

1 An Econometric Analysis of Contracts between Pharmaceutical Firms and French
2 Veterinarians: A Principal-Agent Theory Approach in the Context of Oligopolies

3

4 D. Raboissone¹, A. Ferchiou¹, T. Corre², S. Perez¹, P. Sans³, G. Lhermie¹, M. Dervillé⁴

5 ¹IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France

6 ²US ODR, INRAE, Auzeville-Tolosane 31320, France

7 ³UR 1303 ALISS, INRAE, Ivry-sur-Seine 94205, France

8 ⁴Université de Toulouse, LEREPS, ENSFEA, IEP de Toulouse, France

9

10 **Corresponding author : D. Raboissone** didier.raboisson@envt.fr

11

12

13 **Abstract**

14

15 In France, veterinarians are allowed to both prescribe and deliver drugs, a questioned situation
16 from the perspective of antimicrobial use (AMU) reduction in order to ovoid AM resistance
17 (AMR). This situation places veterinarians in direct commercial relationships with the
18 pharmaceutical industry. The present study aims to describe contracts between pharmaceutical
19 companies and veterinarians during the period 2008-2014. 382 contracts related to 47 drugs
20 belonging to the 8 main pharmaceutical firms (2,320 observations) in France were collected.
21 The price per unit after rebate (PUR) was calculated for each drug and contract. The descriptive
22 analysis demonstrated a high disparity between the content of contracts and the way in which
23 they are presented. A linear regression was then used to explain the PUR with the explanatory
24 variables, which were the yearly purchase objective, the year, the type of drug and type of
25 rebate. The decrease in PUR for each extra €1,000 objective per drug category was established
26 to be €0.061 per 100 kg body weight (BW) for anticoccidiosis treatments, €0.029 per 100 kg
27 BW for anti-inflammatories, €0.0125 per 100 kg BW, €0.0845 per animal for antiparasitics,
28 and €0.031 per animal for intramammary antimicrobials. Applying agency theory shows that
29 veterinarians can be considered the agents in case of monopolistic or oligopolistic situations of
30 pharmaceutical firms, they are considered the principals otherwise. Policies that focus on
31 maintaining veterinarians as principals may help reach the better societal benefit since this helps
32 them maintain access to veterinary services throughout the region at low public cost while being
33 liable for AMU.

34

35 **KEYWORDS:** drugs; veterinarian; pharmaceutical firm; contract

36

37 **Introduction**

38 The antibiotic resistance observed in humans originates from the use of antibiotics in humans
39 and is likely high in animals as well. From a simple point of view, 'higher antibiotic use leads
40 to higher the antibiotic resistance'. During several decades, an inappropriate medical
41 application has been pointed out as a primary factor of this global issue. Thus, ceaseless efforts,
42 such as the ban of the use of antibiotic growth promotors (AGPs) and the establishment of
43 surveillance systems, have been conducted to cope with this issue (Cogliani et al, 2011). France
44 also participates in this movement through its Ecoantibio plan, which reduced the total
45 consumption of antibiotics in livestock by up to 37% from 2012 to 2017. This decrease was by
46 75% for fluoroquinolones and by 81% for the last generation of cephalosporines
47 (ECOANTIBIO, 2012).

48 In France, such drugs can be prescribed only by veterinarians, and drug delivery is restricted to
49 veterinarians, pharmacists and farmer organizations, depending on drug class. In fact, a large
50 part of drug delivery is performed by veterinarians, despite some variations between livestock
51 systems. A recent study highlights that the share of income raising from drug delivery varies
52 across veterinary offices but remains altogether high, regardless of whether small or large
53 animal sectors were considered (Minviel et al., 2019). A recent law has limited veterinarian
54 antimicrobial (AM) delivery to veterinarians and pharmacists. There is increasing concern
55 regarding the conflict of interest due to the simultaneous prescription and delivery of drugs by
56 veterinarians. However, countries that have decoupled prescription and delivery by
57 veterinarians have not observed changes in the pattern of AM use (AMU). Moreover, the French
58 situation shows that prescription and delivery by the same actors does not prevent a large
59 decrease in AMU.

60 The drug value chain is composed of pharmaceutical firms (which can subcontract drug
61 production), wholesalers, veterinarians (and other actors allowed to deliver drugs) and farmers
62 or animal owners. This means that veterinarians have direct commercial relationships with both
63 pharmaceutical firms and AM end users. The factors that may influence end-user drug

64 consumption have been recently reviewed (Lhermie et al., 2016). These factors include drug
65 price and induced demand: extra demand may arise from the lack of disease prevention or end-
66 user risk aversion (AMs are very good at handling damage, disease, and control). The price of
67 AMs is known to represent a key driver of use in veterinary medicine (Chauvin et al., 2005,
68 2005). In human medicine, the link between AM price, AMU and increased AMR has been
69 demonstrated. For instance, in Denmark, the increase in the number of drugs containing
70 ciprofloxacin (from 3 to 10) was associated with a decrease in drug prices by 53%. The
71 proportion of urinary *E. coli* that is resistant to ciprofloxacin increased by 200% in the 4 years
72 that followed (Grundmann et al., 2011). Despite this link between AM price and use, AMs
73 remain a regulated good in most countries.

74 The induced demand for drugs by patients or farmers and the way in which pharmaceutical
75 firms may modulate prescriptions are not well understood in both human and veterinary
76 medicine. The link between a prescriber's tendency to prescribe more profitable drugs for
77 him/her and drug delivery rebates has been shown in China (Xu, 2012). On the one hand, the
78 relationship between prescribers and pharmaceutical firms was reported to encourage
79 inappropriate usage, to increase medical costs and to favour the propagation of resistance
80 (Buckley, 2004), among others, through asymmetric information (Lee and Kwon, 2011).
81 Prescribers with a frequent intercourse/meeting with a pharmaceutical salesperson tend to (i)
82 more easily prescribe a newly arrived medicine and to (ii) overuse/overprescribe drugs due to
83 the ease of his/her permission for a patient's request for the prescription, even if it is not
84 medically advisable (Watkins et al., 2003; Watkins et al., 2003). The pharmaceutical industry
85 is also known to use the push strategy (e.g., promotions, funding, and sponsorship) in its relation
86 with prescribers (Moynihan, 2003; Buckley, 2004). On the other hand, the close relationships
87 between the pharmaceutical industry and prescribers i) help prescribers access information in
88 some areas, even if there is bias present (Black, 2005) (Prosser and Walley, 2003), ii) improve
89 innovation due to the positive impact of sharing information (García et al, 2007), and iii)

90 optimize supply chain management (Schwarz and Zhao, 2011). Relationship marketing remains
91 one of the primary drivers of sales in the pharmaceutical industry (Wright, 2003).

92 The prescriber is recognized as a strong filter to access drugs, which are regulated products. For
93 instance, a recent study observed a change in prescription behaviour in the case of new drugs
94 available on the market, but drug prescription substitution was observed only within the same
95 drug category of the AM family (Lhermie et al., 2019). Because veterinarians and the
96 pharmaceutical industry have commercial relationships, annual contracts are negotiated to
97 define at least the quantity and prices, and a rebate system has been developed by
98 pharmaceutical companies. This complex situation leads to the application of principal-agent
99 theory to analyse the nature of the relation between these contractors and the potential outcome
100 for public health. The central argument of contract theory (Coase, 1937) is that if agents
101 encounter transaction costs, if they can enjoy informational advantages or if nonredeployable
102 investments must be made (i.e., specific assets), then the same goods will not be exchanged at
103 the same price, and the rules of a Walrasian market will not be followed. To make their activities
104 compatible and to share the value surplus thus created, agents sign contracts that limit their
105 behaviour and establish coordination mechanisms based on mutual obligations (Brousseau,
106 1997). Considering the frequency of drug purchase, both parties have an interest in establishing
107 contracts to reduce transaction costs. Moreover, yearly contracts will also support the planning
108 of their activities. Veterinarians will ensure drug availability and gain visibility for their pricing
109 policy, which also helps increase income since the rebate obtained from pharmaceutical firms
110 is often not passed on to the final price proposed to end users. Signing contracts with several
111 firms allow for veterinarians to reduce information asymmetry regarding drug prices, as they
112 can compare prices. Pharmaceutical firms will be ensured of their clients' willingness to pay,
113 better define the yearly market expectation and will visibility regarding the drug supply chain
114 (from local to international levels), which altogether supports production cost cutting (lean
115 management). Competitive drugs with close medical indications are often differentiated on

116 marginal points, which could be seen as an attempt by the pharmaceutical firm to maintain
117 asymmetric information related to prescribers and end users.

118 The aim of the present work is to describe the trade-off between the oligo-political position of
119 pharmaceutical firms and the prescription freedom of practitioners in a situation of joint
120 prescription and delivery. To do so, the French pharmaceutical contracts between
121 pharmaceutical companies and veterinarians during 2008-2014 were analysed, focusing on the
122 relationship between purchase objectives and rates of rebate. An agent-principal approach
123 perspective is then proposed.

124 **Materials and methods**

125 **Data**

126 Thirty French veterinarian offices were randomly contacted to provide their purchasing
127 contracts with pharmaceutical firms for the period 2006 to 2014. Data from 8 veterinary
128 organizations, 5 veterinary offices and 3 common purchasing groups were collected. To be
129 included, the purchase contracts should specify the drug or group of drugs to be purchased, the
130 objective of the purchases required by the veterinarian and the rebate in which the
131 pharmaceutical firm has engaged (in absolute value or percentage). A total of 498 contracts, 23
132 pharmaceutical firms and 125 drugs were included (Figure 1). The 382 contracts related to the
133 8 main pharmaceutical companies were related to bovine production, and the categories of
134 drugs that were AMs, antiparasitics (APs; i.e., pest control), anti-inflammatories (AIs) and
135 vaccines (VACs) were sorted out. They included 47 selected drugs and 2,320 observations.
136 Each drug was coded according to the company (C1 to C8) and the drug (P1 to P47) to provide
137 a combination from C1P1 to C8P47. For each drug, the drug price for the veterinarian when
138 he/she bought it from the wholesaler (i.e., before the rebate from the pharmaceutical firm) was
139 implemented.

140 A database was then created with the following variables: veterinarian, firm, year (of the
141 contract), range (of the drug, i.e., how the drugs were grouped in the contract), drug name,
142 yearly revenue from the veterinarian office for each firm, duration of the contract (trimestral,
143 semesterly, yearly), monetary objective for the rebate, type of rebate (per drug, per range or
144 global, as defined below), rebate value in percentage, price of the drug, type of drug (parenteral
145 administration following body weight dosage (PerBW), intramammary syringe (SYR), VAC or
146 per animal fixed dose (DOSE)), and category of drug (AMs, APs, AIs, or VACs). The type and
147 category of drugs are as follows: VAC are DOSE and AIs are PerBW, but AMs are PerBW or
148 SYR and APs are PerBW or DOSE. When the rebate was indicated in whole value or in free
149 units, it was converted into the percentage of the rebate for a given objective. Three types of
150 rebates were defined. When a drug was explicitly nominated in a contract (with an objective
151 and a rebate), the type of rebate was defined as the drug. When a group of drugs was nominated
152 in a contract (with an objective and a rebate), the type of rebate was defined as the range. For a
153 given year, a drug can then have a first rebate with an objective linked to this drug only and a
154 second rebate with an objective defined for the range of drugs. When the rebate was given when
155 both the objectives of drug and those of range were achieved, the rebate type was defined as
156 global. To allow for the comparison of the contracts, a standardization of the duration was made,
157 since 67% of the contracts were based on full years. For the same drug, many presentations
158 were available on the market, and the price per ml was different. Because the contract did not
159 specify the presentation of the drug, the combination of the presentations expected to be
160 purchased to achieve the objective was defined to be the same share as indicated in central
161 average selling. When the objective to be achieved to reach the rebate was defined for multiple
162 drugs, the share of drugs was defined as equal, except if the share was defined in the contract.
163 When the objective was defined for multiple drugs belonging to various types of drugs (for
164 instance, parenteral administration following weight dosage and vaccines), these drugs were
165 excluded since prices cannot be standardized, as explained below.

166 **Price per unit after rebate (PUR)**

167 To standardize the way in which contracts may influence the final drug price paid by the
 168 veterinarian, a price per unit of drug after rebate (PUR) was calculated for a treatment of 100
 169 kg BW of animal (parenteral administration drugs) or for a treatment per animal (per animal
 170 fixed dose, for vaccine, intramammary syringes and few others).

171 The weight of the animal treated (WAT, kg) for a given drug was calculated as indicated in
 172 Equation (1):

$$173 \quad \mathbf{WAT = Qty/Dose \quad (1)}$$

174 where Qty is the quantity of active substance per packaging unit (mg/g or mg/ml), and dose is
 175 the dose regimen to be administered (mg or IU per kg BW); the dose was reported from the
 176 Summary of Product Characteristics (SPC; <https://www.ema.europa.eu/en>). For ambiguous
 177 situations, the guidelines of the French National Veterinary Medicine Agency (ANSES) were
 178 followed. When the treatment duration was an interval, the longest duration was selected
 179 (ANSES, 2019). For instance, when the dose varied between species, the bovine dose was
 180 maintained. Then, the yearly quantity of BW to be treated with the yearly contract
 181 (WAT_Contract) was calculated as indicated in Equation (2):

$$182 \quad \mathbf{WAT_contract (kg) = WAT * Objective/Price \quad (2)}$$

183 where Objective is the objective (€) mentioned in the contract, and price (€) is the price of the
 184 drug.

185 Then, PUR was expressed in euros per 100 kg BW treated as indicated in Equation (3):

$$186 \quad \mathbf{PUR (\text{€}/100 kg BW) = (Objective - Rebate)/WAT_contract * 100 \quad (3)}$$

187 where Rebate is the absolute rebate (objective multiplied by the rebate value in percentage).

188 For intramammary syringes, PUR was calculated for a whole treatment of mastitis, as indicated
 189 in the SPC. For dry-off, one treatment per teat was considered:

$$190 \quad \mathbf{Nb_Trt = Nb_Syr_Pack/Nb_Syr_Trt \quad (4)}$$

191 where Nb_Trt is the number of animals treated for a given packaging, Nb_Syr_Pack is the
 192 number of syringes in the packaging considered, and Nb_Syr_Trt is the number of syringes
 193 required for the whole treatment, as indicated by the SPC.

194 Then, PUR was calculated in euros per animal, as indicated in Equation (5):

195
$$\text{PUR} (\text{€/animal}) = (\text{Objective} - \text{Rebate}) / (\text{Nb_Trt} * \text{Objective/Price}) \quad (5)$$

196 Similarly, for vaccines, the PUR was calculated for 1 year of protection, as indicated in
 197 Equation (6):

198
$$\text{PUR} (\text{€/animal}) = (\text{Objective} - \text{Rebate}) / (\text{Objective}/(\text{Price_Dose} * \text{Nb_Doses})) \quad (6)$$

199 where Nb_Doses is the number of doses for annual protection, and Price_Dose is the price per
 200 dose.

201

202 Descriptive analysis

203 A descriptive analysis was first performed. The contracts were compared by year and by
 204 company to understand how they were built and how the rates and the types of conditions were
 205 determined. Dispersion graphs were drawn of the PUR on the rebate rates for all drugs
 206 separately and for all the possibilities of rebate rates when several were possible for a given
 207 drug. When appropriate, a comparison was conducted for the group of drugs with similar
 208 indications to draw the temporal pattern of the combinations among rebate, objectives and PUR.

209 Analytic statistics

210 Before the analytic step was performed, a second set of restrictions was presented (Figure 1).
 211 First, observations obtained with rebates defined in the contract for multiple drugs were not
 212 considered for this second step to limit the assumption being made. Second, exclusions were
 213 performed for specific drugs to exclude outliers or drugs with very different characteristics
 214 within each category of drug (AMs, APs, AIs and VACs). An AMs drug with a mean PUR of

215 €15 per 100 kg BW was excluded since it was up to twice the average PUR range (€1-10 per
 216 100 kg BW) of other AMs. The higher PUR for this drug was in accordance with the specificity
 217 of its indication (mastitis treatment by parenteral route). Moreover, most of the objectives were
 218 within the range of € [0; 25,000], and others were excluded (195 out of 2,320 observations).
 219 Finally, the drugs expressed as doses before 2010 had very low PUR (€1 vs €3.25 per dose),
 220 suggesting the exclusion of these 5 observations.

221 Data were then analysed with R software (R core team, 1997). Linear regression was performed
 222 using the nlme package of R. The outcome variable was PUR, and the explanatory variables
 223 were objective, year, yearly revenue from the veterinarian office for each firm, type of drug
 224 (general administration, intramammary syringe, vaccine or per weight dose) and type of rebate
 225 (drug, range, or global). The variable type of PUR was also created (per 100 kg BW or per
 226 dose). A step-by-step procedure was used to include explanatory variables one by one, and then,
 227 final multivariate models were proposed based on Akaike information criterion (AIC) values.
 228 Both drug name and firm were considered random variables.

229 **Results**

230

231 **Drug typology**

232 The drugs were classified into 5 groups according to the relationship between the PUR and the
 233 purchase objective. Figure 2 summarizes the profile of each group, and the results for all drugs
 234 are proposed in supplemental data 1. Group 0 refers to drugs that have been little represented
 235 in the sample (data not shown, n=19). Group 1 includes drugs with PUR that linearly decrease
 236 with the objective. The PUR does not change with the objective for group 2. Group 3 refers to
 237 drugs with 3 additive rebates and is divided into 2 classes. The PUR changes according to the
 238 type of rebate (drug, range, or global) for group 3A, but such a relationship is not seen for group
 239 3B. Finally, group 4 includes drugs with no relationship observed between PUR and objectives.

240 **Dynamics of 3 drugs with similar indications**

241 Three drugs indicated for respiratory diseases of cattle (C8P39, C4P11, and C7P37, by way of
 242 their arrival on the market) were specifically analysed to better describe the place of the
 243 contracts in the veterinary-firm relationship (Figure 3). The drug C8P39 arrived on the market
 244 in 2003, and its PUR was €4 to €5 per 100 kg BW up to 2010. Similarly, the PUR of C4P11
 245 was approximately €4 per 100 kg BW up to 2010. The drug C7P37 arrived on the market in
 246 2011, and a decrease in PUR by €0.5 to €1 per 100 kg BW was observed for some veterinarians
 247 for C4P11 and C8P39. This decrease in PUR was achieved through an increase in rebates:
 248 C8P39 used to have a rebate of 5-10% for objectives above €4,000, whereas C7P37 and C4P11
 249 arrived on the market with rebates of 10-25%. Then, the contracts observed for C8P39 reached
 250 40%, but the objective was also increased, whereas the objectives for the other 2 drugs remained
 251 very low. A rebate of 25% was finally offered to all veterinarians, i.e., with very low purchase
 252 conditions, by C7 for C7P37.

253 **Factors influencing PUR: analytic statistics**

254 The distribution of the PUR per group and category of drugs is shown in Figure 4 and Table 1.
 255 AIs and APs have low variability, whereas AMs has large variability. Coccidiosis-related
 256 treatment has been classified separately (AP.C) since its PUR is higher than that of other APs.
 257 One drug with high PUR is observed for AP, as the only deworming drug with a unique dose
 258 per animal (not per 100 kg BW). The type of drugs VACs and SYR and, to a lesser extent,
 259 DOSE are higher than INJ, in accordance with a PUR per animal for the first 3 types and per
 260 100 kg BW for the fourth one.

261 In none of the models was the yearly revenue from the veterinarian office for each firm
 262 significantly associated with PUR. The average value of PUR for a null objective, a drug per
 263 100 kg BW and the type of rebate for that drug was €3.26 (Table 2). Compared to AM, drugs
 264 from the categories AIs and APs were €2.1 and €2.0 lower than those from the categories AP.Cs
 265 and VACs were €1.1 and €2.3 higher, respectively. For the category AM, an objective of €1,000

266 was associated with a decrease in PUR by €0.023, and a global rebate was associated with a
 267 decrease in PUR by €0.12. Finally, AMs expressed per animal had a PUR that was €0.74 higher
 268 than that of AMs expressed per 100 kg BW. Moreover, the 2 by 2 and 3 by 3 interactions were
 269 significant, but the interpretations were complex. To allow for a better understanding of these
 270 interactions, the analysis was performed per category of drugs (Tables 3 to 5).

271 For VAC, no explanatory variable was significantly associated with PUR. The mean PUR was
 272 €5.28 per dose. For AP.C, the average PUR was €3.50 per 100 kg BW for a null objective and
 273 a rebate on the drug (Table 3). An extra objective of €1,000 was associated with a decrease in
 274 PUR by €0.061, and a global rebate was associated with an increase in PUR by €0.97, compared
 275 to a rebate on the drug only. For AI, the average PUR was €1.07 per 100 kg BW for a null
 276 objective and a rebate on the drug (Table 3). An extra objective of €1,000 was associated with
 277 a decrease in PUR by €0.029, and a global rebate was associated with an increase in PUR by
 278 €0.15, compared to a rebate on the drug only. No significant interaction was observed for AP.C
 279 or AI.

280 For APs (Table 4), the average PUR was €1.15 per 100 kg BW for a null objective and a
 281 rebate on the drug. An extra objective of €1,000 was associated with a decrease in PUR by
 282 €0.0124 per 100 kg BW for drugs with a rebate on the drug. The PUR was €1.48 higher for
 283 drugs with PUR per animal compared to those with PUR per 100 kg BW, with all other things
 284 being equal. In other words, the PUR was €2.63 (i.e., 1.15+1.48) per animal for drugs with a
 285 rebate on drug for a null objective. A global rebate was associated with a decrease in PUR by
 286 €0.075 per 100 kg BW compared to a rebate on the drug only, but the decrease in PUR was
 287 €0.15 higher for drugs with PUR expressed per animal and a global rebate compared to drugs
 288 with PUR expressed per 100 kg BW and with a drug rebate. Moreover, the PUR decreased
 289 slower with the objective when a global rebate was applied (difference of €0.009 per €1,000 of
 290 extra objective). As a result, for a drug with a global discount, each €1,000 extra objective was
 291 associated with a decrease in PUR by €0.079 (-0.0124-0.0757+0.009) per 100 kg BW. Finally,

292 each €1,000 extra objective was associated with an average decrease in PUR by €0.072 per
 293 animal for drug with a global rebate.

294 For AMs (Table 5), the average PUR was €2.76 per 100 kg BW for a rebate on the drug.
 295 Drugs with PUR expressed per animal had a PUR that was €1.90 higher compared to others,
 296 leading to an average PUR of €4.66 per animal for a rebate on the drug. A global rebate tended
 297 ($P=0.07$) to be associated with an increase in PUR by €0.20 per 100 kg BW compared to a
 298 rebate on the drug only, but it was significantly associated with a decrease in PUR by €0.59 (-
 299 0.79+0.20) for drugs with PUR expressed by animal. For drugs with PUR expressed per 100 kg
 300 BW, the PUR was not associated with the objective, but it was decreasing by €0.031 per animal
 301 for each extra €1,000 objective for drugs with PUR expressed per animal.

302

303 **Discussion**

304 The present work is the first study focusing on contracts between veterinary practitioners and
 305 pharmaceutical firms in the context of linked prescription and delivery. The first part of the
 306 present work allows us to better understand the kind of relationship between pharmaceutical
 307 firms and practitioners. The second part quantifies the relationship between the PUR and
 308 objectives for different drugs.

309 **Empirical considerations**

310 For all categories except VAC, the objective is negatively associated with PUR. Because the
 311 variables drug and pharmaceutical firm were kept as random effects, this association means that
 312 for a given drug of a given firm, the real price paid by the veterinarian is decreasing when the
 313 objective increases, as expected. The decrease in PUR for each extra €1,000 of the objective
 314 ranges from €0.003 to €0.085 and even from €0.03 to €0.06 for most of the results. The present
 315 association is reported as linear since the other functions tested (squared, cube, etc.) were not
 316 significant. The relationship is unlikely to be linear: a maximum rebate rate is observed for

317 many drugs when the objective exceeds a threshold. Further research is needed to define with
 318 more precision the nature of the function linking the PUR and the objective. Even if the present
 319 study had not included real purchases but rather the objective of such purchases, the framework
 320 described here clearly demonstrates the relationship between drug price and quantity purchased
 321 for French veterinary practitioners for the studied period. The rate of contract completion is
 322 reported to be above 80% for this period. In summary, the decrease in PUR for each extra
 323 €1,000 of the objective per category of drug is established to be €0.061 per 100 kg BW for
 324 AP.Cs, €0.029 per 100 kg BW for AI, €0.0125 per 100 kg BW and €0.0845 per animal (only 1
 325 drug) for APs and €0.031 per animal for intramammary syringe AMs.

326 Amazingly, PUR was not associated with the objective of the vaccine, which is in opposition
 327 to the expected results since vaccines represent a hot spot in the veterinary drug market, with
 328 high revenue. They are often reported from field actors as the subject of fierce competition in
 329 practice. The present lack of significant association may come from the fact that the majority
 330 of the observations (70%, i.e., 84 out of 120 observations) arise from the same pharmaceutical
 331 firm, performing 3 additive rebates.

332 As expected, PUR is negatively associated with a global rebate for APs and for AMs, which
 333 means that the extra rebate reduces PUR. However, this effect is limited for APs with a lower
 334 (even if negative) association between PUR and the objective when a global rebate is given by
 335 the firm. The association between PUR and the objective in the case of a global rebate is even
 336 lower (-€0.072) for animals as units of PUR (compared to per 100 kg BW), probably because
 337 of the higher (+€1.48) average PUR for animals as units of PUR (compared to per 100 kg BW)

338 **Principal-agent approach**

339 The present results also provide new and clear insight into the respective positions of the
 340 pharmaceutical firm and veterinarians in the French context. Agency theory considers the
 341 relationships between contractual parties as unequal: the principal is seeking to align the

342 behaviour of the agent, who provides particular information, with his/her own interests. In the
343 present situation, considering the gap in terms of firm size, pharmaceutical firms have market
344 power and thus are likely to be the principal, while veterinarians are likely to be the agent. Such
345 a superficial analysis suggesting that pharmaceutical firms play the role of the principal is
346 supported by evidence from the present work.

347 We demonstrated here that veterinary drugs, even if regulated, are subject to market
348 consideration, leading to changes in their use and in their prescription. The present results
349 clearly demonstrated the relationship between lower PUR and higher objectives as a potential
350 source of conflict of interest, with consequences for prescription patterns. However, this does
351 not mean that pharmaceutical firms are the principal of the relationship. In contrast, this
352 marketing power of the firm, clearly demonstrated here, supports the idea of the pharmaceutical
353 firm as the principal (in addition to supporting the idea of the conflict of interest). The results
354 highlight the marketing efforts and imagination provided by pharmaceutical firms to present to
355 veterinarians various kinds of contracts and different relationships between the rebate and the
356 objective, which may be considered a way to maintain information asymmetry. This includes
357 different types of rebates, different periods of eligibility, and different ways to present the rebate
358 obtained (percentage, absolute value, or free units). The present work also shows that this
359 includes different effect sizes (€0.003 to €0.085 for each extra €1,000 of the objective), even if
360 this relationship cannot be seen directly from the contract by the buyer. The rebates described
361 here also demonstrated multiconditional rules and are included by the firm in contracts (multi-
362 objective contracts), with varying conditions between different categories of drugs (3 types of
363 rebates) and even new extra conditions proposed during the year, which strengthens the
364 intention of veterinarians to buy drugs from the same firm to increase the rebate and to avoid
365 any sharing of what they bought between different pharmaceutical firms. This approach also
366 aims at preventing any reasoning by range of drug or by drugs technically equivalent (i.e., drugs
367 with the same indication and sold by 2 firms) from the veterinarian. Moreover, the fact that the
368 relationship between the objective and the rebate is limited to a maximum rebate rate per drug

369 or range of drugs clearly supports the pharmaceutical firm acting as the principal, which can
370 even be seen as the final marketing strategy: stimulating the purchase through rebates but
371 limiting the overall amount of rebate by complex rules that may limit the understanding and
372 overview of veterinarians on this question of prices.

373 The analysis of the 3 drugs in direct competition (Figure 3) also clearly shows the marketing
374 power of pharmaceutical firms and their ability to change rules. In a situation of an oligopoly,
375 the drug C8P34 has a low rebate that seems to be imposed by the firm to most of its clients. The
376 ease of use (long-acting) and technical innovation may be a reason for the high demand, and
377 the situation can be qualified as an oligopoly since other drugs for the same indication face
378 more difficult conditions of use. The drug C7P37 arrived on the market with a high rebate, but
379 its PUR remained the highest of the 3 drugs. Veterinarian decisions based only on rebate will
380 lead to bad decisions, but any systematic transformation of rebates into PUR remains impossible
381 due to the heterogeneity of the contracts proposed by pharmaceutical firms. Here,
382 pharmaceutical firms are clearly not transparent and reinforce information asymmetry.
383 Interestingly, the first drug on the market maintained the lowest PUR for the whole period of
384 the 3 drugs on the market, highlighting the complex relationship between PUR and objectives
385 in cases of products with direct competition. Unfortunately, the present study did not allow us
386 to perform a similar analysis for other drugs in direct competition due to inconsistency in
387 contract collection and data availability.

388 Taken together, our results show that pharmaceutical firms can be considered the principal,
389 based on the information asymmetry and the marketing power they can develop compared to
390 the limited size of most veterinary offices. Bargaining power appears to be clearly unbalanced.
391 In contrast, veterinarians have a specific position that allows them to counteract pharmaceutical
392 firms' power, even leading them to ask whether veterinarians should not be considered the
393 principal in this contractual relationship. Because of their close relationship with farmers and
394 their field experience, veterinarians have some information superiority in the transaction. They

395 are the ones with the information regarding the farmers' willingness to pay and the consecutive
396 need for drugs. In addition to these arguments, the present work reinforces the conclusion of
397 considering the veterinarian as the principal.

398 A key argument is that the final decision of the purchase and on the prescription remain with
399 the veterinarian only and that veterinarians are using this tool to maintain and strengthen their
400 power. The present work clearly shows that in a situation of the oligopolistic position of a
401 pharmaceutical firm, the veterinarian is mainly a price taker. However, we observed that the
402 veterinarian clearly acts as principal in the case of free competition between drugs, which was
403 clearly highlighted when 2 new drugs arrived on the market (Figure 3), leading to a shift from
404 an oligopolistic position (no real competitor of C8P34 since real innovation) to a free
405 competition position. Veterinarians clearly use their prescription power to ensure that
406 pharmaceutical firms change their position, which is in accordance with a recent study that
407 highlighted the change in AMU in cases of market changes (new drugs) at the national and
408 regional levels, but this was observed only between drugs with similar medical indications
409 (similar technical characteristics) (Lhermie et al., 2019).

410 Seeing the veterinarian as the principal is also reinforced by the low incitation given by the
411 pharmaceutical firms. Amazingly, the decrease in PUR (€0.003 to €0.085 for each extra €1,000
412 of the objective) is low. Even if the absolute amount for veterinary offices can be high (because
413 of high revenue), there are increasing calls for the higher independence of veterinarians to
414 pharmaceutical firms by the veterinarians themselves (personal observations). The present work
415 gives credit to this statement, and all the results show that PUR is positively associated with a
416 global rebate for AP.C, AIs and partly AMs. This positive association can be interpreted as a
417 hidden relation within the contract and an application of an extra rebate in case of higher initial
418 PUR, in accordance with the fact that recent drugs (or medical innovation) are on average more
419 expensive than older drugs and receive extra rebates to gain or secure markets in a competitive
420 context. However, this interpretation makes sense only if an oligopoly applies since free

421 competition gives power back to veterinarians. In summary, the veterinarian can be considered
 422 the principal once the oligopoly on a drug is over and remains the agent in cases of a
 423 monopolistic or oligopolistic situation of the pharmaceutical firm. These findings are in line
 424 with the literature extensively highlighted by the major role of market structure (Sexton and
 425 Lavoie, 2001; Donald et al., 2006).

426 Agency theory highlights that both parties may have an interest in the principal compensating
 427 the agent in exchange for the abandonment of the informational advantage or consequences by
 428 the latter. Here, the situations may appear all the more complex, as the drug is a regulated
 429 private good and veterinarians jointly support public services through i) the collective
 430 dimension of animal health, including zoonosis, ii) limitation of the side effects of antibiotic
 431 use, iii) consolidation of animal and human welfare, and iii) securitization of high-level service
 432 access in areas where it is limited. These collective and public considerations lead to question-
 433 linked policy considerations.

434

435 **Policy considerations**

436 There are increasing calls to separate delivery from prescription in veterinary medicine. The
 437 efficiency of such a policy is not clear. Countries that had separate prescriptions and deliveries
 438 by veterinarians did not observe changes in the pattern of AMU. The income of veterinarians
 439 highly depends on delivery in France. A recent study highlights that the share of income raising
 440 from drug delivery varies across veterinary offices but remains altogether high, regardless of
 441 whether small or large animal medicine is considered (Minviel et al., 2019). The separation of
 442 drug prescription and delivery may lead to great changes in veterinary services, as many
 443 territories are lacking an adequate veterinary service offer. The present work sheds new light
 444 on this issue when analysing the recent impact of new regulations that occur after the period
 445 covered by this study. New limitations on drug prescription and delivery and on contracts and

446 veterinary drug prices, specifically for critical AMs, have been adopted in the context of
447 national plans to reduce AMU (ECOANTIBIO, 2012, 2017). Such an evolution has stressed
448 the marketing power of pharmaceutical firms and the freedom of practitioners, but in different
449 proportions, while globally strengthening the role of veterinarians as the principal. Another
450 example that reinforces the idea that the role of principal for the veterinarian may be facilitated
451 by institutional context is the emergence of suprastructures such as corporations that are
452 specifically in charge of drug purchasing. They establish contracts on behalf of veterinarian
453 offices and clearly move the ambiguous principal-agent relationship toward a principal role for
454 the veterinarian (or for the group of economic interest heads).

455 This finding clearly shows that regulation and power equilibrium between pharmaceutical firms
456 and veterinarians are closely linked and that adequate regulation may help within the bargaining
457 power of veterinarians, permitting them to provide common goods (animal health service in
458 low-density areas, for instance) while being in a conflict of interest. Even if the present situation
459 may be paradoxical, improving access to services at minimal public cost in areas in a context
460 of difficult service access may be an easy way to improve societal benefit. In other words, the
461 separation of prescription and delivery may not be as efficient for reaching societal benefit as
462 might providing an institutional context—including regulation if required—which strengthens
463 the bargaining power of veterinarians and makes sure they remain the principal in their
464 relationship with pharmaceutical firms or at least that they retain some power. However, recent
465 results from the application of transaction costs theory to the dairy sector (Ménard and
466 Valceschini, 2005; Royer, 2011; Royer et al., 2016) emphasize the contribution of the state to
467 the legitimatization and improvement of the efficiency of contracts. Public policies that focus
468 on maintaining the bargaining power of veterinarians may be the best public cost-benefit
469 strategy.

470 Conclusions

471 The present work is the first study focusing on contracts between practitioners and
472 pharmaceutical firms in the context of joint prescription and delivery. Even if pharmaceutical
473 firms may appear as the principal, evidence is provided here to consider the veterinarians as the
474 principal in the French context. The bargaining power between the two clearly appears to be
475 dependent on whether the pharmaceutical laboratory has an oligopolistic situation in the field
476 or whether the drugs are subject to free competition. Policies that focus on maintaining
477 veterinarians as the principal may help reach optimal societal benefit since this helps maintain
478 access to veterinary services at low public cost.

479

PUR (€ per dose or per 100 kg BW)					
	Unit	n	μ	σ	
Category of drug	<i>AM</i>	Both	530	5.01	4.38
	<i>AI</i>	€ per 100 kg	198	1.28	0.49
		BW			
	<i>AP</i>	Both	440	1.25	1.40
	<i>AP.C</i>	€ per 100 kg	43	4.22	1.26
		BW			
	<i>VAC</i>	€ per animal	119	8.91	3.59
Type of drug	<i>PerBW</i>	€ per 100 kg	947	1.84	1.96
		BW			
	<i>DOSE</i>	€ per animal	33	2.85	1.44
	<i>SYR</i>	€ per animal	226	7.07	2.19
	<i>VAC</i>	€ per animal	119	8.91	3.59

480

481 **Table 1: Descriptive statistics of PUR.**

482 AM: antimicrobials; AI: anti-inflammatories; AP: antiparasitics; AP.C: anticoccidials; VAC:
 483 vaccines; PerBW: drug administered with a dose per bodyweight; DOSE: drug administered
 484 with a fixed dose per animal; and SYR: intramammary syringe.

485

486

487

488

		Estimate (SE)	P value
Intercept		3.261 (0.284)	< 2e-16
Objective (per €1,000)		-0.0234 (0.00306)	4.4e-14
Category of drug	<i>AM</i>	Reference	
	<i>AI</i>	-2.094 (0.815)	0.0117
	<i>AP</i>	-1.977 (0.567)	0.0007
	<i>AP.C</i>	1.167 (1.24)	0.3494
	<i>VAC</i>	2.380 (1.04)	0.0247
Type of rebate	<i>Drug</i>	Reference	
	<i>Range</i>	-0.0702 (0.0882)	0.4265
	<i>Global</i>	-0.123 (0.0384)	0.0013
Unit of PUR	<i>Per 100 kg</i>		
	<i>BW</i>	Reference	
	<i>Per animal</i>	0.7412 (0.269)	0.0060

489

490 **Table 2: Final linear regression for all groups (without interaction)**

491 The outcome variable is PUR (€). SE: standard error; AM: antimicrobials; AI: anti-
 492 inflammatories; AP: antiparasitics; AP.C: anticoccidials; VAC: vaccines; the type of rebate
 493 can be applied to drugs only, to a range of drugs or on all the drugs for a given pharmaceutical
 494 firm (global); per 1/100 kg BW: PUR expressed per 100 kg bodyweight; and per animal: PUR
 495 expressed per animal.

496

	AP.C		AI	
	Estimate (SE)	P value	Estimate (SE)	P value
Intercept	3.50 (0.734)	0.0157	1.07 (0.168)	4.43e-05
Objective (per €1,000)	-0.0615 (0.0114)	3.75e-06	-0.0291 (0.00342)	4.43e-15
Type of rebate	<i>Drug</i>	Reference		Reference
	<i>Range</i>	-0.248 (0.131)	0.0656	0.156 (0.0862) 0.0709
	<i>Global</i>	0.973 (0.289)	0.0017	0.144 (0.0559) 0.0106

497 **Table 3: Final linear regression for anticoccidials (AP. C) and anti-inflammatories (AI)**498 The outcome variable is PUR (€). SE: standard error. The type of rebate can be applied to drugs
499 only, to a range of drugs or on all the drugs for a given pharmaceutical firm (global).

500

501

502

		Estimate	(SE)	P value
Intercept		1.15	0.0193	3.31e-06
Objective (per €1.000)		-0.0124	0.00223	5.08e-08
Type of rebate	<i>Drug</i>		Reference	
	<i>Range</i>	0.0064	0.0622	0.917911
	<i>Global</i>	-0.0757	0.0213	0.000437
Unit of PUR	<i>Per 100 kg BW</i>		Reference	
	<i>Per animal</i>	1.48	0.0667	0.036096
Unit of PUR (per animal) x Type of rebate (global)		-.146	0.0690	0.034093
Unit of PUR (per animal) x Objective (per €1.000)		-0.0132	7.986e-06	0.100520
Type of rebate (global) x Objective (per €1.000)		0.0095	2.505e-06	0.000171
Unit of PUR (per animal) x Type of rebate (global)				
x Objective (per €1.000)		-0.0717	1.791e-05	7.57e-05

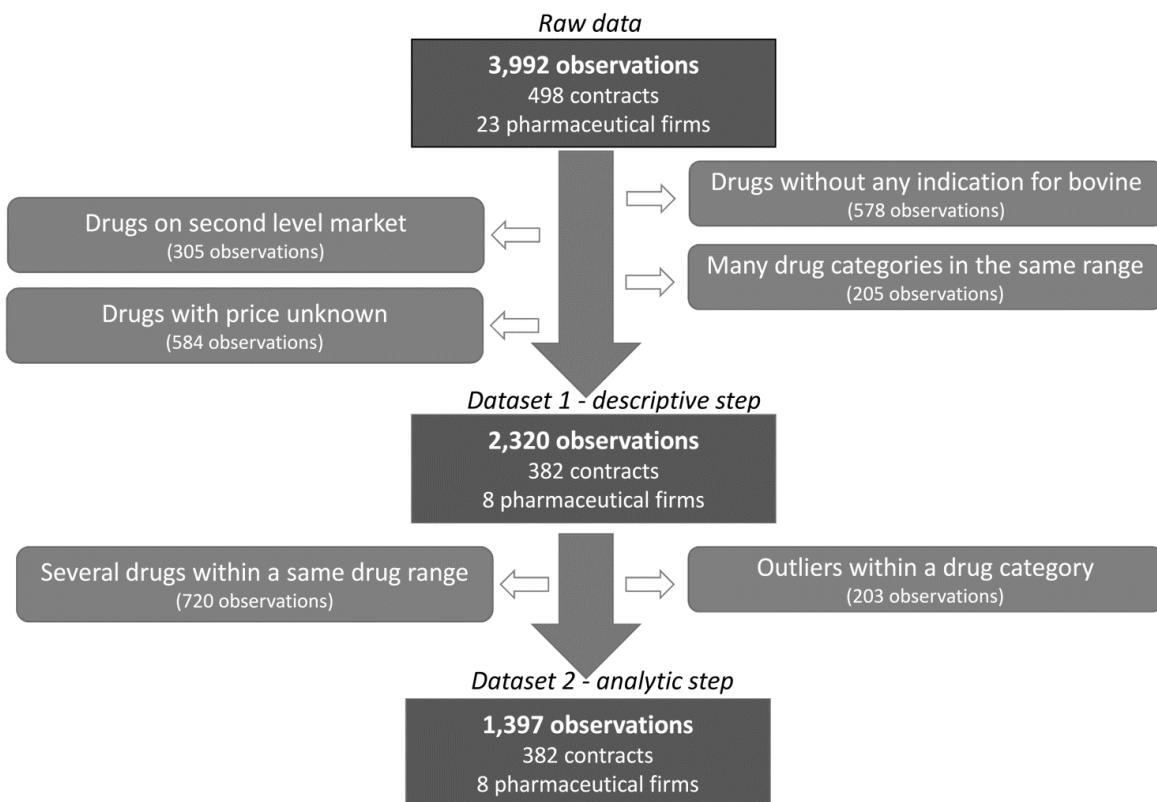
503 **Table 4: Final linear regression for the category antiparasitics (AP)**

504 The outcome variable is PUR (€). SE: standard error. The type of rebate can be applied to drugs
 505 only, to a range of drugs or on all the drugs for a given pharmaceutical firm (global); per 100
 506 kg BW: PUR expressed per 100 kg bodyweight; and per animal: PUR expressed per animal.

507

508

509


		Estimate (SE)	P value
Intercept		2.76 0.457	2.97e-05
Objective (per €1.000)		-0.00721 0.0117	0.5411
Type of rebate	<i>Drug</i>	Reference	
	<i>Range</i>	0.133 0.251	0.5972
	<i>Global</i>	0.200 0.110	0.0701
Unit of PUR	<i>Per 100 kg BW</i>	Reference	
	<i>Per animal</i>	1.90 0.324	9.45e-09
Unit of PUR (per animal) x Type of rebate (range)		0.139 0.443	0.7538
Unit of PUR (per animal) x Type of rebate (global)		-0.788 0.134	9.31e-09
Unit of PUR (per animal) x Objective (per €1.000)		-0.0031 1.335e-05	0.0230

510 **Table 5: Final linear regression for the category antimicrobials (AMs)**

511 The outcome variable is PUR (€). SE: standard error. The type of rebate can be applied to drugs
 512 only, to a range of drugs or on all the drugs for a given pharmaceutical firm (global); per 100
 513 kg BW: PUR expressed per 100 kg bodyweight; and per animal: PUR expressed per animal.

514

515

516 **Figures**517 **Figure 1: Chart flow for data selection**

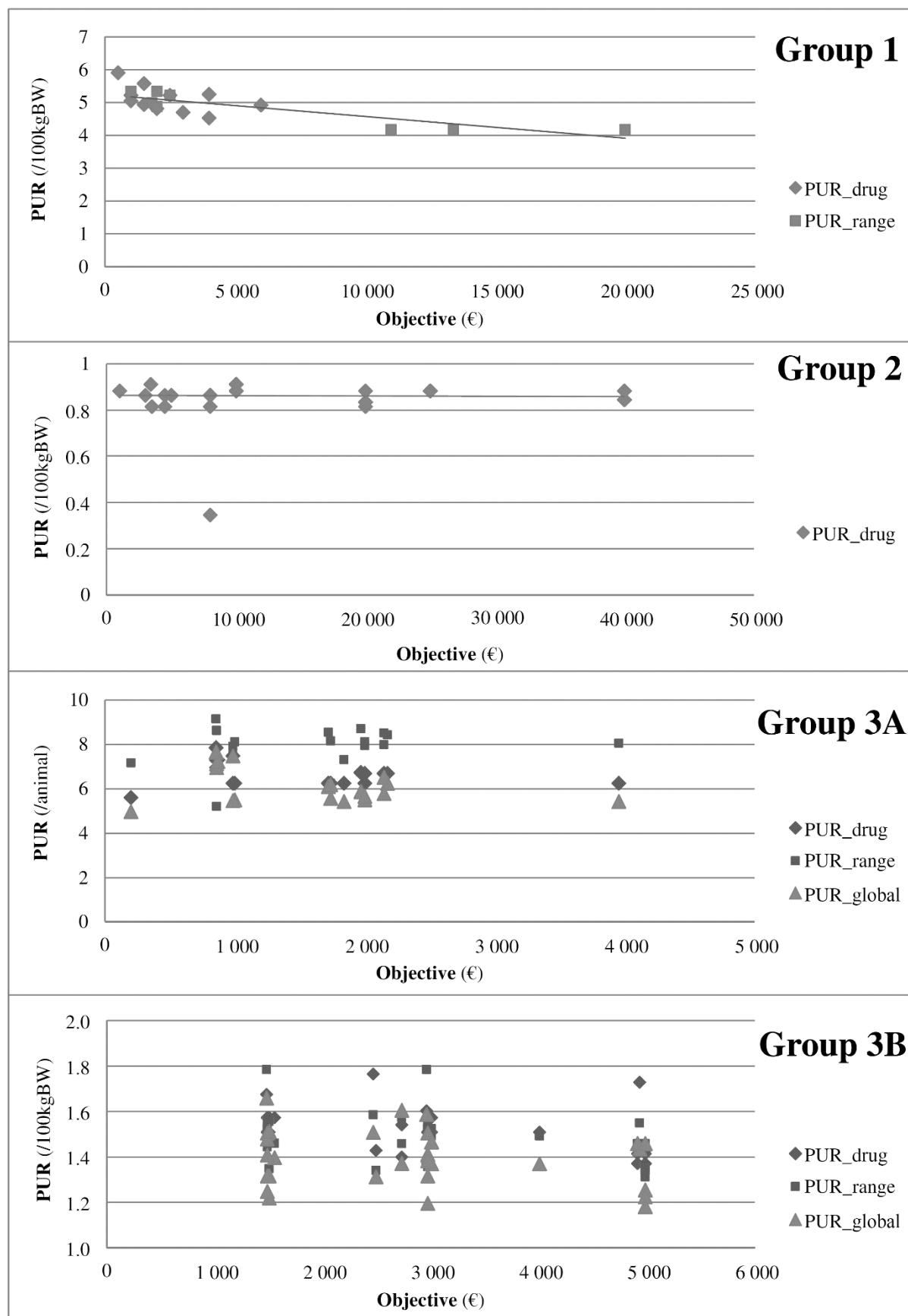
518

519

520

521

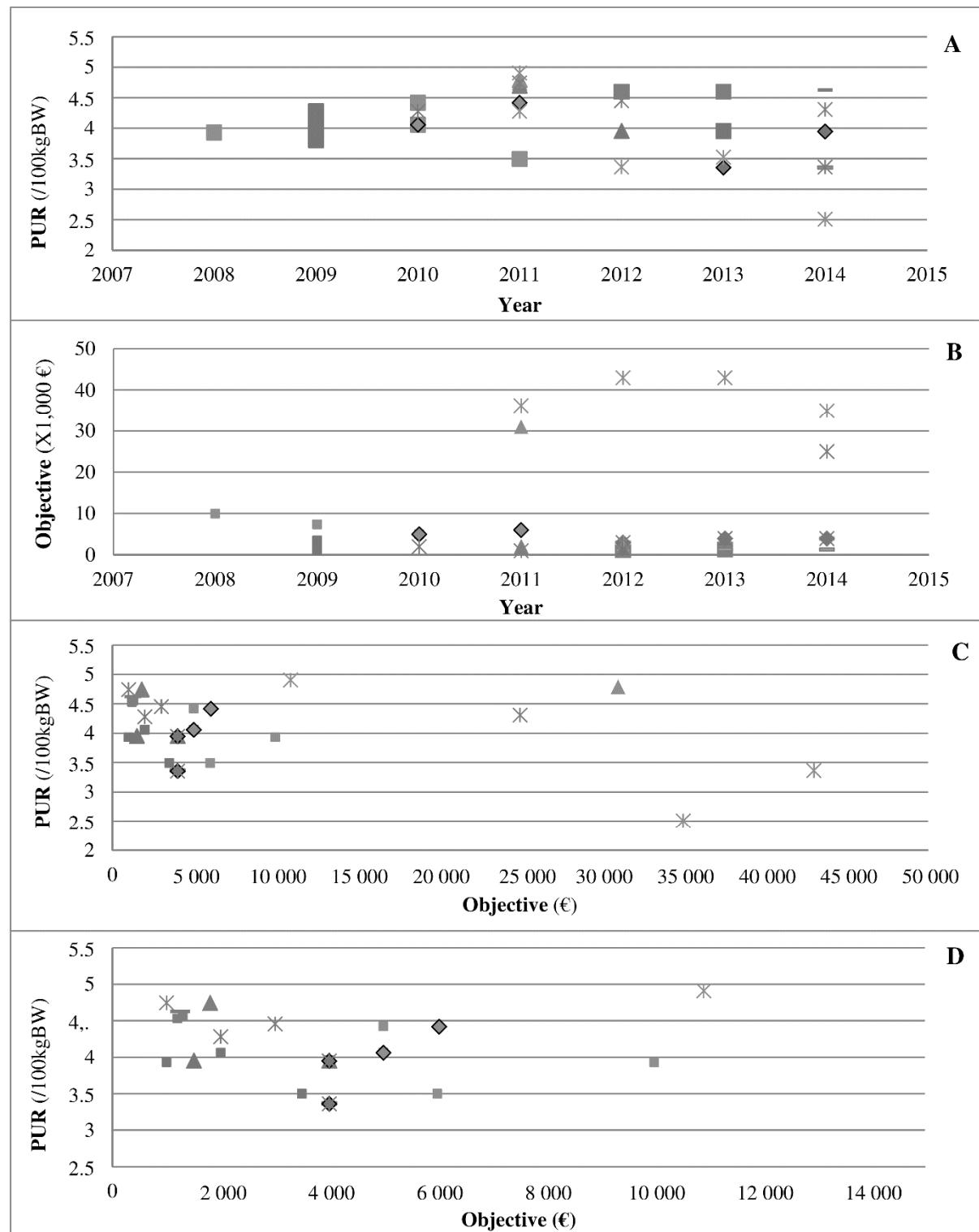
522


523

524

525

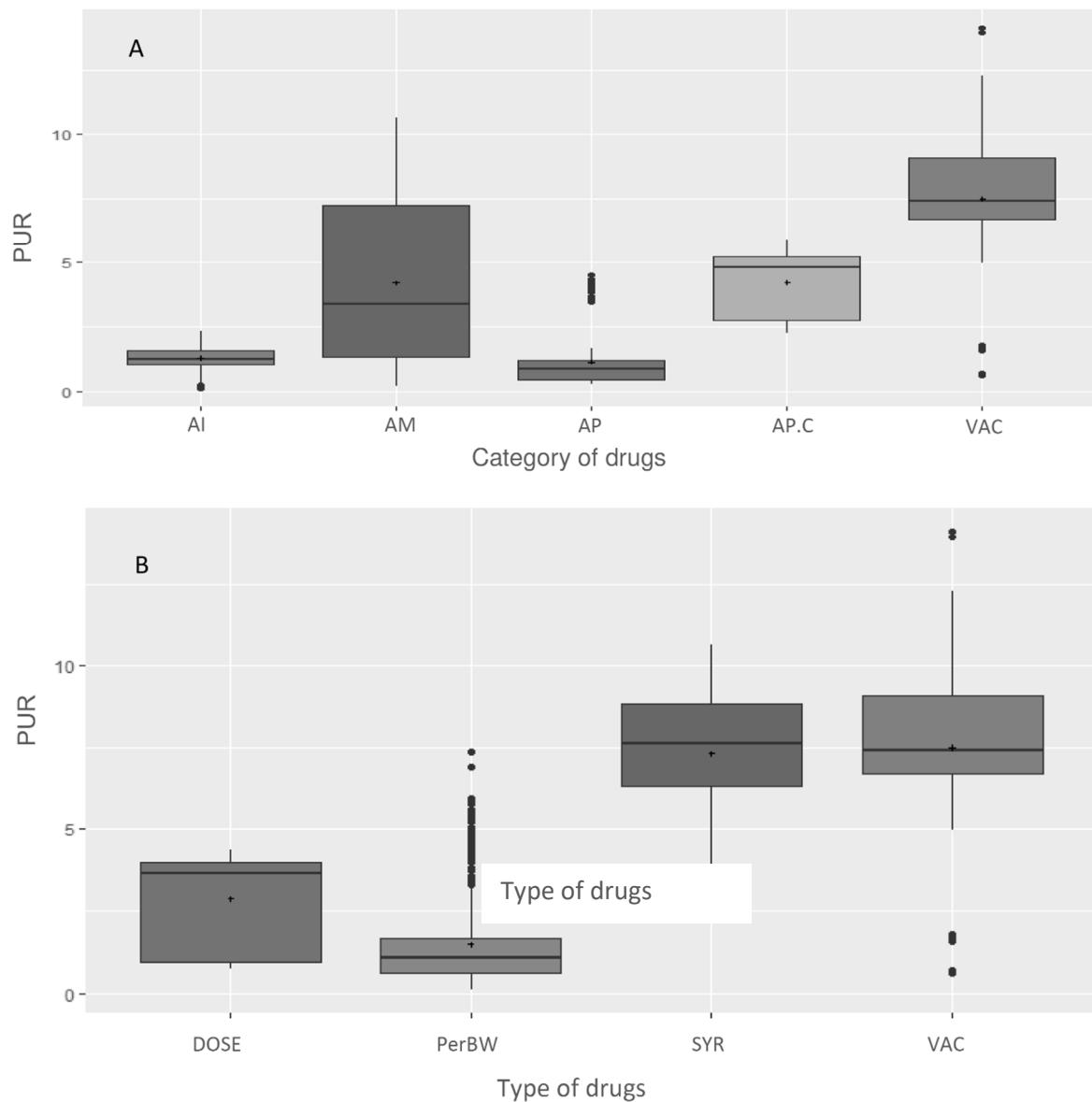
526


527 **Figure 2: Typology of drugs according to the relationship between PUR and purchase**
 528 **objectives**

530 **Figure 3: PUR depending on different years (A) and objectives (C and D for objectives <**

531 **€15,000) and PUR objectives depending on different years (B) for 3 drugs (C8P39 in green,**

532 **C4P11 in blue, and C7P37 in red) and 5 offices (square, triangle, star, diamond, and dash).**



533

534

535

536

537 **Figure 4: Distribution of PUR for the different types and categories of drugs**

538

539

540 **Bibliography**

541 ANSES Rapport de l'Anses : Suivi des ventes de médicaments vétérinaires contenant des antibiotiques
 542 en France en 2018 | Anses - Agence nationale de sécurité sanitaire de l'alimentation, de
 543 l'environnement et du travail November 2019).

544 Black, I. 'Pharmaceutical Marketing Strategy: Lessons from the Medical Literature'. *Journal of
 545 Medical Marketing*, Vol.5 (2), (2005) pp. 119–125.

546 Brousseau, E. 'Théorie des contrats, coordination interentreprises et frontières de la firme'. *Les
 547 Frontières de La Firme*, (1997).

548 Buckley, J. 'Pharmaceutical marketing-time for change'. *EJBO-Electronic Journal of Business Ethics
 549 and Organization Studies*, (2004).

550 Chauvin, C., Bouvarel, I., Belœil, P.-A., Orand, J.-P., Guillemot, D., and Sanders, P. 'A pharmaco-
 551 epidemiological analysis of factors associated with antimicrobial consumption level in turkey broiler
 552 flocks'. *Veterinary Research*, Vol.36 (2), (2005a) pp. 199–211.

553 Chauvin, C., Bouvarel, I., Belœil, P.-A., Sanders, P., and Guillemot, D. 'Invoices and farmer
 554 interviews for vaccine-exposure measurement in turkey-broiler production'. *Preventive Veterinary
 555 Medicine*, Vol.69 (3), (2005b) pp. 297–308.

556 Coase, R. 'The theory of the firm'. *Economica*, Vol.4 (16), (1937) pp. 386–405.

557 Cogliani, C., Goossens, H., and Greko, C. 'Restricting Antimicrobial Use in Food Animals: Lessons
 558 from Europe'. (2011).

559 Donald, S.G., Paarsch, H.J., and Robert, J. 'An empirical model of the multi-unit, sequential, clock
 560 auction'. *Journal of Applied Econometrics*, Vol.21 (8), (2006) pp. 1221–1247.

561 ECOANTIBIO Plan EcoAntibio 2012-2017: lutte contre l'antibiorésistance 2012).

562 ECOANTIBIO Le plan Écoantibio 2 (2017-2021) 2017).

563 García, R.G., Torres, S., Caro, M.P., Monroy, I.M., Aráoz, J.A., and Bolívar, U.S. *ECONOMIC
 564 ANALYSIS OF LINK BETWEEN END PRODUCT DEALERS AND HEALTH SERVICE
 565 PROMOTERS OF PHARMACEUTICAL SUPPLY CHAIN OF BOGOTÁ, COLOMBIA*. (Zaragoza:
 566 2007) p. 11.

567 Grundmann, H., Klugman, K.P., Walsh, T., Ramon-Pardo, P., Sigauque, B., Khan, W., Laxminarayan,
 568 R., Heddini, A., and Stelling, J. 'A framework for global surveillance of antibiotic resistance'. *Drug
 569 Resistance Updates*, Vol.14 (2), (2011) pp. 79–87.

570 Lee, H.Y., and Kwon, Y.J. 'A Study on Rebates in the Pharmaceutical Industry from the Perspective
 571 of New Institutionalism'. (2011).

572 Lhermie, G., Ferran, A.A., Assié, S., Cassard, H., El Garch, F., Schneider, M., Woerhlé, F., Pacalin,
 573 D., Delverdier, M., and Bousquet-Mélou, A. 'Impact of timing and dosage of a fluoroquinolone
 574 treatment on the microbiological, pathological, and clinical outcomes of calves challenged with
 575 *Mannheimia haemolytica*'. *Frontiers in Microbiology*, Vol.7 (2016) pp. 237.

576 Lhermie, G., Gröhn, Y.T., Serrand, T., Sans, P., and Raboisson, D. 'How do veterinarians influence
 577 sales of antimicrobials? A spatial-temporal analysis of the French prescribing-delivery complex in
 578 cattle'. *Zoonoses and Public Health*, (2019).

579 Ménard, C., and Valceschini, E. 'New institutions for governing the agri-food industry'. European
 580 Review of Agricultural Economics, Vol.32 (3), (2005) pp. 421–440.

581 Minviel, J.J., Abdoullah, I., Sans, P., Ferchiou, A., Boluda, C., Portal, J., Lhermie, G., and
 582 Raboisson, D. 'Business models of the French veterinary offices in rural areas and regulation of
 583 veterinary drug delivery'. Preventive Veterinary Medicine, Vol.173 (2019) pp. 104804.

584 Moynihan, R. 'Who pays for the pizza? Redefining the relationships between doctors and drug
 585 companies. 1: Entanglement'. Bmj, Vol.326 (7400), (2003) pp. 1189–1192.

586 Prosser, H., and Walley, T. 'Understanding why GPs see pharmaceutical representatives: a qualitative
 587 interview study'. (2003).

588 Royer, A. 'Transaction costs in milk marketing: A comparison between Canada and Great Britain'.
 589 Agricultural Economics, Vol.42 (2), (2011) pp. 171–182.

590 Royer, A., Ménard, C., and Gouin, D.-M. 'Reassessing marketing boards as hybrid arrangements:
 591 evidence from Canadian experiences'. Agricultural Economics, Vol.47 (1), (2016) pp. 105–116.

592 Schwarz, L.B., and Zhao, H. 'The Unexpected Impact of Information Sharing on US Pharmaceutical
 593 Supply Chains'. (2011).

594 Sexton, R.J., and Lavoie, N. 'Food processing and distribution: an industrial organization approach'.
 595 Handbook of Agricultural Economics, Vol.1 (2001) pp. 863–932.

596 Team, R.C. R manual Vienna, Austria: R Foundation for Statistical Computing, 1997).

597 Watkins, C., Harvey, I., Carthy, P., Moore, L., Robinson, E., and Bawn, R. 'Attitudes and behaviour
 598 of general practitioners and their prescribing costs: a national cross sectional survey'. Quality & Safety
 599 in Health Care, (2003a) pp. 29–34.

600 Watkins, C., Moore, L., Harvey, I., Carthy, P., Robinson, E., and Bawn, R. 'Characteristics of general
 601 practitioners who frequently see drug industry representatives: national cross sectional study'. Bmj,
 602 Vol.326 (7400), (2003b) pp. 1178–1179.

603 Wright, R.F. 'Physicians' perceptions of pharmaceutical sales representatives: A model for analysing
 604 the customer relationship'. (2003).

605 Xu, L. 'Purchasing and selling mode in pharmaceutical industry in China - A case study on the
 606 Introduction of Direct Supply Mode in Hubei Zhongshan hospital'. (2012).

607

608