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8 Abstract: Recently, the conformable derivative and its properties have been introduced. In this

9 paper, we propose and prove some new results on conformable Boundary Value Problems. First,
10 we introducea conformable version of classical Sturm’s separation, and comparison theorems. For
11 a conformable Sturm-Liouville problem, Green's function is constructed, and its properties are
12 also studied. In addition, we propose the applicability of the Green’s Function in solving
13 conformable inhomogeneous linear differential equations with homogeneous boundary
14 conditions, whose associated homogeneous boundary value problem has only trivial solution.
15 Finally, we prove the generalized Hyers-Ulam stability of the conformable inhomogeneous
16 boundary value problem.
17 Keywords: Conformable fractional derivative; Conformable fractional integral; Conformable
18 fractional differential equations; Sturm’s Theorems; Green'’s Function
19

20 1. Introduction

21 The idea of fractional derivative was first raised by L'Hospital in 1695. Since then, several
22 related new definitions have been proposed. The most common ones are Riemann-Liouville and
23 Caputo definitions. For more information about the most known fractional definitions, we refer to
24 [1,2]. A new definition of fractional derivativeand fractionalintegral has been recently proposed by
25  Khalil et al. in [3]. As a result, several important elements of the mathematical analysis of functions
26 of a real variable have been formulated such as: chain rule, fractional power series expansion and
27 fractional integration by parts formulas, Rolle's Theorem, Mean Value Theorem, [3-5]. The
28  conformable partial derivative of the order a € (0.1] of the real-valued functions of several
29  variables and conformable gradient vector are also defined. In addition, a conformable version of
30  Clairaut’s Theorem for partial derivative is investigated in [6]. In [7], conformable Jacobian matrix
31 is defined, and chain rule for multivariable conformable derivative is proposed. In [8], the
32 conformable version of Euler's Theorem on homogeneous is introduced. Furthermore, in a short
33  time, various research studies have been conducted on the theory and applications of fractional
34  differential equations in the context of thisnewly introduced fractional derivative, [9-18].

35 This paper is organized as follows: In Section 2, the main concepts of conformable fractional
36  calculus are presented. In Section 3, we proved a conformable version of the conformable second -
37 order Sturm-Picone identity. From this result, we establish the conformable Sturm-Liouville
38  comparison and separation theorems. In Section 4, for a conformable Sturm-Liouville problem, the
39  Green function is constructed, and its properties are studied. At the end, we prove the generalized
40 Hyers-Ulam stability of conformable inhomogeneous linear differential equations with
41  homogeneous boundary conditions..

42 2. Basic definitions and tools

43  Definition 1. Given a function f:[0,00) > R. Then, the conformable fractional derivative of order a, [3], is
44 defined by
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(TNH® = lim M .

45  forall t>0, 0 < a <1.If f is a-differentiable in some (0,a), a > 0, and lim+(Taf) () exists, then it is
t-0
46  defined as

(1,10 = Jim, (1,N®, )

47  Theorem 1. [3]. If a function f:[0,00) — R is a-differentiable at t, > 0, 0 < a < 1, then f is continuous at
48  t,.

49  Theorem?2. [3].Let 0 < a < 1, and let f, g be a-differentiable at a point t > 0. Then

50 (i) T, (af + bg) =a (T, f) +b(T,g),Va,b €R.
51 (i) T,(tP) = ptP~% Vp €R.
52 (i) T, =0, forall constant functions f(t) =4
53 (iv) T,(fg) = f(T,9) + g(T,f).
I\ _ 9Taf) —f(Ta9)
54 W T,(L) = LR,
55 (vi) If, in addition, f is differentiable, then (T,f)(t) = tl—“‘;—’;(t).
56 The conformable fractional derivative of certain functions for the above definition is given as:
57 (i) T,(1) =0,
58 (ii) T, (sin(at)) = at'*cos(at),
59 (iii) T,(cos(at)) = —at*~*sin(at),
60 (iv) T,(e%) = ae*, a €R.

61  Definition 2. The (left) conformable derivative starting from a of a given function f:la, ) > R of order
62 0 < a <1, [4],is defined by

Ft+et-a)1=2)-r ()

&

(TN = lim 3)

63
64  When a =0, it is written as (T, f)(©). If f is a-differentiable in some (a,b), then the following can be
65  defined as:

(12f)(a) = Jim, (2@, (4)

66  Theorem 3 (Chain Rule). [4]. Assume f,g: (a, ) > R be (left) a-differentiable functions, where 0 < a <
67 1. By letting h(t) = f(g(©)), h(t) is a-differentiable for all t +a and g(t) #0, therefore, we have the
68  following:

(2@ = ([T2H®)  TLP®.(gE)* Y, ()
69 If t = a, then
T2h)(a) = Jim T2H)(g®) - (Te®. (g (£))* Y, 6)

70  Theorem 4 (Rolle’s Theorem). [3]. Let a > 0, a € (0,1] and f:[a,o0) > be a given function that satisfies
71 the following:
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- f is continuous on [a, bl.
- f is a —differentiable on (a,b).

- f(@) = f(b).
Then, there exists ¢ € (a,b), such that (T, f)(c)=0.
Corollary 1. Let I < [0.0), a € (0,1] and f:1 > R be a given function that satisfies

- f is a —differentiable on I.
- fl@ = f(b) = 0 for certain ¢ € I.

Then, there exists ¢ € (a, b), such that (T, f)(c)=0.

Theorem 5. (Mean Value Theorem). [3]. Let a > 0, a € (0,1] and f:[a,0) > R be a given function that
satisfies

- f is continuous in [a b].
- fis a-differentiable on (a,b).

Then, exists ¢ € (a,b) such that

(T =552, 7)

a a

Theorem 6. [5].Let a > 0, « € (0,1] and f: [a, ) — R be a given function that satisfies

- f is continuous in [a, b].
- fis a-differentiable on (a,b).

If (T,f)(c) =0 forall t € (a,b), then f is a constant on [a, b].

Corollary 7. [5]. Let a > 0, a € (0,1] and F, G: [a,) — R be functions such that (T,F)(t) = (T,G)(®) for
all t € (a, b). Then, there exists a constant C such that

F@®) =6@® +c, 8)

The following definition is the a-fractional integral of a function f startingfroma > 0:

Definition 3. I$(f)(t) = f;;l(—fi-dx, where the integral is the usual Riemann improper integral, and a €
0,11, 2].

According to the above definition, the following can be shown:
Theorem 8. T213(F) () = f(t), for t > a, where f is any continuous function in the domain of I.
Lemma?9. Let f:(a,b) - R be differentiable and a € (0, 1]. Then, for all a > 0, we have, [3],

18TE(O@) = f(t) - f(a), )

Finally, we give the definition of non-conformable a-Wronskian, which is necessary in the next
section.

Definition 4. Let x and y be given conformable a-differentiable functions on [a,b] with a >0 and a €
(0,1]. We set the following:

d0i:10.20944/preprints202009.0440.v1


https://doi.org/10.20944/preprints202009.0440.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2020 d0i:10.20944/preprints202009.0440.v1

40f16
« _| *® y@®)
e A IR 10
101  3.Sturm’s theorems
102 In this section, we consider the scalar fractional differential equation of second order of the
103  following form:
T,T,x® + pOT,x(t) + q®x® =0, (11)

104  with continuous functions p and ¢, and « € (0,1]. Traditionally, from [19], two functions x and y
105 that are continuous on [a,b] for some 0 < a < b, will be called linearly dependent if there exist
106  c,,c, € R such that lc;| + lc;| > 0 and ¢;x(6) +c,y() = 0for all ¢ € [a, b]. In the other case, they are
107  linearly independent.

108 Remark 1. We can write

@,

W, (O = e T W () (1), (2)

109 for two solutions x and y of [5] and some t, € (a,b). In fact, we apply the operator T, on
110  W4(x,y)(®) to obtain

111 T,(W* (G, ©®) = T,(x OT,y®) — y(O)T,x®))
112 =T, x®OT,y®) + xO)T,T,yt) — T,y®) T,x(®) — yO)T,T,x(t)

113  However, x and y satisfies (11). Hence, we have:

114 T, T,x(t) = —p(t)T,x(t) — q@®)x (@)
115 and
116 T,T,y(t) = —p(O) T,y () — q@®) y(©)

117 Therefore, we get

118 T,(We(,y) ®) = —(x®O T,y®) — y©OT,x®) )p@) = —(W*(x, ) ©® )p(t)
119 Thus

T, (WG, @)
120 W) © —p(t)

121  Consequently, wehave

LB

I
122 We (e, 1) () = e tox @ (x, ) (¢,)

123 This completes the proof. o

124 Similar to the classical case, by using the above formula, we can immediately obtain the
125  following equivalent condition of linear independence:

126 Theorem 10. Two solutions x and y of equation (11) defined on la, bl for some 0 < a < b are linearly
127 independent if and only if W*(x,y)(t) # 0 forall t € [a,b].
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128 Now, we propose a conformable version of three classical results, the second order Sturm-
129  Picone identity and Sturm's comparison, and separation theorems, [20].
130 Let us now introduce the non-conformableself-adjoint Sturm-Liouville equation as follows:
=T, (p, OT,x()) +p, D x®) =0, (13)
~T,(q,OT,y(®) + q®y(®) =0, (14)

131  where py, 11,90, q1,TuP1, T,q, are continuous on some closed interval I c [0, +00), p; > 0,q; > 0 on [
132 and a € (0,1].

133 Theorem 11 (Conformable Picone Identity). If x(t),y(t) and p, (O T,x(t),q, DT,y () are a-
134 differentiable fort € I and y(t) # 0in I, then we obtain

135 (xg § (p, ©y® T, x() — ql(t)x(t)Tay(t))>
( (t))
136 =xOT,(p, OTx®)) ———=T,(q; OT,y® ) + (p, ® — q,®)(T, x(t))
137 1 g, (Tax(t) x?)) ,,,y(t)>
138 (15)

139  Proof. This arises from the straightforward a-differentiation. o

140  Theorem 12 (Conformable Sturm’s Comparison Theorem). Let 0 < a < b be two consecutive zeros of a
141 nontrivial solution x(t) of equation (3.3). Suppose that

142 (i) 0<q,@® <p, @,
143 and
144 (i) q0@®) < p,(®

145  forall t € la,b]. Then, every solution y(t) of equation (14) has at least one zero in the closed interval [a, bl.

146  Proof. If x(t) and y(¢) are solutions of (13) and (14), respectively, and y(¢) # 0 for all t € [a, b], then
147  the conformable Picone identity (15) yields on substitution of (131 .4) as follows:

148 (xg (p, ©y® T, x@®) — q,®Ox@)T, y(t)))
2
149 = (p,@® — o) x®) + (p,® — ¢, D) (T, x@®)" + ¢, @ (T x(®) — 8 ay(t))

150 Integrating over [a, b]; therefore, we have (see Lemma 9),

b 2 2 x(®) ’ 1
151 Po(t) —qo) )(x(t)) + (p, (&) — q, () ) Tpx(t)) +q, ()| Tpx(t) ——=T,y(t —dt
(po @® ®)(x®) + (p,® ®)(T,x®) ® ® o ® e

[x( t)

152 O] (0, ®©y©O T x@® — q,®Ox () Tay(t))]

153 (16)
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154  The right-hand side of equation (16) evaluates to zero by assuming x(a) = x(b) = 0, and y(a) # 0,
155  y(b) # 0. Since q,(t) > 0 in [a, b], the third term of the integrand is nonnegative over [a, b]. Hence,
156 we must have either

x(t)

157 (i) T,x(t) — o) v(®) = 0in [a, b]
158 or
159 @ 1 ® - 3,@)x®) + (1 © - 4, 0)(Tx©) | T de < 0

160 However, Case (ii) gives an immediate contradiction since p, (t) — q,(t) > 0 and p, (t) — q,(t) =0
161 by assumption.In Case (i), we are also led toa contradiction since (i) implies

162

YO Tex()-xBOTay(®) (x(t)
—la

O©) E) =0, or

163 x(t) = ky(t) for all t € [a,b], for some k # 0, but y(a) = y(b) = 0 which is a contrary to our
164  assumption.o

165  Theorem 13 (Conformable Sturm’s Separation Theorem). Let 0 < a < b be two consecutive zeros of a
166  nontrivial solution x(t) of equation (13). Let y(t) be any other solution of equation (13) which is linearly
167  independent of x(t). Then, y(t) has exactly one zero of the interval (a,b). In other words, the zeros of any
168  two linearly independent solutions of (13) are interlaced.

169  Proof. On the contrary, suppose that y(t) # 0 for all ¢ € (a,b). Since x(¢t) and y(¢) are linearly
170  independent, it follows that y(a) # 0; otherwise, we would have

x(a)  y(a) | _

171 we(x,y) (@) = Tx@ Ty@)l =

172 which implies that the conformable Wronskian, W*(x, y) (t), is zero for all t and that x(t) and y(t)
173 are linearly dependent. For the same reason, we know that y(b) # 0, but when q,(t) = p,(t) and
174  q,(®) = p,(©), equation (16) becomes

t=b

b 2
175 fa p, (® (Tax(t) - %Tay(t)> tli_adt = %pl OO Tx@®) —x(OT,y®)

t=a

176  Sincey(a) # 0 and y(b) # 0, the right-hand side evaluates to zero. Since p, (t) > 0 in [a,b], it
177  follows that T,x(t) — %Tay(t) =0,or

178 welx,y) @) = yOT,x®) —x@®T,yt) =0

179  for all ¢t € (a,b). Hence, x(t) and y(¢t) are linearly dependent on (a, b) which is a contrary to our
180  assumption.

181 Remark 2.

182 @) Conformable Sturm’s Comparison Theorem guarantees the existence of at least one
183 Zero.

184 (ii) The assumption q,(t) < p,(t) cannot be dropped. Consider the equation on t = 0,
185 T,T,xt)+x®) =0 (p,(®) = 1,p,(t) = —1) and T,T,y(t) —y® =0 (q,@®) =1,q,®) =
186 1) and let x(t) and y(t) be their non-trivial solutions, respectively. Between any two
187 zeros of x(t), y(t) does not admit a zero.

188 (iii) Consider the equation on t=>0, T,T,x(t)+x&) =0 (p,(&) =1,p,(t) = -1 and

a

189 T,Ty(0) +4y® =0 (q,® =1,¢,® =4, and let x@® =sin(5) and y(© =
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a
190 sin (2 %) be their non-trivial solutions, respectively. However, there is no zero of x(t)

191 between two consecutive zeros of y (t).

192  Remark 3. An important application of Sturm’s Comparison Theorem is to provide a good
193  understanding of the zero set on non-trivial solutions of Conformable Bessel’s Equation. The
194  Conformable Bessel’s Equation is given by

t* T, T,y () + at®T,y(®) + a?(t?* — p2y(t) =0, (17)

195  where a € (0,1] and p > 0. Clearly, if @ = 0, the above equation is just the classical Bessel Equation,
196 [19]. For more information about the conformable Bessel’s function in the solution of wave
197  equation, werefer to [21].

198  For t > 0, making a change variable y = <, the equation (17) transforms into
¢z

1-4p®
T,T,y® +a* (1 +535) v(® = 0, (18)
199  (To obtainthe aboveequation, we start N-differentiating the equation tzy = v)

200 Casel:p> i In this case, compare (18) with

201 T,T,y@® + a?y®) =0

1
202  whichhasa solution sin(¢t*) with zerosat t = (n)«, n € N. Therefore, a solution of (3.8) has atleast

i 1
203  one zero on each of the open interval (((n - D)%, ()« ), n €N.

204 Case2:0<p< % In this case, compare (18) with
205 T, T,y®) + a’y(®) = 0

206 and conclude that between any two consecutives zeros, a and b of v(t), there exists one zero

1
207 of sin(t*) . Thus, we have a < (nm)a < b for some n € N.
208 4. The study of conformable Green’s Functions

209  4.1. Conformable Green’s Functions

210 In this section, we consider the conformable Sturm- Liouville system

T, T,x1®) + (1p®) —q@®))x® =0 (19a)

a,x(a) + a,T,x(a@) =0 (19b) ¢, (19)
b,x(b) + b,T,x(b) = 0 (19¢)
211 la; | + la,| # 0,1b;1 + |b,| # 0

212 with continuous functions p(t), ¢(t) and p(t) on [a,b] for some 0 < a < b, such that p(t) =0 and
213 p(t) > 0for allt € [a,b] and a € (0,1].

214  Definition 5. Let Q denote the square Q = la, bl x [a, bl for some 0 < a <b, in the te-plane. A function
215 G%(¢t,&) defined in Q is called conformable Green's Function of Sturm-Liouville system (19), if it has the
216 following properties:

217 (i) The function G*(t, ) is continuous in Q.
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218 (ii) Let € € (a,b) be fixed. Then, G*(t,&) has conformable partial derivatives of left and right with
219 respect to variable t, for t = €, and it is verified as follows:

0” 0” 1

— ra(st __— ra(e- —
220 Pl (e*,8) Pyl (e7,8) )
221 (iii)  Let € € a,b] be fixed. Then, G*(t, &) has continuous conformable partial derivatives of first and
222 second order with respect to variable t, if t # &, and it is verified as follows:

aa

223 m(p(t)TaG“(t, &)+ (1p® - q@®)6%(t, &) =0
224 (iv) Let € € (a,b) be fixed. Then, G*(¢, €) satisfies the boundary conditions (19b)and (19¢).

225 Theorem 14. Let x,(t) and x,(t) be two solutions of (19a) that verify condition (19b). Then, x,(t) and
226 x,(t) are linearly dependent.

227  Proof.Since |a,| + la,| # 0, it follows from

228 a;x, (@) + a,T,x,(@ =0

229 a,x,(@ + a,T,x,(@ =0

230  that

231 wete, @ = | 1@ - 2@ | _

Taxl (a) Taxz (a) B
232 Therefore, x,(t) and x,(t) arelinearly dependent. o

233  Theorem 15. Let x,(t) and x,(t) be two solutions of (19a) that verify condition (19c). Then, x,(t) and x,(t)
234 are linearly dependent.

235  Proof. It is analogous to the proof of theabove theorem. o

236  Theorem 16. System (19) has no Green’s Function if A is an eigenvalue.

237  Proof. Let x,(t) be an eigenfunction of system (19). Let x,(t) be a solution of (19a) linearly
238  independent of x,(t). From Theorems 14 and 15, it turns out that x,(t) does not verify the
239  conditions (19b) and (19¢).

240  According to the condition (iii) of G*(¢, £), the said function is a solution of (19a) in the intervals a <
241 t<eande <t < b,soithastheform

A, Dx, O+ A4, Dx,) a<st<e

242 G*(t,e) = {Bl(g)xl(t) +B,(&x,(t) e<t<bh

243 Let us now express that G*(¢, £) meets the condition (iv)

244 a, (4, x, (@ + A, )x, (@) + a,(4, OTux (@ + 4, T,x,(@) =0
245 by(B,(&x, () + B,(&) x,()) + b,(B,()T,x,(b) + B,()T,x,(b)) = 0

246  Since x,(t) meets both conditions (19b) and (19¢), theabove equalities are reduced to

247 A, (&) (ayx,(a@) + a,Tyx,(@) =0
248 B, (&) (byx,(0) +b,Tyx,(b)) = 0

249  On thecontrary, wehave

250 a,x,(@ +a,T,x,(a # 0
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251 b,x,(b) +b,T,x,(b) # 0
252 so that
253 A,(e) =0,a<t<e
254 B,(e) =0,e <t<bh

255 From here, wehave

A Dx, () a<st<e

256 Ge(t,e) = {Bl(e)xl(t) e<t<h

257 Since G2 (¢, £) is a continuous function, we obtain

258 Jim Go(t, &) =A,(Dx,(e) = Jim G%(t, &) =B,(e)x,(e)
259 so that
260 A, (&) = B, (), a<e<b

261 From here, it follows that

a a

d 5}
— ra(e+  ra(s- —
262 6t“G (e*,e) at“G (e7,e) =0

263  which contradicts condition (ii). O

264  Theorem17. System (19) has one, and only one, Green's Function if A is not an eigenvalue.
265  Proof.Let x,(t) and x,(t) twosolutions of (19) such that

266 x,(@) = a,, Tpx,(@) = —ay, x,(b) = b, Tyx,(b) = —b,

267  Since la, | + la,l # 0,1b,1 + |b,] # 0, x,(¢) and x,(¢t) are not null, they are also satisfying conditions
268  (19b) and (19c), respectively.
269  These solutions are linearly independent, since otherwiseit would be

270 x, ) = ux,®,u#0
271 Therefore, we have
272 byx,(b) + byTyx,(b) = pulb,x,(b) + b,T,x,(B)] = 0

273  As a result, x;(t) would comply with (19b) and (19¢). This is not possible since x,(t) is not an
274 eigenfunction.
275 The reasoningas in the proof of Theorem 16, we haveto

A Dx, O+ 4, Dx,®) a<t<e

276 Ge(t,e) = {Bl(e)xl(t) +B,&x,(t) e<t<b

277  Expressing that G% (t, £) meets the condition (iv), and it turns out that

278 a, (4, x, (@ + A4, ©x, (@) + ay (4, @ T,x, (@) + 4,() T,x,(@) = 0
279 by (B, (&x, () + B, (&) x,(1) + b, (B, ()T,x,(B) + B,(e)T,x,(b)) = 0

280 thatisreduced to

281 A, (&) (ayx,(a@) + a,Tyx,(@) =0
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282 B, (&) (byx,(b) + b,T,x,(b)) = 0
283  from where it follows, remembering that x,(t) and x,(t) are not eigenfunctions and, therefore,
284 a,x,(@ +a,T,x,(a) #0, byx;(b) + b,T,x,(b) # 0,

A, (&) =0

285 B,(e) = 0

}a<e<b

286  Now, by applying conditions (i) and (ii), it turns out that

287 A, (@)x, &)+ B,(&x,(e)=0
1

288 A, (@T,ux,(€) + B, (&) Tyx,(e) = )
289  whichallowsus to calculate the following:

—x, (&)
290 A =

(&) p@[x,(&T,x,(e) — x,()T,x, ()]

—x, ()

291 B,(e) =

(&) [x, ()T x, (&) — x,(T,x,(e)]

292 Note that x,(e)T,x,(e) — x,(e)T,x,(e) is nonzero since it is conformable Wronskian of two linearly
293  independent solutions of equation (19).
294  Given the following:

295 T, pWOTx, )+ (2p® — ¢@®)x, @) =0
296 T, T,x, )+ (Ap®) — q@®) )x,(®) =0

297 By multiplyingthefirst equation by x,(t), the second by x, (¢), and subtracting, wehave
298 x,OT, (PO T, ) — x, O T, (p(O)T,x, () = 0

299  thatcanbe writtenin the form

300 p@® (x,®OTx,@® — x,®)T,x,®) =0

301 So, p(&)(x,()Tux, (&) — x,(€)T,x,(e)) is a constant K that does not depend on e.
302 Hence, we have

1
—x,®x,(e) a<st<e
303 Ge(t,e) =

304 The conformable Green’s Function G*(t,e) has the properties (i) - (iv). The uniqueness of this
305 function is easily deduced from the method that we have follow ed to determine G*(t,&). o

306  Example 1. Consider the system
N
TT,x® +x© = 0.t € [0, am)e] )

307 x(0) + T,x(0) =0
1
X ((an)a) =0 )
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308 for some a € (0,1], we will find the corresponding conformable Green’s Function. In this case
309 p@® =149t =-1,1=0, p@®) is any positive continuous function in [0, (an)i], a,=1,a, =1,
310 b,=1,b,=0.

311  The general solution of T,T,x(¢) + x(t) = 0 is

t“ t*
312 x(t) = Acos — + Bsin—
a a
313 Then, we have
314 x(0) +T,x(0) =4A+B=0
1
315 x <(an)3) =—-A=0

316  Fromhere A = 0,B = 0, so there was the conformable Green's Function of the given system.
a a a
317  The solutions of T,T,x(®) + x(t) = 0; x,(t) = cost;+ sin %,xz(t) = sint; satisfy the conditions

1
318 x(0) + T,x(0) =0,x ((an)z) = 0. The conformable Green’s Function has the form

1

319 G*(t, &) = 1
Exl(e)xz(t) e<t< (am)a
320 sothat
e e e* e® e e
321 K =pE)(x,@Tx,(e) — x,(e)T,x,()) = (—sm; + cos ;) sin—— (cos — +sin ;) cos— = -1
322 Therefore, we obtain
&® t« t*
—sin;(cos;+sin;) 0<t<e
323 G(t,e) = e £ ra 1
- (cos —+ sin—) sin— e<t<(ama
a a a
324
325  4.2. The applicability of Conformable Green’s Function
326 In this section, we consider the system
T,(p@®O T,x(®)) — q(t)x®) = 0 (20a)
a,;x(@) + a,Tyx(@ =0 (20b) |, (20)
b,x(b) + b,T,x(h) =0 (20¢)

327  obtainedfrom (19) for A = 0. We now propose to solve the inhomogeneous system

T,(p@OT,x®)) — g x®) = —f(t)
a;x(@) + a,T,x(a) =0 , 1)
b,x(b) + b,T,x(b) =0

328 where f(t) is a real continuous function in the interval [a, b] for some 0 < a < b.

329  Theorem 18. If the homogeneous system (20) has its only solution as the identically null function, then (21)
330  has only one solution, which is given by
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1
gl—a

b
331 (@) = f 6ot €) (&) ——de

332 where G*(¢, ¢) is the conformable Green's Function of (20).

333  Proof. That homogeneous system (20) has its unique solution as the identically null function which
334  is equivalent to saying that 1 = 0 is not an eigenvalue of (19); therefore, there is the conformable
335  Green's Function of (20).

336 Let x,(t) and x,(t) be two linearly independent solutions of (20a) that verify (20b) and (20c),
337  respectively. Let us apply the conformable version of the method of variation of the parameters to
338  solve (20a). Then, we have

339 x(@t) = AW x,@®) + B@) x,(t)
340 T, (p(t) (e, OT,A® + x,OT,B®) + AD T,x, ) + B Taxz(t))) —qg@®A®x,@® +BDOx,®)
341 =—f@®

342  thatistosay

343 AT, (p@®OT,x,® — AW ) x,®) + BOT,(p@OT,x,®) — BE®) q)x,®))

344 +p@ (T, ADT,x,© + T,BO Tx, ) + T, (pO (x, DT, AW + x,(OT, B®))
345 =—f@)

346 thatis

347 P (T,AD T,x,® + T,BOT,x,0) + T, (p(® (x, OTA® +x,OT,BD)) = —f(©

348 We make
349 x,OT,A® + x,OT,B({) =0,

350 and we have

351 p@® (T,ADT,x,(®) + T,B® T, x,®)) = —f()
352 so that

_ —x,Of®
353 LA = S e T @ 1 2, O, @)
354
355 T,B(t) = —,Of©

p() (x, O T,x,®) + x, OT,x,(1))

356  We know, from the proof of Theorem 17, that p(t) (x, () T,x, ®) + x, () T,x,(®)) is a constant, and it
357 isequal to K.On the contrary, wehave

358 a;x(@) + a,T,x(a@)

359 = a,(A@x,(@ +B@x,(@)

360 + ay(x,(@T,A@) + x,(@T,B(@) + A@)T,x, (@ + B(@) T,x,(a))
361 = Ala)(a,x,(@) + a,T,x,(@) + Ba) (a,x,(a) + a,T, x,(a))

362 = B(@) (a,x,(@) + a,T,x,(@) = 0

363  and since x,(t) is not an eigenfunction of (20) it turns out that

364 a,x,(@) + a,T,x,(@ #0
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365 sothatB(a) = 0.
366 By writingnow thefollowing:

367 byx(®) + bT,x() =0

368  Similarly, weobtain A(b) = 0.
369 So, we have

370 AW = f L0 f

371 and since A(b) =0, wehave to

b
37 20 = —f xz(e)f(s) J‘ x,(e) e _J‘ xz(s)f(g)

o~

373 Analogously

t
374 B(®) = f leg) f

375 Thus, we obtain

b x, (®)x,(e) 1 +ffx1(s)x2(t) 1
£

376 x@®) =A@ x,® + B®x, @) =f : Kz £ gl_ad < Ji©) prere de

b

377 = J G
a

378  wherewehave the following

1
—x,Mx,(e) a<t<e
379 Ge(te) =K

380  whichis the Green’s Function. o
381  Example 2. By using the Green’s Function, we want to solve the following system

TIx(®) +x(0) = e te o, @)
382 x(0) =0 }

T,x ((an) é) =0 )

383  First,we find the conformable Green’s Function of the homogeneous system.
384  Wehave following:

385 x(t) = Acos (%) Bsi ( )
386 x(0)=0=4
387 T,x ((an %) 0=

388 Therefore, the conformable Green's Function exists. This function can be written as
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o t«
cos (—) sin (—) 0<t<e
389 G*(t,e) = i a )
sin (—) cos (—) e<t< (amea
a a
390 Therefore, our intended solution can be written as follows:
(am)@ e 1
301 x@=-[ T —de
o £
t £a A\ @ 1 (an)% £a N
392 = —f sin (—) cos (—) ea——de — f cos (—) sin (—) e« ——de
o a a £ ¢ a a £
1 t4 | & e“ o =
393 = —=cos (—) [e a (sin (—) — cos (—))]
2 a a a
S=01
e=(am)a
1 te\| & o e«
394 —=sin (—) [e a (sin (—) — cos (—))]
2 a a a ot
1 te % te t*
395 = —=cos (—) ea | sin (—) — cos (—) +1
2 a a a
1 t* % t« t*
396 —=sin (—) e —ea | sin (—) — cos (—)
2 a a a
t* t 1 1 t 1 te
397 =e" [—sin (—) cos (—) + —] —=cos (—) —=emsin (—)
a a 2 2 a 2 a
398 Finally, we investigate the generalized Hyers-Ulam stability of the conformable linear

399  inhomogeneous differential equation of second order (21) in the class of continuously twice a-
400  differentiable functions.

401  Theorem 19. Iet p,q, f: la,b]l > R be continuous functions and let p be a-differentiable function on [a, b].
402  Assume that the conformable homogeneous differential equation (20) has its only solution as the identically
403  null function. If a twice continuously a-differentiable function x: la, bl — R satisfies the inequality

IT, T, x(t)) — qWx®) + ()| <@ (t), (22)

404  forall t € [a,b], where ¢:[a, bl - [0, ) is given that such of the following integrals exists, then there exists
405 a solution x: [a,b] - R of (21) such that

x® —x,®1 < =(Ix, 1 f,1x,)lg )

Ikl

Lde+ o, [lx,©lo@© Sde),  @3)

el

406  where K is a nonzero constant and x,(t) and x,(t) are two linearly independent solutions of (20a) that verify
407  (20b) and (20c), respectively (see Theorem 18).

408  Proof.If we define a continuous function s: [a, b] - R by

) = T,(pOT,x(® — g (), (24)
409 for all t € [a, b], then it follows (22) that

Is@®) +FO <o), (25)
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410 for all t € [a, b]. In view of Theorem 18 and (24), wehave

1

1 b x, (®)x,(e) 1 tx,(e)x, (0) 1
_f K _f K

b
411 2@ = - [ 6% s() e = () o de

1-a
€ t

412 26)

413 where K is a nonzero constant because x,(t) and x,(t) are two linearly independent solutions of
414 (20a) that verify (20b) and (20c), respectively (see Theorem 18).
415  Wenow define a function x,:[a, b] - R by

[rae ) 1 g [aOe ) 1, @7)

a K gl-a 4

xo() =

416  for all t € [a, b]. According to Theorem18, it is obvious that x, is a solution of (21). Moreover, it
417  follows from (25), (26) and (27) that

b t
418 % — x, )] < ’—f ’“(t)KL(S)(s(g) +FE) e | ’“(‘E)I(ﬂ(s(g) b FE) e
t a
t t
419 s%(ul(m fb e (0l (e) = de + L, ) f |x1(s)|<p(s)€11_ads>

420 forallt € la,bl. o

421  Remark 4. Theorem 19 reduces to [22] (Theorem 3.2) in the case @ = 0 and using the Green’s
422  Function.

423 5. Conclusions

424 In this research paper, we have proposed some results referring to the conformable boundary
425  value problems. The conformable second order Sturm-Picone identity has been proven, and its
426  Sturm's theorems of comparison and separation have been successfully established. As in the
427  classical case, an important application of the Sturm’s comparison theorem is to provide a clear
428  understanding of the zero set of non-trivial solutions of the conformable Bessel’s equation. For a
429  conformable Sturm-Liouville system, we have defined the Green’s function and established its
430  properties. The conformable Green’s function is applied to construct the solution of the
431  inhomogeneous problem of Sturm-Liouville, whose associated homogeneous problem has its only
432  solution as the identically null function. Finally, we have proved the generalized Hyers-Ulam
433  stability of the conformable linear inhomogeneous differential equation of second order (21) in the
434 class of continuously twice a-differentiable functions.
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