
  

Article 1 

Note on the conformable boundary value problems: 2 

Sturm’s theorems and Green’s function 3 

F. Martínez 1,*, I. Martínez 1 , Mohammed K.A. Kaabar 2, S. Paredes 1 4 

1 Department of Applied Mathematics and Statistics, Technological University of Cartagena, Spain 5 
2 Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA 6 
* Correspondence: f.martinez@upct.es; Tel.: +34968325586 7 

Abstract: Recently, the conformable derivative and its properties have been introduced. In this 8 
paper, we propose and prove some new results on conformable Boundary Value Problems. First, 9 
we introduce a conformable version of classical Sturm ś separation, and comparison theorems. For  10 
a conformable Sturm-Liouville problem, Green's function is constructed, and its properties are 11 
also studied. In addition, we propose the applicability of the Green ś Function in solving 12 
conformable inhomogeneous linear differential equations with homogeneous boundary 13 
conditions, whose associated homogeneous boundary value problem has only trivial solution. 14 
Finally, we prove the generalized Hyers-Ulam stability of the conformable inhomogeneous 15 
boundary value problem. 16 
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 19 

1. Introduction 20 

The idea of fractional derivative was first raised by L'Hospital  in 1695. Since then, several 21 
related new definitions have been proposed. The most common ones are Riemann -Liouville and 22 
Caputo definitions. For more information about the most known fractional definitions, we refer to 23 
[1,2]. A new definition of fractional derivative and fractional integral has been recently proposed by  24 
Khalil et al. in [3]. As a result, several important elements of the mathematical analysis of funct ions  25 
of a real variable have been formulated such as: chain rule, fractional power series expansion and 26 
fractional integration by parts formulas, Rolle's Theorem, Mean Value Theorem, [3 -5]. The 27 
conformable partial derivative of the order 𝛼 ∈ (0.1] of the real-valued functions of several 28 
variables and conformable gradient vector are also defined. In addition, a conformable version of 29 
Clairaut ś Theorem for partial derivative is investigated in [6]. In [7], conformable Jacobian matrix 30 
is defined, and chain rule for multivariable conformable derivative is proposed. In [8], the 31 
conformable version of Euler ś Theorem on homogeneous is introduced. Furthermore, in a short 32 
time, various research studies have been conducted on the theory and applications of fractional 33 
differential equations in the context of this newly introduced fractional derivative, [9-18]. 34 

This paper is organized as follows: In Section 2, the main concepts of conformable fractional 35 
calculus are presented. In Section 3, we proved a conformable version of the conformable second-36 
order Sturm-Picone identity. From this result, we establish the conformable Sturm-Liouville 37 
comparison and separation theorems. In Section 4, for a conformable Sturm -Liouville problem, the 38 
Green function is constructed, and its properties are studied. At the end, we prove the generalized 39 
Hyers-Ulam stability of conformable inhomogeneous linear differential equations with 40 
homogeneous boundary conditions.. 41 

2. Basic definitions and tools   42 

Definition 1. Given a function 𝑓: [0,∞) → 𝑅. Then, the conformable fractional derivative of order 𝛼, [3], is 43 

defined by 44 
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(𝑇𝛼𝑓)(𝑡) = 𝑙𝑖𝑚
𝜖→0

𝑓(𝑡+𝜀𝑡1−𝛼)−𝑓(𝑡)

𝜀
, (1) 

for all 𝑡 > 0, 0 < 𝛼 ≤ 1. If 𝑓 is 𝛼-differentiable in some (0, 𝑎), 𝑎 > 0, and 𝑙𝑖𝑚
𝑡→0+

(𝑇𝛼𝑓)(𝑡)  exists, then it is 45 

defined as 46 

(𝑇𝛼𝑓)(0) = lim
𝑡→0+

(𝑇𝛼𝑓)(𝑡), (2) 

Theorem 1. [3]. If a function 𝑓: [0, ∞) → 𝑅 is 𝛼-differentiable at 𝑡0 > 0, 0 < 𝛼 ≤ 1, then 𝑓 is continuous at 47 

𝑡0. 48 

Theorem 2. [3]. Let 0 < 𝛼 ≤ 1, and let 𝑓, 𝑔 be 𝛼-differentiable at a point 𝑡 > 0. Then 49 

(i) 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎 (𝑇𝛼𝑓) + 𝑏 (𝑇𝛼𝑔), ∀𝑎, 𝑏 ∈ 𝑅. 50 
(ii) 𝑇𝛼(𝑡

𝑝) = 𝑝𝑡𝑝−𝛼 ,  ∀ 𝑝 ∈ 𝑅 . 51 
(iii) 𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) =𝜆. 52 
(iv) 𝑇𝛼(𝑓𝑔) = 𝑓(𝑇𝛼𝑔) + 𝑔(𝑇𝛼𝑓). 53 

(v) 𝑇𝛼 (
𝑓

𝑔
) =

𝑔(𝑇𝛼𝑓)−𝑓(𝑇𝛼𝑔)

𝑔2
. 54 

(vi) If, in addition, 𝑓 is differentiable, then (𝑇𝛼𝑓)(𝑡) = 𝑡
1−𝛼 𝑑𝑓

𝑑𝑡
(𝑡). 55 

The conformable fractional derivative of certain functions for the above definition is given as:  56 

(i) 𝑇𝛼(1) = 0, 57 
(ii) 𝑇𝛼(𝑠𝑖𝑛(𝑎𝑡)) = 𝑎𝑡1−𝛼𝑐𝑜𝑠(𝑎𝑡),  58 
(iii) 𝑇𝛼(𝑐𝑜𝑠(𝑎𝑡)) = −𝑎𝑡

1−𝛼𝑠𝑖𝑛(𝑎𝑡),  59 

(iv) 𝑇𝛼(𝑒
𝑎𝑡) = 𝑎𝑒𝑎𝑡 , 𝑎 ∈ 𝑅. 60 

Definition 2. The (left) conformable derivative starting from 𝑎 of a given function 𝑓: [𝑎, ∞) → 𝑅 of order 61 

0 < 𝛼 ≤ 1, [4], is defined by 62 

(𝑇𝛼
𝑎𝑓)(𝑡) = lim

𝜖→0

𝑓(𝑡+𝜀(𝑡−𝑎)1−𝛼)−𝑓(𝑡)

𝜀
, (3) 

 63 
When 𝑎 = 0, it is written as (𝑇𝛼𝑓)(𝑡) . If 𝑓 is 𝛼-differentiable in some (𝑎 , 𝑏), then the following can be 64 

defined as: 65 

(𝑇𝛼
𝑎𝑓)(𝑎) = lim

𝑡→𝑎+
(𝑇𝛼

𝑎𝑓)(𝑡) , (4) 

Theorem 3 (Chain Rule). [4]. Assume 𝑓,𝑔: (𝑎, ∞) → 𝑅 be (left) 𝛼-differentiable functions, where 0 < 𝛼 ≤66 
1. By letting ℎ(𝑡) = 𝑓(𝑔(𝑡)), ℎ(𝑡) is 𝛼-differentiable for all 𝑡 ≠ 𝑎  and 𝑔(𝑡) ≠ 0, therefore, we have the 67 

following: 68 

(𝑇𝛼
𝑎ℎ)(𝑡) = (𝑇𝛼

𝑎𝑓)(𝑔(𝑡)) ∙ (𝑇𝛼
𝑎𝑔)(𝑡) . (𝑔(𝑡))𝛼−1, (5) 

 If 𝑡 = 𝑎, then 69 

  (𝑇𝛼
𝑎ℎ)(𝑎) = lim

𝑡→𝑎+
(𝑇𝛼

𝑎𝑓)(𝑔(𝑡)) ∙ (𝑇𝛼
𝑎𝑔)(𝑡). (𝑔(𝑡))𝛼−1, (6) 

Theorem 4 (Rolle ś Theorem). [3]. Let 𝑎 > 0, 𝛼 ∈ (0,1] and 𝑓: [𝑎,∞) →  be a given function that satisfies 70 

the following:  71 
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- 𝑓 is continuous on ⌈𝑎, 𝑏⌉ .  72 
- 𝑓 is 𝛼 −differentiable on (𝑎, 𝑏).  73 

- 𝑓(𝑎) = 𝑓(𝑏).  74 

Then, there exists  𝑐 ∈ (𝑎, 𝑏), such that (𝑇𝛼𝑓)(𝑐)=0. 75 

Corollary 1. Let 𝐼 ⊂ [0.∞),  𝛼 ∈ (0,1] and 𝑓: 𝐼 → 𝑅 be a given function that satisfies  76 

- 𝑓 is 𝛼 −differentiable on 𝐼.  77 

- 𝑓(𝑎) = 𝑓(𝑏) = 0 for certain 𝑐 ∈ 𝐼.  78 

Then, there exists  𝑐 ∈ (𝑎, 𝑏), such that (𝑇𝛼𝑓)(𝑐)=0. 79 

Theorem 5. (Mean Value Theorem). [3]. Let 𝑎 > 0, 𝛼 ∈ (0,1] and 𝑓: [𝑎, ∞) → 𝑅 be a given function that 80 

satisfies  81 

- 𝑓 is continuous in [𝑎, 𝑏] . 82 

- 𝑓 is  𝛼-differentiable on (𝑎 , 𝑏). 83 

Then, exists 𝑐 ∈ (𝑎, 𝑏) such that 84 

(𝑇𝛼𝑓)(𝑐) =
𝑓(𝑏)−𝑓(𝑎)
𝑏𝛼

𝛼
−
𝑎𝛼

𝛼

, (7) 

 Theorem 6. [5]. Let 𝑎 > 0, 𝛼 ∈ (0,1] and 𝑓: [𝑎, ∞) → 𝑅 be a given function that satisfies  85 

- 𝑓 is continuous in [𝑎, 𝑏] . 86 

- 𝑓 is  𝛼-differentiable on (𝑎 , 𝑏). 87 

If (𝑇𝛼𝑓)(𝑐) = 0 for all 𝑡 ∈ (𝑎 ,𝑏) ,  then 𝑓 is a constant on [𝑎, 𝑏].  88 

Corollary 7. [5]. Let 𝑎 > 0, 𝛼 ∈ (0,1] and 𝐹, 𝐺: [𝑎,∞) → 𝑅 be functions such that (𝑇𝛼𝐹)(𝑡) = (𝑇𝛼𝐺)(𝑡)  for 89 

all 𝑡 ∈ (𝑎, 𝑏) . Then, there exists a constant 𝐶  such that 90 

𝐹(𝑡) = 𝐺(𝑡) +𝐶 , (8) 

The following definition is the 𝛼-fractional integral of a function 𝑓 starting from 𝑎 ≥ 0: 91 

Definition 3. 𝐼𝛼
𝑎(𝑓)(𝑡) = ∫

𝑓(𝑥)

𝑥1−𝛼

𝑡

𝑎 ∙ 𝑑𝑥 , where the integral is the usual Riemann improper integral, and 𝛼 ∈92 

(0, 1], [2]. 93 

According to the above definition, the following can be shown: 94 

Theorem 8. Tα
aIα
a(f)(t) = f(t), for t ≥ a, where f  is any continuous function in the domain of Iα . 95 

Lemma 9. Let 𝑓: (𝑎, 𝑏) → 𝑅 be differentiable and 𝛼 ∈ (0, 1]. Then, for all 𝑎 > 0, we have, [3], 96 

𝐼𝛼 
𝑎 𝑇𝛼

𝑎(𝑓)(𝑡) = 𝑓(𝑡) − 𝑓(𝑎), (9) 

Finally, we give the definition of non-conformable 𝛼-Wronskian, which is necessary in the next  97 

section. 98 

Definition 4. Let 𝑥  and 𝑦 be given conformable 𝛼-differentiable functions on [𝑎, 𝑏] with 𝑎 ≥ 0 and 𝛼 ∈99 

(0,1]. We set the following: 100 
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𝑊𝛼 (𝑥, 𝑦)(𝑡) = |
𝑥(𝑡) 𝑦(𝑡)

(𝑇𝛼𝑥)(𝑡) (𝑇𝛼𝑦)(𝑡)
|, (10) 

3. Sturm’s theorems 101 

In this section, we consider the scalar fractional differential equation of second order of the 102 

following form: 103 

𝑇𝛼𝑇𝛼𝑥(𝑡) +  𝑝(𝑡)𝑇𝛼𝑥(𝑡) + 𝑞(𝑡)𝑥(𝑡) = 0, (11) 

with continuous functions 𝑝 and 𝑞 , and 𝛼 ∈ (0,1]. Traditionally, from [19], two functions 𝑥  and 𝑦 104 
that are continuous on [𝑎, 𝑏]  for some 0 ≤ 𝑎 < 𝑏, will be called linearly dependent if there exist 105 
𝑐1, 𝑐2 ∈ 𝑅 such that |𝑐1| + |𝑐1| > 0 and 𝑐1𝑥(𝑡) + 𝑐2𝑦(𝑡) ≡ 0 for all 𝑡 ∈ [𝑎, 𝑏] . In the other case, they are 106 

linearly independent. 107 

Remark 1. We can write 108 

𝑊𝛼 (𝑥, 𝑦)(𝑡) = 𝑒
− ∫

𝑝(𝑥)

𝑥1−𝛼
𝑡
𝑡0

𝑑𝑥
𝑊𝛼 (𝑥, 𝑦)(𝑡0), 

(12) 

for two solutions 𝑥  and 𝑦 of [5] and some 𝑡0 ∈ (𝑎 ,𝑏) . In fact, we apply the operator 𝑇𝛼  on 109 

𝑊𝛼 (𝑥, 𝑦)(𝑡) to obtain 110 

𝑇𝛼(𝑊
𝛼 (𝑥, 𝑦)(𝑡)) = 𝑇𝛼(𝑥(𝑡)𝑇𝛼𝑦(𝑡) − 𝑦(𝑡)𝑇𝛼𝑥(𝑡))111 

= 𝑇𝛼𝑥(𝑡)𝑇𝛼𝑦(𝑡) + 𝑥(𝑡)𝑇𝛼𝑇𝛼𝑦(𝑡) − 𝑇𝛼𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑦(𝑡)𝑇𝛼𝑇𝛼𝑥(𝑡) 112 

However, 𝑥  and 𝑦 satisfies (11). Hence, we have: 113 

𝑇𝛼𝑇𝛼𝑥(𝑡) = −𝑝(𝑡)𝑇𝛼𝑥(𝑡) − 𝑞(𝑡)𝑥(𝑡)  114 

and 115 

𝑇𝛼𝑇𝛼𝑦(𝑡) = −𝑝(𝑡)𝑇𝛼𝑦(𝑡) − 𝑞(𝑡)𝑦(𝑡)  116 

Therefore, we get 117 

𝑇𝛼(𝑊
𝛼(𝑥, 𝑦)(𝑡)) = −(𝑥(𝑡)𝑇𝛼𝑦(𝑡) − 𝑦(𝑡)𝑇𝛼𝑥(𝑡))𝑝(𝑡) = −(𝑊

𝛼 (𝑥, 𝑦)(𝑡))𝑝(𝑡) 118 

Thus 119 
𝑇𝛼(𝑊

𝛼 (𝑥, 𝑦)(𝑡))

𝑊𝛼(𝑥, 𝑦)(𝑡)
= −𝑝(𝑡) 120 

Consequently, we have 121 

𝑊𝛼 (𝑥, 𝑦)(𝑡) = 𝑒
−∫

𝑝(𝑥)

𝑥1−𝛼
𝑡
𝑡0

𝑑𝑥
𝑊𝛼 (𝑥, 𝑦)(𝑡0) 122 

This completes the proof. □ 123 

Similar to the classical case, by using the above formula, we can immediately obtain the 124 

following equivalent condition of linear independence: 125 

Theorem 10. Two solutions  𝑥  and 𝑦 of equation (11) defined on [𝑎, 𝑏] for some 0 ≤ 𝑎 < 𝑏 are linearly 126 

independent if and only if  𝑊𝛼 (𝑥, 𝑦)(𝑡) ≠ 0 for all 𝑡 ∈ [𝑎,𝑏] . 127 
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Now, we propose a conformable version of three classical results, the second order Sturm-128 

Picone identity and Sturm's comparison, and separation theorems, [20].  129 

Let us now introduce the non-conformable self-adjoint Sturm-Liouville equation as follows: 130 

−𝑇𝛼(𝑝1 (𝑡)𝑇𝛼𝑥(𝑡)) + 𝑝0 (𝑡)𝑥(𝑡) = 0, (13) 

−𝑇𝛼(𝑞1(𝑡)𝑇𝛼𝑦(𝑡)) + 𝑞(𝑡)𝑦(𝑡) = 0, (14) 

where 𝑝0 , 𝑝1 , 𝑞0, 𝑞1,𝑇𝛼𝑝1 , 𝑇𝛼𝑞1 are continuous on some closed interval 𝐼 ⊂ [0, +∞), 𝑝1 > 0, 𝑞1 > 0 on 𝐼 131 

and 𝛼 ∈ (0,1]. 132 

Theorem 11 (Conformable Picone Identity). If 𝑥(𝑡), 𝑦(𝑡) and  𝑝1 (𝑡)𝑇𝛼𝑥(𝑡), 𝑞1(𝑡)𝑇𝛼𝑦(𝑡) are 𝛼-133 

differentiable for 𝑡 ∈ 𝐼 and 𝑦(𝑡) ≠ 0 in 𝐼, then we obtain 134 

𝑇𝛼 (
𝑥(𝑡)

𝑦(𝑡)
(𝑝1 (𝑡)𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑞1(𝑡)𝑥(𝑡)𝑇𝛼𝑦(𝑡)))135 

= 𝑥(𝑡)𝑇𝛼(𝑝1 (𝑡)𝑇𝛼𝑥(𝑡)) −
(𝑥(𝑡))

2

𝑦(𝑡)
𝑇𝛼(𝑞1(𝑡)𝑇𝛼𝑦(𝑡)) + (𝑝1(𝑡) − 𝑞1(𝑡))(𝑇𝛼𝑥(𝑡))

2
136 

+ 𝑞1(𝑡) (𝑇𝛼𝑥(𝑡) −
𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡))

2

 137 

(15) 138 

Proof. This arises from the straightforward 𝛼-differentiation. □ 139 

Theorem 12 (Conformable Sturm’s Comparison Theorem). Let 0 ≤ 𝑎 < 𝑏 be two consecutive zeros of a 140 

nontrivial solution 𝑥(𝑡) of equation (3.3). Suppose that 141 

(i) 0 < 𝑞1(𝑡) ≤ 𝑝1 (𝑡) ,  142 

and 143 

(ii) 𝑞0(𝑡) ≤ 𝑝0 (𝑡)  144 

for all 𝑡 ∈ [𝑎,𝑏] . Then, every solution 𝑦(𝑡)  of equation (14) has at least one zero in the closed interval [𝑎, 𝑏]. 145 

Proof. If 𝑥(𝑡) and 𝑦(𝑡)  are solutions of (13) and (14), respectively, and 𝑦(𝑡) ≠ 0 for all 𝑡 ∈ [𝑎, 𝑏] , then 146 

the conformable Picone identity (15) yields on substitution of (131 .4) as follows: 147 

𝑇𝛼 (
𝑥(𝑡)

𝑦(𝑡)
(𝑝1 (𝑡)𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑞1(𝑡)𝑥(𝑡)𝑇𝛼𝑦(𝑡)))148 

= (𝑝0 (𝑡) − 𝑞0(𝑡))(𝑥(𝑡))
2
+ (𝑝1(𝑡) − 𝑞1(𝑡))(𝑇𝛼𝑥(𝑡))

2
+ 𝑞1(𝑡) (𝑇𝛼𝑥(𝑡) −

𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡))

2

 149 

Integrating over [𝑎, 𝑏] ; therefore, we have (see Lemma 9), 150 

∫ [(𝑝0 (𝑡) − 𝑞0(𝑡))(𝑥(𝑡))
2
+ (𝑝1 (𝑡) − 𝑞1(𝑡))(𝑇𝛼𝑥(𝑡))

2
+ 𝑞1(𝑡) (𝑇𝛼𝑥(𝑡) −

𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡))

2

]
1

𝑡1−𝛼
𝑑𝑡

𝑏

𝑎

151 

= [
𝑥(𝑡)

𝑦(𝑡)
(𝑝1 (𝑡)𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑞1(𝑡)𝑥(𝑡)𝑇𝛼𝑦(𝑡))]

𝑡=𝑎

𝑡=𝑏

 152 

(16) 153 
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The right-hand side of equation (16) evaluates to zero by assuming 𝑥(𝑎) = 𝑥(𝑏) = 0, and 𝑦(𝑎) ≠ 0, 154 
𝑦(𝑏) ≠ 0. Since 𝑞1(𝑡) > 0 in [𝑎, 𝑏], the third term of the integrand is nonnegative over [𝑎, 𝑏]. Hence, 155 

we must have either 156 

(i) 𝑇𝛼𝑥(𝑡) −
𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡) ≡ 0 in [𝑎, 𝑏] 157 

or 158 

(ii) ∫ [(𝑝0 (𝑡) − 𝑞0(𝑡))(𝑥(𝑡))
2
+ (𝑝1(𝑡) − 𝑞1(𝑡))(𝑇𝛼𝑥(𝑡))

2
]

1

𝑡1−𝛼
𝑑𝑡

𝑏

𝑎 < 0 159 

However, Case (ii) gives an immediate contradiction since 𝑝0 (𝑡) − 𝑞0(𝑡) ≥ 0 and 𝑝1 (𝑡) − 𝑞1(𝑡) ≥ 0  160 

by assumption. In Case (i), we are also led to a contradiction since (i) implies  161 

𝑦(𝑡)𝑇𝛼𝑥(𝑡)−𝑥(𝑡)𝑇𝛼𝑦(𝑡)

(𝑦 (𝑡))
2 = 𝑇𝛼 (

𝑥(𝑡)

𝑦(𝑡)
) ≡ 0, or 162 

𝑥(𝑡) ≡ 𝑘𝑦(𝑡) for all 𝑡 ∈ [𝑎, 𝑏] , for some 𝑘 ≠ 0, but 𝑦(𝑎) = 𝑦(𝑏) = 0 which is a contrary to our 163 

assumption. □ 164 

Theorem 13 (Conformable Sturm ś Separation Theorem). Let 0 ≤ 𝑎 < 𝑏 be two consecutive zeros of a 165 
nontrivial solution 𝑥(𝑡) of equation (13). Let 𝑦(𝑡)  be any other solution of equation (13) which is linearly 166 
independent of 𝑥(𝑡). Then, 𝑦(𝑡) has exactly one zero of the interval (𝑎, 𝑏). In other words, the zeros of any 167 

two linearly independent solutions of (13) are interlaced. 168 

Proof. On the contrary, suppose that 𝑦(𝑡) ≠ 0 for all 𝑡 ∈ (𝑎, 𝑏). Since 𝑥(𝑡)  and 𝑦(𝑡) are linearly 169 

independent, it follows that 𝑦(𝑎) ≠ 0; otherwise, we would have 170 

𝑊𝛼(𝑥, 𝑦)(𝑎) = |
𝑥(𝑎) 𝑦(𝑎)

𝑇𝛼𝑥(𝑎) 𝑇𝛼𝑦(𝑎)
| = 0 171 

which implies that the conformable Wronskian, 𝑊𝛼(𝑥, 𝑦)(𝑡), is zero for all 𝑡 and that 𝑥(𝑡) and 𝑦(𝑡)  172 
are linearly dependent. For the same reason, we know that 𝑦(𝑏) ≠ 0, but when 𝑞1(𝑡) ≡ 𝑝1(𝑡)  and 173 

𝑞0(𝑡) ≡ 𝑝0 (𝑡) , equation (16) becomes 174 

∫ 𝑝1 (𝑡) (𝑇𝛼𝑥(𝑡) −
𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡))

2
1

𝑡1−𝛼
𝑑𝑡

𝑏

𝑎

= [
𝑥(𝑡)

𝑦(𝑡)
𝑝1 (𝑡)(𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑥(𝑡)𝑇𝛼𝑦(𝑡))]

𝑡=𝑎

𝑡=𝑏

 175 

Since 𝑦(𝑎) ≠ 0 and 𝑦(𝑏) ≠ 0, the right-hand side evaluates to zero. Since 𝑝1 (𝑡) > 0 in [𝑎, 𝑏] , it 176 

follows that 𝑇𝛼𝑥(𝑡) −
𝑥(𝑡)

𝑦(𝑡)
𝑇𝛼𝑦(𝑡) ≡ 0, or 177 

𝑊𝛼(𝑥 ,𝑦)(𝑡) = 𝑦(𝑡)𝑇𝛼𝑥(𝑡) − 𝑥(𝑡)𝑇𝛼𝑦(𝑡) ≡ 0 178 

for all 𝑡 ∈ (𝑎 , 𝑏). Hence, 𝑥(𝑡)  and 𝑦(𝑡) are linearly dependent on (𝑎, 𝑏) which is a contrary to our 179 

assumption. 180 

Remark 2.  181 

(i) Conformable Sturm’s Comparison Theorem guarantees the existence of at least one 182 
zero. 183 

(ii) The assumption 𝑞0(𝑡) ≤ 𝑝0 (𝑡)   cannot be dropped. Consider the equation on 𝑡 ≥ 0, 184 
𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 0 (𝑝1 (𝑡) = 1, 𝑝0 (𝑡) = −1) and 𝑇𝛼𝑇𝛼𝑦(𝑡) − 𝑦(𝑡) = 0 (𝑞1(𝑡) = 1, 𝑞0(𝑡) =185 
1) and let 𝑥(𝑡) and 𝑦(𝑡) be their non-trivial solutions, respectively. Between any two 186 
zeros of 𝑥(𝑡) , 𝑦(𝑡) does not admit a zero. 187 

(iii) Consider the equation on 𝑡 ≥ 0, 𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 0 (𝑝1(𝑡) = 1, 𝑝0 (𝑡) = −1) and 188 

𝑇𝛼𝑇𝛼𝑦(𝑡) + 4𝑦(𝑡) = 0 (𝑞1(𝑡) = 1, 𝑞0(𝑡) = −4), and let 𝑥(𝑡) = 𝑠𝑖𝑛 (
𝑡𝛼

𝛼
) and 𝑦(𝑡) =189 
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𝑠𝑖𝑛 (2
𝑡𝛼

𝛼
) be their non-trivial solutions, respectively. However, there is no zero of 𝑥(𝑡) 190 

between two consecutive zeros of 𝑦 (𝑡). 191 

Remark 3. An important application of Sturm ś Comparison Theorem is to provide a good 192 
understanding of the zero set on non-trivial solutions of Conformable Bessel’s Equation. The 193 

Conformable Bessel’s Equation is given by 194 

𝑡2𝛼𝑇𝛼𝑇𝛼𝑦(𝑡) + 𝛼𝑡
𝛼𝑇𝛼𝑦(𝑡) + 𝛼

2(𝑡2𝛼 − 𝑝2)𝑦(𝑡) = 0, (17) 

where 𝛼 ∈ (0,1] and 𝑝 ≥ 0. Clearly, if 𝛼 = 0, the above equation is just the classical Bessel Equation, 195 
[19]. For more information about the conformable Bessel’s function in the solution of wave 196 
equation, we refer to [21]. 197 

For 𝑡 > 0, making a change variable 𝑦 =
𝑣

𝑡
𝛼
2

, the equation (17) transforms into 198 

𝑇𝛼𝑇𝛼𝑦(𝑡) + 𝛼
2 (1 +

1−4𝑝2

4𝑡2𝛼
) 𝑣(𝑡) = 0, (18) 

(To obtain the above equation, we start 𝑁-differentiating the equation 𝑡
𝛼

2 𝑦 = 𝑣) 199 

Case 1: 𝑝 >
1

2
. In this case, compare (18) with 200 

𝑇𝛼𝑇𝛼𝑦(𝑡) + 𝛼
2𝑦(𝑡) = 0 201 

which has a solution 𝑠𝑖𝑛(𝑡𝛼) with zeros at 𝑡 = (𝑛𝜋)
1

𝛼, 𝑛 ∈ 𝑁 . Therefore, a solution of (3.8) has at least  202 

one zero on each of the open interval (((𝑛 − 1)𝜋)
1
𝛼 , (𝑛𝜋)

1

𝛼  ), 𝑛 ∈ 𝑁. 203 

Case 2: 0 < 𝑝 <
1

2
. In this case, compare (18) with 204 

𝑇𝛼𝑇𝛼𝑦(𝑡) + 𝛼
2𝑦(𝑡) = 0 205 

and conclude that between any two consecutives zeros, 𝑎 and 𝑏 of 𝑣(𝑡), there exists one zero 206 

of 𝑠𝑖𝑛(𝑡𝛼 ) . Thus, we have 𝑎 < (𝑛𝜋)
1

𝛼 < 𝑏 for some 𝑛 ∈ 𝑁. 207 

4. The study of conformable Green ś Functions  208 

4.1. Conformable Green ś Functions 209 

In this section, we consider the conformable Sturm- Liouville system 210 

𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥(𝑡)) + (𝜆𝜌(𝑡) − 𝑞(𝑡))𝑥(𝑡) = 0      (19𝑎)

𝑎1𝑥(𝑎) + 𝑎2𝑇𝛼𝑥(𝑎) = 0                                         (19𝑏)

𝑏1𝑥(𝑏) + 𝑏2𝑇𝛼𝑥(𝑏) = 0                                          (19𝑐)

}, (19) 

|𝑎1| + |𝑎2| ≠ 0, |𝑏1| + |𝑏2| ≠ 0 211 

with continuous functions 𝑝(𝑡), 𝑞(𝑡) and 𝜌(𝑡)  on [𝑎, 𝑏]  for some 0 ≤ 𝑎 < 𝑏, such that  𝜌(𝑡) ≥ 0 and 212 
𝑝(𝑡) ≥ 0 for all 𝑡 ∈ [𝑎, 𝑏] and 𝛼 ∈ (0,1].  213 

Definition 5. Let 𝑄 denote the square 𝑄 = [𝑎, 𝑏] × [𝑎, 𝑏]  for some 0 ≤ 𝑎 < 𝑏, in the 𝑡𝜀-plane. A function 214 
𝐺𝛼(𝑡, 𝜀) defined in 𝑄 is called conformable Green ś Function of Sturm-Liouville system (19), if it has the 215 

following properties: 216 

(i) The function 𝐺𝛼(𝑡, 𝜀) is continuous in 𝑄. 217 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2020                   doi:10.20944/preprints202009.0440.v1

https://doi.org/10.20944/preprints202009.0440.v1


 8 of 16 

(ii) Let 𝜀 ∈ (𝑎, 𝑏) be fixed. Then, 𝐺𝛼(𝑡, 𝜀) has conformable partial derivatives of left and right with 218 

respect to variable 𝑡, for 𝑡 = 𝜀 , and it is verified as follows: 219 

𝜕𝛼

𝜕𝑡𝛼
𝐺𝛼(𝜀+ , 𝜀) −

𝜕𝛼

𝜕𝑡𝛼
𝐺𝛼 (𝜀− , 𝜀) = −

1

𝑝(𝜀)
 220 

(iii) Let 𝜀 ∈ [𝑎, 𝑏] be fixed. Then, 𝐺𝛼(𝑡, 𝜀) has continuous conformable partial derivatives of first and 221 

second order with respect to variable t, if 𝑡 ≠ 𝜀, and it is verified as follows: 222 

𝜕𝛼

𝜕𝑡𝛼
(𝑝(𝑡)𝑇𝛼𝐺

𝛼 (𝑡, 𝜀)) + (𝜆𝜌(𝑡) − 𝑞(𝑡))𝐺𝛼(𝑡, 𝜀) = 0      223 

(iv) Let 𝜀 ∈ (𝑎, 𝑏) be fixed. Then, 𝐺𝛼(𝑡, 𝜀) satisfies the boundary conditions (19b) and (19c). 224 

Theorem 14. Let 𝑥1(𝑡) and 𝑥2(𝑡) be two solutions of (19a) that verify condition (19b). Then, 𝑥1(𝑡) and 225 

𝑥2(𝑡) are linearly dependent. 226 

Proof. Since |𝑎1| + |𝑎2| ≠ 0, it follows from 227 

𝑎1𝑥1(𝑎) + 𝑎2𝑇𝛼𝑥1(𝑎) = 0 228 
𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎) = 0 229 

that  230 

𝑊𝛼(𝑥, 𝑦)(𝑎) = |
𝑥1(𝑎) 𝑥2(𝑎)

𝑇𝛼𝑥1(𝑎) 𝑇𝛼𝑥2(𝑎)
| = 0 231 

Therefore, 𝑥1(𝑡) and 𝑥2(𝑡) are linearly dependent. □ 232 

Theorem 15. Let 𝑥1(𝑡) and 𝑥2(𝑡) be two solutions of (19a) that verify condition (19c). Then, 𝑥1(𝑡) and 𝑥2(𝑡) 233 

are linearly dependent. 234 

Proof. It is analogous to the proof of the above theorem. □ 235 

Theorem 16. System (19) has no Green ś Function if 𝜆 is an eigenvalue. 236 

Proof. Let 𝑥1(𝑡) be an eigenfunction of system (19). Let 𝑥2(𝑡) be a solution of (19a) linearly 237 
independent of 𝑥1(𝑡). From Theorems 14 and 15, it turns out that 𝑥2(𝑡) does not verify the 238 
conditions (19b) and (19c). 239 
According to the condition (iii) of 𝐺𝛼(𝑡, 𝜀), the said function is a solution of (19a) in the intervals 𝑎 ≤240 

𝑡 < 𝜀 and 𝜀 < 𝑡 ≤ 𝑏 , so it has the form 241 

𝐺𝛼(𝑡 , 𝜀) = {
𝐴1(𝜀)𝑥1(𝑡) + 𝐴2(𝜀)𝑥2(𝑡) 𝑎 ≤ 𝑡 < 𝜀

𝐵1(𝜀)𝑥1(𝑡) + 𝐵2(𝜀)𝑥2(𝑡) 𝜀 < 𝑡 ≤ 𝑏
 242 

Let us now express that 𝐺𝛼(𝑡, 𝜀) meets the condition (iv) 243 

𝑎1 (𝐴1(𝜀)𝑥1(𝑎) +𝐴2 (𝜀)𝑥2(𝑎)) + 𝑎2(𝐴1 (𝜀)𝑇𝛼𝑥1(𝑎) + 𝐴2(𝜀)𝑇𝛼𝑥2(𝑎)) = 0 244 
𝑏1(𝐵1(𝜀)𝑥1(𝑏) + 𝐵2(𝜀)𝑥2(𝑏)) + 𝑏2(𝐵1(𝜀)𝑇𝛼𝑥1(𝑏) + 𝐵2(𝜀)𝑇𝛼𝑥2(𝑏)) = 0 245 

Since 𝑥1(𝑡) meets both conditions (19b) and (19c), the above equalities are reduced to 246 

𝐴2(𝜀)(𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎)) = 0 247 
𝐵2(𝜀)(𝑏1𝑥2(𝑏) + 𝑏2𝑇𝛼𝑥2(𝑏)) = 0 248 

On the contrary, we have 249 

𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎) ≠ 0          250 
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𝑏1𝑥2(𝑏) + 𝑏2𝑇𝛼𝑥2(𝑏) ≠ 0          251 

so that 252 

𝐴2(𝜀) = 0, 𝑎 ≤ 𝑡 < 𝜀  253 
𝐵2(𝜀) = 0, 𝜀 < 𝑡 ≤ 𝑏  254 

From here, we have  255 

𝐺𝛼(𝑡, 𝜀) = {
𝐴1(𝜀)𝑥1(𝑡) 𝑎 ≤ 𝑡 < 𝜀

𝐵1(𝜀)𝑥1(𝑡) 𝜀 < 𝑡 ≤ 𝑏
 256 

Since 𝐺𝛼 (𝑡, 𝜀) is a continuous function, we obtain 257 

lim
𝑡→𝜀−

𝐺𝛼(𝑡 , 𝜀) =𝐴1 (𝜀)𝑥1(𝜀) = lim
𝑡→𝜀+

𝐺𝛼(𝑡, 𝜀) =𝐵1(𝜀)𝑥1(𝜀) 258 

so that 259 

𝐴1(𝜀) = 𝐵1(𝜀), 𝑎 < 𝜀 < 𝑏  260 

From here, it follows that 261 

𝜕𝛼

𝜕𝑡𝛼
𝐺𝛼(𝜀+ , 𝜀) −

𝜕𝛼

𝜕𝑡𝛼
𝐺𝛼 (𝜀− , 𝜀) = 0 262 

which contradicts condition (ii). □ 263 

Theorem 17. System (19) has one, and only one, Green's Function if 𝜆 is not an eigenvalue. 264 

Proof. Let 𝑥1(𝑡) and 𝑥2(𝑡) two solutions of (19) such that 265 

𝑥1(𝑎) = 𝑎2 , 𝑇𝛼𝑥1(𝑎) = −𝑎1, 𝑥2(𝑏) = 𝑏2 ,𝑇𝛼𝑥2(𝑏) = −𝑏1 266 

Since |𝑎1 | + |𝑎2| ≠ 0, |𝑏1| + |𝑏2| ≠ 0, 𝑥1(𝑡) and 𝑥2(𝑡) are not null, they are also satisfying conditions 267 
(19b) and (19c), respectively. 268 

These solutions are linearly independent, since otherwise it would be 269 

𝑥1(𝑡) = 𝜇𝑥2(𝑡), 𝜇 ≠ 0 270 

Therefore, we have 271 

𝑏1𝑥1(𝑏) + 𝑏2𝑇𝛼𝑥1(𝑏) = 𝜇[𝑏1𝑥2(𝑏) + 𝑏2𝑇𝛼𝑥2(𝑏)] = 0 272 

As a result, 𝑥1(𝑡) would comply with (19b) and (19c). This is not possible since 𝑥1(𝑡) is not an 273 
eigenfunction. 274 

The reasoning as in the proof of Theorem 16, we have to 275 

𝐺𝛼(𝑡 , 𝜀) = {
𝐴1(𝜀)𝑥1(𝑡) + 𝐴2(𝜀)𝑥2(𝑡) 𝑎 ≤ 𝑡 < 𝜀

𝐵1(𝜀)𝑥1(𝑡) + 𝐵2(𝜀)𝑥2(𝑡) 𝜀 < 𝑡 ≤ 𝑏
 276 

Expressing that 𝐺𝛼  (𝑡 , 𝜀) meets the condition (iv), and it turns out that  277 

𝑎1 (𝐴1(𝜀)𝑥1(𝑎) +𝐴2 (𝜀)𝑥2(𝑎)) + 𝑎2(𝐴1 (𝜀)𝑇𝛼𝑥1(𝑎) + 𝐴2(𝜀)𝑇𝛼𝑥2(𝑎)) = 0 278 
𝑏1(𝐵1(𝜀)𝑥1(𝑏) + 𝐵2(𝜀)𝑥2(𝑏)) + 𝑏2(𝐵1(𝜀)𝑇𝛼𝑥1(𝑏) + 𝐵2(𝜀)𝑇𝛼𝑥2(𝑏)) = 0 279 

that is reduced to 280 

𝐴2(𝜀)(𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎)) = 0 281 
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𝐵1(𝜀)(𝑏1𝑥1(𝑏) + 𝑏2𝑇𝛼𝑥1(𝑏)) = 0 282 

from where it follows, remembering that 𝑥1(𝑡) and 𝑥2(𝑡) are not eigenfunctions and, therefore, 283 

𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎) ≠ 0, 𝑏1𝑥1(𝑏) + 𝑏2𝑇𝛼𝑥1(𝑏) ≠ 0, 284 

𝐴2(𝜀) = 0

𝐵1(𝜀) = 0
}   𝑎 < 𝜀 < 𝑏 285 

Now, by applying conditions (i) and (ii), it turns out that  286 

𝐴1 (𝜀)𝑥1(𝜀) + 𝐵2(𝜀)𝑥2(𝜀) = 0 287 

𝐴1 (𝜀)𝑇𝛼𝑥1(𝜀) + 𝐵2(𝜀)𝑇𝛼𝑥2(𝜀) =
1

𝑝(𝜀)
 288 

which allows us to calculate the following: 289 

𝐴1(𝜀) =
−𝑥2(𝜀)

𝑝(𝜀)[𝑥1(𝜀)𝑇𝛼𝑥2(𝜀) − 𝑥2(𝜀)𝑇𝛼𝑥1(𝜀)]
 290 

𝐵2(𝜀) =
−𝑥1(𝜀)

𝑝(𝜀)[𝑥1(𝜀)𝑇𝛼𝑥2(𝜀) − 𝑥2(𝜀)𝑇𝛼𝑥1(𝜀)]
 291 

Note that 𝑥1(𝜀)𝑇𝛼𝑥2(𝜀) − 𝑥2(𝜀)𝑇𝛼𝑥1(𝜀) is nonzero since it is conformable Wronskian of two linearly 292 
independent solutions of equation (19). 293 

Given the following: 294 

𝑇𝛼 (𝑝(𝑡)𝑇𝛼𝑥1(𝑡)) + (𝜆𝜌(𝑡) − 𝑞(𝑡))𝑥1(𝑡) = 0      295 
𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥2(𝑡)) + (𝜆𝜌(𝑡) − 𝑞(𝑡))𝑥2(𝑡) = 0      296 

By multiplying the first equation by 𝑥2(𝑡) , the second by 𝑥1(𝑡), and subtracting, we have 297 

𝑥2(𝑡)𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥1(𝑡)) − 𝑥1(𝑡)𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥2(𝑡)) = 0 298 

that can be written in the form 299 

𝑝(𝑡)(𝑥2(𝑡)𝑇𝛼𝑥1(𝑡) −  𝑥1(𝑡)𝑇𝛼𝑥2(𝑡)) = 0 300 

So, 𝑝(𝜀)(𝑥2(𝜀)𝑇𝛼𝑥1(𝜀) − 𝑥1(𝜀)𝑇𝛼𝑥2(𝜀)) is a constant 𝐾 that does not depend on 𝜀. 301 

Hence, we have 302 

𝐺𝛼(𝑡, 𝜀) = {

1

𝐾
𝑥1(𝑡)𝑥2(𝜀) 𝑎 ≤ 𝑡 < 𝜀

1

𝐾
𝑥1(𝜀)𝑥2(𝑡) 𝜀 < 𝑡 ≤ 𝑏

 303 

The conformable Green ś Function 𝐺𝛼(𝑡 ,𝜀) has the properties (i) - (iv). The uniqueness of this 304 

function is easily deduced from the method that we have follow ed to determine 𝐺𝛼(𝑡, 𝜀). □ 305 

Example 1. Consider the system 306 

𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 0, 𝑡 ∈ [0, (𝛼𝜋)
1
𝛼 ]

𝑥(0) + 𝑇𝛼𝑥(0) = 0                                 

𝑥 ((𝛼𝜋)
1
𝛼) = 0                                         }

 
 

 
 

 307 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2020                   doi:10.20944/preprints202009.0440.v1

https://doi.org/10.20944/preprints202009.0440.v1


 11 of 16 

for some 𝛼 ∈ (0,1], we will find the corresponding conformable Green ś Function. In this case 308 

𝑝(𝑡) = 1, 𝑞(𝑡) = −1, 𝜆 = 0, 𝜌(𝑡) is any positive continuous function in [0, (𝛼𝜋)
1

𝛼], 𝑎1 = 1, 𝑎2 = 1, 309 

𝑏1 = 1, 𝑏2 = 0. 310 

The general solution of 𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 0 is 311 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠
𝑡𝛼

𝛼
+ 𝐵𝑠𝑖𝑛

𝑡𝛼

𝛼
 312 

Then, we have 313 

𝑥(0) + 𝑇𝛼𝑥(0) = 𝐴 + 𝐵 = 0 314 

𝑥 ((𝛼𝜋)
1
𝛼 ) = −𝐴 = 0 315 

From here 𝐴 = 0,𝐵 = 0, so there was the conformable Green ś Function of the given system. 316 

The solutions of  𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 0; 𝑥1(𝑡) = 𝑐𝑜𝑠
𝑡𝛼

𝛼
+ 𝑠𝑖𝑛

𝑡𝛼

𝛼
, 𝑥2(𝑡) = 𝑠𝑖𝑛

𝑡𝛼

𝛼
 satisfy the conditions 317 

𝑥(0) + 𝑇𝛼𝑥(0) = 0, 𝑥 ((𝛼𝜋)
1

𝛼) = 0. The conformable Green ś Function has the form 318 

𝐺𝛼(𝑡, 𝜀) = {

1

𝐾
𝑥2(𝜀)𝑥1(𝑡) 0 ≤ 𝑡 < 𝜀

1

𝐾
𝑥1(𝜀)𝑥2(𝑡) 𝜀 < 𝑡 ≤ (𝛼𝜋)

1
𝛼

 319 

so that  320 

𝐾 = 𝑝(𝜀)(𝑥2(𝜀)𝑇𝛼𝑥1(𝜀) −  𝑥1(𝜀)𝑇𝛼𝑥2(𝜀)) = (−𝑠𝑖𝑛
𝜀𝛼

𝛼
+ 𝑐𝑜𝑠

𝜀𝛼

𝛼
)𝑠𝑖𝑛

𝜀𝛼

𝛼
− (𝑐𝑜𝑠

𝜀𝛼

𝛼
+ 𝑠𝑖𝑛

𝜀𝛼

𝛼
) 𝑐𝑜𝑠

𝜀𝛼

𝛼
= −1 321 

Therefore, we obtain 322 

𝐺𝛼(𝑡, 𝜀) = {
−𝑠𝑖𝑛

𝜀𝛼

𝛼
(𝑐𝑜𝑠

𝑡𝛼

𝛼
+ 𝑠𝑖𝑛

𝑡𝛼

𝛼
) 0 ≤ 𝑡 < 𝜀

− (𝑐𝑜𝑠
𝜀𝛼

𝛼
+ 𝑠𝑖𝑛

𝜀𝛼

𝛼
) 𝑠𝑖𝑛

𝑡𝛼

𝛼
𝜀 < 𝑡 ≤ (𝛼𝜋)

1
𝛼

 323 

 324 

4.2. The applicability of Conformable Green ś Function 325 

In this section, we consider the system 326 

𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥(𝑡)) − 𝑞(𝑡)𝑥(𝑡) = 0                            (20𝑎)

𝑎1𝑥(𝑎) + 𝑎2𝑇𝛼𝑥(𝑎) = 0                                         (20𝑏)

𝑏1𝑥(𝑏) + 𝑏2𝑇𝛼𝑥(𝑏) = 0                                          (20𝑐)

}, (20) 

obtained from (19) for 𝜆 = 0. We now propose to solve the inhomogeneous system 327 

 𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥(𝑡)) − 𝑞(𝑡)𝑥(𝑡) = −𝑓(𝑡)                             

𝑎1𝑥(𝑎) + 𝑎2𝑇𝛼𝑥(𝑎) = 0                                         

𝑏1𝑥(𝑏) + 𝑏2𝑇𝛼𝑥(𝑏) = 0                                          

}, (21) 

 where 𝑓(𝑡) is a real continuous function in the interval [𝑎, 𝑏]   for some 0 ≤ 𝑎 < 𝑏 . 328 

Theorem 18. If the homogeneous system (20) has its only solution as the identically null function, then (21) 329 

has only one solution, which is given by 330 
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𝑥(𝑡) = ∫ 𝐺𝛼(𝑡, 𝜀)𝑓(𝜀)
𝑏

𝑎

1

𝜀1−𝛼
𝑑𝜀 331 

where 𝐺𝛼(𝑡 , 𝜀) is the conformable Green ś Function of (20). 332 

Proof. That homogeneous system (20) has its unique solution as the identically null function which 333 
is equivalent to saying that 𝜆 = 0 is not an eigenvalue of (19); therefore, there is the conformable 334 
Green ś Function of (20). 335 
Let 𝑥1(𝑡) and 𝑥2(𝑡) be two linearly independent solutions of (20a) that verify (20b) and (20c), 336 
respectively. Let us apply the conformable version of the method of variation  of the parameters to 337 

solve (20a). Then, we have  338 

𝑥(𝑡) = 𝐴(𝑡)𝑥1(𝑡) + 𝐵(𝑡)𝑥2(𝑡) 339 
𝑇𝛼 (𝑝(𝑡)(𝑥1(𝑡)𝑇𝛼𝐴(𝑡) + 𝑥2(𝑡)𝑇𝛼𝐵(𝑡) + 𝐴(𝑡)𝑇𝛼𝑥1(𝑡) + 𝐵(𝑡)𝑇𝛼𝑥2(𝑡))) − 𝑞(𝑡)(𝐴(𝑡)𝑥1(𝑡) + 𝐵(𝑡)𝑥2(𝑡))340 

= −𝑓(𝑡)    341 

that is to say 342 

𝐴(𝑡)𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥1(𝑡) − 𝐴(𝑡)𝑞(𝑡)𝑥1(𝑡)) + 𝐵(𝑡)𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥2(𝑡) − 𝐵(𝑡)𝑞(𝑡)𝑥2(𝑡))343 

+ 𝑝(𝑡)(𝑇𝛼𝐴(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑇𝛼𝐵(𝑡)𝑇𝛼𝑥2(𝑡)) + 𝑇𝛼 (𝑝(𝑡)(𝑥1(𝑡)𝑇𝛼𝐴(𝑡) + 𝑥2(𝑡)𝑇𝛼𝐵(𝑡)))344 

= −𝑓(𝑡)  345 

that is 346 

𝑝(𝑡)(𝑇𝛼𝐴(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑇𝛼𝐵(𝑡)𝑇𝛼𝑥2(𝑡)) + 𝑇𝛼 (𝑝(𝑡)(𝑥1(𝑡)𝑇𝛼𝐴(𝑡) + 𝑥2(𝑡)𝑇𝛼𝐵(𝑡))) = −𝑓(𝑡) 347 

We make 348 

𝑥1(𝑡)𝑇𝛼𝐴(𝑡) + 𝑥2(𝑡)𝑇𝛼𝐵(𝑡) = 0, 349 

and we have 350 

𝑝(𝑡)(𝑇𝛼𝐴(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑇𝛼𝐵(𝑡)𝑇𝛼𝑥2(𝑡)) = −𝑓(𝑡)  351 

so that 352 

𝑇𝛼𝐴(𝑡) =
−𝑥2(𝑡)𝑓(𝑡)

𝑝(𝑡)(𝑥2(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑥1(𝑡)𝑇𝛼𝑥2(𝑡))
 353 

 354 

𝑇𝛼𝐵(𝑡) =
−𝑥1(𝑡)𝑓(𝑡)

𝑝(𝑡)(𝑥2(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑥1(𝑡)𝑇𝛼𝑥2(𝑡))
 355 

We know, from the proof of Theorem 17, that 𝑝(𝑡)(𝑥2(𝑡)𝑇𝛼𝑥1(𝑡) + 𝑥1(𝑡)𝑇𝛼𝑥2(𝑡)) is a constant, and it 356 

is equal to 𝐾. On the contrary, we have 357 

𝑎1𝑥(𝑎) + 𝑎2𝑇𝛼𝑥(𝑎)358 
= 𝑎1(𝐴(𝑎)𝑥1(𝑎) +𝐵(𝑎)𝑥2(𝑎))359 
+ 𝑎2(𝑥1(𝑎)𝑇𝛼𝐴(𝑎) + 𝑥2(𝑎)𝑇𝛼𝐵(𝑎) + 𝐴(𝑎)𝑇𝛼𝑥1(𝑎) + 𝐵(𝑎)𝑇𝛼𝑥2(𝑎))360 
= 𝐴(𝑎)(𝑎1𝑥1(𝑎) + 𝑎2𝑇𝛼𝑥1(𝑎)) + 𝐵(𝑎)(𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎))361 
= 𝐵(𝑎)(𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎)) = 0 362 

and since 𝑥2(𝑡) is not an eigenfunction of (20) it turns out that 363 

𝑎1𝑥2(𝑎) + 𝑎2𝑇𝛼𝑥2(𝑎) ≠ 0 364 
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so that 𝐵(𝑎) = 0. 365 

By writing now the following: 366 

𝑏1𝑥(𝑏) + 𝑏𝑇𝛼𝑥(𝑏) = 0 367 

Similarly, we obtain 𝐴(𝑏) = 0. 368 

So, we have 369 

𝐴(𝑡) = ∫
𝑥2(𝜀)

𝐾
𝑓(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀 + 𝐶1 370 

and since 𝐴(𝑏) = 0, we have to 371 

𝐴(𝑡) = −∫
𝑥2(𝜀)

𝐾
𝑓(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀 + ∫

𝑥2(𝜀)

𝐾
𝑓(𝜀)

𝑏

𝑎

1

𝜀1−𝛼
𝑑𝜀 = ∫

𝑥2(𝜀)

𝐾
𝑓(𝜀)

𝑏

𝑡

1

𝜀1−𝛼
𝑑𝜀 372 

Analogously 373 

𝐵(𝑡) = ∫
𝑥1(𝜀)

𝐾
𝑓(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀  374 

Thus, we obtain 375 

𝑥(𝑡) = 𝐴(𝑡)𝑥1(𝑡) + 𝐵(𝑡)𝑥2(𝑡) = ∫
𝑥1(𝑡)𝑥2(𝜀)

𝐾
𝑓(𝜀)

𝑏

𝑡

1

𝜀1−𝛼
𝑑𝜀 + ∫

𝑥1(𝜀)𝑥2(𝑡)

𝐾
𝑓(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀376 

= ∫ 𝐺3
𝛼 (𝑡, 𝜀)𝑓(𝜀)

𝑏

𝑎

1

𝜀1−𝛼
𝑑𝜀 377 

where we have the following 378 

𝐺𝛼(𝑡, 𝜀) = {

1

𝐾
𝑥1(𝑡)𝑥2(𝜀) 𝑎 ≤ 𝑡 < 𝜀

1

𝐾
𝑥1(𝜀)𝑥2(𝑡) 𝜀 < 𝑡 ≤ 𝑏

 379 

which is the Green ś Function. □ 380 

Example 2. By using the Green ś Function, we want to solve the following system 381 

𝑇𝛼𝑇𝛼𝑥(𝑡) + 𝑥(𝑡) = 𝑒
𝑡𝛼

𝛼 𝑡 ∈ [0, (𝛼𝜋)
1
𝛼 ]

𝑥(0) = 0  

𝑇𝛼𝑥 ((𝛼𝜋)
1
𝛼) = 0 }

 
 

 
 

 382 

First, we find the conformable Green ś Function of the homogeneous system. 383 

We have following: 384 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠 (
𝑡𝛼

𝛼
) + 𝐵𝑠𝑖𝑛 (

𝑡𝛼

𝛼
) 385 

𝑥(0) = 0 = 𝐴 386 

𝑇𝛼𝑥 ((𝛼𝜋)
1
𝛼) = 0 = 𝐵  387 

Therefore, the conformable Green's Function exists. This function can be written as  388 
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𝐺𝛼 (𝑡, 𝜀) = {
𝑐𝑜𝑠 (

𝜀𝛼

𝛼
) 𝑠𝑖𝑛 (

𝑡𝛼

𝛼
) 0 ≤ 𝑡 < 𝜀

𝑠𝑖𝑛 (
𝜀𝛼

𝛼
) 𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) 𝜀 < 𝑡 ≤ (𝛼𝜋)

1
𝛼

 389 

Therefore, our intended solution can be written as follows: 390 

𝑥(𝑡) = −∫ 𝐺𝛼 (𝑡, 𝜀)𝑒
𝜀𝛼

𝛼

(𝛼𝜋)
1
𝛼

0

1

𝜀1−𝛼
𝑑𝜀391 

= −∫ 𝑠𝑖𝑛 (
𝜀𝛼

𝛼
) 𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) 𝑒

𝜀𝛼

𝛼

𝑡

0

1

𝜀1−𝛼
𝑑𝜀 − ∫ 𝑐𝑜𝑠 (

𝜀𝛼

𝛼
) 𝑠𝑖𝑛 (

𝑡𝛼

𝛼
) 𝑒

𝜀𝛼

𝛼

(𝛼𝜋)
1
𝛼

𝑡

1

𝜀1−𝛼
𝑑𝜀392 

= −
1

2
𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) [𝑒

𝜀𝛼

𝛼 (𝑠𝑖𝑛 (
𝜀𝛼

𝛼
) − 𝑐𝑜𝑠 (

𝜀𝛼

𝛼
))]

𝜀=0

𝜀=𝑡

393 

−
1

2
𝑠𝑖𝑛 (

𝑡𝛼

𝛼
)[𝑒

𝜀𝛼

𝛼 (𝑠𝑖𝑛 (
𝜀𝛼

𝛼
) − 𝑐𝑜𝑠 (

𝜀𝛼

𝛼
))]

𝜀=𝑡

𝜀=(𝛼𝜋)
1
𝛼

394 

= −
1

2
𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) [𝑒

𝜀𝛼

𝛼 (𝑠𝑖𝑛 (
𝑡𝛼

𝛼
) − 𝑐𝑜𝑠 (

𝑡𝛼

𝛼
)) + 1]395 

−
1

2
𝑠𝑖𝑛 (

𝑡𝛼

𝛼
)[𝑒𝜋 − 𝑒

𝑡𝛼

𝛼 (𝑠𝑖𝑛 (
𝑡𝛼

𝛼
) − 𝑐𝑜𝑠 (

𝑡𝛼

𝛼
))]396 

= 𝑒𝜋 [−𝑠𝑖𝑛 (
𝑡𝛼

𝛼
) 𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) +

1

2
] −

1

2
𝑐𝑜𝑠 (

𝑡𝛼

𝛼
) −

1

2
𝑒𝜋𝑠𝑖𝑛 (

𝑡𝛼

𝛼
) 397 

Finally, we investigate the generalized Hyers-Ulam stability of the conformable linear 398 
inhomogeneous differential equation of second order (21) in the class of continuously twice 𝛼-399 

differentiable functions. 400 

Theorem 19. Let 𝑝, 𝑞, 𝑓: [𝑎,𝑏] → 𝑅  be continuous functions and let 𝑝 be 𝛼-differentiable function on [𝑎, 𝑏] . 401 
Assume that the conformable homogeneous differential equation (20) has its only solution as the identically 402 

null function. If a twice continuously 𝛼-differentiable function 𝑥: [𝑎, 𝑏] → 𝑅 satisfies the inequality 403 

|𝑇𝛼 (𝑝(𝑡)𝑇𝛼𝑥(𝑡)) − 𝑞(𝑡)𝑥(𝑡) + 𝑓(𝑡)| ≤ 𝜑(𝑡), (22) 

for all 𝑡 ∈ [𝑎,𝑏] , where 𝜑: [𝑎, 𝑏] → [0,∞) is given that such of the following integrals exists, then there exists 404 

a solution 𝑥0: [𝑎, 𝑏] → 𝑅 of (21) such that 405 

|𝑥(𝑡) − 𝑥0(𝑡)| ≤
1

|𝐾|
(|𝑥1(𝑡)| ∫ |𝑥2(𝜀)|𝜑(𝜀)

𝑡

𝑏

1

𝜀1−𝛼
𝑑𝜀 + |𝑥2(𝑡)| ∫ |𝑥1(𝜀)|𝜑(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀), (23) 

where 𝐾 is a nonzero constant and 𝑥1(𝑡) and 𝑥2(𝑡) are two linearly independent solutions of (20a) that verify 406 

(20b) and (20c), respectively (see Theorem 18). 407 

Proof. If we define a continuous function 𝑠: [𝑎, 𝑏] → 𝑅 by  408 

𝑠(𝑡) = 𝑇𝛼(𝑝(𝑡)𝑇𝛼𝑥(𝑡) − 𝑞(𝑡)𝑥(𝑡)), (24) 

for all 𝑡 ∈ [𝑎, 𝑏], then it follows (22) that 409 

|𝑠(𝑡) + 𝑓(𝑡)| ≤ 𝜑(𝑡), (25) 
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for all 𝑡 ∈ [𝑎, 𝑏]. In view of Theorem 18 and (24), we have 410 

𝑥(𝑡) = −∫ 𝐺𝛼 (𝑡, 𝜀)𝑠(𝜀)
𝑏

𝑎

1

𝜀1−𝛼
𝑑𝜀 = −∫

𝑥1(𝑡)𝑥2(𝜀)

𝐾
𝑠(𝜀)

𝑏

𝑡

1

𝜀1−𝛼
𝑑𝜀 − ∫

𝑥1(𝜀)𝑥2(𝑡)

𝐾
𝑠(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀  411 

(26) 412 

where 𝐾 is a nonzero constant because 𝑥1(𝑡) and 𝑥2(𝑡) are two linearly independent solutions of 413 
(20a) that verify (20b) and (20c), respectively (see Theorem 18). 414 

We now define a function 𝑥0:[𝑎, 𝑏] → 𝑅  by 415 

𝑥0(𝑡) = ∫
𝑥1 (𝑡)𝑥2 (𝜀)

𝐾
𝑓(𝜀)

𝑏

𝑡

1

𝜀1−𝛼
𝑑𝜀 + ∫

𝑥1(𝜀)𝑥2 (𝑡)

𝐾
𝑓(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀, (27) 

for all 𝑡 ∈ [𝑎, 𝑏]. According to Theorem18, it is obvious that 𝑥0 is a solution of (21). Moreover, it 416 

follows from (25), (26) and (27) that 417 

|𝑥(𝑡) − 𝑥0(𝑡)| ≤ |−∫
𝑥1(𝑡)𝑥2(𝜀)

𝐾
(𝑠(𝜀) + 𝑓(𝜀))

𝑏

𝑡

1

𝜀1−𝛼
𝑑𝜀 − ∫

𝑥1(𝜀)𝑥2(𝑡)

𝐾
(𝑠(𝜀) + 𝑓(𝜀))

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀|418 

≤
1

|𝐾|
(|𝑥1(𝑡)| ∫ |𝑥2(𝜀)|𝜑(𝜀)

𝑡

𝑏

1

𝜀1−𝛼
𝑑𝜀 + |𝑥2(𝑡)|∫ |𝑥1(𝜀)|𝜑(𝜀)

𝑡

𝑎

1

𝜀1−𝛼
𝑑𝜀) 419 

for all 𝑡 ∈ [𝑎, 𝑏]. □ 420 

Remark 4. Theorem 19 reduces to [22] (Theorem 3.2) in the case 𝛼 = 0 and using the Green ś 421 
Function. 422 

5. Conclusions 423 

In this research paper, we have proposed some results referring to the conformable boundary 424 
value problems. The conformable second order Sturm-Picone  identity has been proven, and its 425 
Sturm's theorems of comparison and separation have been successfully es tablished. As in the 426 
classical case, an important application of the Sturm’s comparison theorem is to provide a clear 427 
understanding of the zero set of non-trivial solutions of the conformable Bessel’s equation. For a 428 
conformable Sturm-Liouville system, we have defined the Green ś function and established its 429 
properties. The conformable Green’s function is applied to construct the solution of the 430 
inhomogeneous problem of Sturm-Liouville, whose associated homogeneous problem has its only 431 
solution as the identically null function. Finally, we have proved the generalized Hyers -Ulam 432 
stability of the conformable linear inhomogeneous differential equation  of second order (21) in the 433 

class of continuously twice 𝛼-differentiable functions. 434 
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