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Abstract: Nutrient management of lowbush blueberry (Vaccinium angustifolium Ait.) depends on 17 
several yield-limiting features. Machine learning models can process such yield-impacting variables 18 
to predict berry yield. We investigated the effects of local variables on yields and nutrient 19 
management of lowbush blueberry. We collected 1504 observations from N-P-K fertilizer trials 20 
conducted in Quebec, Canada. Meteorological indices at various phenological stages showed the 21 
greatest impact on yield. High mean temperature at flower bud opening and after fruit maturation, 22 
and total precipitation at flowering showed positive effects. Low mean temperature and low total 23 
precipitation before bud opening, at flowering, and by fruit maturity, as well as number of freezing 24 
days (< -5ºC) before flower bud opening, showed negative effects. Soil fertility variables, leaf 25 
nutrient compositions and N-P-K fertilization showed smaller effects. Gaussian processes predicted 26 
berry yields from historical weather data, soil analysis, fertilizer dosage, and leaf nutrients with a 27 
root-mean-square-error of 1447 kg ha-1 on the testing data set. An in-house Markov chain algorithm 28 
optimized yields modelled with Gaussian processes from leaf nutrient composition, soil test value, 29 
and fertilizer dosage conditioned to specified historical weather features. We propose to use 30 
conditioned machine learning models to manage nutrients of lowbush blueberry at local scale. 31 
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 33 

1. Introduction 34 
Lowbush blueberry species (Vaccinium angustifolium Ait. and, to some extent, V. myrtilloides 35 

Michx.) are North American wild ericaceous species growing in upland acid sandy soils. The 36 
province of Québec, Canada, is among the world leaders in the production of lowbush blueberry [1]. 37 
Berry yields vary widely between 0.6 [2] and 8.9 Mg ha-1 [3], indicating high risk of production failure 38 
in that area. Lowbush blueberry is managed over 2-year cycles where vegetative (or pruning) and 39 
fruit-bearing (or fruit-harvesting) years alternate. Flower bud initiation occurs during the vegetative 40 
year and impacts on crop productivity during the fruit-bearing year [4]. Fruit set depends on the 41 
number of flowers, pollination success, edaphic and managerial conditions, year, and clone [5], as 42 
well as nesting habitats of pollinators [6]. 43 

During the 2004-2009 period, low average yield of 1.9 Mg ha-1 impacted by adverse weather 44 
conditions affected the economic viability of most Quebec lowbush blueberry farms [7]. Snow cover, 45 
frost frequency, defrost and drought periods, flowering, weather variations, pollination, diseases and 46 
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maturation dates impact on lowbush blueberry productivity. Meteorological models have been 47 
developed to predict yields of lowbush blueberry and scout fields for pests [8].  48 

Lowbush blueberry is fertilized during the spring of the vegetative year to stimulate and support 49 
plant regrowth after pruning [9]. Almost all fertilizer trials on lowbush blueberry have been 50 
conducted as single nutrient N, P, and K experiments [3,9–13] as well as factorial N-P [14] and N-P-51 
K combinations [2,15–17]. While ammonium-phosphate interaction may promote yields, lowbush 52 
blueberry appeared little responsive to added K [18]. Large variation in fertilizer dosage from 0.50 to 53 
0.75 grower’s rate showed small impact on berry yield [19]. Little attention has been given to other 54 
elements [20]. Fertilization dosage and timing of application have not yet been optimized [9]. 55 

Where soil and tissue tests return opposite nutrient diagnoses, tissue tests generally appeared 56 
preferable [18]. Fertilization guidelines for lowbush blueberry are thus based on tissue tests: soil tests 57 
are complementary. Tissue diagnosis as nutrient deficiency, sufficiency or toxicity is conducted by 58 
comparing each element to selected nutrient concentration ranges where crop productivity has been 59 
found to be adequate [21]. The selection of regional standards using univariate descriptive statistical 60 
tests [22–25] may be hazardous because, 61 

 nutrient variables are intrinsically multivariate — compositions should be interpreted as a 62 
whole, not as a collection of parts (26), 63 

 regional standards disregard local conditions of lowbush blueberry agroecosystems [18,26–29], 64 
 descriptive statistical tests compare the nutrient status of high and low yielders based on 65 

arbitrary yield threshold and are designed to test differences, not to predict optimal nutrient 66 
combinations of compositional entities.  67 
Machine learning can process yield-impacting variables to predict yields at production sites (31). 68 

Markov chain random walk can optimize features at local scale. Machine learning models coupled 69 
with Markov chain optimization could help to find optimal sets of manageable features such as leaf 70 
and soil nutrient status as well as fertilizer dosage of lowbush blueberry under site-specific 71 
agroecosystem conditions. 72 

Our objective was to predict yield of lowbush blueberry from a set of investigated feature-73 
specific conditions. We hypothesized that (1) soil chemistry, tissue nutrients, weather indices, and N-74 
P-K fertilization affect berry yields, and (2) predictive models could optimize leaf nutrient 75 
combinations under assigned specific weather and soil conditions. 76 

2. Materials and Methods 77 

2.1 Experimental setup 78 
Experimental sites were located in Normandin (48°50’N, 72°32’W), Saint-Eugène d’Argentenay 79 

(48o59’N, 72o17’W) and Labrecque (48°40’N, 71°32’W) in the Saguenay-Lac-Saint-Jean region, north-80 
central Québec, Canada. The regional climate is at the edge between Dfb (warm summer continental 81 
or hemiboreal) and Dfc (subartic) [30]. Soils were sandy to sandy loam Spodosols developed on 82 
deltaic and eolian deposits [31]. There were 1504 observations collected from fertilizer trials 83 
conducted during the 2001 – 2011 period. The N, P, and K doses varied in the range of 0-90 kg N ha-84 
1, 0-39 kg P ha-1, and 0-75 kg K ha-1. Because weeds strongly impact leaf nutrient concentrations and 85 
fruit yield of lowbush blueberry [32], all trials were realized in weed-controlled environments 86 
according to local recommendations [33]. 87 

2.2 Soil and tissue analyses 88 
Diagnostic tissues were collected at tip-dieback stage during the vegetative year [13,26,27,29,34]. 89 

Tissues were sampled in 50 m2 plot by combining the leaves of 25 randomly collected stems. Leaf 90 
samples were dried at 55oC, ground to less than 1 mm using a Wiley mill, and digested in a solution 91 
of H2SO4 and H2O2 [35]. Digests were analyzed for total N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe, and Al. 92 
The N and P concentrations in leaf tissues were quantified by automated colorimetry [Lachat 93 
Instruments (2005), QuickChem Method 13-107-06-2-E and QuickChem Method 15-501-3], and ICP-94 
OES for other elements. Soil samples (0-20 cm), collected at the same time as tissue samples, were air-95 
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dried, 2-mm sieved, extracted using the Melhlich3 method [36], and analyzed for P, K, Ca and Mg 96 
using ICP-OES. The pH was measured in water (1: 1, v: v). 97 

2.3 Meteorological indices 98 
Site weather data were downloaded from the closest (< 50 km) Environment Canada 99 

meteorological stations using the weathercan R package version 0.3.4 [37]. Monthly weather indices 100 
computed from downloaded data are presented in Figure 1. 101 

 102 
Figure 1. Mean weather indices computed across sites from 2001 to 2011, excepting 2002 and 2008 103 
when no data have been collected. 104 

2.4 Investigative models 105 
We conducted exploratory analyses using two investigative models. The first investigative 106 

model considered seasonal mean temperature, total precipitations, and number of freezing days – 107 
days with minimum mean temperature < -5ºC [38] – between April and August inclusively in 108 
vegetative and fruit-bearing years. The second investigative model considered mean temperatures 109 
and total precipitations for phenological stages described by Fournier et al. [39] and presented in 110 
Table 1. 111 

Table 1. Wild blueberry phenological stages [39] 112 
Phenological stage Julian day  Calendar dates 

Before flower bud opening [92 to 125] April 1st to May 5th   
Flower bud opening [126 to 163] May 5th to June 11th  

Flower open (Pollination 
period) 

[164 to 180] June 12th to June 28th  

Fruit maturation [181 to 220] June 29th to August 7th  
After fruit maturation 

(Harvests) 
[221 to 244] August 7th to August 31st 

When conducting predictive model, future weather is unknown. Thus, we fitted the predictive 113 
model to mean temperature and total precipitation data for phenological stages averaged over the 114 
six years (or three cycles) preceding the season of the observation. Commercial stands of lowbush 115 
blueberry included phenotypically and genotypically variable clones [40]. The phenology of 116 
Vaccinium angustifolium Ait. has been predicted from growing degree-days (GDD) using 0°C [4] or 117 
4.4°C [5] as base air temperature from April 1st (day of the year 91). The GDD is commonly used in 118 
relation with pest management [7]. In this study, we tested mean temperatures and growing degree 119 
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days (4.4°C). After running preliminary models, we concluded that, compared to phenological stages 120 
and GDD, seasonal mean temperatures offered more meaningful gradients across the whole season. 121 

2.5 Statistical analysis 122 

2.5.1 Isometric log-ratio 123 
Raw concentration values were transformed into isometric log-ratios (ilr) to free compositional 124 

data from their total sum constraint (closure to measurement unit), and offer a sound framework to 125 
interpret tissue nutrient compositions [41]. Such framework is presented as a bifurcating tree or a 126 
mobile-and-fulcrum diagram based on nutrient interactions in living tissues [42] and soils [43]. 127 
Groups of variables were sequentially split until each group contain a single part (Figure 2). A filling 128 
value (Fv), computed by subtracting the sum of tissue elements from the total sum constrain (e.g. 129 
100%), is included in balance diagrams to back-transform ilr balances to more familiar concentration 130 
domain. Concentration values are shown at the bottom and the balances at the fulcrums of the 131 
bifurcating trees. 132 

 133 

Figure 2. Balance diagram for used to transform (A) nutrients to nutrient balances and (B) soil 134 
nutrients to soil balances. Fv is the filling value. 135 

There are D-1 balances in a D-part composition [44], each balance representing one degree of 136 
freedom [45]. Redundancy is accounted for by removing one degree of freedom attributable to 137 
interaction producing resonance by altering proportions of components within a closed system. At 138 
one extreme, if two nutrients are fully synergistic or antagonistic, they carry the same information 139 
and one of them is thus redundant. However, no such nutrients exist as fully replaceable. One degree 140 
of freedom is removed to handle myriads of interactions among components in the tissue dry mass 141 
to yield linear independence among orthogonally arranged subsets of interacting components. The 142 
isometric log-ratios or log-contrasts between two subsets of components are computed as follows (1): 143 

푖푙푟 = 푙푛
+

- , (1)

where, for the jth balance in [1...D−1], D is the number of components, rj and sj are the number of parts 144 
on the left-hand- and right-hand side of the log contrast, respectively, cj- and cj+ are the compositional 145 
vectors at the left-hand- and right-hand-side, respectively, and g() is the geometric mean function. 146 
Computations were performed using the R 4.0.2 package [46]. Leaf and soil nutrient concentrations 147 
were transformed into orthonormal nutrient balances or isometric log ratios [47] using the 148 
compositions R package version 2.0-0 [48].  149 

The Aitchison distance between a given nutrient composition and its target is a metric of interest 150 
to measure nutrient imbalance [41]. The Aitchison distance is a distance in the compositional space 151 
computed as the Euclidean distance between two equal-length compositional vectors transformed 152 
into ilr variables. The Aitchison distance depends on the number of components in the compositional 153 
vector and should be interpreted as a misbalance index compared to other distances computed from 154 
compositions with equal number of parts. Also, the ratio between each nutrient of an observation 155 
and its target indicates the direction of the misbalance. 156 
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2.5.2 Analysis and modelling 157 
Investigative and predictive models relate yield to uncontrollable and controllable yield-158 

impacting features. Yield variation could be explained by large differences in fertilization regimes, 159 
meteorological indices, as well as soil and tissue tests. Investigative models were fitted by Bayesian 160 
linear regression with vague priors using the rstanarm R package version 2.21.1 [49]. No model 161 
hierarchy (or random effects) was included to avoid over-fitting. All explanatory variables were 162 
centered at 0 mean and scaled to unit variance, allowing comparing slope coefficients on a common 163 
scale. 164 

For the predictive model, the data set was split into 70% training and 30% testing subsets. All 165 
variables (outcomes and predictors) were centered to zero mean and scaled to unit variance based on 166 
the training set. To predict yield, a Gaussian process model was fitted to data using the kernlab 167 
package version 0.9-29 [50] with the caret modelling interface version 6.0-86 for R [51] with optimized 168 
hyper-parameters. 169 

The model fitted to training data was used to predict yield from features, some selected as 170 
varying and some selected as fixed, a process known as conditioning. We fixed historical weather 171 
conditions while sequentially extracted the combination of randomly generated leaf nutrients, soil 172 
chemistry features and N-P-K dosages returning the highest yield in the neighborhood of the optimal 173 
vector obtained from the previous sequence. This process is a Markov-chain random walk: 174 

 use the model to predict yield from initial conditions, 175 
 generate n random samples within a fixed radius around the point, 176 
 to avoid extrapolations, compute the Mahalanobis distance between each random sample and 177 

the center and covariance of the training data set, then filter out random samples where the 178 
Mahalanobis distance is higher than a critical distance, 179 

 use the model to predict yields from the remaining samples, 180 
 extract the sample returning the highest yield, 181 
 if yield is increased compared to the previous value, retain the vector for the next round and 182 

shorten the radius by a factor - else, keep the previous vector for the next round, then increase the 183 
radius by a factor. 184 
To show how this algorithm scans the multivariate space in search for higher yields, we used 185 

the R volcano data set [52] to generate a simplistic 2D space were the highest topography, modelled 186 
by a Gaussian process on a random sample of the data set, is approached from a starting point (white 187 
circle), as shown in Figure 3. 188 

 189 
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Figure 3. Two-dimensional representation of the algorithm scanning XY coordinates to draw the path 190 
to higher Z topography as a metaphor for scanning tissue nutrient balances that augment yields. The 191 
red dot started at (42, 8) with a radius of 3 (thick white circle), moved with a decreasing radius to 192 
reach a local optimum where radius was increased until finding another point from which it 193 
continued scanning until the maximum of iterations was reached (thick black circle). 194 

The optimization of leaf nutrient status was performed for each observation in our database. We 195 
also randomly selected a sample from our database and looked for optimal leaf nutrient status, soil 196 
chemistry and fertilizer dosage under given weather conditions. Codes and data are available at 197 
git.io/JvQOa. 198 

3. Results 199 

3.1 Variability of tissue and yield data at regional state 200 
Berry yields from experimental plots ranging between 0.6 and 13.8 Mg ha-1 in our data set was 201 

wider than the ranges of lowbush blueberry yields published in other studies in Maine, Québec, the 202 
Canadian Atlantic provinces, and Estonia (Figure 4). 203 

 204 
Figure 4. Yield ranges of lowbush blueberry reported in the literature compared to yield range in the 205 
present study [2,3,9,11–17,20,32,53–55]. 206 

3.2 Investigative models at regional scale 207 

3.2.1 Effects over 2-years cropping cycles 208 
The first Bayesian linear regression investigated the effects of leaf nutrients, soil nutrients, soil 209 

pH, NPK dosage and seasonal weather indices over 2-years on yields of lowbush blueberry. Posterior 210 
distributions of effects are shown in Figure 5. While interactions between variables were likely to 211 
occur, they were not addressed in the present study to avoid over-fitting.  212 
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 213 

Figure 5. Posterior distributions of coefficients of scaled variables against berry yield for the 2-year 214 
cycle model. 215 

The N and P fertilization averaged small positive effects, while K fertilization averaged marginal 216 
negative effects on berry yield. Seasonal total precipitations during both fruit-bearing and vegetative 217 
years increased berry yield. Seasonal mean temperatures showed positive effect during the fruit-218 
bearing year, but negative effect during the vegetative year. The number of freezing days during the 219 
fruit-bearing year decreased markedly yield but showed a small and uncertain effect on yield during 220 
the vegetative year. 221 

The most impacting leaf nutrient balances were (1) the [B | Mg, Ca, K, P, N] balance, where 222 
higher concentrations of boron compared to macronutrients slightly decreased yield and (2) the [Fv 223 
| B, Mg, Ca, K, P, N] balance, where nutrient accumulation in tissues increased berry yield. Soil [Fv 224 
| Mg, Ca, K, P] and [Mg, Ca, K | P] were the most yield-impacting soil nutrient balances. The positive 225 
slope on the soil [Fv | Mg, Ca, K, P] balance indicated that greater yields were associated with higher 226 
nutrient levels in the soil. The negative slope of the soil [Mg, Ca, K | P] balance indicated that lower 227 
yields were associated with higher P concentrations relatively to cations K, Ca and Mg in the soil. 228 
Low yields were associated with high soil pH. 229 

3.2.2 Effects during the fruit-bearing year 230 
A second investigative model substituted seasonal weather indices by weather indices at 231 

phenological stages for the year of experimentation (Figure 6). 232 
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 233 

Figure 6. Posterior distributions of coefficients of scaled variables against berry yield for the fruit-234 
bearing year model. 235 

As it is the case of the 2-years cropping model, the effects of N-P-K fertilization in the fruit-236 
bearing model were small compared to weather variables. 237 

Mean temperature effects varied with developmental stage. Indeed, higher mean temperatures 238 
increased yields during the after fruit maturation and the flower bud opening stages, but decreased yields 239 
through the before bud opening and the fruit maturation stages, with uncertain effects during the flower 240 
open stage. Precipitation effects also varied with the developmental stage. Higher precipitations 241 
increased yields during the flower open stage, but decreased yields during the flower bud opening and 242 
the after fruit maturation stages, with small and variable effects during the flower bud opening and fruit 243 
maturation stages. The number of freezing days, recorded only for the earliest development stage, 244 
showed a negative but uncertain effect on yield. 245 

The [Fv | B,Al,Mg,Ca,K,P,N] leaf nutrient balance showed the most important positive effect 246 
among leaf nutrient balances, indicating that greater proportions of nutrients increased yield. The 247 
effect of the [B | Mg,Ca,K,N,P] balance was also positive, indicating that yield decreased with higher 248 
proportions of B. The [Mg,Ca,K | N,P] balance also showed a positive effect, indicating that higher 249 
N and P compared to K, Ca and Mg increased yield. While the Redfield ratio [P | N] showed positive 250 
effect, the effects of [Mg,Ca | K], [Mg | Ca] and [Al | B,Mg,Ca,K,N,P] were small and uncertain. 251 

The effects of soil nutrient balances were also smaller than meteorological features. The most 252 
positive balances were soil nutrient supply capacity expressed as the [Fv | Mg,Ca,K,P], and higher K 253 
level in the cationic balance expressed as [Mg, Ca | K]. The most negative soil balance was [Mg,Ca,K 254 
| P], indicating excessive P level in the soil or insufficient concentrations of K, Ca and Mg cations. 255 
Low yields were also associated with high soil pH. 256 

3.3 Predictive model at local scale 257 
While freezing days appeared important in both investigative models, they were not informative 258 

in the predictive model. Indeed, data exploration in Supplementary material 1 shows that the number 259 
of freezing days was inconsistent from year to year, making the 6-year average unreliable for yield 260 
prediction. The number of freezing days in April and May were thus removed from the predictive 261 
model. 262 
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The Gaussian process regression model returned root-mean-square-errors (RMSEs) of 1047 kg 263 
ha-1 in training and 1447 kg ha-1 in testing (Figure 7). Lower yields were predicted accurately while 264 
higher yields showed systematic deviation from the straight line. Although we used a regression, a 265 
classification aiming at reaching a minimum yield could be useful to secure profitability. When the 266 
regression model is used as a classifier with yield cut-off of 5000 kg ha-1, model accuracy reached 83% 267 
on the testing set. The detection of low yielders was 91% accurate (positive predictive rate) and the 268 
detection of high yielders was 53% accurate (negative predictive rate).  269 

 270 

Figure 7. Performance of the predictive Gaussian process model shown as prediction against 271 
observed in training and testing data sets. 272 

3.4 Portrait of optimal leaf nutrients at regional scale 273 
Because nutrient balances are feature-specific, we fixed no a priori optima for soil and tissue 274 

nutrient levels and looked for feature-specific optima. The Markov-chain algorithm applied to all 275 
weather conditions in the data set provided an overall portrait of predicted optimal leaf nutrient 276 
concentrations that differed from concentration ranges suggested in the Canadian literature 277 
[13,17,27,28] (Figure 8). Note that the K range reported by Bouchard and Gagnon [28] for the same 278 
region was much lower than the distribution modelled from our data set. 279 

  280 

 281 
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 282 

 283 

Figure 8. Distributions of optimal concentrations in the tissue ionome of blueberry compared to 284 
ranges reported in the Canadian literature [13,17,27,28]. 285 

 286 
Figure 9. Distributions of optimal Aitchison distances and computed yield improvements by 287 
optimizing the leaf nutrients. 288 

Distributions of Aitchison distances and expected yield improvements by optimizing leaf 289 
nutrient levels are shown in Figure 9. The median Aitchison distance between ilr variables of 290 
diagnosed tissue nutrient composition to reach optimal nutrient status was 0.50. Yield difference 291 
(potential yield minus initial yield) obtained where leaf nutrient compositions were perturbed from 292 
the initial composition to their optimal status varied widely with median value of 1773 kg ha-1, 1.5 293 
times the yield of the diagnosed specimen for the specified combination of features. Expected yields 294 
reported in the data set for the specified feature combinations were locally realistic compared to 295 
arbitrarily expected yield at regional scale. 296 

The path to controllable features returning the highest yield given a fixed set of local features 297 
was initiated by randomly sampling a low yielder (yield < 3000 kg ha-1, sample no 1269), fixing 298 
weather features, then sequentially altering leaf nutrients, soil nutrients, pH and N-P-K dosage using 299 
the Markov chain algorithm. At each iteration of the Markov chain, we back transformed leaf and 300 
soil nutrients from ilr variables to raw concentration values. We followed an optimal multivariate 301 
path towards optimum yield considering the fixed historical weather conditions (Figure 10). 302 
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 305 

Figure 10. Markov chain searching for (A) N-P-K dosage (B) tissue concentration ranges and (C) soil 306 
chemistry matching the highest yield (shown in A) under given historical weather conditions of the 307 
randomly selected sample no 1269. Constrained paths represent minimum and maximum values in 308 
the training data set and avoid modelling extrapolations. 309 

The Aitchison distance between the observed composition and the targeted composition 310 
obtained at the end of the Markov chain was 0.68 for leaf nutrients and 0.87 for soil nutrients. We also 311 
measured the size of the perturbation of nutrient composition between the observed leaf and soil 312 
nutrient compositions and the reference composition provided by the Markov chain algorithm as 313 
ratios their respective concentrations. The observed/target concentration ratios in  314 

 315 
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 316 
Figure 11 showed that leaf K, Al and Mg concentrations appeared in relative excess in the 317 

diagnosed specimen compared to the successful Markov specimen, while B, P and N appeared in 318 
relative shortage. Soils nutrients K, P and Mg were in relative shortage while soil Ca and soil pH were 319 
near optimum. 320 

 321 

 322 

Figure 11. Ratio between leaf nutrients in sample no 963 and the optimal composition found at the 323 
end of the Markov chain algorithm. 324 

4. Discussion 325 

4.1 Model features 326 
Agroecosystems viewed as Humboldtian agricultural production units [56] requires assembling 327 

local agroecosystem features to make predictions on system’s performance. Indeed, the concept of 328 
optimum fertilization may fail at local scale where genetic and environmental conditions may vary 329 
widely [57]. We used leaf nutrients, soil nutrients, pH, and weather data as features to predict yields 330 
of lowbush blueberry across Vaccinium angustifolium and V. myrtilloides stand mixtures, using a 331 
Gaussian process machine learning model. By conditioning the model on the selected uncontrollable 332 
features such as weather historical data, and allowing other features related to plant nutrition 333 
management to vary, we could assess corrective measures at local scale. Where the model was 334 
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conditioned on weather features, the localized model predicted that optimized nutrition and soil 335 
chemistry at local scale could increase berry yields substantially (Figure 9B).  336 

4.2 Weather indices 337 
In the 2-year cycles and fruit-bearing year models (results presented in Figure 5 and Figure 6), 338 

weather features dominated largely yield potential of lowbush blueberry in Quebec. 339 
Developmental stages were sensitive to precipitations. The plant-pollinator networks are also 340 

affected by rainfall patterns (59). Heavy precipitations can impact decrease pollination activities and 341 
increase the incidence of plant fungal diseases [58]. Heavy precipitations also affect pollinators 342 
success through nectar dilution, pollen degradation, volatile removal, etc. At the other extreme, 343 
where precipitations are too low, irrigation is required to avoid shifting from reproductive to 344 
vegetative growth [59]. Lowbush blueberry stands were not irrigated in experimental areas as in most 345 
commercial fields in Quebec. 346 

While favorable weather conditions for pollination activities during the month following 347 
pollination (July) are critical to reach maximum yield of lowbush blueberry, yield predictions were 348 
inconsistent based on meteorological features alone [58]. Adding soil and tissue nutrient features and 349 
phenological stages, the classification models reached an accuracy of 82% about yield cutoff of 5000 350 
Mg ha-1, similar to model accuracy for several fruit crops [60]. 351 

4.3 Fertilization 352 
As wild species, lowbush blueberry responds slowly to nutrient supply [29] and may constrain 353 

its growth rate to available resources [61]. Moreover, nutrient accumulations in reserve tissues can be 354 
remobilized during the following years, as for fruit trees [62] and vines [63]. While fertilization 355 
features appeared to impact yield less than meteorological features. Lowbush blueberry may respond 356 
positively to added N and P over 2-years cropping cycles [14,64–66].  357 

While regional N recommendation is 45 kg N ha-1 [32], nitrogen dosage appeared to be highly 358 
site-specific. Predicted fertilizer dosage in the low-fertility soil of our case-study (Figure 10A, 61 N 359 
ha-1, 14 kg P ha-1 and 32 kg K ha-1) departed from current ranges of 25-60 kg N ha-1, 7 to 9 kg P ha-1 360 
and 16-20 kg K ha-1 [67]. In comparison, a fertilizer trial in Nova Scotia, Canada, indicated optimum 361 
levels of 35 kg N ha-1, 40 kg P ha-1, and 30 kg K ha-1 [66]. 362 

In our case study, N requirement up to 61 kg N ha-1 could be split between the spring of the 363 
vegetative year and the spring of the fruit-bearing year [67]. The response to added N may be strong 364 
as modulated by competition with weeds [32]. Nevertheless, it should be emphasized that N 365 
fertilization may decrease berry quality, as shown by linear decrease of total polyphenols upon N 366 
additions of 0, 30 and 60 kg ha-1 to highbush blueberry [68]. 367 

In contrast with N, the response to P fertilization was found to be generally small [69]. The fact 368 
that the soil [Mg,Ca,K | P] balance impacted negatively on berry yield indicated that feature-specific 369 
corrective measures should be adopted to re-established soil P balance and avoid excessive soil P 370 
accumulation. The P fixation by oxy-hydroxides of Fe and Al at low pH values reduces P fertilizer-371 
use efficiency in the acidic P-fixing  podzolic soils used for lowbush blueberry production [70]. 372 
However, making P fertilizer applications based on solely soil P fixing capacity can result in wrong 373 
decisions [71]. Soil pH values exceeding 5.2 can decrease the yield of lowbush blueberry [51]. 374 

Leaf B concentration may increase by 4-5 folds with B application over control [72]. Such boost 375 
may affect the leaf [B | Mg,Ca,K,P,N] nutrient balance. Boron applications have been recommended 376 
to avoid boron shortage in lowbush blueberry stands [73]. Since 2000 in Quebec, shoot tip abortion is 377 
prevented by applying 0.7 kg of B ha-1 at each crop cycle [67]. In our study, the [B | Mg,Ca,K,P, N] 378 
tissue balance increased yields (Figure 5 and Figure 6). Boron being on the denominator of the 379 
balance, a positive slope coefficient indicates that boron over-fertilization possibly leaded to boron 380 
toxicity. As a result, boron should be managed to reach optimal growth conditions based on leaf 381 
analysis and proper nutrient balances to avoid excessive B applications. 382 

The Al concentration in plant tissues may be problematic in acid soils due to high Al toxicity 383 
[74]. The leaf Al concentrations depend largely on soil pH. The effect of soil pH on blueberry yield 384 
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ans Al levels is complex because (1) lower pH is associated with higher berry yields and (2) Al tends 385 
to be mobilized in soils at pH lower than 5.5 [74,75] and even more at pH values less than 5.0 [76]. 386 
Foliar tissues of lowbush blueberry normally contains 50-110 [27], up to 400 [77] mg Al kg-1 compared 387 
to 400-760 mg Al kg-1 in rhizomes [77]. In our study, the Markov chain random walk indicated 388 
optimum foliar Al concentration of 45 mg Al kg-1 (Figure 10B) in a locally diagnosed specimen – 389 
which is close to the median of its distribution in our data set (51 mg Al kg-1, Figure 8) – with an 390 
optimal pH of 4.6.  391 

4.4 Agronomic features optimisation 392 
Open ecosystems have numerous sources of unexplained variations. While the R² of the 393 

regression on the testing set can be seen as rather low at 0.46 (root-mean-square-error of 1447 kg ha-394 
1), its exploratory use for classification reached 82% accuracy, a fair value compared to other crops 395 
[42,78–81]. However, using regression instead of classification models can avoid selecting arbitrary 396 
yield thresholds to delineate low-yielding and high-yielding specimens and allows comparing 397 
current yields to modelled yields under optimized nutrient management. In this paper, we 398 
challenged regional tissue nutrient ranges for the following reasons. 399 

 400 
 Regional guidelines deny the importance of local conditions on plant epigenetics. 401 
 A collection of reference ranges relies on the assumption that the healthy spaces of nutrient 402 

dosage and leaf and soil compositions have the shape of hypercubes. As illustrated by Parent 403 
[41], the shape of such space is more likely to be irregular [41]. 404 

 Arbitrary delimiters defining a healthy region should be avoided. 405 
 According to Parent [41], interpreting a perturbation between a nutritionally misbalanced 406 

specimen and its optimum target “should be done with a multivariate and compositional data 407 
perspective in mind. This implies that (1) a univariate or an incomplete multivariate perspective (e.g. 408 
focusing on extreme excesses and deficiencies) could miss a high yield region (a parachutist adjusting her 409 
fall following only one axis will likely miss the enchanting island and fall into the sea) and (2) changes of 410 
concentrations in a closed system are relative, i.e. increasing the concentration of a component will 411 
inevitably decrease the concentration of at least another one”. 412 
Instead of presenting leaf nutrient, soil chemistry and dosage ranges at high-yield level, as is the 413 

case for common agronomic interpretation methods developed so far, we followed a Markov chain 414 
towards optimal values conditioned to local weather. Those results emphasize the need to monitor 415 
nutrient management locally, regularly updating the data set with both experimental and 416 
observational data. 417 

5. Conclusions 418 
Our investigative models related berry yields to soil and tissue tests, weather indices and, to a 419 

smaller extent, to N-P-K fertilization. Relative P excess in the soil, too high soil pH, and relative B 420 
excess in the tissue mass impacted negatively on berry yield. 421 

We used a Gaussian processes model to predict yield from leaf nutrient composition, soil tests, 422 
fertilizer dosage, and weather conditions. We also elaborated an in-house Markov chain algorithm to 423 
draw a path from current observations to maximal yields along steadily improved leaf nutrient 424 
composition, soil chemistry and fertilizer dosage for given historical weather indices. Such modelling 425 
approach is the first one ever to simultaneously optimize soil and tissue diagnoses and recommend 426 
fertilizer dosage and provide realistic yield expectations at local scale. Obviously, present nutrient 427 
management approaches, based on general concepts of nutrient buildup and maintenance, cation 428 
saturation ratios, or nutrient sufficiency levels (82), should be revisited to better guide economically 429 
and environmentally wise fertilization decisions at local scale. 430 

Unlike tissue concentration ranges and soil fertility classification based on descriptive statistics 431 
and dichotomous decisions, machine learning models can predict yield from specific combinations 432 
of features documented in large data sets. The lowbush blueberry data set could be augmented and 433 
updated regularly to tackle the source of yield variations and implement means to sustain production 434 
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of lowbush blueberry by rebalancing nutrients at local scale. Because growers collect large amounts 435 
of local data such as soil and tissue tests and berry yield and quality data, and because more soil and 436 
climatic data become accessible, the lowbush blueberry data sets can grow rapidly. Moreover, big 437 
data sets can be processed by machine learning and Markov-chain optimization methods to develop 438 
solutions at local scale under various scenarios of climate change. Where sufficient data are available, 439 
critical concentration ranges should be abandoned for diagnostic purposes, and predictive feature-440 
specific approaches be adopted. 441 

Supplementary Materials: Codes and data are available at git.io/JvQOa. 442 
Author Contributions: Conceptualization, Serge-Étienne Parent.; methodology, Serge-Étienne Parent, Jean 443 
Lafond, Maxime Paré, Léon Etienne Parent and Noura Ziadi; code, Serge-Étienne Parent; validation, Serge-444 
Étienne Parent, Jean Lafond, Maxime Paré and Léon Etienne Parent; formal analysis, Serge-Étienne Parent; 445 
investigation, Serge-Étienne Parent; resources, Serge-Étienne Parent, Léon Etienne Parent and Noura Ziadi; data 446 
curation, Serge-Étienne Parent and Léon Etienne Parent; writing—original draft preparation, Serge-Étienne 447 
Parent and Léon Etienne Parent; writing—review and editing, Serge-Étienne Parent, Jean Lafond, Maxime Paré, 448 
Léon Etienne Parent and Noura Ziadi ; visualization, Serge-Étienne Parent; supervision, Serge-Étienne Parent; 449 
project administration, Serge-Étienne Parent; funding acquisition, Jean Lafond and Noura Ziadi. 450 
Funding: This research received no external funding, but data acquisition was funded partly by the Matching 451 
Investment Initiative Program of Agriculture and Agri-Food Canada and by the Union of Quebec Blueberry 452 
Producers. 453 
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 454 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 455 
publish the results. 456 

References 457 

1.  Brazelton, C. World Blueberry Acreage & Production; U.S. Highbush Blueberry Council, 2011; p. 51;. 458 
2.  Gagnon, B.; Simard, R.R.; Lalande, R.; Lafond, J. Improvement of soil properties and fruit yield of native 459 
lowbush blueberry by papermill sludge addition. Canadian Journal of Soil Science 2003, 83, 1–9, doi:10.4141/S02-460 
011. 461 
3.  Lafond, J.; Ziadi, N. Fertilisation azotée et phosphatée dans la production du bleuet nain sauvage au 462 
Québec. Canadian Journal of Plant Science 2011, 91, 535–544, doi:10.4141/cjps10133. 463 
4.  White, S.N.; Boyd, N.S.; Acker, R.C.V. Growing Degree-day Models for Predicting Lowbush Blueberry 464 
(Vaccinium angustifolium Ait.) Ramet Emergence, Tip Dieback, and Flowering in Nova Scotia, Canada. 465 
HortScience 2012, 47, 1014–1021, doi:10.21273/HORTSCI.47.8.1014. 466 
5.  Drummond, F. Reproductive Biology of Wild Blueberry (Vaccinium angustifolium Aiton). Agriculture 2019, 467 
9, 69, doi:10.3390/agriculture9040069. 468 
6.  McKechnie, I.M.; Thomsen, C.J.M.; Sargent, R.D. Forested field edges support a greater diversity of wild 469 
pollinators in lowbush blueberry (Vaccinium angustifolium). Agriculture, Ecosystems & Environment 2017, 237, 470 
154–161, doi:10.1016/j.agee.2016.12.005. 471 
7.  MAPAQ Monographie de l’industrie du bleuet sauvage au Québec; 2016; ISBN 978-2-550-75899-0. 472 
8.  Plouffe, D.; Bourgeois, G.; Beaudry, N.; Chouinard, G.; Choquette, D. CIPRA - Centre informatique de 473 
prévision des ravageurs en agriculture: guide des cultures, 2018; 2018; ISBN 978-0-660-28720-1. 474 
9.  Lafond, J. Fractionnement de la fertilisation azotée dans la production du bleuet nain sauvage et suivi de 475 
l’azote du sol. Canadian Journal of Soil Science 2010, 90, 189–199, doi:10.4141/CJSS09012. 476 
10.  Rayment, A.F. The response of native stands of lowbush blueberry in newfoundland to nitrogen, 477 
phosphorus, and potassium fertilizers. Canadian Journal of Plant Science 1965, 45, 145–152, doi:10.4141/cjps65-023. 478 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2020                   doi:10.20944/preprints202009.0444.v1

https://doi.org/10.20944/preprints202009.0444.v1


 

11.  Smagula, J.M.; Ismail, A.A. Effects of fertilizer application, preceded by terbacil, on growth, leaf nutrient 479 
concentration, and yield of the lowbush blueberry, Vaccinium angustifolium Ait. Can. J. Plant Sci. 1981, 61, 961–480 
964, doi:10.4141/cjps81-141. 481 
12.  Penney, B.G.; Mcrae, K.B. Herbicidal weed control and crop-year NPK fertilization improves lowbush 482 
blueberry (Vaccinium angustifolium Ait.) production. Can. J. Plant Sci. 2000, 80, 351–361, doi:10.4141/P99-080. 483 
13.  Sanderson, K.R.; Eaton, L.J. Wild blueberry response to phosphorus applied to Prince Edward Island soils. 484 
Can. J. Plant Sci. 2008, 88, 363–366, doi:10.4141/CJPS07060. 485 
14.  Smagula, J.M.; Dunham, S. Diammonium Phosphate Corrects Phosphorus Deficiency in Lowbush 486 
Blueberry. Journal of Small Fruit & Viticulture 1996, 3, 183–191, doi:10.1300/J065v03n04_03. 487 
15.  Warman, P.R. The effects of pruning, fertilizers, and organic amendments on lowbush blueberry 488 
production. Plant Soil 1987, 101, 67–72, doi:10.1007/BF02371032. 489 
16.  Starast, M.; Karp, K.; Vool, E.; Paal, T.; Tairi, A. Effect of NPK fertilization and elemental sulphur on growth 490 
and yield of lowbush blueberry. Agricultural and food science 2007. 491 
17.  Eaton, L.J.; Sanderson, K.R.; Fillmore, S. a. E. Comparison of consecutive and alternate fertilizer 492 
applications in wild blueberry production. Can. J. Plant Sci. 2009, 89, 93–98, doi:10.4141/CJPS08068. 493 
18.  Yarborough, D.E.; Smagula, J.M. Fertilizing with Nitrogen and Phosphorus; University of Maine, 2013; 494 
19.  Saleem, S.R.; Zaman, Q.U.; Schumann, A.W.; Madani, A.; Percival, D.C.; Farooque, A.A. Impact of Variable 495 
Rate Fertilization on Wild Blueberry Plant Growth and Fruit Yield. Applied engineering in agriculture 2013. 496 
20.  Sanderson, K.R.; Carter, M.R.; Ivany, J.A. Effects of gypsum on yield and nutrient status of native lowbush 497 
blueberry. Can. J. Plant Sci. 1996, 76, 361–366, doi:10.4141/cjps96-065. 498 
21.  Munson, R.D.; Nelson, W.L. Principles and practices in plant analysis. In Soil testing and plant analysis; 499 
Westerman, R.L., Ed.; Soil Science Society of America: Madison, Wisconsin, 1990; pp. 359–387. 500 
22.  Beaufils, E.R. Diagnosis and recommendation integrated system (DRIS). Soil science bulletin 1973, 1–132. 501 
23.  Parent, L.E.; Dafir, M. A Theoretical Concept of Compositional Nutrient Diagnosis. J. Amer. Soc. Hort. Sci. 502 
1992, 117, 239–242. 503 
24.  Montañés, L.; Heras, L.; Abadía, J.; Sanz, M. Plant analysis interpretation based on a new index: Deviation 504 
from optimum percentage (DOP). Journal of Plant Nutrition 1993, 16, 1289–1308, doi:10.1080/01904169309364613. 505 
25.  Sauz, M.; Heras, L.; Montañés, L. Relationships between yield and leaf nutrient contents in peach trees: 506 
Early nutritional status diagnosis. Journal of Plant Nutrition 1992, 15, 1457–1466, doi:10.1080/01904169209364411. 507 
26.  Lockhart, C.L.; Langille, W.M. The mineral content of lowbush blueberry. Can Plant Dis Surv 1962, 124–128. 508 
27.  Trevett, M.F. A second approximation of leaf analysis standards for lowbush blueberries. Maine Agric. Exp. 509 
Stn. Res. Life Sci. 1972, 15–16. 510 
28.  Bouchard, A.R.; Gagnon, M.J. Nutrient status of the lowbush blueberry, Lac-Saint-Jean area, Québec, 511 
Canada. Communications in Soil Science and Plant Analysis 1987, 18, 675–686, doi:10.1080/00103628709367850. 512 
29.  Lafond, J. Optimum leaf nutrient concentrations of wild lowbush blueberry in Quebec. Canadian Journal of 513 
Plant Science 2009, 89, 341–347, doi:10.4141/CJPS08142. 514 
30.  Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future 515 
Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 2018, 5, doi:10.1038/sdata.2018.214. 516 
31.  Raymond, R.; Mailloux, A.; Dubé, A. Pédologie de la région du Lac-Saint-Jean; Ministère de l’Agriculture et de 517 
la Colonisation du Québec, Division des sols, 1965; p. 159;. 518 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2020                   doi:10.20944/preprints202009.0444.v1

https://doi.org/10.20944/preprints202009.0444.v1


 

32.  Marty, C.; Lévesque, J.-A.; Bradley, R.L.; Lafond, J.; Paré, M.C. Lowbush blueberry fruit yield and growth 519 
response to inorganic and organic N-fertilization when competing with two common weed species. PLoS ONE 520 
2019, 14, e0226619, doi:10.1371/journal.pone.0226619. 521 
33.  MAPAQ Trousse d’information et de démarrage en production du bleuet nain semi-cultivé 2000. 522 
34.  Townsend, L.R.; Hall, L.V. Trends in nutrient levels of lowbush blueberry leaves during four consecutive 523 
years of sampling. Naturaliste Can. 1970, 416–466. 524 
35.  Isaac, R.A.; Johnson, W.C. Determination of Total Nitrogen in Plant Tissue, Using a Block Digestor. J AOAC 525 
Int 1976, 59, 98–100, doi:10.1093/jaoac/59.1.98. 526 
36.  Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil 527 
Science and Plant Analysis 1984, 15, 1409–1416, doi:10.1080/00103628409367568. 528 
37.  LaZerte, S.; Albers, S.; Brown, N. weathercan: Download Weather Data from the Environment and Climate Change 529 
Canada Website; 2020; 530 
38.  Garcia, P.L. Etude de la résistance au gel des tiges et des bourgeons de bleuets sauvages nains (Vaccinium 531 
Sp.), Université du Québec à Chicoutimi: Chicoutimi, Québec, Canada, 2019. 532 
39.  Fournier, M.-P.; Paré, M.C.; Buttò, V.; Delagrange, S.; Lafond, J.; Deslauriers, A. How plant allometry 533 
influences bud phenology and fruit yield in two Vaccinium species. Ann Bot, doi:10.1093/aob/mcaa083. 534 
40.  Burgher-Maclellan, K.; Mackenzie, K. An Overview of RAPD Analysis to Estimate Genetic Relationships 535 
in Lowbush Blueberry. Small Fruits Review 2004, 3, 295–305, doi:10.1300/J301v03n03_06. 536 
41.  Parent, S.-É. Why we should use balances and machine learning to diagnose ionomes. Authorea preprint 537 
2020, doi:https://doi.org/10.22541/au.157954751.17355951. 538 
42.  Parent, L.E.; Parent, S.-É.; Hébert-Gentile, V.; Naess, K.; Lapointe, L. Mineral balance plasticity of 539 
cloudberry (Rubus chamaemorus) in Quebec-Labrador. American Journal of Plant Sciences 2013, 4, 1509–1520, 540 
doi:http://dx.doi.org/10.4236/ajps.2013.47183. 541 
43.  Parent, S.-É.; Parent, L.E.; Rozane, D.-E.; Hernandes, A.; Natale, W. Nutrient Balance as Paradigm of Soil 542 
and Plant Chemometrics. In Soil fertility; Issaka, R.N., Ed.; Intech, 2012; pp. 83–114. 543 
44.  Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric logratio 544 
transformations for compositional data analysis. Mathematical Geology 2003, 35, 279–300, 545 
doi:10.1023/A:1023818214614. 546 
45.  Aitchison, J.; Greenacre, M. Biplots of compositional data. Journal of the Royal Statistical Society Series C 547 
Applied Statistics 2002, 51, 375–392. 548 
46.  R Core Team R: a language and environment for statistical computing; R Foundation for Statistical Computing: 549 
Vienna, Austria, 2019; 550 
47.  Parent, S.-É.; Parent, L.E.; Egozcue, J.J.; Rozane, D.-E.; Hernandes, A.; Lapointe, L.; Hébert-Gentile, V.; 551 
Naess, K.; Marchand, S.; Lafond, J.; et al. The plant ionome revisited by the nutrient balance concept. Frontiers in 552 
Plant Science 2013, 4, 1–10, doi:10.3389/fpls.2013.00039. 553 
48.  Boogaart, K.G. van den; Tolosana-Delgado, R.; Bren, M. compositions: Compositional Data Analysis; 2020; 554 
49.  Gabry, J.; Ali, I.; Brilleman, S.; Novik  (R/stan_jm.R), J.B.; AstraZeneca (R/stan_jm.R); University, T. of C.; 555 
Wood  (R/stan_gamm4.R), S.; Team  (R/stan_aov.R), R.C.D.; Bates  (R/pp_data.R), D.; Maechler  556 
(R/pp_data.R), M.; et al. rstanarm: Bayesian Applied Regression Modeling via Stan; 2020; 557 
50.  Karatzoglou, A.; Smola, A.; Hornik, K.; Australia (NICTA), N.I.; Maniscalco, M.A.; Teo, C.H. kernlab: Kernel-558 
Based Machine Learning Lab; 2019; 559 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2020                   doi:10.20944/preprints202009.0444.v1

https://doi.org/10.20944/preprints202009.0444.v1


 

51.  Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; 560 
R Core Team; et al. caret: Classification and Regression Training; 2020; 561 
52.  R: Topographic Information on Auckland’s Maunga Whau Volcano Available online: https://stat.ethz.ch/R-562 
manual/R-devel/library/datasets/html/volcano.html (accessed on Apr 1, 2020). 563 
53.  Eaton, L.J.; Nams, V.O. Second cropping of wild blueberries - Effects of management practices. Canadian 564 
Journal of Plant Science 2006, 86, 1189–1195, doi:10.4141/P05-134. 565 
54.  Sanderson, K.; Jordan, C.; Fillmore, S. Leaf Nutrient Ranges for Wild Blueberries in Prince Edward Island. 566 
International Journal of Fruit Science 2008, 8, 63–68, doi:10.1080/15538360802367588. 567 
55.  Hepler, P.R.; Yarborough, D.E. Natural Variability in Yield of Lowbush Blueberries. HortScience 1991, 26, 568 
245–246, doi:10.21273/HORTSCI.26.3.245. 569 
56.  Keppel, G.; Kreft, H. Integration and synthesis of quantitative data: Alexander von Humboldt’s renewed 570 
relevance in modern biogeography and ecology. Frontiers of Biogeography 2019, 11, doi:10.21425/F5FBG43187. 571 
57.  Rowland, L.J.; Ogden, E.L.; Bell, D.J.; Drummond, F.A. Pollen-mediated gene flow in managed fields of 572 
lowbush blueberry. Can. J. Plant Sci. 2019, 100, 95–102, doi:10.1139/cjps-2019-0109. 573 
58.  Hall, I.V.; Aalders, L.E.; McRAE, K.B. Lowbush blueberry production in eastern Canada as related to certain 574 
weather data. Canadian Journal of Plant Science 1982, 62, 809–812, doi:10.4141/cjps82-120. 575 
59.  Glass, V.M.; Percival, D.C.; Proctor, J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) 576 
to drought stress. I. Soil water and yield component analysis. Can. J. Plant Sci. 2005, 85, 911–917, doi:10.4141/P03-577 
027. 578 
60.  Parent, L.E.; Rozane, D.E.; Deus, J.A.L. de; Natale, W. Chapter 12 - Diagnosis of nutrient composition in 579 
fruit crops: Major developments. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier, 2020; pp. 145–156 ISBN 580 
978-0-12-818732-6. 581 
61.  Chapin III, F.S. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 1980, 11, 233–582 
260. 583 
62.  Tagliavini, M.; Zavalloni, C.; Rombolà, A.D.; Quartieri, M.; Malaguti, D.; Mazzanti, F.; Millard, P.; 584 
Marangoni, B. Mineral nutrient partitioning to fruits of decidious trees. Acta Hortic. 2000, 131–140, 585 
doi:10.17660/ActaHortic.2000.512.13. 586 
63.  Sandler, H.A.; DeMoranville, C.J. Cranberry Production Guide - A  Guide  for  Massachusetts; 2015; 587 
64.  Penney, B.G.; McRae, K.B.; Bishop, G.A. Second-crop N fertilization improves lowbush blueberry 588 
(Vaccinium angustifolium Ait.) production. Can. J. Plant Sci. 2003, 83, 149–155, doi:10.4141/P02-057. 589 
65.  Nestby, R.; Krogstad, T.; Joner, E.; Vohník, M. The effect of NP fertilization on European blueberry ( 590 
Vaccinium myrtillus L.) development on cultivated land in mid-Norway. Journal of Berry Research 2014, 4, 147–591 
157, doi:10.3233/JBR-140077. 592 
66.  Maqbool, R.; Percival, D.; Zaman, Q.; Astatkie, T.; Adl, S.; Buszard, D. Improved Growth and Harvestable 593 
Yield through Optimization of Fertilizer Rates of Soil-applied Nitrogen, Phosphorus, and Potassium in Wild 594 
Blueberry (Vaccinium angustifolium Ait.). HortScience 2016, 51, 1092–1097, doi:10.21273/HORTSCI08204-16. 595 
67.  Lafond, J. Fertilization in Wild Blueberry Production 2000. 596 
68.  Ochmian, I.; Oszmiański, J.; Jaśkiewicz, B.; Szczepanek, M. Soil and highbush blueberry responses to 597 
fertilization with urea phosphate. Folia Horticulturae 2018, 30, 295–305, doi:10.2478/fhort-2018-0025. 598 
69.  Lafond, J.; Ziadi, N. Biodisponibilité de l’azote et du phosphore dans les sols de bleuetières du Québec. 599 
Canadian Journal of Soil Science 2013, 93, 33–44, doi:10.4141/cjss2011-106. 600 
70.  Lafond, J.; Ziadi, N. Phosphorus mobility in acidic wild blueberry soils in Québec, Canada. 2018, 9. 601 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2020                   doi:10.20944/preprints202009.0444.v1

https://doi.org/10.20944/preprints202009.0444.v1


 

71.  Nowaki, R.H.D.; Parent, S.-É.; Cecílio Filho, A.B.; Rozane, D.E.; Meneses, N.B.; Silva, J.A. dos S. da; Natale, 602 
W.; Parent, L.E. Phosphorus Over-Fertilization and Nutrient Misbalance of Irrigated Tomato Crops in Brazil. 603 
Frontiers in Plant Science 2017, 8, doi:10.3389/fpls.2017.00825. 604 
72.  Smagula, J.M. Evaluation of the leaf boron standard for Vaccinium angustifolium Ait. Acta Horticulturae 605 
2006, 365–370, doi:10.17660/ActaHortic.2006.715.54. 606 
73.  Eaton, L.J.; Ju, H.-Y.; Sanderson, K.R. Effects of summer and fall applications of foliar boron on fruit bud 607 
winter injury in wild blueberry (Vaccinium angustifolium Ait.). Can. J. Plant Sci. 2007, 87, 923–925, 608 
doi:10.4141/P06-094. 609 
74.  Rout, G.R.; Samantaray, S.; Das, P. Aluminium toxicity in plants: a review. Agronomie 2001, 21, 3–21, 610 
doi:10.1051/agro:2001105. 611 
75.  Van Lierop, W. Soil pH and lime requirement determination. In Soil testing and plant analysis; America Book 612 
Series; Madison, WI, 1990; Vol. 3, pp. 73–126. 613 
76.  Dong, D.; Xie, Z.; Du, Y.; Liu, C.; Wang, S. Influence of soil ph on aluminum availability in the soil and 614 
aluminum in tea leaves. Communications in Soil Science and Plant Analysis 1999, 30, 873–883, 615 
doi:10.1080/00103629909370252. 616 
77.  Townsend, L.R.; Hall, I.V. Chemical composition of lowbush blueberry cultivars. Proc. Am. Soc. Hort. Sci. 617 
1968, 248–253. 618 
78.  Parent, S.-É.; Parent, L.E.; Rozane, D.E.; Natale, W. Plant ionome diagnosis using sound balances: case 619 
study with mango (Mangifera Indica). Frontiers in plant science 2013, 4, 449, doi:10.3389/fpls.2013.00449. 620 
79.  Modesto, V.C.; Parent, S.-É.; Natale, W.; Parent, L.E. Foliar Nutrient Balance Standards for Maize ( Zea 621 
mays L .) at High-Yield Level. American Journal of Plant Sciences 2014, 5, 497–507, doi:10.4236/ajps.2014.54064. 622 
80.  Parent, S.-É.; Barlow, P.; Parent, L.E. Nutrient Balances of New Zealand Kiwifruit (Actinidia deliciosa cv. 623 
Hayward) at High Yield Level. Communications in Soil Science and Plant Analysis 2015, 46, 256–271, 624 
doi:10.1080/00103624.2014.989031. 625 
81.  Coulibali, Z.; Cambouris, A.N.; Parent, S.-É. Cultivar-specific nutritional status of potato (Solanum 626 
tuberosum L.) crops. PLOS ONE 2020, 15, e0230458, doi:10.1371/journal.pone.0230458. 627 
82.  Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Third edition.; Soil Science Society of America: 628 
Madison, Wis., USA, 1990; ISBN 978-0-89118-793-6. 629 
 630 

 631 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2020                   doi:10.20944/preprints202009.0444.v1

https://doi.org/10.20944/preprints202009.0444.v1

