector ik  is represented by the frequency-angular point ( )i i,σ θ . Usually, the 

integration grid is given by the formulas 

1
0

i
i qσ σ −= ⋅    (1≤ i ≤ I),      (7a) 

    θπθ ∆⋅−+−= )j(j 1   (1 ≤ j ≤ J  and J/πθ 2=∆ ).    (7b) 

Thus, parameters of the grid are as follows:  

 
1 In principal, the value of C depends not only on the grid resolution parameters but on the kind of the source term of the model, as well. 
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• the lowest frequency, 0σ ;  

• the frequency exponential increment, q ;  

• the maximum number of frequencies, I;  
• the angle resolution in radians, θ∆ ;  
• and the maximum number of angles, J.   
To our aims, the principal parameters are q and θ∆ , as far as they define the resolution of the grid. 
The numbers I and J should be rather great (several tens), but for the concept under consideration 
their explicit values I and J are not principal. Note only that the FDIA concept is valid for the rather 
fine grid ( to save an accuracy) when 

q ≤ 1.1   and  θ∆  ≤ 10/π .        (8) 
Everywhere below, the restriction (8) is supposed to be met. Initially, the FDIA was proposed in [6] 
for the resolution parameters 
       q = 1.05   and  θ∆  = 18/π  ,         (9) 
what is related to the “standard” integration grid introduced in [7] for the exact calculation of the 
kinetic integral. 
     In the FDIA, the basic configuration, the most close to the original DIA, is described by the 
following ratios 2:  

1) 4 =k k     ,                   (10a) 

where the wave vector k is located at a current grid node and represented in the polar co-ordinates 

by the proper frequencyσ and angle θ ; 

2) 3 +=k k                    (10b) 

 where +k is represented by )( 343 1 λσσ +=  and 343 θθθ ∆+= ;   

3)   1 2 4 3 2 a( ) /≈ ≈ + ≡k k k k k /2             (10c) 

where a specially introduced the reference wave vector ak  is directed along the angle 

4aa θθθ ∆+= , and its value is given by the formula (12) (see below). 

     Thus, we have two main (independent) parameters of configuration:  

• the frequency increment, 341 λ+ , defining the value of 3σ ,  

• and the proper angular difference, 34θ∆  = 43 θθ − , defining the angle between vectors 4k  

and 3k .  

 
2 As far as k4 is conventionally taken as an external variable (see [7]), we have changed the order of interacting vector with respect to 

original DIA (compare (4a) and (10a,b,c) ). 
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Varying these parameters, one can vary the configuration as a whole, including the values of 

dependent parameters aθ  and 4 3( )aσ σ σ= + .   

     The main differences between the configurations used in FDIA and in original DIA are as 
follows: 

(a) all wave vectors 1k , 2k , 3k , and 4k  should be allocated at the nodes of the integration grid; 

(b) vectors 1k  and 2k  may be unequal, i.e. they may have some (but small) discrepancies in both 

values and directions; 
(c) the resonance conditions (2) may be met rather approximately. 
     The main common feature of the configurations is that all of them are to be allocated in the 
vicinity of the “figure-of-eight” in the k-space (see, Figure 1). This requirement is expressed by the 
following ratios [7,8]  

       22 /k aa σ= ,               (11) 

where ak  and aσ  in terms of independent variables: σ , 3σ , and 34θ∆  have the kind 

1 24 4 2 2
4 3 3 342 ( )

/

ak cosσ σ σ σ θ = + + ∆  ,      (12) 

and  

       4 3aσ σ σ= + .              (13)  

Eqs. (11)-(13) determine the value of angular difference 34θ∆ , for the given 4σ  and 3σ . After that, 

the expression for 44 θθθ −=∆ aa  is deduced from the resonant condition (2) and from the 

definition of ak  via the right part of (10c) by the following formula: 

2
3 34

4 2 2
3 34 4

sinarctg
cosa

( )
( )

σ θθ
σ θ σ
 ∆

∆ =  ∆ + 
.       (14) 

     To fix the FDIA configuration, it needs to define several integer values corresponding to 
requirement (a) mentioned above (allocation of the vectors on the grid). According to (7a), this 
requirement can be expressed by the following equations: 

         3
3 4

mqσ σ= ⋅ ,  1
1 4

mqσ σ= ⋅ ,  2
2 4

mqσ σ= ⋅ ,     (15a) 

and  

     θθ ∆⋅=∆ 334 n ,   θθ ∆⋅=∆ naa4               (15b) 

Here m1, m2, n3, and na are the integer values to be found for any given integer m3. The first two are 
found from requirement (10c), and the latter two do from formulas  
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n3 = 34Int( / )θ θ∆ ∆ ,   na  = 4Int a( / )θ θ∆ ∆       (15c) 

 and previously determined 34θ∆  and 4aθ∆  (as it is described above). In (15c), the function Int(…) 

means the integer number which is nearest to the value of the argument.   

     Requirement (b) mentioned above (inequality of vectors 1k  and 2k ) means that one can use 

the following choice for modulus parameters of the vectors 1k  and 2k : 

 m1 = m2  or  m1 =  m2 ±1 ,                (16) 

and the corresponding choice for the angle parameters of the vectors 1k  and 2k : 

      n1 = n2 =  na   or  n1 = n2 ± 1 = na ± 1          (17) 

where n1, n2 are the angular parameters of the vectors 1k  and 2k  corresponding to Eqs. (10c), 

(15b). Sign (±) means the permutation symmetry for vectors 1k  and 2k  (see footnote below after 

formulas 22). 

The choice of (± 1) means a possible inequality of vectors 1k  and 2k . Eqs (15b) and (17) mean 

that for a certain configuration, given by values m1, m2, m3, and n1, n2, n3, the angle parameters of 
interacting vectors have the values 

            3 4 3nθ θ θ− = ± ⋅∆ ;  1 4 1nθ θ θ− = ± ⋅∆ ;  2 4 2nθ θ θ− = ± ⋅∆     (18) 

where sing (±) denotes a set of two mirror configurations (see [3]). 
Taking into account the change of the interacting wave vectors order (mentioned above in 

footnote 2), the net expression for NL-term in the FDIA is given in the (σ ,θ ) - coordinates by the 

formulas  

               4 4 1 1 2 3 3 4 4NL( , ) I( , , , , , , , )σ θ σ θ σ θ σ θ σ θ= 2 ,      (19a) 

                   3 3 1 1 2 3 3 4 4NL( , ) I( , , , , , , , )σ θ σ θ σ θ σ θ σ θ= 2 ,      (19b) 

                   1 1 1 1 2 3 3 4 4NL( , ) I( , , , , , , , )σ θ σ θ σ θ σ θ σ θ= − 2 ,      (19c) 

                  2 2 1 1 2 3 3 4 4NL( , ) I( , , , , , , , )σ θ σ θ σ θ σ θ σ θ= − 2 ,         (19d) 

where 

1 1 2 3 3 4 4

11 4 4 4
1 2 3 3 4 4 3 4 2 4 1 1 4 2

( )

( ( ) ) (( ) ( ) )

I , , , , , , ,

C S S S / S S S / S / S

σ θ σ θ σ θ σ θ

σ σ σ σ σ σ σ

=

 = + − + 

2
 ,   (20) 
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( )i i iS S ,σ θ= , and C is the fitting constant depending of the grid parameters. The final value of 

2D-function for Nl-term is found by the running calculations of (19)-(20) through the whole 

integration grid { }i j,σ θ , similarly to the original DIA procedure.  

After some numerical simulations for the grid (7a,b) with parameters q = 1.1, 12/θ π∆ =  
(typical for the WAM), the fitting constant C in (20) is found to be equal to 12000 3. The growth of C 
in our case is related to the exclusion of the abovementioned interpolation procedures. 
     Hereby, the algorithm of the FDIA configuration calculations is fully described. The certain set 
of configurations will be given in the next section. It needs only to add that effectiveness of the FDIA  
against DIA was numerously and successfully verified in comparison with the WAM [10-12] and the 
WW[13]. 
 

4. FDIA parameters for several certain configurations and grid resolutions 
4.1. Parameters of configuration  

On the example of typical WAM integration grid with parameters 
     q = 1.1   and  θ∆  = 12/π  (or θ∆  = 15o ),      (21) 
we shall demonstrate the choice of configuration parameters for FDIA: m1, m2, m3, and n1, n2, n3. 
For this aim, from Eqs. (11) - (13) and (15a), we calculate values 34θ∆  and 4aθ∆ , varying 
independently the value of m3. Results of calculations are given in Table 1. 
 
Table 1. Principle and auxiliary parameters for grid (21). The shaded line has parameters most 
closely corresponding to the original DIA configuration used in the WAM. 

m3 
34θ∆ , deg. 4aθ∆ , deg. 

x=
log( 2

log( )
a / )
q

ω
 

m2=Int(x+0.5) 

3 23.8 15.2 1.61 2 

4 32.3 22.2 2.19 2 

5 41.5 30.3 2.79 3 

6 51.6 39.8 3.42 3 

7 62.7 50.9 4.07 4 
 
From Table 1 it is seen that for the grid (21), the case with m3 = 5 (shaded) is the most close to the 
original DIA configuration for which angle 34θ θ θ− +∆ ≡ + ≅ 45o ( see (4.b) ). 
 
4.2. Parameters of some accuracy efficient FDIA configurations 

In paper [6] it was derived some criterion for the accuracy efficiency of DIA configuration. 
Based on this criterion, we found several the most efficient FDIA configurations presented below. 
Taking into account the ratios (15a, b), one may construct the following efficient configurations.  

4.2.1. For the original DIA configuration, the following FDIA parameters are the most efficient: 
       m3 =5,  m2 = m1 = 3;              (22a) 
and    

 
3 This fitting coefficient C is tuned to the total source function of the wind wave model proposed in [9].. 
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n3 = 34Int( / )θ θ∆ ∆  = 3;   n2 = n1 = na = 4Int a( / )θ θ∆ ∆ =  2.   (22b) 

4.2.2. If we adopt existence of unequal values σ1 , σ2 , then parameters could be 4 
   m3 =5,  m2 =  2,  m1 = 3;   and   n3 = 3,  n2 =  3,  n1 = 2        (23a) 
 or  

m3 =5,  m2 =  2,  m1 = 3;   and   n3 = 3,  n2 =  3,  n1 = 1.        (23b) 
Pay attention that from Table 1 it is seen some others configurations which could be used for DIA.  
As it was shown in [14], some of them are more efficient that the original one given by (22a,b). The 
relative efficiency for these configurations was checked by means of the especial method constructed 
to this task and presented in [6].  

4.2..3. For the multiple, three-configuration DIA (3C-DIA), in the fast version, we have found 
the following three constituents making an efficient construction (see [6, 14]) 
     1) m3 = 4, m1 = 2, m2 = 3;     and   n3 = 2, n2 = 2, n1 = 1;            (24a) 
    2) m3 = 5, m1 = m2 = 3;       and   n3 = 3, n2 = n1 = 2;        (24b) 
    3) m3 = 7, m1 = m2 = 4;       and   n3 = 4, n2 = n1 = 3.               (24c) 

4.2.4. For the grid parameters with more fine angular resolution as 
    q = 1.1   and  θ∆  = 18/π  (or θ∆  = 10o ) ,          (25) 
Table 1 has the same kind, whilst the proper configurations are as follows. 
     For the original DIA, the proper configuration in the FDIA version has parameters  

m3 =5,  m2 = m1 = 3; and   n3 = 4,  n2 = n1 = 3.       (26) 
     The modified FDIA of the most better accuracy have configurations of the type 
    m3 =5,  m2 =  2,  m1 = 3;   and   n3 = 4,  n2 = n1 = 3         (27) 
or        
    m3 =5,  m2 =  2,  m1 = 3;   and   n3 = 4,  n2 =  4, n1 = 3,    (28) 

and some others, corresponding to modifications (16), (17) for unequal 1k and 2k . 

4.2.5. For the multiple 3C-DIA[14], in the FDIA the most effective are the following joint three 
configurations 
    1) m3 = 4, m1 = m2 = 2;    and   n3 = 3, n2 = n1 = 2;             (29a) 
               2) m3 = 5, m1 = m2 = 3;    and   n3 = 4, n2 = n1 = 3;             (29b) 
               3) m3 = 7, m1 = m2 = 4;    and   n3 = 6, n2 = n1 = 5.           (29c) 
 

5. FDIA parameters of configurations for very high resolution grid 
5.1. Single conjurations. For applications which can be applied in the future, the following very 

high resolution grid is preferable 
    q = 1.05   and  θ∆  = 18/π  (or θ∆  = 10o ) .      (30) 

Principal and auxiliary parameters for this grid are presented in Table 2.  

Herewithin, in a case of the grid (30), the most efficient FDIA single configurations, which could 
be used in practice, are presented in Table 3 (for a proof of relative efficiency of these configurations 
among all other configurations, see [14]). 

 
4 Pay attention that the configuration has symmetry with respect to permutations 

1k  ↔ 
2k , that means permutation (m2, n2) ↔ (m1, n1). 
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Table 2. Principle and auxiliary parameters for grid (30). The shaded line has parameters most 
closely corresponding to the original DIA configuration used in the WAM. 

m3 
34θ∆ , deg. 4aθ∆ , deg. 

x=
log( 2

log( )
a / )
q

ω
 

m2=Int(x+0.5) 

5 20.1 12.5 2.65 3 

6 24.4 15.7 3.22 3 

7 28.7 19.2 3.80 4 

8 33.2 22.9 4.39 4 

9 37.8 27.0 4.99 5 

10 42.7 31.4 5.60 6 

11 47.7 36.1 6.23 6 

12 53.1 41.3 6.87 7 

13 58.7 46.9 7.51 8 

14 64.7 53.0 8.17 8 

15 71.2 59.7 8.84 9 

 
Table 3. Principle parameters for the set of the most efficient single configurations for grid (30)..  

Index of 
configuration 

m3 
(general) 

m1 m2 n3 
(general) 

na 
(general) 

n1 n2 

S1 8 4 5 3 2 2 2 
S2 8 4 5 3 2 3 2 
S3 9 5 5 4 3 3 3 
S4* 9 4 5 4 3 3 2 
S5 10 5 6 4 3 3 3 
S6 10 6 6 4 3 3 3 

Notes. 1. Index of configuration includes the symbol of the single configuration type, S, and the conventional number of 
configuration (for notations, see [14]).Supindex “*” means that the configuration has unequal n1 and n2 

   2. Configuration S6 is marked as the closest one to the original DIA configuration. 
   3. Parameters m3, n3, na are marked as “general” as far as m3 is independent parameter, and n3, 
   na are directly defined by formulas (15a,b) and constant for a given m3. 

 
5.2. Multiple constructions of single configurations. 
Finally, we add that some multiple configurations (i.e., constructions of several single 

configurations[14]) which are more efficient than the simple configurations mentioned in Table 3. 
These constructions are presented in Table 4 and Table 5 given for auxiliary configurations. 
Table 4. The set of the most efficient double-configuration constructions  

Index of 
Construction 

Composition  
of two simple configurations 

M5 S1+ S8 

M6 S1+ 0.7·S8* 

M7 S1+ S10 

M8 S1+ 0.7·S10 
 Note. The coefficient in front of configuration means the weight of a proper single configurations from Tables 3 and 5. 

 

Table 5. Auxiliary simple configurations. 
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Index of 
configuration 

m3 
(general) 

m1 m2 n3 
(general) 

na 
(general) 

n1 n2 

S8* 11 6 7 5 4 4 3 

S10 12 7 7 5 4 4 4 
Notes. For legend see notes for Table 3. Super-index “*” means that the configuration has unequal n1 and n2. 
These are the parameters of the auxiliary simple configurations used in Table 4. 
 

5.3. Finally , it is worthwhile to mention one 3C-DIA construction parameters for the grid (30): 
83 =m ,   41=m , 52 =m ; n3 = 3,  n1 = n2 = na = 2;   (config. S1 from Tab. 2)     (31a) 
103 =m , 51 =m , 62 =m ; n3 = 4,  n1 = n2 = na = 3; (config. S5 from Tab. 2)     (31b) 
123 =m , 71 =m , 72 =m ; n3 = 5,  n1 = n2 = na = 4; (config. S10 from Tab. 5) (31c) 

This construction is more effective than one in original DIA (see Table 6), but it is less effective than 
ones given in Table 4. 

5.4. In {6] it was proposed some formulas for estimating the conventional efficiency of the DIA 
and FDIA aimed to their comparison. The values of conventional efficiency of the constructions and 
configuration mentioned above in this section are presented in Table 6 for completeness. 
Table 6.  Efficiency parameters for the constructions considered for the grid (30) 

Index of 
construc- 

tion 

S1 S2* S3 S4* S6 
(origin
al DIA) 

M5 M6 M7 M8 
 

3C- 
FDIA 

1Eff  5.26 6.07 4.98 5.82 4.3 - - - - - 

2Eff  - -  - - 6.57 6.43 6.43 6.39 4.4 
Note. Values 1Eff  are applicable for simple configurations, whilst values 2Eff  do to two-configuration  constructions [2]. 

6. Discussion 
The DIA was proposed in 1985 [3], and for long time was unchanged for the reasons of 

complexity of the point. Some ideas of improving the DIA was declared in [15], but the radical step 
was made in [6], based on the own routine for the exact calculation of the kinetic integral [7]. This 
allows formulating the criterion of comparing an efficiency of different versions for DIA and its 
modifications. Finally, the idea of locating the interacting wave vectors at the nodes of the numerical 
grid was proposed and realized in [6]. It has happened that this modification provides not only an 
enhancing the speed of calculation of NL-term but the better accuracy, as well. The calculation speed 
is increased due to eliminating interpolation procedures in the original DIA, the better accuracy of 
FDIA is due to the better choice of the configuration. 

This double positive effect is due the fact of rather crude efficiency of the original DIA, and 
better choice of the configuration [6]. The FDIA provides the increase of accuracy in 10%, and the 
speed of NL-term calculation is enhanced nearly twice. The tables of comparison the accuracy and 
time-consuming of FDIA and DIA are not given here to save the room of this paper. They are 
presented in the numerous early papers [6, 8, 11, 13].  

Based on these results, the FDIA was implemented in the National Institute of Oceanography in 
India [12]. It is still left to spread this positive result to the new versions of the world-wide used 
models: WAM and WW. Present paper is namely aimed to prompt this implementation. 

7. Conclusions 

Details of the discrete interaction approximation (DIA) are presented and the concept of the fast 
DIA (FDIA) is comprehensively described. 

Numerous versions of FDIA for different numerical grids are presented, including the single 
and multiple DIA configurations in a high resolution case. 
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The preference of the FDIA against the original DIA in accuracy and time-consuming are 
mentioned and explained. Some estimations of increased efficiency of the FDIA are shown.  
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