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Abstract: Hasselmann and coauthors proposed the discrete interaction approximation (DIA) as the
best tool replacing the nonlinear evolution term in a numerical wind-wave model. Much later,
Polnikov and Farina radically improved the original DIA by means of location all the interacting
four wave vectors, used in the DIA configuration, exactly at the nodes of the numerical
frequency-angular grid. This provides nearly two-times enhancing the speed of numerical
calculation for the nonlinear evolution term in a wind-wave model. For this reason, the proposed
version of the DIA was called as the fast DIA (FDIA). In this paper we demonstrate all details of the
FDIA concept for several frequency-angular numerical grids of high resolution, with the aim of

active implementation the FDIA in modern versions of world-wide used wind-wave models.

Keywords: wind-wave modeling; nonlinear waves; kinetic integral; interacting waves; optimal
configuration.

1. Introduction

Nonlinear interactions between waves play a very important role in description of wind wave

evolution governed by the equation[1]

D%N(k, x,t) = IN(N,) + NL(N,) - DISS(N,),

where D/Dt is the total derivative, N, = N(K,X,?) is the wave-action spectrum in the wave vector

k-space, at location x, and time #; IN, NL, DISS are the evolution terms responsible for the input,
conservative nonlinear transfer among wave components, and dissipation of wave action,

respectively. The nonlinear evolution term NL is described by the six-fold Hasselmann kinetic

integral [,, with a very complicated integrand [2]

ON(k
é’(t <= Tu(N)=
D
=4 j M?,5 AN(K N(k, )[N(k; )+ N(k, )] - N(k; )N(k, )[N(k, )+ N(k,)]}6,,, ,_dk dk,dK,
where M?,,, =M?(k,k, k, k,) is the second power of the matrix elements corresponding to

the four-wave nonlinear interactions, 0,,, 3, = §(o,+0,-0,-0,)5(k, +k, -k, —k,) is the

Dirac delta-functions responsible for the resonant feature of the four-wave interactions, and
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o,=o(k,) is the radian frequency of the wave component with wave vector K;. Due to this

complicity, the integral should be replaced by some theoretically justified approximation, to be used

in a practical numerical wind-wave model. The best approximation was proposed by Hasselmann et

al. [3}, based on replacing integral /,, by the only configuration of four interacting waves, located at

the vicinity of a singular subsurface. This subsurface in the six-fold k-space is defined by the

resonance conditions

k, +k, =k, +k,, (2a)
o,+o0,=0,+0,. (2b)
The wave vectors K, are usually represented in the frequency-angular space, (0,0), where the

wave frequencies o, are related to K, by the dispersion relation, in the deep-water case having the
kind
12
o(k,) =0, =(gk)". 3)
The proposed approximation is called as the discrete interaction approximation (DIA). Example

of the four vectors configuration used in the original DIA [3] is schematically shown in Figure 1.

Figure 1. The configuration used in the original DIA.

2. Details of the discrete interaction approximation

The configuration used in the original DIA in the polar coordinates (o,8) has the following

parameters (see Figure 1):

1) Kk, =K, =Kk, where wave vector k=(c¢,d) islocated at the node of the numerical grid {O'l.,ﬁ . };
2) k,=k_, where Kk, isrepresentedby o, =c(1+ 1) and 6, =0+A0,; (4a)

3) k,=k_, where k_ isrepresentedby o =0(1-A1) and 8 =60—-A6_;

4) In consistency with the resonant conditions (2) , the parameters of the configuration are
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A =025 A@, =11.5°,and A6O_ =33.6°. (4b)
The nonlinear transfer at all the mentioned k-points takes the form [3]
NL(k )=I(k,k k), NL(k,)=I(kk, k), NL(Kk)=-2I(kk, k), (5)
where
I(k,k, k )=Cg’c" [Nz(k) (N(k,)+N(k.))- 2N(k)N(k+)N(k7)] . (6)

In Eq. (6), the fitting constant, C, has value C =3000 which is valid for the integration grid used by

Hasselmann et al, [3].! The net nonlinear transfer at any fixed (o,d)-point of the numerical grid is
found by running Egs. (5, 6) through all the points of the frequency-angle integration grid {O‘i ,0 f }

The main advantage of this approximation is its evident simplicity and rather good accuracy for a
certain initial spectrum [3]. For this reason, it is widely used in practical wind-wave modeling [1].
The third generation wind-wave numerical models, WAM [4] and WAVEWATCH(WW) [5], are the
examples of successful implementation of the DIA. One technical shortages of the DIA routine is a
presence of intermediate and cumbersome interpolation procedures induced by the mismatch of the

spectral grid nodes and vectors K, , K_. This leads to the time-consuming about 50% CPU for the

nonlinear evolution-term calculation during the numerical simulation of wave-field evolution.
The radical improvement of the DIA was done by Polnikov and Farina [6], based on locating all
the interacting wave vectors of the DIA configuration exactly at the nodes of the frequency-angular

grid used in both the kinetic integral and numerical model, {O'iﬁ ; } This provides nearly two-times

enhancing the speed of numerical calculation for the NL term in a wind-wave model. For this reason,
the proposed version of the DIA was called as the fast DIA (FDIA). Below, we demonstrate all details
of the FDIA elements, based on several frequency-angular numerical grids of high resolution, with
the aim of active implementation of the FDIA in modern wind-wave models.

3. The concept of the FDIA

In the original version of DIA [3], two of four interacting vectors (i.e.,, K,, K_) are not located

at the nodes of integrating grid, what leads to necessity of the spectrum interpolation. For this reason,
the speed of numerical wave forecast calculations is reduced remarkably. The main idea of the fast
DIA (FDIA) is to use four-wave configurations which are adjusted to the integration grid for the
kinetic integral. To specify this idea, first of all, one should introduce the principal parameters of the
grid. Then, the features of configurations in FDIA could be described.

Integration grid for kinetic integral will be considered in the polar co-ordinates where each of
interacting wave vector K, is represented by the frequency-angular point (O‘i,ﬁi). Usually, the
integration grid is given by the formulas

1

c,=0,q" (1<i<I), (7a)

0, =—n+(j-1)-A0 (1<j<] and AO=27/J). (7b)

Thus, parameters of the grid are as follows:

U'In principal, the value of C depends not only on the grid resolution parameters but on the kind of the source term of the model, as well.
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o the lowest frequency, o;

e the frequency exponential increment, ¢ ;
e the maximum number of frequencies, I;
e the angle resolution in radians, A@;
e and the maximum number of angles, .
To our aims, the principal parameters are g and A@, as far as they define the resolution of the grid.
The numbers I and | should be rather great (several tens), but for the concept under consideration
their explicit values I and | are not principal. Note only that the FDIA concept is valid for the rather
fine grid ( to save an accuracy) when
g<11 and A6 < 7/10. (8)
Everywhere below, the restriction (8) is supposed to be met. Initially, the FDIA was proposed in [6]
for the resolution parameters
g=1.05 and A6 = 7/18, 9)
what is related to the “standard” integration grid introduced in [7] for the exact calculation of the
kinetic integral.
In the FDIA, the basic configuration, the most close to the original DIA, is described by the

following ratios
1) k,=k , (10a)
where the wave vector k is located at a current grid node and represented in the polar co-ordinates

by the proper frequency o and angle 4 ;

2) k;=Kk, (10b)
where k, is represented by oy =0o(1+4;,) and 0, =0+A0,,;

3) k =k,=(k,+k;)/2=k, /2 (10c)

where a specially introduced the reference wave vector K,  is directed along the angle

6, =0+ A0 ,, and its value is given by the formula (12) (see below).

Thus, we have two main (independent) parameters of configuration:

e the frequency increment, 1+ A,,, defining the value of o,
e and the proper angular difference, Af,, = 6, —6,, defining the angle between vectors Kk,

and Kk;.

2 As faras ky is conventionally taken as an external variable (see [7]), we have changed the order of interacting vector with respect to

original DIA (compare (4a) and (10a,b,c) ).
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Varying these parameters, one can vary the configuration as a whole, including the values of

dependent parameters @, and o, = (0, +0;).

The main differences between the configurations used in FDIA and in original DIA are as

follows:

(a) all wave vectors K,, K,, K;,and K, should be allocated at the nodes of the integration grid;

(b) vectors K, and K, may be unequal, i.e. they may have some (but small) discrepancies in both

values and directions;
(c) the resonance conditions (2) may be met rather approximately.
The main common feature of the configurations is that all of them are to be allocated in the
vicinity of the “figure-of-eight” in the k-space (see, Figure 1). This requirement is expressed by the

following ratios [7,8]

k,=c2/2, (11)
where ka and o, interms of independent variables: o, o;, and A93 4 have the kind

k = [aj +0} +20°0; cos (A034)]1/2 , (12)
and

c,=0,+0;. (13)
Egs. (11)-(13) determine the value of angular difference A@,,, for the given o, and ©,. After that,
the expression for A@ , =60, —0, is deduced from the resonant condition (2) and from the

definition of Kk, via the right part of (10c) by the following formula:

2 .
A@,, = arctg| — o3sin(A0,,) — . (14)
o,cos(Ab,, )+ o,

To fix the FDIA configuration, it needs to define several integer values corresponding to
requirement (a) mentioned above (allocation of the vectors on the grid). According to (7a), this

requirement can be expressed by the following equations:

ml

m3 m2
o,=0,q , 0,=0,q , 0,=0,q ", (15a)

and
AG,, =n3-A0, AO,, =na-A@ (15b)

Here m1, m2, n3, and na are the integer values to be found for any given integer m3. The first two are

found from requirement (10c), and the latter two do from formulas


https://doi.org/10.20944/preprints202009.0462.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2020 d0i:10.20944/preprints202009.0462.v1

6 of 12
n3=Int(AO, /AO), na = Int(AB,,/AO) (15¢)

and previously determined Af,, and A8, (asitisdescribed above). In (15c), the function Int(...)
means the integer number which is nearest to the value of the argument.

Requirement (b) mentioned above (inequality of vectors K, and K,) means that one can use

the following choice for modulus parameters of the vectors K, and K,:
ml=m2 or ml= m2+£l, (16)
and the corresponding choice for the angle parameters of the vectors Kk, and K,:
nl=n2= na or nl=n2tl=natl 17)

where n1, n2 are the angular parameters of the vectors K, and K, corresponding to Egs. (10c),

(15b). Sign (+) means the permutation symmetry for vectors K, and K, (see footnote below after

formulas 22).

The choice of (+ 1) means a possible inequality of vectors K, and K, .Eqgs (15b) and (17) mean

that for a certain configuration, given by values m1, m2, m3, and nl, n2, n3, the angle parameters of

interacting vectors have the values
0,—0,=%tn3-A0; 0,-0,=tnl-A0; 0,-0,=1tn2-A0 (18)

where sing (+) denotes a set of two mirror configurations (see [3]).

Taking into account the change of the interacting wave vectors order (mentioned above in

footnote 2), the net expression for NL-term in the FDIA is given in the (o, ) - coordinates by the

formulas
NL(o,,0,)=1(0,,06,,0,0,0,0,0,0,), (19a)
NL(oc,,0,)=1(0,6,0,,0,0,0,0,0,), (19b)
NL(o,,6)=-1(0,,6,,0,,0,,0,,0,,0,.0,), (19¢)
NL(o,,0,)=-1(0,,0,0,,06,,0,06,,0,0,), (19d)
where

1(0,,6,,0,,0,,0,,0,,0,0,) =

, (20)
=Co"'[ 8,5,(S, +(0,/ 6,)'S) = 8,8,((c,/ 6,)'S, +(0,/ 0,)'S,) |
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S =8(0,,0), and C is the fitting constant depending of the grid parameters. The final value of

2D-function for Nil-term is found by the running calculations of (19)-(20) through the whole

integration grid {o;, ,}, similarly to the original DIA procedure.

After some numerical simulations for the grid (7a,b) with parameters g4 = 1.1, A@=7/12
(typical for the WAM), the fitting constant C in (20) is found to be equal to 12000 3. The growth of C
in our case is related to the exclusion of the abovementioned interpolation procedures.

Hereby, the algorithm of the FDIA configuration calculations is fully described. The certain set
of configurations will be given in the next section. It needs only to add that effectiveness of the FDIA
against DIA was numerously and successfully verified in comparison with the WAM [10-12] and the
WWI13].

4. FDIA parameters for several certain configurations and grid resolutions
4.1. Parameters of configuration
On the example of typical WAM integration grid with parameters
g=11 and A@ = /12 (or AO =15°), (21)
we shall demonstrate the choice of configuration parameters for FDIA: m1, m2, m3, and n1, n2, n3.
For this aim, from Egs. (11) - (13) and (15a), we calculate values A@,, and A6,

w varying

independently the value of m3. Results of calculations are given in Table 1.

Table 1. Principle and auxiliary parameters for grid (21). The shaded line has parameters most

closely corresponding to the original DIA configuration used in the WAM.

" A0, deg. AD,,, deg. x=M m2=Int(x+0.5)
log(¢)
3 238 152 1.61 ’
4 323 22.2 2.19 2
5 415 30.3 2.79 3
6 51.6 39.8 3.42 3
7 62.7 50.9 4.07 4

From Table 1 it is seen that for the grid (21), the case with m3 =5 (shaded) is the most close to the
original DIA configuration for which angle A@,, =60 + 6, =45° (see (4.b) ).

4.2. Parameters of some accuracy efficient FDIA configurations
In paper [6] it was derived some criterion for the accuracy efficiency of DIA configuration.
Based on this criterion, we found several the most efficient FDIA configurations presented below.
Taking into account the ratios (15a, b), one may construct the following efficient configurations.
4.2.1. For the original DIA configuration, the following FDIA parameters are the most efficient:
m3=5, m2=ml=23; (22a)

and

3 This fitting coefficient C is tuned to the total source function of the wind wave model proposed in [9]..

d0i:10.20944/preprints202009.0462.v1
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n3= Int(AG,,/AB) =3; n2=nl=na= Int(AG,,/AO)= 2. (22b)
4.2.2. If we adopt existence of unequal values 01, 0z, then parameters could be *
m3=5, m2= 2, ml=3;, and n3=3, n2= 3, nl=2 (23a)
or
m3=5, m2= 2, ml=3;, and n3=3, n2= 3, nl=1. (23b)

Pay attention that from Table 1 it is seen some others configurations which could be used for DIA.
As it was shown in [14], some of them are more efficient that the original one given by (22a,b). The
relative efficiency for these configurations was checked by means of the especial method constructed
to this task and presented in [6].

4.2..3. For the multiple, three-configuration DIA (3C-DIA), in the fast version, we have found

the following three constituents making an efficient construction (see [6, 14])

1)m3=4,ml=2,m2=3; and n3=2,1n2=2,nl=1; (24a)

2ym3=5ml=m2=3; and n3=3,n2=nl=2; (24Db)

3ym3=7,ml=m2=4; and n3=4,n2=nl1=3. (24¢)
4.2.4. For the grid parameters with more fine angular resolution as

q=11 and Af = 7 /18 (or A =10°) , (25)

Table 1 has the same kind, whilst the proper configurations are as follows.

For the original DIA, the proper configuration in the FDIA version has parameters

m3=5, m2=ml=3;and n3=4, n2=nl=3. (26)
The modified FDIA of the most better accuracy have configurations of the type
m3=5, m2= 2, ml=3; and n3=4, n2=nl1=3 (27)
or
m3=5, m2= 2, ml=3; and n3=4, n2= 4,nl=3, (28)

and some others, corresponding to modifications (16), (17) for unequal k,; and K, .

4.2.5. For the multiple 3C-DIA[14], in the FDIA the most effective are the following joint three

configurations
1)ym3=4, ml=m2=2; and n3=3,n2=nl=2; (29a)
2ym3=5ml=m2=3; and n3=4,n2=nl=3; (29b)
3Yym3=7, ml=m2=4 and n3=6,n2=nl=>5. (29¢)

5. FDIA parameters of configurations for very high resolution grid
5.1. Single conjurations. For applications which can be applied in the future, the following very

high resolution grid is preferable
g=105 and AO = 7 /18 (or A =10°). (30)

Principal and auxiliary parameters for this grid are presented in Table 2.

Herewithin, in a case of the grid (30), the most efficient FDIA single configurations, which could
be used in practice, are presented in Table 3 (for a proof of relative efficiency of these configurations

among all other configurations, see [14]).

4 Pay attention that the configuration has symmetry with respect to permutations k €k, that means permutation (m2, n2) <> (ml, nl).
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Table 2. Principle and auxiliary parameters for grid (30). The shaded line has parameters most

closely corresponding to the original DIA configuration used in the WAM.

" A0,,, deg. A@,,, deg. - log(w, /2) m2=Int(x+0.5)
log(q)
5 20.1 125 2.65 3
6 24.4 15.7 3.22 3
7 28.7 19.2 3.80 4
8 33.2 29 439 4
9 37.8 27.0 4.99 5
10 42.7 31.4 5.60 6
11 47.7 36.1 6.23 p
12 53.1 41.3 6.87 7
13 58.7 46.9 7.51 8
14 64.7 53.0 8.17 3
15 712 59.7 8.84 9

Table 3. Principle parameters for the set of the most efficient single configurations for grid (30)..

Index of m3 m1 m2 n3 na nl n2
configuration  (general) (general)  (general)
S1 8 4 5 3 2 2 2
S2 8 4 5 3 2 3 2
S3 9 5 5 4 3 3 3
S4* 9 4 5 4 3 3 2
S5 10 5 6 4 3 3 3
S6 10 6 6 4 3 3 3

Notes. 1. Index of configuration includes the symbol of the single configuration type, S, and the conventional number of
configuration (for notations, see [14]).Supindex “*” means that the configuration has unequal n1 and n2

2. Configuration S6 is marked as the closest one to the original DIA configuration.

3. Parameters m3, n3, na are marked as “general” as far as m3 is independent parameter, and 13,

na are directly defined by formulas (15a,b) and constant for a given m3.

5.2. Multiple constructions of single configurations.
Finally, we add that some multiple configurations (i.e., constructions of several single

configurations[14]) which are more efficient than the simple configurations mentioned in Table 3.
These constructions are presented in Table 4 and Table 5 given for auxiliary configurations.

Table 4. The set of the most efficient double-configuration constructions

Index of Composition
Construction of two simple configurations
M5 S1+ S8
M6 S1+0.7-58*
M7 S1+S10
M8 S1+0.7-510

Note. The coefficient in front of configuration means the weight of a proper single configurations from Tables 3 and 5.

Table 5. Auxiliary simple configurations.
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Index of m3 ml m2 n3 na nl n2
configuration  (general) (general) (general)
S8* 11 6 7 5 4 4 3
510 12 7 7 5 4 4 4

Notes. For legend see notes for Table 3. Super-index “*” means that the configuration has unequal n1 and n2.
These are the parameters of the auxiliary simple configurations used in Table 4.

5.3. Finally, it is worthwhile to mention one 3C-DIA construction parameters for the grid (30):
m3=8, ml=4, m2=5;n3=3, nl=n2=na=2; (config.S1 from Tab. 2) (31a)
m3=10, ml =5, m2=6;n3=4, nl=n2=na=3; (config.S5 from Tab. 2) (31b)
m3=12, ml=7, m2=7;n3=5 nl=n2=na=4; (config.S10 from Tab. 5) (31¢)

This construction is more effective than one in original DIA (see Table 6), but it is less effective than

ones given in Table 4.

5.4. In {6] it was proposed some formulas for estimating the conventional efficiency of the DIA
and FDIA aimed to their comparison. The values of conventional efficiency of the constructions and
configuration mentioned above in this section are presented in Table 6 for completeness.

Table 6. Efficiency parameters for the constructions considered for the grid (30)
Index of S1  S2* 83 S4* S6 M5 M6 M7 M8  3C-
construc- (origin FDIA
tion al DIA)

Eff, 526 6.07 498 5.82 4.3 - - - - -

Eff, - - - - 6.57 643 643  6.39 4.4
Note. Values Eff, are applicable for simple configurations, whilst values Eﬁz do to two-configuration constructions [2].

6. Discussion

The DIA was proposed in 1985 [3], and for long time was unchanged for the reasons of
complexity of the point. Some ideas of improving the DIA was declared in [15], but the radical step
was made in [6], based on the own routine for the exact calculation of the kinetic integral [7]. This
allows formulating the criterion of comparing an efficiency of different versions for DIA and its
modifications. Finally, the idea of locating the interacting wave vectors at the nodes of the numerical
grid was proposed and realized in [6]. It has happened that this modification provides not only an
enhancing the speed of calculation of NL-term but the better accuracy, as well. The calculation speed
is increased due to eliminating interpolation procedures in the original DIA, the better accuracy of
FDIA is due to the better choice of the configuration.

This double positive effect is due the fact of rather crude efficiency of the original DIA, and
better choice of the configuration [6]. The FDIA provides the increase of accuracy in 10%, and the
speed of NL-term calculation is enhanced nearly twice. The tables of comparison the accuracy and
time-consuming of FDIA and DIA are not given here to save the room of this paper. They are
presented in the numerous early papers [6, 8, 11, 13].

Based on these results, the FDIA was implemented in the National Institute of Oceanography in
India [12]. It is still left to spread this positive result to the new versions of the world-wide used
models: WAM and WW. Present paper is namely aimed to prompt this implementation.

7. Conclusions

Details of the discrete interaction approximation (DIA) are presented and the concept of the fast
DIA (FDIA) is comprehensively described.

Numerous versions of FDIA for different numerical grids are presented, including the single
and multiple DIA configurations in a high resolution case.
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The preference of the FDIA against the original DIA in accuracy and time-consuming are
mentioned and explained. Some estimations of increased efficiency of the FDIA are shown.
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