

1 **Who should be Prioritized for COVID-19 Vaccination in China? A Descriptive Study**

2

3 Juan Yang¹, Wen Zheng¹, Huilin Shi¹, Xuemei Yan¹, Kaige Dong¹, Qian You¹, Guangjie Zhong¹,
4 Hui Gong¹, Zhiyuan Chen¹, Mark Jit^{2,3,4}, Cecile Viboud⁵, Marco Ajelli^{6,7}, Prof Hongjie Yu¹

5

6 Corresponding author to Prof. Hongjie Yu, yhj@fudan.edu.cn

7

8 **Affiliations:**9 1. School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of
10 Education, Shanghai, China11 2. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and
12 Tropical Medicine, London, United Kingdom13 3. Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical
14 Medicine, London, United Kingdom15 4. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public
16 Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special
17 Administrative Region, China18 5. Division of International Epidemiology and Population Studies, Fogarty International Center,
19 National Institutes of Health, Bethesda, MD, USA20 6. Department of Epidemiology and Biostatistics, Indiana University School of Public Health,
21 Bloomington, IN, USA22 7. Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern
23 University, Boston, MA, USA

24

25 **Abstract**26 All countries are facing decisions about which groups to prioritise for COVID-19 vaccination after
27 the first vaccine product has been licensed, at which time supply shortages are inevitable. Here we
28 define the key target populations and their size in China for a phased introduction of COVID-19
29 vaccination with evolving goals, accounting for the risk of illness and transmission. Essential
30 workers (47.2 million) like healthcare workers could be prioritized for vaccination to maintain
31 essential services. Subsequently, older adults, individuals with underlying health conditions and
32 pregnant women (616.0 million) could be targeted to reduce severe COVID-19 outcomes. Then it
33 could be further extended to target adults without underlying health conditions and children (738.7
34 million) to reduce symptomatic infections and/or to stop virus transmission. The proposed
35 framework could assist Chinese policy-makers in the design of a vaccination program, and could
36 be generalized to inform other national and regional COVID-19 vaccination strategies.

37

38 **Key words:** Novel coronavirus diseases 2019; vaccination; target population; China

39

40 This study does not necessarily represent the views of the US government or the National
41 Institutes of Health.

42

43 **Abstract (words):** 148

44 **Main text (words):** 4,302

45 **Running head:** Priority populations for COVID-19 vaccination in China

46 **Introduction**

47 Coronavirus disease 2019 (COVID-19) pandemic is causing unprecedented impact on global
48 health and the economy. In the absence of safe and highly effective vaccines and treatment
49 options, non-pharmaceutical interventions are used to decrease transmission and reduce the burden
50 of COVID-19 but most of these interventions have large economic costs.¹ Effective vaccines
51 against COVID-19 are urgently needed to reduce the significant burden of COVID-19 morbidity
52 and mortality. Globally, there are over 300 vaccine candidates at various stages of development in
53 the research pipeline. Of these, over 30 candidates have entered clinical trials.^{2,3}

54

55 On June 26, 2020, the World Health Organization (WHO) unveiled a plan to deliver 2 billion
56 doses of COVID-19 vaccines, of which 50% will go to low-and-middle income countries, by the
57 end of 2021.⁴ Currently, the projected global production capacity is inadequate to provide
58 COVID-19 vaccines for every human being on the planet, particularly immediately after the first
59 vaccine has been licensed. It is possible that countries and entire regions will have no access to
60 vaccines. For example, COVID-19 cases are rapidly increasing in most African countries.⁵
61 However, none of the COVID-19 vaccine candidates is being developed by an African
62 manufacturer. Even if a vaccine were available, many low-income countries would have to rely on
63 vaccines manufactured abroad. Hence national and multinational vaccine producers will need to
64 allocate a proportion of their production to countries that do not have the financial ability to pre-
65 order vaccine doses that are still to be licensed. Setting priorities for target populations to be
66 vaccinated and optimizing resources within and between countries entails difficult choices.
67 Nonetheless, this is critical for a successful global pandemic vaccination program, and this needs
68 to be addressed urgently.

69

70 China was the first country to face the COVID-19 pandemic, although only Wuhan, in Hubei
71 Province, was hit by a major wave of infections.⁶ Nearly the entire population of mainland China
72 (~1.4 billion people) is still susceptible to COVID-19. Recent surges of COVID-19 cases occurred
73 separately in Beijing, Dalian, and Urumchi after one or more months without any report of

74 locally-acquired infections⁷. There is a risk of a new major wave of COVID-19, especially after
75 the economy and society have re-opened both domestically and abroad.

76

77 China has invested substantial resources in vaccines and is one of the main actors in the race to
78 develop a vaccine to help control the COVID-19 pandemic, with resources provided by
79 government, manufacturers and non-governmental organizations.⁸ Over ten vaccine candidates are
80 being developed in mainland China; three of them (developed by Sinovac Instituto Butantan,
81 Wuhan Institute of Biological Products/Sinopharm, and Beijing Institute of Biological
82 Products/Sinopharm) are in phase III trials as of August 13, 2020.² New COVID-19 vaccine
83 production facilities recently completed or currently under construction are expected to have the
84 capacity to produce 1 billion doses annually.⁹⁻¹¹ However, the output is far behind the quantity
85 needed to vaccinate a population of nearly 1.4 billion people in mainland China alone (given a
86 two-dose schedule for all vaccine candidates). Hence, there is a need to establish priority target
87 populations for a COVID-19 vaccination program. This study aims to define the key target
88 populations, their size, and priority for a phased introduction of COVID-19 vaccination with
89 evolving goals, accounting for risk of severe illness and transmission. This approach is
90 generalizable to inform national and regional strategies for the use of COVID-19 vaccines,
91 especially in low-and-middle income countries.

92

93 **Results**

94 For a phased COVID-19 vaccination program, the most important objective (*primary goal*) of the
95 vaccination program is to maintain essential services (e.g., healthcare and national security) in the
96 early phase.^{12,13} The second objective (*secondary goal*) is to reduce the number of individuals with
97 severe outcomes, including hospitalizations, critical care admissions, and deaths.^{12,13} In later
98 stages, the objective of the vaccination program can be further extended to reduce symptomatic
99 infections and/or to stop virus transmission (*tertiary goal*). Subsequently, these population groups
100 were categorized into six vaccination tiers in order of decreasing priority. Figure 1 illustrates the
101 priority population groups relevant for each goal and the corresponding population size estimated

102 without excluding duplicates between groups.

103

104 **Essential workers**

105 It is important to stress that the vaccine may be in extremely short supply when first available. To
106 meet the primary goal of vaccination, thus it could be necessary to consider healthcare workers as
107 the top priority (Tier 1 of the vaccination strategy) based on utilitarian (i.e. maximizing health and
108 economic benefit) and egalitarian (i.e. protecting the worst off) principles. Law enforcement and
109 security workers, personnel in nursing home and social welfare institutes, community workers,
110 workers in energy, food and transportation sectors are included in Tier 2 based on utilitarian
111 principles (Figure 1). We estimated that in mainland China there are 10.7 million healthcare
112 workers, 4.4 million people working in law enforcement agencies and security personnel, 0.4
113 million personnel in nursing home and social welfare institutes, 4.5 million community workers,
114 and 27.3 million workers in the energy, food, and transportation sectors.

115

116 **High-risk individuals**

117 As of August 12, 2020, a total of 76 systematic reviews reported the pooled risk of severe outcome
118 of COVID-19, including hospitalizations, critical care admissions, and deaths. Among them,
119 55 (72%) were peer-reviewed and published. 71% (54/76) of systematic reviews evaluated the
120 quality of included original articles, and reported that the majority of included studies were of
121 moderate-to-high quality. (Supplementary Materials Table S1, and Figure S1-S2)

122

123 The published systematic reviews showed that increased risk of severe outcomes from SARS-
124 CoV-2 infection were observed in individuals with chronic respiratory disease including but not
125 limited to chronic obstructive pulmonary diseases (38 of 43 papers report significant association,
126 OR/RR: mean 1.53-17.80), heart disease (3 of 3 papers, 2.03-4.09), cardio-cerebrovascular disease
127 (22 of 25 papers, 1.44-36.88), hypertension (26 of 26 papers, 1.66-5.34), diabetes (28 of 30
128 papers, 1.39-4.64), chronic renal diseases (8 of 9 papers, 1.84-9.41), chronic liver disease (3 of 9

129 papers, 1.48-2.69), cancer (14 of 17 papers, 1.56-4.86), and obesity (5 of 7 papers, 1.21-3.68)¹⁴⁻⁶⁶
130 (Supplementary Materials Figure S1). Only one systematic review evaluated the disease severity
131 of COVID-19 during pregnancy, and found that 21% were severe/critical cases.⁶⁷ COVID-19 may
132 cause fetal distress, miscarriage, respiratory distress and preterm delivery, although evidence for
133 these associations is still inconclusive.⁶⁸ Moreover, pregnant women have high frequency of
134 antenatal care visits and thus have a possibly higher exposure to SARS-CoV-2. Although no
135 systematic review found a significantly higher risk of severe outcomes for those with
136 immunodeficiency/immunosuppression, chronic neurological disorders, and sickle cell disorders,
137 we included these categories in our analysis as recommended by the US and UK.^{27,69-71}

138

139 Age is one of the most important risk factors for severe/fatal COVID-19. Our systematic reviews
140 showed that individuals age \geq 60 years had about 4-fold higher risk of severe/fatal COVID-19
141 than younger people (Supplementary Materials, Figure S1-S2). Wu et al. found that the case-
142 fatality risk for those aged \geq 80 years was 1.7-3.6 times that among those aged 70-79, and 60-69
143 years.⁷² Age and underlying conditions combine to increase the risk.⁷³ Accordingly, adults \geq 60
144 years of age with underlying conditions, and adults \geq 80 years of age without underlying
145 conditions, who are at the highest risk of severe/fatal COVID-19, were considered in Tier 3, based
146 on egalitarian principles. Compared to these persons, the risk of severe/fatal COVID-19 among
147 older adults aged 60-79 years without underlying conditions and individuals $<$ 60 years of age with
148 underlying conditions was lower. These individuals aged $<$ 60 years with pre-existing medical
149 conditions and pregnant women were included in Tier 4 based on egalitarian principles (Figure 1).

150

151 We estimated that 363.3 million individuals aged $<$ 60 years and 158.1 million individuals aged \geq
152 60 years had at least one high-risk medical condition in mainland China. The number of pregnant
153 women was thus estimated at 26.3 million in mainland China (Figure 1).

154

155 **Individuals at high risks of symptomatic COVID-19 infections**

156 Population-based studies demonstrated that the incidence of COVID-19 cases in those aged 20-59
157 years was similar to that among older adults.^{6,74} (Supplementary Materials Table S2-S3). Our
158 meta-analysis showed the cumulative incidence was 139-161 per 100,000 persons among those
159 aged 20-59 years, which was comparable to incidence in those aged \geq 60 years (195 per 100,000
160 persons) (Figure 2). These working age adults had a higher risk of acquiring COVID-19
161 symptomatic infection possibly because of their large number of contacts at work and in the
162 community.⁷⁵ Additionally, they contribute to maintenance of societal functions and economic
163 well-being; and they generally provide care for children. Given these considerations, individuals
164 aged 20-59 years without underlying conditions (n=551.3 million) were included in Tier 5 based
165 on both utilitarian and egalitarian principles (Figure 1).

166

167 Population-based sero-epidemiological studies also reported lower seroprevalence in children than
168 in adults.^{76,77} Whether this reflects lower susceptibility of children to infection in general, or
169 similar infection rates, but much higher proportions with asymptomatic disease, or rather the
170 effect of school closures, the implemented strict social distancing measures, or a self-protective
171 behavior of the population remains unclear. Modeling studies found conflicting results about the
172 effect of interventions targeted at children on SARS-CoV-2 transmission at the community
173 level,^{78,79} suggesting that there is still uncertainty surrounding fundamental epidemiological
174 parameters of COVID-19 related to children (e.g., their infectiousness,^{80,81} susceptibility to
175 infection,^{82,83} and probability of developing symptoms).⁸⁴ To ensure the continuity of educational
176 activities, and reduce transmission, school-age children (n=190.2 million) are recommended for
177 vaccination in Tier 6 based on both utilitarian and egalitarian principles (Figure 1).

178

179 The incidence of COVID-19 was lower in younger children. However, the severity among young
180 children has not been fully addressed. Verdoni et al., reported an outbreak of a novel severe
181 Kawasaki-like disease in children related to COVID-19 in Italy, which raised concerns about the
182 impact of the pandemic on younger children.⁸⁵ Considering such possible post-infectious
183 inflammatory syndrome as Kawasaki-like disease, younger children aged \leq 5 years (n=98.7

184 million), which are priority groups for influenza vaccination, are recommended in Tier 6 as well,
185 based on egalitarian principles of prioritizing the most vulnerable individuals (Figure 1).

186

187 **Estimated size of target population of the phased universal vaccination program**

188 To maintain essential societal functions, the target population of vaccination was estimated at 47.2
189 million (Tiers 1 and 2, Figure 1 and Figure 3). An additional 616.0 million persons were included
190 in the target population if the goal of vaccination was extended to reduce the number of severe
191 COVID-19 cases (Tiers 3 and 4, Figure 1 and Figure 3). Along with the increase of vaccine
192 supply, the remaining 738.7 million persons could be further targeted for vaccination to reduce the
193 total number of COVID-19 symptomatic cases and potentially halt transmission (Tiers 5 and 6,
194 Figure 1 and Figure 3). In terms of vaccination tiers (from Tier 1 to Tier 6), a total of 10.7, 36.5,
195 163.3, 452.7, 502.5 and 236.2 million persons were included in the target population (Figure 4).

196

197 Given 3 million doses administered per day, and a two-dose vaccination schedule, it will likely
198 take about 19 months to vaccinate 60% of the overall population. However, only three weeks
199 would be required to vaccinate individuals working in critical infrastructure sectors (Tier 1 and 2),
200 two months for Tier 3, six months for Tier 4, about seven months for Tier 5, and three months for
201 Tier 6 (Figure 5). With an expected one billion doses produced per year,⁹⁻¹¹, and given a fixed 60%
202 uptake rate among Tiers, the estimated vaccine supply could cover individuals in Tier 1-3 and one
203 fifth of individuals in Tier 4 given a two-dose vaccination schedule.

204

205 The sensitivity analyses show it will take two years to vaccinate 80% of individuals given 3
206 million doses administered each day; 3.5 years to vaccinate 60% of individuals given 1.3 million
207 doses administered each day; 4.7 years to vaccinate 80% of individuals given 1.3 million doses
208 administered each day (Supplementary Materials, Figure S4-S6). It will take about one year and
209 10 months to vaccinate 80% and 60% of individuals respectively, if the capacity of COVID-19
210 vaccination delivery was scaled up to 6 million doses administered each day (Supplementary

211 Materials, Figure S7-S8).

212

213 **Discussion**

214 In the absence of specific antiviral treatment for COVID-19, vaccination likely represents the most
215 promising way to control the COVID-19 pandemic. However, even if a COVID-19 vaccine
216 becomes available, initial supplies will inevitably be limited. Supply issues could persist in the
217 long-term, due to huge global demand and limited production capacity. Almost everyone can
218 potentially benefit from vaccination because of residual high susceptibility to SARS-CoV-2
219 infection. Considering different goals of a future vaccination program, changes in vaccine
220 supplies, various levels of responsibility of population groups to the COVID-19 pandemic
221 responses and essential services, as well as the risk of severe outcome and illness, we recommend
222 a phased universal COVID-19 vaccination program for mainland China. Workers in critical
223 sectors, including healthcare workers, law enforcement and security personnel, personnel in
224 nursing home and social welfare institutes, as well as sectors of energy, water, food, and
225 transportation (47.2 million) are the main candidates to receive high priority for vaccination, in
226 order to maintain essential societal functions. Subsequently, we propose to extend the vaccination
227 program to older adults, pregnant women, and those with underlying medical conditions (616.0
228 million), in order to reduce severe outcomes of COVID-19. Finally, working-age adults, school-
229 age children and younger children (738.7 million) could be vaccinated in order to reduce
230 symptomatic COVID-19 infections, and/or to stop SARS-CoV-2 transmission.

231

232 Target population groups are further grouped into vaccination tiers from 1 to 6, with Tier 1 having
233 the highest priority. Even though individuals within a tier have equal priority for vaccination, it
234 may be necessary to sub-prioritize vaccination of groups within a tier in case of extremely short
235 initial vaccine supplies. For instance, meat and poultry processing facility workers, who have been
236 particularly affected by COVID-19 and often linked to workplace transmission, could be
237 vaccinated before other personnel in the food supply chain within Tier 2.^{72,86} Although other
238 factors like smoking, being male, and being an ethnic minority were found to be risk factors of

239 severe outcome and deaths from COVID-19 in previous studies,⁸⁷⁻⁸⁹ they were not accounted for
240 when determining priority population here due to consideration of equity and feasibility of
241 vaccination.

242

243 The majority of the current COVID-19 vaccine candidates are being trialed as two dose
244 schedules.² A total of 57 million, 739 million and 886 million doses are separately needed to cover
245 60% of individuals in critical infrastructure sectors, persons at high risk of severe outcomes of
246 COVID-19, and persons at high risk of acquiring symptomatic illness/infections. Between 2007
247 and 2015, the volume supplied of all vaccines (n=55) licensed in mainland China varied from 666
248 million doses to 1.19 billion doses per year.⁹⁰ Several manufacturers state that a total of 1 billion
249 doses of COVID-19 vaccine could be produced annually.⁹⁻¹¹ This implies that the potential
250 production capacity may be far behind the demand in mainland China given a two-dose schedule.
251 This dilemma is likely not unique to China and other countries across the world, particularly in
252 low-and-middle income regions, will face a similar challenge.

253

254 Even at the maximum rate at which H1N1pdm vaccines were delivered in 2009 (3 million doses
255 administered each day), vaccinating 60% of the general population groups will take 1.5 years,
256 without considering limits in production capacity. Such a large-scale vaccination program like
257 COVID-19 could also represent a major challenge for current the National Immunization Program
258 in China, which is currently focused on childhood vaccination rather than on adult vaccination.
259 The limited production capacity will likely further delay COVID-19 vaccination programs.

260

261 Our study has a number of limitations. First, we have qualitatively discussed the segments of the
262 population to be prioritized in a COVID-19 vaccination program as well as the rationale behind
263 prioritization choices. However, we could not quantitatively examine whether prioritizing older
264 adults to reduce severe outcomes is a better choice than prioritizing working-aged adults or
265 school-age children to reduce illness/transmission. Mathematical modelling is urgently needed to

266 assess both the health and economic impacts of potential vaccination strategies, and the potential
267 to reduce for herd immunity benefits. Second, we did not consider eligibility for vaccination due
268 to lack of efficacy and/or safety concerns that may affect specific groups such as older adults,
269 people with pre-existing medical conditions, pregnant women and very young children, since no
270 vaccine has been licensed yet. Third, we did not consider real-time reactive outbreak
271 immunization strategies because it is impossible to estimate the corresponding target population
272 size. However, we strongly recommend use of COVID-19 vaccination during local outbreaks
273 coupled with other non-pharmaceutical interventions in order to prevent subsequent waves of
274 disease. Moreover, we did not discuss prioritization based on geography; the risk of COVID-19
275 exposure may be low in regions that have seen widespread COVID-19 activity by the time the
276 vaccine is available and have a high level of population immunity. This may not be particularly
277 relevant for China where the epidemic has been well controlled, but it may affect vaccine
278 prioritization in other regions.

279

280 When a vaccine becomes available, our recommendations need to be reassessed to consider the
281 eligibility of population subgroups based on the licensure label. They also need to be further
282 reassessed periodically to account for changes in vaccine supply, demand and local epidemiology.
283 Although we propose a general framework to define vaccination priorities, the proposed
284 vaccination program needs to be tailored locally, accounting for country-specific contexts such the
285 objectives of the pandemic responses, the local level of transmission, the make-up of first
286 responders and essential workers as well as the capacity of immunization services.

287

288 Because of the high burden and limited capacity for vaccine production, we have highlighted that
289 more attention should be paid to low-and-middle income countries. The WHO SAGE Working
290 Group on COVID-19 Vaccines has been established in June, 2020 and includes an international
291 team of experts.⁹¹ Their objectives include, but are not limited to, providing recommendations for
292 early allocation of vaccines when vaccine supply is still constrained, and guidance on fair and
293 equitable global access to vaccination. There is an urgent need for the WHO SAGE Working

294 Group to promote global cooperation on vaccine research and development, ensure vaccine
295 production and supply, and speed up the development of guidelines for allocating and targeting
296 COVID-19 pandemic vaccines. Our recommendations for mainland China could be used as a
297 template for such guidelines.

298

299 **Conclusions**

300 Vaccine deployment is likely to become vitally important for the global response to the COVID-19
301 pandemic. Here we provide a general framework to define priority groups for a phased
302 introduction of a universal COVID-19 vaccination program. We applied this framework to
303 mainland China and further estimated the corresponding target population sizes. The proposed
304 vaccination program could assist Chinese policy-makers in the roll-out of a large-scale
305 immunization program and be used as a reference for other countries, especially in low-and-
306 middle income regions. We recommend that the WHO SAGE Working Group on COVID-19
307 Vaccines takes the lead on making recommendations on priority target population for
308 national/regional COVID-19 vaccination program, to ensure that all individuals, regardless of
309 where they live, can benefit from a COVID-19 vaccine.

310

311 **Methods**

312 **Goals of the COVID-19 vaccination program**

313 The overarching goal of a vaccination program in the midst of such a pandemic, which can be
314 characterized as having both very high transmissibility and clinical severity⁹², is to vaccinate all
315 persons willing to be vaccinated. However, due to limited supplies, prioritization is warranted. The
316 specific goal of COVID-19 vaccination in China could be determined in a phased approach, taking
317 account 1) the interim framework for COVID-19 vaccine allocation and available guidance (e.g.
318 from the US) on allocating vaccines during an influenza pandemic,^{12,13} 2) the objectives of and
319 experience gained from the 2009 H1N1pandemic vaccination program in China,⁹³ 3) specific
320 high-risk groups for severe COVID-19 outcomes, and 4) lessons learned from the response to the

321 COVID-19 outbreak in Wuhan such as the role of critical workers in sustaining essential societal
322 functions¹. These goals should be adapted along with the evolving dynamic of the epidemic and an
323 increase of vaccine supplies.

324

325 **Priority population groups for a COVID-19 vaccination program**

326 In line with the aforementioned goals of a COVID-19 vaccination program, we define population
327 groups to be prioritized by occupation, age, and underlying conditions (Figure 1). Prioritization is
328 based on utilitarian (i.e. maximizing health and economic benefit) and egalitarian (i.e. protecting
329 the worst off) principles. Priority groups include: 1) essential workers, including but not limited to
330 healthcare workers (utilitarian principles); 2) high-risk individuals such as those at the highest risk
331 of severe/fatal outcomes (egalitarian principles); 3) individuals who play a key role in
332 transmission (both utilitarian and egalitarian principles).⁹⁴ Within the populations of interest for
333 the primary and tertiary vaccination goals, the target population groups that met ≥ 2 of the
334 aforementioned principles were assigned to a higher tier. For the secondary goal, the target
335 population at higher risk of severe/fatal COVID-19 outcome was assigned to a higher tier. Across
336 priority population groups, vaccines can be allocated and administered according to tier, which
337 means that all groups within a tier have equal priority for vaccination.

338

339 ***Essential workers***

340 Individuals who are critical for preserving essential societal functions for public health and safety
341 as well as the well-being of the community during a pandemic include: 1) first responders who
342 may have close contact with potential COVID-19 patients in professional settings, including
343 healthcare, public health, and community workers (these include staff in community service
344 agencies, who maintain supply of daily essential needs for people under lockdown, and take
345 routine prevention measures such as fever screening and environmental disinfection); 2)
346 individuals who are essential for maintaining national security, namely individuals working in law
347 enforcement agencies and security personnel (police and military); 3) workers maintaining

348 production and supply of daily essentials, including energy, water, food, and transportation. The
349 detailed definitions and their roles were presented in Supplementary Materials “More detailed
350 methods”. We recommend these individuals to be an appropriate first-level priority target group
351 for vaccination. We obtained the population size stratified by occupation from publicly available
352 data, including the China Statistical Yearbook 2019, White Paper on China’s National Defense,
353 and published literature.^{95,96}

354

355 ***High-risk individuals***

356 To meet the secondary goal of the vaccination program, individuals who are at increased risk for
357 severe outcome of COVID-19 could be considered a priority target population for vaccination. We
358 conducted a narrative literature review to identify the risk factors of severe illness associated with
359 COVID-19. Clark and colleagues extracted the prevalence of underlying health conditions from
360 the Global Burden of Diseases, Risk Factors, and Injuries Study (GBD), and estimated the number
361 of people with at least one of these conditions in 2020 for 188 countries.⁹⁷ Using Clark’s method,
362 we updated the probability of having at least one of these conditions for China to additionally
363 include the prevalence of $BMI \geq 30$, which were identified as risk factors by our review. Then we
364 estimated the age-specific population size of individuals with any of these conditions by
365 multiplying the estimated probability by the UN mid-year population estimates for 2020 for
366 China⁹⁸. The population size of individuals without these conditions was calculated subtracting
367 those with health conditions from the total population. We estimated the number of women who
368 are pregnant in one year as the sum of all live births, still births, fetal deaths, and abortions in that
369 year. (Details in Supplementary Materials “More detailed methods”)

370

371 ***Individuals at high risks of symptomatic COVID-19 infections***

372 A second narrative literature review was conducted to assess the risk of symptomatic COVID-19
373 infection (details in Supplementary Materials “More detailed methods”). Based on the identified
374 risk factors for symptomatic COVID-19 infections, we defined the target populations for

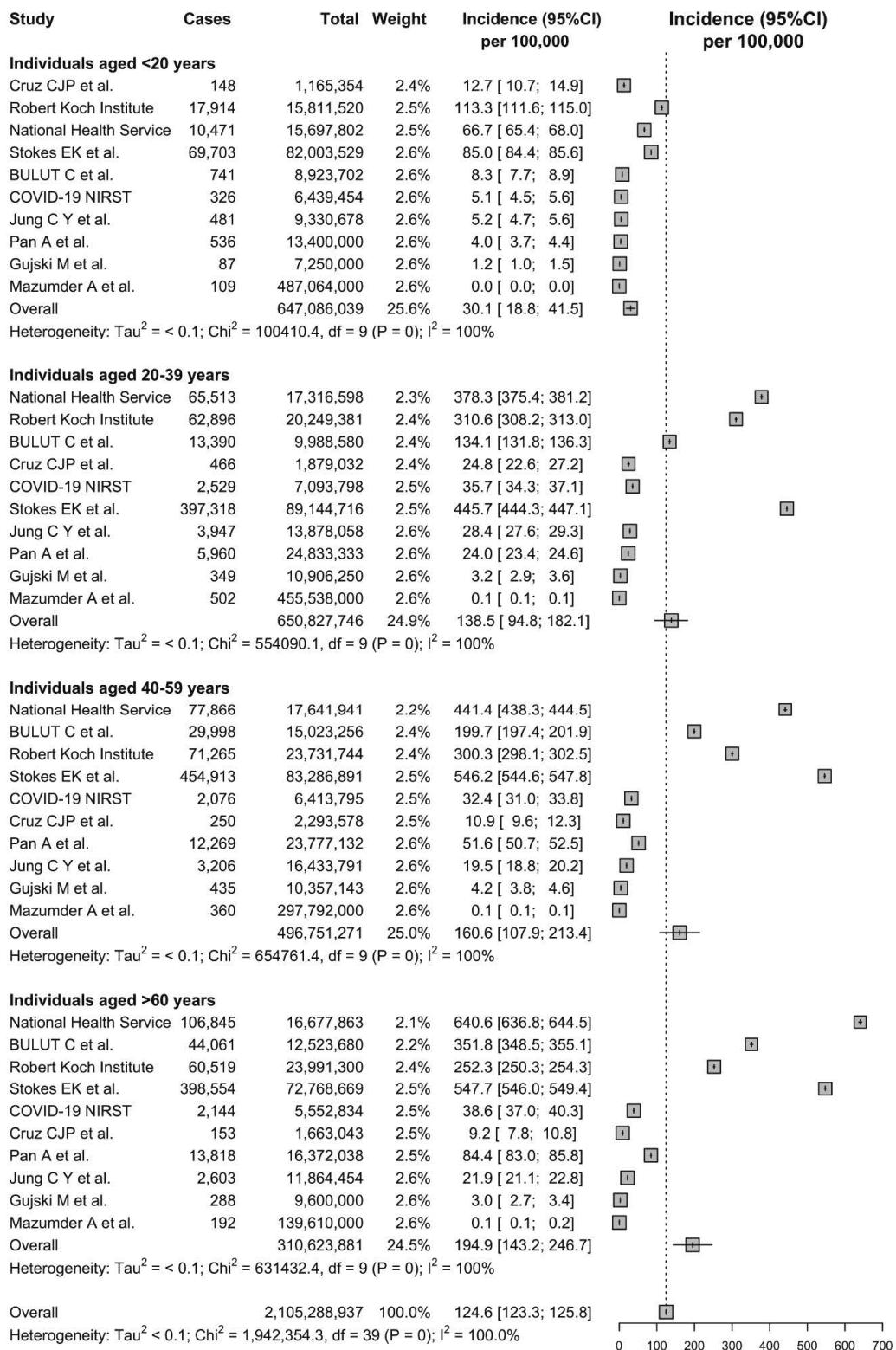
375 vaccination that would help meet the tertiary goal of reducing illness. The populations size was
376 obtained from UN mid-year population estimates for 2020 for China⁹⁸, and Ministry of Education
377 of China⁹⁹.

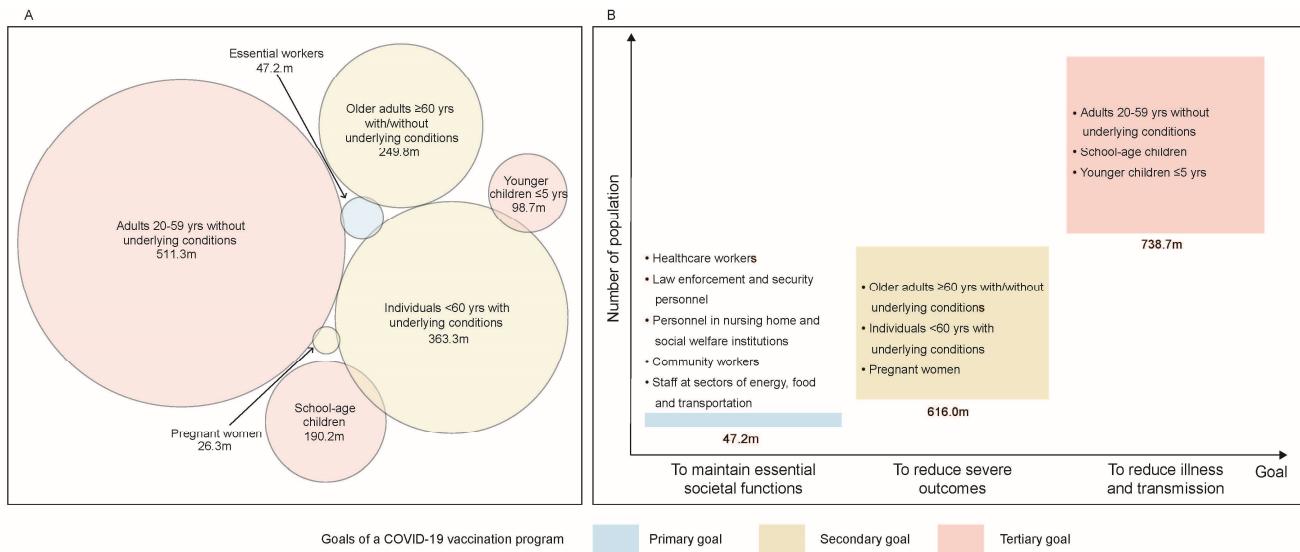
378

379 **Estimating size of target population of the phased universal vaccination program**

380 First, we estimated the corresponding population size separately for each target population as
381 mentioned above. When a person is included in more than one group, she/he is intended to be
382 vaccinated in the highest tier group in which she/he is included. Accordingly, we then excluded
383 people in more than one risk group to estimate the total population size stratified by goals of
384 vaccination in different phases of the pandemic, and by vaccination tiers.

385

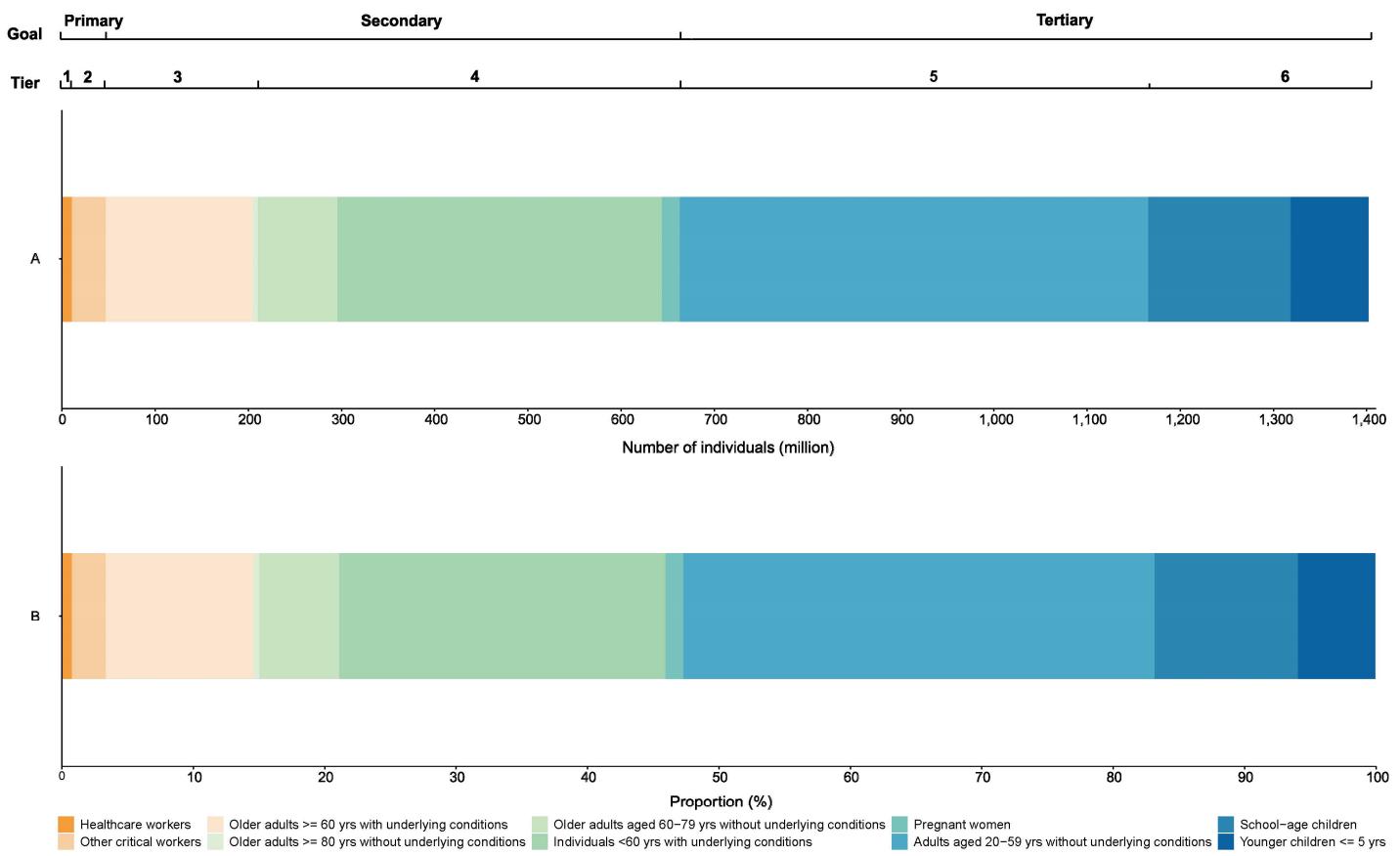

386 Further, we estimated the days needed to vaccinate 60% of the targeted population in the sequence
387 of Tiers given a two-dose vaccination schedule, without accounting for the production capacity
388 (see schematic diagram in Supplementary Materials Figure S3). During the 2009 influenza
389 pandemic, an average of 1.3 million daily doses of H1N1pdm vaccines were administered in
390 China , reaching 3 million daily doses at the peak delivery date¹⁰⁰. In the baseline analysis, the
391 maximum delivery capacity of the H1N1pdm vaccination service was used. Sensitivity analyses
392 on the daily doses administered (1.3 million) and the uptake rates (80%) were conducted. COVID-
393 19 is more of a threat than H1N1pdm2009, and both the willingness to be vaccinated against
394 COVID-19 as well as delivery capacity is likely to be greater^{101,102}, so we further assumed that the
395 capacity of COVID-19 vaccination service could be scaled up to 6 million doses administered per
396 day.


Goal	Population	Rational for priority	Vaccination tier
Primary goal To maintain essential societal functions	Healthcare workers (n=10.7 million) Staff in hospitals, primary healthcare institutions, and public health organizations	Utilitarian principles: priority given to those who are most useful Essential to maintaining effective functioning of healthcare systems	Tier 1
	Law enforcement and security personnel (n=4.4 million) Justice and law enforcement workers, and armed forces	Egalitarian principles: priority given to the medically neediest High risk of occupational exposure	
	Personnel in nursing home and social welfare institutions (n=0.4 million)	Utilitarian principles: priority given to those who are most useful Maintain society functions and national security, and implement public health measures during pandemic	
	Community workers (n=4.5 million) Staff responsible for the administration of public affairs at the level of village and community	Utilitarian principles: priority given to those who are most useful Provide care for older adults and the disabled in institutional settings where COVID-19 outbreaks are more likely to occur	
	Staff at sectors of energy, food and transportation (n=27.3 million) Energy denotes the production and supply of electricity, heat, gas and water; food denotes food production, agriculture and sideline products processing as well as retail; transportation denotes railways, highways, waterways, and air routes	Utilitarian principles: priority given to those who are most useful Assist in the community-level pandemic response	
Secondary goal To reduce severe outcomes	Older adults \geq 60 yrs with underlying conditions (n=158.1 million)	Utilitarian principles: priority given to those who are most useful Maintain production, processing, distribution and sales of essential supplies for people	
	Older adults \geq 80 yrs without underlying conditions (n=5.9 million)	Egalitarian principles: priority given to the medically neediest Highest risk of severe/fatal COVID-19	Tier 3
	Older adults aged 60-79 yrs without underlying conditions (n=85.8 million)	Egalitarian principles: priority given to the medically neediest Higher risk of severe/fatal COVID-19	Tier 4
	Individuals <60 yrs with underlying conditions (n=363.3 million)	Egalitarian principles: priority given to the medically neediest Possible adverse pregnancy outcome, and high risk of exposure due to antenatal care visits	
	Pregnant women (n=26.3 million)	Utilitarian principles: priority given to those who are most useful Contribute more to maintenance of societal functions and economic well-being, and provide most care for children	
Tertiary goal To reduce illness transmission	Adults aged 20-59 yrs without underlying conditions (n=551.3 million)	Both utilitarian and egalitarian principles: priority given to primary spreader Higher risk of acquiring COVID-19 illness because of their greater number of contacts	Tier 5
	School-age children (n=190.2 million)	Both utilitarian and egalitarian principles: priority given to primary spreader Highest contacts with others, and thus may become the main spreader of virus if school reopen	
	Younger children \leq 5 yrs (n=98.7 million)	Egalitarian principles: priority given to the most helpless Priority to the most helpless is based in part on the principle of compensatory justice	Tier 6

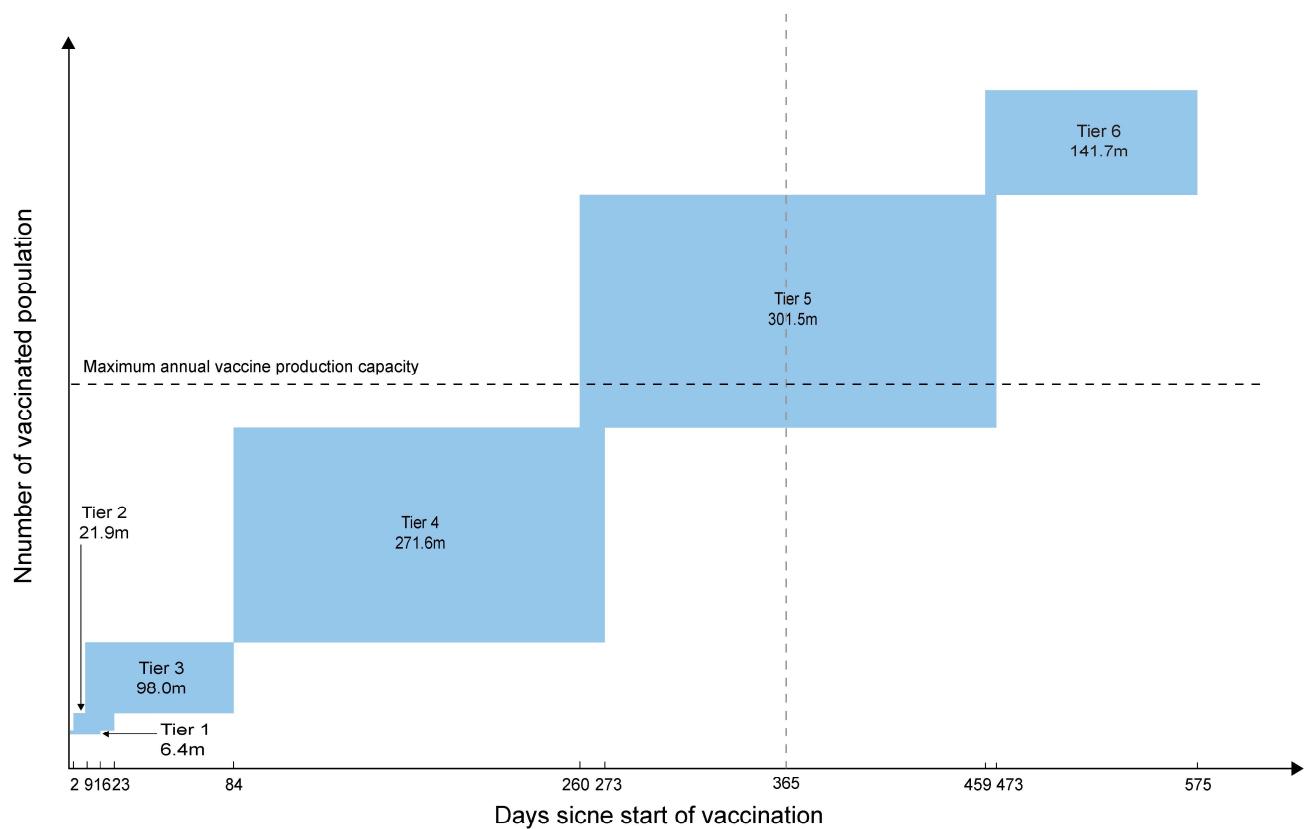
397

398 **Figure 1.** Prioritized segments of the population for a COVID-19 vaccination program as well
 399 as estimated population size.

400



404 **Figure 3.** Estimated size of target population for the COVID-19 vaccination program by goal.


405 A: Overlap of target population groups. B: Estimated number of targeted individuals excluding
 406 the overlaps between groups. Note that m denotes million.

407

409 **Figure 4.** Estimated size of target population for the COVID-19 vaccination program by
 410 population group. A: number of individuals, B: proportion. Note that the overlaps between
 411 groups were excluded.

412

414 **Figure 5.** Days needed to vaccinate 60% of the target population, stratified by vaccination tier,
415 under the assumption that three million doses are administered per day. Note that values
416 reported within the square (e.g., 135.8m) denote 60% of the population size in each tier; m
417 denotes million.

418 **Acknowledgments**

419 We thank Dr. Yang Liu from Centre for Mathematical Modelling of Infectious Diseases, London
420 School of Hygiene and Tropical Medicine, London, United Kingdom for her comments to revise
421 this article.

422

423 **Funding**

424 The study was supported by grants from the National Science Fund for Distinguished Young
425 Scholars (No. 81525023), National Science and Technology Major Project of China (No.
426 2018ZX10201001-010, No. 2018ZX10713001-007, No. 2017ZX10103009-005), and the National
427 Institute for Health Research (NIHR) (grant no. 16/137/109) using UK aid from the UK
428 Government to support global health research. The views expressed in this publication are those of
429 the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social
430 Care.

431

432 **Author Contributions**

433 H.Y. conceived, designed and supervised the study. J.Y., W.Z., H.S., X.Y., K.D., Q.Y., G.Z., H.G.
434 and Z.C. participated in data collection. J.Y., W.Z., H.S., X.Y., K.D., and Q.Y. analyzed the data,
435 and prepared the tables and figures. J.Y. prepared the first draft of the manuscript. H.Y., M.J., C.V.,
436 and M.A. commented on the data and its interpretation, revised the content critically. All authors
437 contributed to review and revision and approved the final manuscript as submitted and agree to be
438 accountable for all aspects of the work.

439

440 **Conflict of interest**

441 H.Y. has received research funding from Sanofi Pasteur, GlaxoSmithKline, Yichang HEC
442 Changjiang Pharmaceutical Company, and Shanghai Roche Pharmaceutical Company. M.A.
443 has received research funding from Seqirus. None of those research funding is related to

444 COVID-19. All other authors report no competing interests.

Reference

1. Li Z, Chen Q, Feng L, et al. Active case finding with case management: the key to tackling the COVID-19 pandemic. *Lancet* 2020; **396**(10243): 63-70.
2. Draft landscape of COVID-19 candidate vaccines. August 12, 2020.
<https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines>
(accessed August 12 2020).
3. Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. *Nature reviews Drug discovery* 2020.
4. ACT-Accelerator update. June 26, 2020. <https://www.who.int/news-room/detail/26-06-2020-act-accelerator-update> (accessed July 15 2020).
5. Coronavirus (COVID-19) Information and Updates. July 15, 2020 2020.
<https://www.coronavirustraining.org/live-map> (accessed July 15 2020).
6. Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. *JAMA* 2020; **323**(19): 1915-23.
7. July 15, 2020. <http://wjw.beijing.gov.cn/English/> (accessed July 15 2020).
8. August 2, 2020. <http://www.most.gov.cn/kjzh/xmsb/> (accessed August 2 2020).
9. World's Largest COVID-19 Vaccine Production Workshop Completed. May 15, 2020.
http://en.sasac.gov.cn/2020/05/15/c_4885.htm (accessed July 15 2020).
10. CanSino sprints into the science and technology innovation board: The first share of the COVID-19 vaccine, the production capacity is planned to be 100-200 million doses. July 31, 2020 2020. <https://baijiahao.baidu.com/s?id=1673689539936450558&wfr=spider&for=pc>
(accessed August 2 2020).
11. Zhifei Bio-Recombinant COVID-19 Vaccine Starts Clinical Trials Today. June 23, 2020 2020.
<http://finance.sina.com.cn/stock/relnews/cn/2020-06-23/doc-iirczymk8532722.shtml> (accessed August 2 2020).
12. Interim updated planning guidance on allocating and targeting pandemic influenza vaccine during an influenza pandemic. July 24, 2020. <https://www.cdc.gov/flu/pandemic-resources/pdf/2018-Influenza-Guidance.pdf> (accessed July 24 2020).
13. Interim Framework for COVID-19 Vaccine Allocation and Distribution in the United States. August 10, 2020 2020. https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/200819-vaccine-allocation.pdf (accessed August 10 2020).
14. Wu ZH, Tang Y, Cheng Q. Diabetes increases the mortality of patients with COVID-19: a meta-analysis. *Acta Diabetol* 2020: 1-6.
15. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. *Aging (Albany NY)* 2020; **12**(7): 6049-57.
16. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. *Aging (Albany NY)* 2020; **12**(12): 12410-21.
17. Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. *Aging Male* 2020: 1-9.
18. Li J, He X, Yuan Y, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) pneumonia. *AM J INFECT CONTROL* 2020.

19. Singh AK, Gillies CL, Singh R, et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. *Diabetes Obes Metab* 2020.
20. Jain V, Yuan JM. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. *Int J Public Health* 2020; **65**(5): 533-46.
21. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. *J Infect* 2020.
22. Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. *J Med Virol* 2020.
23. Giannakouli VG, Papoutsi E, Siempos I. Effect of Cancer on Clinical Outcomes of Patients With COVID-19: A Meta-Analysis of Patient Data. *JCO Glob Oncol* 2020; **6**: 799-808.
24. Wang X, Fang X, Cai Z, et al. Comorbid Chronic Diseases and Acute Organ Injuries Are Strongly Correlated with Disease Severity and Mortality among COVID-19 Patients: A Systemic Review and Meta-Analysis. *Research (Washington, DC)* 2020; **2020**: 2402961.
25. Taylor E, Hofmeyr R, Torborg A, Tonder CV, Anaesthesia BBJSAJo, Analgesia. Risk factors and interventions associated with mortality or survival in adult COVID-19 patients admitted to critical care: a systematic review and meta-analysis. *South Afr J Anaesth Analg* 2020; **26**(3): 116-27.
26. Jutzeler CR, Bourguignon L, Weis CV, et al. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis. *Travel Med Infect Dis* 2020; 101825.
27. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. *Aging (Albany NY)* 2020; **12**(13): 12493-503.
28. Liu H, Chen S, Liu M, Nie H, Lu H. Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis. *Aging Dis* 2020; **11**(3): 668-78.
29. Aggarwal G, Cheruiyot I, Aggarwal S, et al. Association of Cardiovascular Disease With Coronavirus Disease 2019 (COVID-19) Severity: A Meta-Analysis. *Curr Probl Cardiol* 2020; **45**(8): 100617.
30. Pranata R, Lim MA, Yonas E, et al. Body Mass Index and Outcome in Patients with COVID-19: A Dose-Response Meta-Analysis. *Diabetes Metab* 2020.
31. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression. *Diabetes Metab Syndr* 2020; **14**(4): 395-403.
32. Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. *Diabetes Metab Syndr* 2020; **14**(4): 535-45.
33. Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. *Diabetes Metab Syndr* 2020; **14**(5): 1017-25.
34. Wu J, Zhang J, Sun X, et al. Influence of diabetes mellitus on the severity and fatality of SARS-CoV-2 (COVID-19) infection. *Diabetes Obes Metab* 2020.

35. Guo L, Shi Z, Zhang Y, et al. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: A meta-analysis. *Diabetes Res Clin Pract* 2020; **166**: 108346.
36. Parveen R, Sehar N, Bajpai R, Agarwal NB. Association of diabetes and hypertension with disease severity in covid-19 patients: A systematic literature review and exploratory meta-analysis. *Diabetes Res Clin Pract* 2020; **166**: 108295.
37. Ofori-Asenso R, Ogundipe O, Agyeman AA, et al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. *Ecancermedicalscience* 2020; **14**: 1047.
38. Zhang J, Wu J, Sun X, et al. Association of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. *Epidemiol Infect* 2020; **148**: e106.
39. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of Adverse Prognosis in Covid-19: A Systematic Review and Meta-analysis. *Eur J Clin Invest* 2020: e13362.
40. Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. *Heart* 2020; **106**(15): 1142-7.
41. Kovalic AJ, Satapathy SK, Thuluvath PJ. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: a systematic review and meta-analysis. *Hepatol Int* 2020: 1-9.
42. Tian Y, Qiu X, Wang C, et al. Cancer associates with risk and severe events of COVID-19: A systematic review and meta-analysis. *International journal of cancer* 2020.
43. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. *Int J Infect Dis* 2020; **94**: 91-5.
44. Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. *Int J Infect Dis* 2020.
45. Zhao J, Li X, Gao Y, Huang W. Risk factors for the exacerbation of patients with 2019 Novel Coronavirus: A meta-analysis. *Int J Med Sci* 2020; **17**(12): 1744-50.
46. Aggarwal G, Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Diabetes Mellitus Association with Coronavirus Disease 2019 (COVID-19) Severity and Mortality: A Pooled Analysis. *Journal of diabetes* 2020.
47. Lu L, Zhong W, Bian Z, et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. *J Infect* 2020.
48. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. *J Med Virol* 2020.
49. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. *J Med Virol* 2020.
50. Pranata R, Huang I, Lim MA, Wahjoepramono EJ, July J. Impact of cerebrovascular and cardiovascular diseases on mortality and severity of COVID-19-systematic review, meta-analysis, and meta-regression. *Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association* 2020; **29**(8): 104949.
51. Mantovani A, Byrne CD, Zheng MH, Targher G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: A meta-analysis of observational studies. *Nutr Metab Cardiovasc Dis* 2020; **30**(8): 1236-48.

52. Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. *Obes Res Clin Pract* 2020.

53. Földi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2020.

54. Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. *PLoS one* 2020; **15**(5): e0233147.

55. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. *Pol Arch Intern Med* 2020; **130**(4): 304-9.

56. Deng M, Ye M, Xiao X, et al. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. *Aging and disease* 2020; **11**(4).

57. Wu X, Liu L, Jiao J, Yang L, Zhu B, Li X. Characterisation of clinical, laboratory and imaging factors related to mild vs. severe covid-19 infection: a systematic review and meta-analysis. *Annals of medicine* 2020: 1-11.

58. Hariyanto TI, Kurniawan A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. *Diabetes Metab Syndr* 2020; **14**(5): 1463-5.

59. Salunke AA, Nandy K, Pathak SK, et al. Impact of COVID -19 in cancer patients on severity of disease and fatal outcomes: A systematic review and meta-analysis. *Diabetes Metab Syndr* 2020; **14**(5): 1431-7.

60. ElGohary GM, Hashmi S, Styczynski J, et al. The risk and prognosis of COVID-19 infection in cancer patients: A systematic review and meta-analysis. *Hematology/Oncology and Stem Cell Therapy* 2020.

61. Liu M, Gao Y, Shi S, Chen Y, Yang K, Tian J. Drinking no-links to the severity of COVID-19: a systematic review and meta-analysis. *J Infect* 2020; **81**(2): e126-e7.

62. Gao Y, Liu M, Chen Y, Shi S, Geng J, Tian J. Association between tuberculosis and COVID-19 severity and mortality: A rapid systematic review and meta-analysis. *J Med Virol* 2020.

63. Patel U, Malik P, Shah D, Patel A, Dhamoon M, Jani V. Pre-existing cerebrovascular disease and poor outcomes of COVID-19 hospitalized patients: a meta-analysis. *J Neurol* 2020: 1-8.

64. Siepmann T, Sedghi A, Barlinn J, et al. Association of history of cerebrovascular disease with severity of COVID-19. *J Neurol* 2020.

65. Sales-Peres SHC, de Azevedo-Silva LJ, Bonato RCS, Sales-Peres MC, Pinto A, Santiago Junior JF. Coronavirus (SARS-CoV-2) and the risk of obesity for critically ill and ICU admitted: Meta-analysis of the epidemiological evidence. *Obes Res Clin Pract* 2020.

66. Sanchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. *Respir Med* 2020; **171**: 106096.

67. Pastick KA, Nicol MR, Smyth E, et al. A Systematic Review of Treatment and Outcomes of Pregnant Women with COVID-19 – A Call for Clinical Trials. *Open Forum Infectious Dis* 2020.

68. Panahi L, Amiri M, Pouy S. Risks of Novel Coronavirus Disease (COVID-19) in Pregnancy; a Narrative Review. *Arch Acad Emerg Med* 2020; **8**(1): e34.

69. People who are at higher risk for severe illness. June 25, 2020.
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-increased-risk.html?CDC_AA_refVal=https%3A%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-

[extra-precautions%2Fpeople-at-higher-risk.html](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290003/) (accessed July 15 2020).

70. Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. *J Infect* 2020.
71. Gao Y, Chen Y, Liu M, Shi S, Tian J. Impacts of immunosuppression and immunodeficiency on COVID-19: A systematic review and meta-analysis. *J Infect* 2020; **81**(2): e93-e5.
72. Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. *Nat Med* 2020; **26**: 506-10.
73. Banerjee A, Pasea L, Harris S, et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. *Lancet* 2020; **395**(10238): 1715-25.
74. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. *MMWR Morb Mortal Wkly Rep* 2020; **69**(24): 759-65.
75. Zhang J, Klepac P, Read JM, et al. Patterns of human social contact and contact with animals in Shanghai, China. *Sci Rep* 2019; **9**(1): 15141.
76. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. *Lancet* 2020.
77. Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. *Lancet* 2020.
78. Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. *Nat Med* 2020.
79. Zhang J, Litvinova M, Liang Y, et al. The impact of relaxing interventions on human contact patterns and SARS-CoV-2 transmission in China. *MedRxiv*.

<https://www.medrxiv.org/content/10.1101/2020.08.03.20167056v1> (accessed).

80. Hu S, Wang W, Wang Y, et al. Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. *MedRxiv*, 2020. <https://www.medrxiv.org/content/medrxiv/early/2020/08/07/2020.07.23.20160317.full.pdf> (accessed).
81. Szablewski CM, Chang KT, Brown MM, et al. SARS-CoV-2 Transmission and Infection Among Attendees of an Overnight Camp - Georgia, June 2020. *MMWR Morb Mortal Wkly Rep* 2020; **69**(31): 1023-5.
82. Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection amongst children and adolescents compared with adults: a systematic review and meta-analysis. *MedRxiv*, 2020. <https://www.medrxiv.org/content/10.1101/2020.05.20.20108126v2> (accessed).
83. Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. *Science* 2020; **368**(6498): 1481-6.
84. Poletti P, Tirani M, Cereda D, Trentini F. Probability of symptoms and critical disease after SARS-CoV-2 infection. *arXiv*. <https://arxiv.org/abs/2006.08471> (accessed).
85. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. *Lancet* 2020; **395**(10239): 1771-8.
86. Waltenburg MA, Victoroff T, Rose CE, et al. Update: COVID-19 Among Workers in Meat and Poultry Processing Facilities - United States, April-May 2020. *MMWR Morb Mortal Wkly Rep* 2020; **69**(27): 887-92.
87. Williamson EJ, Walker AJ, Bhaskaran K, et al. OpenSAFELY: factors associated with COVID-

19 death in 17 million patients. *Nature* 2020.

88. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? *BMJ* 2020; **369**: m1548.

89. Are some ethnic groups more vulnerable to COVID-19 than others? July 15, 2020. <https://web.archive.org/web/20200502130148/https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others/> (accessed July 15 2020).

90. Zheng Y, Rodewald L, Yang J, et al. The landscape of vaccines in China: history, classification, supply, and price. *BMC Infect Dis* 2018; **18**(1): 502.

91. WHO Working Group – Vaccine R&D for COVID-19 Vaccines. April 17, 2020. <https://www.who.int/publications/m/item/who-working-group-vaccine-r-d-for-covid-19-vaccines> (accessed July 15 2020).

92. Freitas ARR, Napimoga M, Donalisio MR. Assessing the severity of COVID-19. *Epidemiol Serv Saude* 2020; **29**(2): e2020119.

93. Guidance on 2009 influenza pandemic vaccination programme in China. September 23, 2019 2019. http://www.gov.cn/zwgk/2009-09/23/content_1424257.htm (accessed July 26 2020).

94. Zimmerman RK. Rationing of influenza vaccine during a pandemic: ethical analyses. *Vaccine* 2007; **25**(11): 2019-26.

95. China Statistical Yearbook 2019. July 15, 2020. <http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm> (accessed July 15 2020).

96. White paper. July 24, 2019. <http://www.scio.gov.cn/zfbps/32832/Document/1660314/1660314.htm> (accessed July 15 2020).

97. Clark A, Jit M, Warren-Gash C, et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. *Lancet Glob Health* 2020.

98. UN population 2020. July 15, 2020. <https://population.un.org/wpp/Download/Standard/Population/> (accessed July 15 2020).

99. Ministry of Education of China. Statistics Yearbook of Education in 2019. http://www.moe.gov.cn/s78/A03/moe_560/iytjsj_2019/qq/. Accessed August 12, 2020.

100. Report of H1N1 pandemic influenza vaccination from Ministry of Health. July 15, 2020. <http://www.gov.cn/gzdt>. (accessed July 15 2020).

101. Seale H, Kaur R, Wang Q. Acceptance of a vaccine against pandemic influenza A (H1N1) virus amongst healthcare workers in Beijing, China. *Vaccine* 2011; **29**: 1605-10.

102. Fu C, Wei Z, Pei S, et al. Acceptance and preference for COVID-19 vaccination in healthcare workers (HCWs). medRxiv preprint doi: <https://doi.org/10.1101/2020.04.09.20060103>.