

1 Article

## 2 Note on the conformable boundary value problems: 3 Sturm's theorems and Green's function

4 F. Martínez <sup>1,\*</sup>, I. Martínez <sup>1</sup>, Mohammed K.A. Kaabar <sup>2</sup>, S. Paredes <sup>1</sup>

5 <sup>1</sup> Department of Applied Mathematics and Statistics, Technological University of Cartagena, Spain

6 <sup>2</sup> Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA

7 \* Correspondence: f.martinez@upct.es; Tel.: +34968325586

8 **Abstract:** Recently, the conformable derivative and its properties have been introduced. In this  
9 paper, we propose and prove some new results on conformable Boundary Value Problems. First,  
10 we introduce a conformable version of classical Sturm's separation, and comparison theorems. For  
11 a conformable Sturm-Liouville problem, Green's function is constructed, and its properties are  
12 also studied. In addition, we propose the applicability of the Green's Function in solving  
13 conformable inhomogeneous linear differential equations with homogeneous boundary  
14 conditions, whose associated homogeneous boundary value problem has only trivial solution.  
15 Finally, we prove the generalized Hyers-Ulam stability of the conformable inhomogeneous  
16 boundary value problem.

17 **Keywords:** Conformable fractional derivative; Conformable fractional integral; Conformable  
18 fractional differential equations; Sturm's Theorems; Green's Function

19

---

### 20 1. Introduction

21 The idea of fractional derivative was first raised by L'Hospital in 1695. Since then, several  
22 related new definitions have been proposed. The most common ones are Riemann-Liouville and  
23 Caputo definitions. For more information about the most known fractional definitions, we refer to  
24 [1,2]. A new definition of fractional derivative and fractional integral has been recently proposed by  
25 Khalil et al. in [3]. As a result, several important elements of the mathematical analysis of functions  
26 of a real variable have been formulated such as: chain rule, fractional power series expansion and  
27 fractional integration by parts formulas, Rolle's Theorem, Mean Value Theorem, [3-5]. The  
28 conformable partial derivative of the order  $\alpha \in (0,1]$  of the real-valued functions of several  
29 variables and conformable gradient vector are also defined. In addition, a conformable version of  
30 Clairaut's Theorem for partial derivative is investigated in [6]. In [7], conformable Jacobian matrix  
31 is defined, and chain rule for multivariable conformable derivative is proposed. In [8], the  
32 conformable version of Euler's Theorem on homogeneous is introduced. Furthermore, in a short  
33 time, various research studies have been conducted on the theory and applications of fractional  
34 differential equations in the context of this newly introduced fractional derivative, [9-18].

35 This paper is organized as follows: In Section 2, the main concepts of conformable fractional  
36 calculus are presented. In Section 3, we proved a conformable version of the conformable second-  
37 order Sturm-Picone identity. From this result, we establish the conformable Sturm-Liouville  
38 comparison and separation theorems. In Section 4, for a conformable Sturm-Liouville problem, the  
39 Green function is constructed, and its properties are studied. At the end, we prove the generalized  
40 Hyers-Ulam stability of conformable inhomogeneous linear differential equations with  
41 homogeneous boundary conditions..

### 42 2. Basic definitions and tools

43 **Definition 1.** Given a function  $f:[0,\infty) \rightarrow \mathbb{R}$ . Then, the conformable fractional derivative of order  $\alpha$ , [3], is  
44 defined by

$$(T_\alpha f)(t) = \lim_{\varepsilon \rightarrow 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}, \quad (1)$$

45 for all  $t > 0$ ,  $0 < \alpha \leq 1$ . If  $f$  is  $\alpha$ -differentiable in some  $(0, a)$ ,  $a > 0$ , and  $\lim_{t \rightarrow 0^+} (T_\alpha f)(t)$  exists, then it is  
46 defined as

$$(T_\alpha f)(0) = \lim_{t \rightarrow 0^+} (T_\alpha f)(t), \quad (2)$$

47 **Theorem 1.** [3]. If a function  $f: [0, \infty) \rightarrow R$  is  $\alpha$ -differentiable at  $t_0 > 0$ ,  $0 < \alpha \leq 1$ , then  $f$  is continuous at  
48  $t_0$ .

49 **Theorem 2.** [3]. Let  $0 < \alpha \leq 1$ , and let  $f, g$  be  $\alpha$ -differentiable at a point  $t > 0$ . Then

- 50 (i)  $T_\alpha(af + bg) = a(T_\alpha f) + b(T_\alpha g)$ ,  $\forall a, b \in R$ .
- 51 (ii)  $T_\alpha(t^p) = pt^{p-\alpha}$ ,  $\forall p \in R$ .
- 52 (iii)  $T_\alpha(\lambda) = 0$ , for all constant functions  $f(t) = \lambda$ .
- 53 (iv)  $T_\alpha(fg) = f(T_\alpha g) + g(T_\alpha f)$ .
- 54 (v)  $T_\alpha\left(\frac{f}{g}\right) = \frac{g(T_\alpha f) - f(T_\alpha g)}{g^2}$ .
- 55 (vi) If, in addition,  $f$  is differentiable, then  $(T_\alpha f)(t) = t^{1-\alpha} \frac{df}{dt}(t)$ .

56 The conformable fractional derivative of certain functions for the above definition is given as:

- 57 (i)  $T_\alpha(1) = 0$ ,
- 58 (ii)  $T_\alpha(\sin(at)) = at^{1-\alpha} \cos(at)$ ,
- 59 (iii)  $T_\alpha(\cos(at)) = -at^{1-\alpha} \sin(at)$ ,
- 60 (iv)  $T_\alpha(e^{at}) = ae^{at}$ ,  $a \in R$ .

61 **Definition 2.** The (left) conformable derivative starting from  $a$  of a given function  $f: [a, \infty) \rightarrow R$  of order  
62  $0 < \alpha \leq 1$ , [4], is defined by

$$(T_\alpha^a f)(t) = \lim_{\varepsilon \rightarrow 0} \frac{f(t + \varepsilon(t-a)^{1-\alpha}) - f(t)}{\varepsilon}, \quad (3)$$

63  
64 When  $a = 0$ , it is written as  $(T_\alpha f)(t)$ . If  $f$  is  $\alpha$ -differentiable in some  $(a, b)$ , then the following can be  
65 defined as:

$$(T_\alpha^a f)(a) = \lim_{t \rightarrow a^+} (T_\alpha^a f)(t), \quad (4)$$

66 **Theorem 3 (Chain Rule).** [4]. Assume  $f, g: (a, \infty) \rightarrow R$  be (left)  $\alpha$ -differentiable functions, where  $0 < \alpha \leq$   
67 1. By letting  $h(t) = f(g(t))$ ,  $h(t)$  is  $\alpha$ -differentiable for all  $t \neq a$  and  $g(t) \neq 0$ , therefore, we have the  
68 following:

$$(T_\alpha^a h)(t) = (T_\alpha^a f)(g(t)) \cdot (T_\alpha^a g)(t) \cdot (g(t))^{\alpha-1}, \quad (5)$$

69 If  $t = a$ , then

$$(T_\alpha^a h)(a) = \lim_{t \rightarrow a^+} (T_\alpha^a f)(g(t)) \cdot (T_\alpha^a g)(t) \cdot (g(t))^{\alpha-1}, \quad (6)$$

70 **Theorem 4 (Rolle's Theorem).** [3]. Let  $a > 0$ ,  $\alpha \in (0, 1]$  and  $f: [a, \infty) \rightarrow R$  be a given function that satisfies  
71 the following:

- 72 -  $f$  is continuous on  $[a, b]$ .  
 73 -  $f$  is  $\alpha$ -differentiable on  $(a, b)$ .  
 74 -  $f(a) = f(b)$ .

75 Then, there exists  $c \in (a, b)$ , such that  $(T_\alpha f)(c) = 0$ .

76 **Corollary 1.** Let  $I \subset [0, \infty)$ ,  $\alpha \in (0, 1]$  and  $f: I \rightarrow R$  be a given function that satisfies

- 77 -  $f$  is  $\alpha$ -differentiable on  $I$ .  
 78 -  $f(a) = f(b) = 0$  for certain  $c \in I$ .

79 Then, there exists  $c \in (a, b)$ , such that  $(T_\alpha f)(c) = 0$ .

80 **Theorem 5. (Mean Value Theorem).** [3]. Let  $a > 0$ ,  $\alpha \in (0, 1]$  and  $f: [a, \infty) \rightarrow R$  be a given function that  
 81 satisfies

- 82 -  $f$  is continuous in  $[a, b]$ .  
 83 -  $f$  is  $\alpha$ -differentiable on  $(a, b)$ .

84 Then, exists  $c \in (a, b)$  such that

$$(T_\alpha f)(c) = \frac{f(b) - f(a)}{\frac{b^\alpha - a^\alpha}{\alpha}}, \quad (7)$$

85 **Theorem 6.** [5]. Let  $a > 0$ ,  $\alpha \in (0, 1]$  and  $f: [a, \infty) \rightarrow R$  be a given function that satisfies

- 86 -  $f$  is continuous in  $[a, b]$ .  
 87 -  $f$  is  $\alpha$ -differentiable on  $(a, b)$ .

88 If  $(T_\alpha f)(c) = 0$  for all  $t \in (a, b)$ , then  $f$  is a constant on  $[a, b]$ .

89 **Corollary 7.** [5]. Let  $a > 0$ ,  $\alpha \in (0, 1]$  and  $F, G: [a, \infty) \rightarrow R$  be functions such that  $(T_\alpha F)(t) = (T_\alpha G)(t)$  for  
 90 all  $t \in (a, b)$ . Then, there exists a constant  $C$  such that

$$F(t) = G(t) + C, \quad (8)$$

91 The following definition is the  $\alpha$ -fractional integral of a function  $f$  starting from  $a \geq 0$ :

92 **Definition 3.**  $I_\alpha^a(f)(t) = \int_a^t \frac{f(x)}{x^{1-\alpha}} dx$ , where the integral is the usual Riemann improper integral, and  $\alpha \in (0, 1]$ , [2].

94 According to the above definition, the following can be shown:

95 **Theorem 8.**  $T_\alpha^a I_\alpha^a(f)(t) = f(t)$ , for  $t \geq a$ , where  $f$  is any continuous function in the domain of  $I_\alpha$ .

96 **Lemma 9.** Let  $f: (a, b) \rightarrow R$  be differentiable and  $\alpha \in (0, 1]$ . Then, for all  $a > 0$ , we have, [3],

$$I_\alpha^a T_\alpha^a(f)(t) = f(t) - f(a), \quad (9)$$

97 Finally, we give the definition of non-conformable  $\alpha$ -Wronskian, which is necessary in the next  
 98 section.

99 **Definition 4.** Let  $x$  and  $y$  be given conformable  $\alpha$ -differentiable functions on  $[a, b]$  with  $a \geq 0$  and  $\alpha \in (0, 1]$ . We set the following:

$$W^\alpha(x, y)(t) = \begin{vmatrix} x(t) & y(t) \\ (T_\alpha x)(t) & (T_\alpha y)(t) \end{vmatrix} \quad (10)$$

101 **3. Sturm's theorems**

102 In this section, we consider the scalar fractional differential equation of second order of the  
103 following form:

$$T_\alpha T_\alpha x(t) + p(t) T_\alpha x(t) + q(t) x(t) = 0, \quad (11)$$

104 with continuous functions  $p$  and  $q$ , and  $\alpha \in (0, 1]$ . Traditionally, from [19], two functions  $x$  and  $y$   
105 that are continuous on  $[a, b]$  for some  $0 \leq a < b$ , will be called linearly dependent if there exist  
106  $c_1, c_2 \in \mathbb{R}$  such that  $|c_1| + |c_2| > 0$  and  $c_1 x(t) + c_2 y(t) \equiv 0$  for all  $t \in [a, b]$ . In the other case, they are  
107 linearly independent.

108 **Remark 1.** We can write

$$W^\alpha(x, y)(t) = e^{-\int_{t_0}^t \frac{p(x)}{x^{1-\alpha}} dx} W^\alpha(x, y)(t_0), \quad (12)$$

109 for two solutions  $x$  and  $y$  of [5] and some  $t_0 \in (a, b)$ . In fact, we apply the operator  $T_\alpha$  on  
110  $W^\alpha(x, y)(t)$  to obtain

$$\begin{aligned} 111 \quad T_\alpha(W^\alpha(x, y)(t)) &= T_\alpha(x(t)T_\alpha y(t) - y(t)T_\alpha x(t)) \\ 112 \quad &= T_\alpha x(t)T_\alpha y(t) + x(t)T_\alpha T_\alpha y(t) - T_\alpha y(t)T_\alpha x(t) - y(t)T_\alpha T_\alpha x(t) \end{aligned}$$

113 However,  $x$  and  $y$  satisfies (11). Hence, we have:

$$114 \quad T_\alpha T_\alpha x(t) = -p(t)T_\alpha x(t) - q(t)x(t)$$

115 and

$$116 \quad T_\alpha T_\alpha y(t) = -p(t)T_\alpha y(t) - q(t)y(t)$$

117 Therefore, we get

$$118 \quad T_\alpha(W^\alpha(x, y)(t)) = -(x(t)T_\alpha y(t) - y(t)T_\alpha x(t))p(t) = -(W^\alpha(x, y)(t))p(t)$$

119 Thus

$$120 \quad \frac{T_\alpha(W^\alpha(x, y)(t))}{W^\alpha(x, y)(t)} = -p(t)$$

121 Consequently, we have

$$122 \quad W^\alpha(x, y)(t) = e^{-\int_{t_0}^t \frac{p(x)}{x^{1-\alpha}} dx} W^\alpha(x, y)(t_0)$$

123 This completes the proof.  $\square$

124 Similar to the classical case, by using the above formula, we can immediately obtain the  
125 following equivalent condition of linear independence:

126 **Theorem 10.** Two solutions  $x$  and  $y$  of equation (11) defined on  $[a, b]$  for some  $0 \leq a < b$  are linearly  
127 independent if and only if  $W^\alpha(x, y)(t) \neq 0$  for all  $t \in [a, b]$ .

128 Now, we propose a conformable version of three classical results, the second order Sturm-  
 129 Picone identity and Sturm's comparison, and separation theorems, [20].

130 Let us now introduce the non-conformable self-adjoint Sturm-Liouville equation as follows:

$$-T_\alpha(p_1(t)T_\alpha x(t)) + p_0(t)x(t) = 0, \quad (13)$$

$$-T_\alpha(q_1(t)T_\alpha y(t)) + q(t)y(t) = 0, \quad (14)$$

131 where  $p_0, p_1, q_0, q_1, T_\alpha p_1, T_\alpha q_1$  are continuous on some closed interval  $I \subset [0, +\infty)$ ,  $p_1 > 0, q_1 > 0$  on  $I$   
 132 and  $\alpha \in (0, 1]$ .

133 **Theorem 11 (Conformable Picone Identity).** If  $x(t), y(t)$  and  $p_1(t)T_\alpha x(t), q_1(t)T_\alpha y(t)$  are  $\alpha$ -  
 134 differentiable for  $t \in I$  and  $y(t) \neq 0$  in  $I$ , then we obtain

$$\begin{aligned} 135 \quad & T_\alpha \left( \frac{x(t)}{y(t)} (p_1(t)y(t)T_\alpha x(t) - q_1(t)x(t)T_\alpha y(t)) \right) \\ 136 \quad & = x(t)T_\alpha(p_1(t)T_\alpha x(t)) - \frac{(x(t))^2}{y(t)} T_\alpha(q_1(t)T_\alpha y(t)) + (p_1(t) - q_1(t))(T_\alpha x(t))^2 \\ 137 \quad & + q_1(t) \left( T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \right)^2 \\ 138 \quad & \end{aligned} \quad (15)$$

139 **Proof.** This arises from the straightforward  $\alpha$ -differentiation.  $\square$

140 **Theorem 12 (Conformable Sturm's Comparison Theorem).** Let  $0 \leq a < b$  be two consecutive zeros of a  
 141 nontrivial solution  $x(t)$  of equation (3.3). Suppose that

$$142 \quad (i) \quad 0 < q_1(t) \leq p_1(t),$$

143 and

$$144 \quad (ii) \quad q_0(t) \leq p_0(t)$$

145 for all  $t \in [a, b]$ . Then, every solution  $y(t)$  of equation (14) has at least one zero in the closed interval  $[a, b]$ .

146 **Proof.** If  $x(t)$  and  $y(t)$  are solutions of (13) and (14), respectively, and  $y(t) \neq 0$  for all  $t \in [a, b]$ , then  
 147 the conformable Picone identity (15) yields on substitution of (13.4) as follows:

$$\begin{aligned} 148 \quad & T_\alpha \left( \frac{x(t)}{y(t)} (p_1(t)y(t)T_\alpha x(t) - q_1(t)x(t)T_\alpha y(t)) \right) \\ 149 \quad & = (p_0(t) - q_0(t))(x(t))^2 + (p_1(t) - q_1(t))(T_\alpha x(t))^2 + q_1(t) \left( T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \right)^2 \end{aligned}$$

150 Integrating over  $[a, b]$ ; therefore, we have (see Lemma 9),

$$\begin{aligned} 151 \quad & \int_a^b \left[ (p_0(t) - q_0(t))(x(t))^2 + (p_1(t) - q_1(t))(T_\alpha x(t))^2 + q_1(t) \left( T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \right)^2 \right] \frac{1}{t^{1-\alpha}} dt \\ 152 \quad & = \left[ \frac{x(t)}{y(t)} (p_1(t)y(t)T_\alpha x(t) - q_1(t)x(t)T_\alpha y(t)) \right]_{t=a}^{t=b} \\ 153 \quad & \end{aligned} \quad (16)$$

154 The right-hand side of equation (16) evaluates to zero by assuming  $x(a) = x(b) = 0$ , and  $y(a) \neq 0$ ,  
 155  $y(b) \neq 0$ . Since  $q_1(t) > 0$  in  $[a, b]$ , the third term of the integrand is nonnegative over  $[a, b]$ . Hence,  
 156 we must have either

157 (i)  $T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \equiv 0$  in  $[a, b]$

158 or

159 (ii)  $\int_a^b [(p_0(t) - q_0(t))(x(t))^2 + (p_1(t) - q_1(t))(T_\alpha x(t))^2] \frac{1}{t^{1-\alpha}} dt < 0$

160 However, Case (ii) gives an immediate contradiction since  $p_0(t) - q_0(t) \geq 0$  and  $p_1(t) - q_1(t) \geq 0$   
 161 by assumption. In Case (i), we are also led to a contradiction since (i) implies

162  $\frac{y(t)T_\alpha x(t) - x(t)T_\alpha y(t)}{(y(t))^2} = T_\alpha \left( \frac{x(t)}{y(t)} \right) \equiv 0$ , or

163  $x(t) \equiv ky(t)$  for all  $t \in [a, b]$ , for some  $k \neq 0$ , but  $y(a) = y(b) = 0$  which is a contrary to our  
 164 assumption.  $\square$

165 **Theorem 13 (Conformable Sturm's Separation Theorem).** Let  $0 \leq a < b$  be two consecutive zeros of a  
 166 nontrivial solution  $x(t)$  of equation (13). Let  $y(t)$  be any other solution of equation (13) which is linearly  
 167 independent of  $x(t)$ . Then,  $y(t)$  has exactly one zero of the interval  $(a, b)$ . In other words, the zeros of any  
 168 two linearly independent solutions of (13) are interlaced.

169 **Proof.** On the contrary, suppose that  $y(t) \neq 0$  for all  $t \in (a, b)$ . Since  $x(t)$  and  $y(t)$  are linearly  
 170 independent, it follows that  $y(a) \neq 0$ ; otherwise, we would have

171  $W^\alpha(x, y)(a) = \begin{vmatrix} x(a) & y(a) \\ T_\alpha x(a) & T_\alpha y(a) \end{vmatrix} = 0$

172 which implies that the conformable Wronskian,  $W^\alpha(x, y)(t)$ , is zero for all  $t$  and that  $x(t)$  and  $y(t)$   
 173 are linearly dependent. For the same reason, we know that  $y(b) \neq 0$ , but when  $q_1(t) \equiv p_1(t)$  and  
 174  $q_0(t) \equiv p_0(t)$ , equation (16) becomes

175  $\int_a^b p_1(t) \left( T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \right)^2 \frac{1}{t^{1-\alpha}} dt = \left[ \frac{x(t)}{y(t)} p_1(t) (y(t)T_\alpha x(t) - x(t)T_\alpha y(t)) \right]_{t=a}^{t=b}$

176 Since  $y(a) \neq 0$  and  $y(b) \neq 0$ , the right-hand side evaluates to zero. Since  $p_1(t) > 0$  in  $[a, b]$ , it  
 177 follows that  $T_\alpha x(t) - \frac{x(t)}{y(t)} T_\alpha y(t) \equiv 0$ , or

178  $W^\alpha(x, y)(t) = y(t)T_\alpha x(t) - x(t)T_\alpha y(t) \equiv 0$

179 for all  $t \in (a, b)$ . Hence,  $x(t)$  and  $y(t)$  are linearly dependent on  $(a, b)$  which is a contrary to our  
 180 assumption.

181 **Remark 2.**

182 (i) Conformable Sturm's Comparison Theorem guarantees the existence of at least one  
 183 zero.

184 (ii) The assumption  $q_0(t) \leq p_0(t)$  cannot be dropped. Consider the equation on  $t \geq 0$ ,  
 185  $T_\alpha T_\alpha x(t) + x(t) = 0$  ( $p_1(t) = 1, p_0(t) = -1$ ) and  $T_\alpha T_\alpha y(t) - y(t) = 0$  ( $q_1(t) = 1, q_0(t) =$   
 186 1) and let  $x(t)$  and  $y(t)$  be their non-trivial solutions, respectively. Between any two  
 187 zeros of  $x(t), y(t)$  does not admit a zero.

188 (iii) Consider the equation on  $t \geq 0$ ,  $T_\alpha T_\alpha x(t) + x(t) = 0$  ( $p_1(t) = 1, p_0(t) = -1$ ) and  
 189  $T_\alpha T_\alpha y(t) + 4y(t) = 0$  ( $q_1(t) = 1, q_0(t) = -4$ ), and let  $x(t) = \sin\left(\frac{t^\alpha}{\alpha}\right)$  and  $y(t) =$

190  $\sin\left(2\frac{t^\alpha}{\alpha}\right)$  be their non-trivial solutions, respectively. However, there is no zero of  $x(t)$   
 191 between two consecutive zeros of  $y(t)$ .

192 **Remark 3.** An important application of Sturm's Comparison Theorem is to provide a good  
 193 understanding of the zero set on non-trivial solutions of Conformable Bessel's Equation. The  
 194 Conformable Bessel's Equation is given by

$$t^{2\alpha}T_\alpha T_\alpha y(t) + \alpha t^\alpha T_\alpha y(t) + \alpha^2(t^{2\alpha} - p^2)y(t) = 0, \quad (17)$$

195 where  $\alpha \in (0,1]$  and  $p \geq 0$ . Clearly, if  $\alpha = 0$ , the above equation is just the classical Bessel Equation,  
 196 [19]. For more information about the conformable Bessel's function in the solution of wave  
 197 equation, we refer to [21].

198 For  $t > 0$ , making a change variable  $y = \frac{v}{t^\alpha}$ , the equation (17) transforms into

$$T_\alpha T_\alpha y(t) + \alpha^2\left(1 + \frac{1-4p^2}{4t^{2\alpha}}\right)v(t) = 0, \quad (18)$$

199 (To obtain the above equation, we start  $N$ -differentiating the equation  $t^{\frac{\alpha}{2}}y = v$ )

200 **Case 1:**  $p > \frac{1}{2}$ . In this case, compare (18) with

$$201 \quad T_\alpha T_\alpha y(t) + \alpha^2 y(t) = 0$$

202 which has a solution  $\sin(t^\alpha)$  with zeros at  $t = (n\pi)^{\frac{1}{\alpha}}$ ,  $n \in N$ . Therefore, a solution of (3.8) has at least  
 203 one zero on each of the open interval  $((n-1)\pi)^{\frac{1}{\alpha}}, (n\pi)^{\frac{1}{\alpha}}$ ,  $n \in N$ .

204 **Case 2:**  $0 < p < \frac{1}{2}$ . In this case, compare (18) with

$$205 \quad T_\alpha T_\alpha y(t) + \alpha^2 y(t) = 0$$

206 and conclude that between any two consecutive zeros,  $a$  and  $b$  of  $v(t)$ , there exists one zero  
 207 of  $\sin(t^\alpha)$ . Thus, we have  $a < (n\pi)^{\frac{1}{\alpha}} < b$  for some  $n \in N$ .

#### 208 4. The study of conformable Green's Functions

##### 209 4.1. Conformable Green's Functions

210 In this section, we consider the conformable Sturm-Liouville system

$$\left. \begin{array}{l} T_\alpha(p(t)T_\alpha x(t)) + (\lambda\rho(t) - q(t))x(t) = 0 \\ a_1x(a) + a_2T_\alpha x(a) = 0 \\ b_1x(b) + b_2T_\alpha x(b) = 0 \end{array} \right\} \quad \begin{array}{l} (19a) \\ (19b) \\ (19c) \end{array} \quad (19)$$

$$211 \quad |a_1| + |a_2| \neq 0, |b_1| + |b_2| \neq 0$$

212 with continuous functions  $p(t)$ ,  $q(t)$  and  $\rho(t)$  on  $[a, b]$  for some  $0 \leq a < b$ , such that  $\rho(t) \geq 0$  and  
 213  $p(t) \geq 0$  for all  $t \in [a, b]$  and  $\alpha \in (0, 1]$ .

214 **Definition 5.** Let  $Q$  denote the square  $Q = [a, b] \times [a, b]$  for some  $0 \leq a < b$ , in the  $te$ -plane. A function  
 215  $G^\alpha(t, \varepsilon)$  defined in  $Q$  is called conformable Green's Function of Sturm-Liouville system (19), if it has the  
 216 following properties:

217 (i) The function  $G^\alpha(t, \varepsilon)$  is continuous in  $Q$ .

218 (ii) Let  $\varepsilon \in (a, b)$  be fixed. Then,  $G^\alpha(t, \varepsilon)$  has conformable partial derivatives of left and right with  
219 respect to variable  $t$ , for  $t = \varepsilon$ , and it is verified as follows:

220 
$$\frac{\partial^\alpha}{\partial t^\alpha} G^\alpha(\varepsilon^+, \varepsilon) - \frac{\partial^\alpha}{\partial t^\alpha} G^\alpha(\varepsilon^-, \varepsilon) = -\frac{1}{p(\varepsilon)}$$

221 (iii) Let  $\varepsilon \in [a, b]$  be fixed. Then,  $G^\alpha(t, \varepsilon)$  has continuous conformable partial derivatives of first and  
222 second order with respect to variable  $t$ , if  $t \neq \varepsilon$ , and it is verified as follows:

223 
$$\frac{\partial^\alpha}{\partial t^\alpha} (p(t) T_\alpha G^\alpha(t, \varepsilon)) + (\lambda \rho(t) - q(t)) G^\alpha(t, \varepsilon) = 0$$

224 (iv) Let  $\varepsilon \in (a, b)$  be fixed. Then,  $G^\alpha(t, \varepsilon)$  satisfies the boundary conditions (19b) and (19c).

225 **Theorem 14.** Let  $x_1(t)$  and  $x_2(t)$  be two solutions of (19a) that verify condition (19b). Then,  $x_1(t)$  and  
226  $x_2(t)$  are linearly dependent.

227 **Proof.** Since  $|a_1| + |a_2| \neq 0$ , it follows from

228 
$$\begin{aligned} a_1 x_1(a) + a_2 T_\alpha x_1(a) &= 0 \\ 229 a_1 x_2(a) + a_2 T_\alpha x_2(a) &= 0 \end{aligned}$$

230 that

231 
$$W^\alpha(x, y)(a) = \begin{vmatrix} x_1(a) & x_2(a) \\ T_\alpha x_1(a) & T_\alpha x_2(a) \end{vmatrix} = 0$$

232 Therefore,  $x_1(t)$  and  $x_2(t)$  are linearly dependent.  $\square$

233 **Theorem 15.** Let  $x_1(t)$  and  $x_2(t)$  be two solutions of (19a) that verify condition (19c). Then,  $x_1(t)$  and  $x_2(t)$   
234 are linearly dependent.

235 **Proof.** It is analogous to the proof of the above theorem.  $\square$

236 **Theorem 16.** System (19) has no Green's Function if  $\lambda$  is an eigenvalue.

237 **Proof.** Let  $x_1(t)$  be an eigenfunction of system (19). Let  $x_2(t)$  be a solution of (19a) linearly  
238 independent of  $x_1(t)$ . From Theorems 14 and 15, it turns out that  $x_2(t)$  does not verify the  
239 conditions (19b) and (19c).

240 According to the condition (iii) of  $G^\alpha(t, \varepsilon)$ , the said function is a solution of (19a) in the intervals  $a \leq  
241 t < \varepsilon$  and  $\varepsilon < t \leq b$ , so it has the form

242 
$$G^\alpha(t, \varepsilon) = \begin{cases} A_1(\varepsilon) x_1(t) + A_2(\varepsilon) x_2(t) & a \leq t < \varepsilon \\ B_1(\varepsilon) x_1(t) + B_2(\varepsilon) x_2(t) & \varepsilon < t \leq b \end{cases}$$

243 Let us now express that  $G^\alpha(t, \varepsilon)$  meets the condition (iv)

244 
$$\begin{aligned} a_1(A_1(\varepsilon)x_1(a) + A_2(\varepsilon)x_2(a)) + a_2(A_1(\varepsilon)T_\alpha x_1(a) + A_2(\varepsilon)T_\alpha x_2(a)) &= 0 \\ 245 b_1(B_1(\varepsilon)x_1(b) + B_2(\varepsilon)x_2(b)) + b_2(B_1(\varepsilon)T_\alpha x_1(b) + B_2(\varepsilon)T_\alpha x_2(b)) &= 0 \end{aligned}$$

246 Since  $x_1(t)$  meets both conditions (19b) and (19c), the above equalities are reduced to

247 
$$\begin{aligned} A_2(\varepsilon)(a_1 x_2(a) + a_2 T_\alpha x_2(a)) &= 0 \\ 248 B_2(\varepsilon)(b_1 x_2(b) + b_2 T_\alpha x_2(b)) &= 0 \end{aligned}$$

249 On the contrary, we have

250 
$$a_1 x_2(a) + a_2 T_\alpha x_2(a) \neq 0$$

251  $b_1 x_2(b) + b_2 T_\alpha x_2(b) \neq 0$

252 so that

253  $A_2(\varepsilon) = 0, a \leq t < \varepsilon$   
 254  $B_2(\varepsilon) = 0, \varepsilon < t \leq b$

255 From here, we have

256 
$$G^\alpha(t, \varepsilon) = \begin{cases} A_1(\varepsilon)x_1(t) & a \leq t < \varepsilon \\ B_1(\varepsilon)x_1(t) & \varepsilon < t \leq b \end{cases}$$

257 Since  $G^\alpha(t, \varepsilon)$  is a continuous function, we obtain

258 
$$\lim_{t \rightarrow \varepsilon^-} G^\alpha(t, \varepsilon) = A_1(\varepsilon)x_1(\varepsilon) = \lim_{t \rightarrow \varepsilon^+} G^\alpha(t, \varepsilon) = B_1(\varepsilon)x_1(\varepsilon)$$

259 so that

260 
$$A_1(\varepsilon) = B_1(\varepsilon), \quad a < \varepsilon < b$$

261 From here, it follows that

262 
$$\frac{\partial^\alpha}{\partial t^\alpha} G^\alpha(\varepsilon^+, \varepsilon) - \frac{\partial^\alpha}{\partial t^\alpha} G^\alpha(\varepsilon^-, \varepsilon) = 0$$

263 which contradicts condition (ii).  $\square$

264 **Theorem 17.** *System (19) has one, and only one, Green's Function if  $\lambda$  is not an eigenvalue.*

265 **Proof.** Let  $x_1(t)$  and  $x_2(t)$  two solutions of (19) such that

266 
$$x_1(a) = a_2, T_\alpha x_1(a) = -a_1, x_2(b) = b_2, T_\alpha x_2(b) = -b_1$$

267 Since  $|a_1| + |a_2| \neq 0, |b_1| + |b_2| \neq 0$ ,  $x_1(t)$  and  $x_2(t)$  are not null, they are also satisfying conditions (19b) and (19c), respectively.

269 These solutions are linearly independent, since otherwise it would be

270 
$$x_1(t) = \mu x_2(t), \mu \neq 0$$

271 Therefore, we have

272 
$$b_1 x_1(b) + b_2 T_\alpha x_1(b) = \mu [b_1 x_2(b) + b_2 T_\alpha x_2(b)] = 0$$

273 As a result,  $x_1(t)$  would comply with (19b) and (19c). This is not possible since  $x_1(t)$  is not an eigenfunction.

275 The reasoning as in the proof of Theorem 16, we have to

276 
$$G^\alpha(t, \varepsilon) = \begin{cases} A_1(\varepsilon)x_1(t) + A_2(\varepsilon)x_2(t) & a \leq t < \varepsilon \\ B_1(\varepsilon)x_1(t) + B_2(\varepsilon)x_2(t) & \varepsilon < t \leq b \end{cases}$$

277 Expressing that  $G^\alpha(t, \varepsilon)$  meets the condition (iv), and it turns out that

278 
$$a_1(A_1(\varepsilon)x_1(a) + A_2(\varepsilon)x_2(a)) + a_2(A_1(\varepsilon)T_\alpha x_1(a) + A_2(\varepsilon)T_\alpha x_2(a)) = 0$$
  
 279 
$$b_1(B_1(\varepsilon)x_1(b) + B_2(\varepsilon)x_2(b)) + b_2(B_1(\varepsilon)T_\alpha x_1(b) + B_2(\varepsilon)T_\alpha x_2(b)) = 0$$

280 that is reduced to

281 
$$A_2(\varepsilon)(a_1 x_2(a) + a_2 T_\alpha x_2(a)) = 0$$

282 
$$B_1(\varepsilon)(b_1x_1(b) + b_2T_\alpha x_1(b)) = 0$$

283 from where it follows, remembering that  $x_1(t)$  and  $x_2(t)$  are not eigenfunctions and, therefore,  
 284  $a_1x_2(a) + a_2T_\alpha x_2(a) \neq 0$ ,  $b_1x_1(b) + b_2T_\alpha x_1(b) \neq 0$ ,

285 
$$\begin{cases} A_2(\varepsilon) = 0 \\ B_1(\varepsilon) = 0 \end{cases} \quad a < \varepsilon < b$$

286 Now, by applying conditions (i) and (ii), it turns out that

287 
$$A_1(\varepsilon)x_1(\varepsilon) + B_2(\varepsilon)x_2(\varepsilon) = 0$$
  
 288 
$$A_1(\varepsilon)T_\alpha x_1(\varepsilon) + B_2(\varepsilon)T_\alpha x_2(\varepsilon) = \frac{1}{p(\varepsilon)}$$

289 which allows us to calculate the following:

290 
$$A_1(\varepsilon) = \frac{-x_2(\varepsilon)}{p(\varepsilon)[x_1(\varepsilon)T_\alpha x_2(\varepsilon) - x_2(\varepsilon)T_\alpha x_1(\varepsilon)]}$$
  
 291 
$$B_2(\varepsilon) = \frac{-x_1(\varepsilon)}{p(\varepsilon)[x_1(\varepsilon)T_\alpha x_2(\varepsilon) - x_2(\varepsilon)T_\alpha x_1(\varepsilon)]}$$

292 Note that  $x_1(\varepsilon)T_\alpha x_2(\varepsilon) - x_2(\varepsilon)T_\alpha x_1(\varepsilon)$  is nonzero since it is conformable Wronskian of two linearly  
 293 independent solutions of equation (19).

294 Given the following:

295 
$$T_\alpha(p(t)T_\alpha x_1(t)) + (\lambda\rho(t) - q(t))x_1(t) = 0$$
  
 296 
$$T_\alpha(p(t)T_\alpha x_2(t)) + (\lambda\rho(t) - q(t))x_2(t) = 0$$

297 By multiplying the first equation by  $x_2(t)$ , the second by  $x_1(t)$ , and subtracting, we have

298 
$$x_2(t)T_\alpha(p(t)T_\alpha x_1(t)) - x_1(t)T_\alpha(p(t)T_\alpha x_2(t)) = 0$$

299 that can be written in the form

300 
$$p(t)(x_2(t)T_\alpha x_1(t) - x_1(t)T_\alpha x_2(t)) = 0$$

301 So,  $p(\varepsilon)(x_2(\varepsilon)T_\alpha x_1(\varepsilon) - x_1(\varepsilon)T_\alpha x_2(\varepsilon))$  is a constant  $K$  that does not depend on  $\varepsilon$ .  
 302 Hence, we have

303 
$$G^\alpha(t, \varepsilon) = \begin{cases} \frac{1}{K}x_1(t)x_2(\varepsilon) & a \leq t < \varepsilon \\ \frac{1}{K}x_1(\varepsilon)x_2(t) & \varepsilon < t \leq b \end{cases}$$

304 The conformable Green's Function  $G^\alpha(t, \varepsilon)$  has the properties (i) - (iv). The uniqueness of this  
 305 function is easily deduced from the method that we have followed to determine  $G^\alpha(t, \varepsilon)$ .  $\square$

306 **Example 1.** Consider the system

307 
$$\left. \begin{array}{l} T_\alpha T_\alpha x(t) + x(t) = 0, t \in \left[0, (\alpha\pi)^{\frac{1}{\alpha}}\right] \\ x(0) + T_\alpha x(0) = 0 \\ x\left((\alpha\pi)^{\frac{1}{\alpha}}\right) = 0 \end{array} \right\}$$

308 for some  $\alpha \in (0,1]$ , we will find the corresponding conformable Green's Function. In this case  
 309  $p(t) = 1$ ,  $q(t) = -1$ ,  $\lambda = 0$ ,  $\rho(t)$  is any positive continuous function in  $[0, (\alpha\pi)^{\frac{1}{\alpha}}]$ ,  $a_1 = 1$ ,  $a_2 = 1$ ,  
 310  $b_1 = 1$ ,  $b_2 = 0$ .  
 311 The general solution of  $T_\alpha T_\alpha x(t) + x(t) = 0$  is

$$312 \quad x(t) = A\cos \frac{t^\alpha}{\alpha} + B\sin \frac{t^\alpha}{\alpha}$$

313 Then, we have

$$314 \quad x(0) + T_\alpha x(0) = A + B = 0$$

$$315 \quad x((\alpha\pi)^{\frac{1}{\alpha}}) = -A = 0$$

316 From here  $A = 0, B = 0$ , so there was the conformable Green's Function of the given system.  
 317 The solutions of  $T_\alpha T_\alpha x(t) + x(t) = 0$ ;  $x_1(t) = \cos \frac{t^\alpha}{\alpha} + \sin \frac{t^\alpha}{\alpha}$ ,  $x_2(t) = \sin \frac{t^\alpha}{\alpha}$  satisfy the conditions  
 318  $x(0) + T_\alpha x(0) = 0$ ,  $x((\alpha\pi)^{\frac{1}{\alpha}}) = 0$ . The conformable Green's Function has the form

$$319 \quad G^\alpha(t, \varepsilon) = \begin{cases} \frac{1}{K} x_2(\varepsilon) x_1(t) & 0 \leq t < \varepsilon \\ \frac{1}{K} x_1(\varepsilon) x_2(t) & \varepsilon < t \leq (\alpha\pi)^{\frac{1}{\alpha}} \end{cases}$$

320 so that

$$321 \quad K = p(\varepsilon)(x_2(\varepsilon)T_\alpha x_1(\varepsilon) - x_1(\varepsilon)T_\alpha x_2(\varepsilon)) = \left(-\sin \frac{\varepsilon^\alpha}{\alpha} + \cos \frac{\varepsilon^\alpha}{\alpha}\right) \sin \frac{\varepsilon^\alpha}{\alpha} - \left(\cos \frac{\varepsilon^\alpha}{\alpha} + \sin \frac{\varepsilon^\alpha}{\alpha}\right) \cos \frac{\varepsilon^\alpha}{\alpha} = -1$$

322 Therefore, we obtain

$$323 \quad G^\alpha(t, \varepsilon) = \begin{cases} -\sin \frac{\varepsilon^\alpha}{\alpha} \left(\cos \frac{t^\alpha}{\alpha} + \sin \frac{t^\alpha}{\alpha}\right) & 0 \leq t < \varepsilon \\ -\left(\cos \frac{\varepsilon^\alpha}{\alpha} + \sin \frac{\varepsilon^\alpha}{\alpha}\right) \sin \frac{t^\alpha}{\alpha} & \varepsilon < t \leq (\alpha\pi)^{\frac{1}{\alpha}} \end{cases}$$

324

#### 325 4.2. The applicability of Conformable Green's Function

326 In this section, we consider the system

$$327 \quad \left. \begin{array}{l} T_\alpha(p(t)T_\alpha x(t)) - q(t)x(t) = 0 \\ a_1x(a) + a_2T_\alpha x(a) = 0 \\ b_1x(b) + b_2T_\alpha x(b) = 0 \end{array} \right\} \quad (20a)$$

$$328 \quad \left. \begin{array}{l} a_1x(a) + a_2T_\alpha x(a) = 0 \\ b_1x(b) + b_2T_\alpha x(b) = 0 \end{array} \right\} \quad (20b)$$

$$329 \quad \left. \begin{array}{l} b_1x(b) + b_2T_\alpha x(b) = 0 \end{array} \right\} \quad (20c)$$

327 obtained from (19) for  $\lambda = 0$ . We now propose to solve the inhomogeneous system

$$328 \quad \left. \begin{array}{l} T_\alpha(p(t)T_\alpha x(t)) - q(t)x(t) = -f(t) \\ a_1x(a) + a_2T_\alpha x(a) = 0 \\ b_1x(b) + b_2T_\alpha x(b) = 0 \end{array} \right\} \quad (21)$$

328 where  $f(t)$  is a real continuous function in the interval  $[a, b]$  for some  $0 \leq a < b$ .

329 **Theorem 18.** If the homogeneous system (20) has its only solution as the identically null function, then (21)  
 330 has only one solution, which is given by

331 
$$x(t) = \int_a^b G^\alpha(t, \varepsilon) f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

332 where  $G^\alpha(t, \varepsilon)$  is the conformable Green's Function of (20).

333 **Proof.** That homogeneous system (20) has its unique solution as the identically null function which  
334 is equivalent to saying that  $\lambda = 0$  is not an eigenvalue of (19); therefore, there is the conformable  
335 Green's Function of (20).

336 Let  $x_1(t)$  and  $x_2(t)$  be two linearly independent solutions of (20a) that verify (20b) and (20c),  
337 respectively. Let us apply the conformable version of the method of variation of the parameters to  
338 solve (20a). Then, we have

339 
$$x(t) = A(t)x_1(t) + B(t)x_2(t)$$
  
340 
$$T_\alpha(p(t)(x_1(t)T_\alpha A(t) + x_2(t)T_\alpha B(t) + A(t)T_\alpha x_1(t) + B(t)T_\alpha x_2(t))) - q(t)(A(t)x_1(t) + B(t)x_2(t))$$
  
341 
$$= -f(t)$$

342 that is to say

343 
$$A(t)T_\alpha(p(t)T_\alpha x_1(t) - A(t)q(t)x_1(t)) + B(t)T_\alpha(p(t)T_\alpha x_2(t) - B(t)q(t)x_2(t))$$
  
344 
$$+ p(t)(T_\alpha A(t)T_\alpha x_1(t) + T_\alpha B(t)T_\alpha x_2(t)) + T_\alpha(p(t)(x_1(t)T_\alpha A(t) + x_2(t)T_\alpha B(t)))$$
  
345 
$$= -f(t)$$

346 that is

347 
$$p(t)(T_\alpha A(t)T_\alpha x_1(t) + T_\alpha B(t)T_\alpha x_2(t)) + T_\alpha(p(t)(x_1(t)T_\alpha A(t) + x_2(t)T_\alpha B(t))) = -f(t)$$

348 We make

349 
$$x_1(t)T_\alpha A(t) + x_2(t)T_\alpha B(t) = 0,$$

350 and we have

351 
$$p(t)(T_\alpha A(t)T_\alpha x_1(t) + T_\alpha B(t)T_\alpha x_2(t)) = -f(t)$$

352 so that

353 
$$T_\alpha A(t) = \frac{-x_2(t)f(t)}{p(t)(x_2(t)T_\alpha x_1(t) + x_1(t)T_\alpha x_2(t))}$$

354 
$$T_\alpha B(t) = \frac{-x_1(t)f(t)}{p(t)(x_2(t)T_\alpha x_1(t) + x_1(t)T_\alpha x_2(t))}$$

356 We know, from the proof of Theorem 17, that  $p(t)(x_2(t)T_\alpha x_1(t) + x_1(t)T_\alpha x_2(t))$  is a constant, and it  
357 is equal to  $K$ . On the contrary, we have

358 
$$a_1 x(a) + a_2 T_\alpha x(a)$$
  
359 
$$= a_1(A(a)x_1(a) + B(a)x_2(a))$$
  
360 
$$+ a_2(x_1(a)T_\alpha A(a) + x_2(a)T_\alpha B(a) + A(a)T_\alpha x_1(a) + B(a)T_\alpha x_2(a))$$
  
361 
$$= A(a)(a_1 x_1(a) + a_2 T_\alpha x_1(a)) + B(a)(a_1 x_2(a) + a_2 T_\alpha x_2(a))$$
  
362 
$$= B(a)(a_1 x_2(a) + a_2 T_\alpha x_2(a)) = 0$$

363 and since  $x_2(t)$  is not an eigenfunction of (20) it turns out that

364 
$$a_1 x_2(a) + a_2 T_\alpha x_2(a) \neq 0$$

365 so that  $B(a) = 0$ .

366 By writing now the following:

367  $b_1 x(b) + b T_\alpha x(b) = 0$

368 Similarly, we obtain  $A(b) = 0$ .

369 So, we have

370 
$$A(t) = \int_a^t \frac{x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + C_1$$

371 and since  $A(b) = 0$ , we have to

372 
$$A(t) = - \int_a^t \frac{x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + \int_a^b \frac{x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon = \int_t^b \frac{x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

373 Analogously

374 
$$B(t) = \int_a^t \frac{x_1(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

375 Thus, we obtain

376 
$$x(t) = A(t)x_1(t) + B(t)x_2(t) = \int_t^b \frac{x_1(t)x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + \int_a^t \frac{x_1(\varepsilon)x_2(t)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

377 
$$= \int_a^b G_3^\alpha(t, \varepsilon) f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

378 where we have the following

379 
$$G^\alpha(t, \varepsilon) = \begin{cases} \frac{1}{K} x_1(t)x_2(\varepsilon) & a \leq t < \varepsilon \\ \frac{1}{K} x_1(\varepsilon)x_2(t) & \varepsilon < t \leq b \end{cases}$$

380 which is the Green's Function.  $\square$

381 **Example 2.** By using the Green's Function, we want to solve the following system

382 
$$\left. \begin{array}{l} T_\alpha T_\alpha x(t) + x(t) = e^{\frac{t^\alpha}{\alpha}} \quad t \in \left[0, (\alpha\pi)^{\frac{1}{\alpha}}\right] \\ x(0) = 0 \\ T_\alpha x\left((\alpha\pi)^{\frac{1}{\alpha}}\right) = 0 \end{array} \right\}$$

383 First, we find the conformable Green's Function of the homogeneous system.

384 We have following:

385 
$$x(t) = A \cos\left(\frac{t^\alpha}{\alpha}\right) + B \sin\left(\frac{t^\alpha}{\alpha}\right)$$

386 
$$x(0) = 0 = A$$

387 
$$T_\alpha x\left((\alpha\pi)^{\frac{1}{\alpha}}\right) = 0 = B$$

388 Therefore, the conformable Green's Function exists. This function can be written as

389

$$G^\alpha(t, \varepsilon) = \begin{cases} \cos\left(\frac{\varepsilon^\alpha}{\alpha}\right) \sin\left(\frac{t^\alpha}{\alpha}\right) & 0 \leq t < \varepsilon \\ \sin\left(\frac{\varepsilon^\alpha}{\alpha}\right) \cos\left(\frac{t^\alpha}{\alpha}\right) & \varepsilon < t \leq (\alpha\pi)^{\frac{1}{\alpha}} \end{cases}$$

390 Therefore, our intended solution can be written as follows:

391

$$x(t) = - \int_0^{(\alpha\pi)^{\frac{1}{\alpha}}} G^\alpha(t, \varepsilon) e^{\frac{\varepsilon^\alpha}{\alpha}} \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

392

$$= - \int_0^t \sin\left(\frac{\varepsilon^\alpha}{\alpha}\right) \cos\left(\frac{t^\alpha}{\alpha}\right) e^{\frac{\varepsilon^\alpha}{\alpha}} \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon - \int_t^{(\alpha\pi)^{\frac{1}{\alpha}}} \cos\left(\frac{\varepsilon^\alpha}{\alpha}\right) \sin\left(\frac{t^\alpha}{\alpha}\right) e^{\frac{\varepsilon^\alpha}{\alpha}} \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

393

$$= - \frac{1}{2} \cos\left(\frac{t^\alpha}{\alpha}\right) \left[ e^{\frac{\varepsilon^\alpha}{\alpha}} \left( \sin\left(\frac{\varepsilon^\alpha}{\alpha}\right) - \cos\left(\frac{\varepsilon^\alpha}{\alpha}\right) \right) \right]_{\varepsilon=0}^{\varepsilon=(\alpha\pi)^{\frac{1}{\alpha}}}$$

394

$$- \frac{1}{2} \sin\left(\frac{t^\alpha}{\alpha}\right) \left[ e^{\frac{\varepsilon^\alpha}{\alpha}} \left( \sin\left(\frac{\varepsilon^\alpha}{\alpha}\right) - \cos\left(\frac{\varepsilon^\alpha}{\alpha}\right) \right) \right]_{\varepsilon=t}^{\varepsilon=(\alpha\pi)^{\frac{1}{\alpha}}}$$

395

$$= - \frac{1}{2} \cos\left(\frac{t^\alpha}{\alpha}\right) \left[ e^{\frac{\varepsilon^\alpha}{\alpha}} \left( \sin\left(\frac{t^\alpha}{\alpha}\right) - \cos\left(\frac{t^\alpha}{\alpha}\right) \right) + 1 \right]$$

396

$$- \frac{1}{2} \sin\left(\frac{t^\alpha}{\alpha}\right) \left[ e^\pi - e^{\frac{t^\alpha}{\alpha}} \left( \sin\left(\frac{t^\alpha}{\alpha}\right) - \cos\left(\frac{t^\alpha}{\alpha}\right) \right) \right]$$

397

$$= e^\pi \left[ -\sin\left(\frac{t^\alpha}{\alpha}\right) \cos\left(\frac{t^\alpha}{\alpha}\right) + \frac{1}{2} \right] - \frac{1}{2} \cos\left(\frac{t^\alpha}{\alpha}\right) - \frac{1}{2} e^\pi \sin\left(\frac{t^\alpha}{\alpha}\right)$$

398 Finally, we investigate the generalized Hyers-Ulam stability of the conformable linear  
399 inhomogeneous differential equation of second order (21) in the class of continuously twice  $\alpha$ -  
400 differentiable functions.

401 **Theorem 19.** Let  $p, q, f: [a, b] \rightarrow R$  be continuous functions and let  $p$  be  $\alpha$ -differentiable function on  $[a, b]$ .  
402 Assume that the conformable homogeneous differential equation (20) has its only solution as the identically  
403 null function. If a twice continuously  $\alpha$ -differentiable function  $x: [a, b] \rightarrow R$  satisfies the inequality

$$|T_\alpha(p(t)T_\alpha x(t)) - q(t)x(t) + f(t)| \leq \varphi(t), \quad (22)$$

404 for all  $t \in [a, b]$ , where  $\varphi: [a, b] \rightarrow [0, \infty)$  is given that such of the following integrals exists, then there exists  
405 a solution  $x_0: [a, b] \rightarrow R$  of (21) such that

$$|x(t) - x_0(t)| \leq \frac{1}{|K|} \left( |x_1(t)| \int_b^t |x_2(\varepsilon)| \varphi(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + |x_2(t)| \int_a^t |x_1(\varepsilon)| \varphi(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon \right), \quad (23)$$

406 where  $K$  is a nonzero constant and  $x_1(t)$  and  $x_2(t)$  are two linearly independent solutions of (20a) that verify  
407 (20b) and (20c), respectively (see Theorem 18).

408 **Proof.** If we define a continuous function  $s: [a, b] \rightarrow R$  by

$$s(t) = T_\alpha(p(t)T_\alpha x(t)) - q(t)x(t), \quad (24)$$

409 for all  $t \in [a, b]$ , then it follows (22) that

$$|s(t) + f(t)| \leq \varphi(t), \quad (25)$$

410 for all  $t \in [a, b]$ . In view of Theorem 18 and (24), we have

$$411 \quad x(t) = - \int_a^b G^\alpha(t, \varepsilon) s(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon = - \int_t^b \frac{x_1(t)x_2(\varepsilon)}{K} s(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon - \int_a^t \frac{x_1(\varepsilon)x_2(t)}{K} s(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon$$

412 (26)

413 where  $K$  is a nonzero constant because  $x_1(t)$  and  $x_2(t)$  are two linearly independent solutions of  
414 (20a) that verify (20b) and (20c), respectively (see Theorem 18).

415 We now define a function  $x_0: [a, b] \rightarrow \mathbb{R}$  by

$$x_0(t) = \int_t^b \frac{x_1(t)x_2(\varepsilon)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + \int_a^t \frac{x_1(\varepsilon)x_2(t)}{K} f(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon, \quad (27)$$

416 for all  $t \in [a, b]$ . According to Theorem 18, it is obvious that  $x_0$  is a solution of (21). Moreover, it  
417 follows from (25), (26) and (27) that

$$418 \quad |x(t) - x_0(t)| \leq \left| - \int_t^b \frac{x_1(t)x_2(\varepsilon)}{K} (s(\varepsilon) + f(\varepsilon)) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon - \int_a^t \frac{x_1(\varepsilon)x_2(t)}{K} (s(\varepsilon) + f(\varepsilon)) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon \right| \\ 419 \quad \leq \frac{1}{|K|} \left( |x_1(t)| \int_b^t |x_2(\varepsilon)| \varphi(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon + |x_2(t)| \int_a^t |x_1(\varepsilon)| \varphi(\varepsilon) \frac{1}{\varepsilon^{1-\alpha}} d\varepsilon \right)$$

420 for all  $t \in [a, b]$ .  $\square$

421 **Remark 4.** Theorem 19 reduces to [22] (Theorem 3.2) in the case  $\alpha = 0$  and using the Green's  
422 Function.

## 423 5. Conclusions

424 In this research paper, we have proposed some results referring to the conformable boundary  
425 value problems. The conformable second order Sturm-Picone identity has been proven, and its  
426 Sturm's theorems of comparison and separation have been successfully established. As in the  
427 classical case, an important application of the Sturm's comparison theorem is to provide a clear  
428 understanding of the zero set of non-trivial solutions of the conformable Bessel's equation. For a  
429 conformable Sturm-Liouville system, we have defined the Green's function and established its  
430 properties. The conformable Green's function is applied to construct the solution of the  
431 inhomogeneous problem of Sturm-Liouville, whose associated homogeneous problem has its only  
432 solution as the identically null function. Finally, we have proved the generalized Hyers-Ulam  
433 stability of the conformable linear inhomogeneous differential equation of second order (21) in the  
434 class of continuously twice  $\alpha$ -differentiable functions.

435 **Conflicts of Interest:** The authors declare no conflict of interest.

## 436 References

- 437 1. Kilbas, A.; Srivastava, H.; Trujillo J. *Theory and Applications of Fractional Differential Equations*; North-Holland, New York, 2006.
- 438 2. Miller, K.S. *An Introduction to Fractional Calculus and Fractional Differential Equations*; J. Wiley and Sons, New York, 1993.
- 439 3. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. *J. Comp. Appl. Math.* **2014**, 264, 65-70.
- 440 4. Abdeljawad, T. On conformable fractional calculus. *J. Comp. Appl. Math.* **2015**, 279, 57-66.
- 441 5. Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with  
442 application using D'Alambert approach. *Progr. Fract. Differ. Appl.* **2016**, 2(2), 1-7.

- 446 6. Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. *Open Math.* **2015**,  
447 13, 57-63.
- 448 7. Yazici, N.; Gözütok, U. Multivariable Conformable fractional Calculus. *Filomat* **2018**, 32(1), 45-53.
- 449 8. Martínez, F.; Martínez, I.; Paredes, S. Conformable Euler's Theorem on homogeneous functions.  
450 *Comp. and Math. Methods* **2018**, 1(5), 1-11.
- 451 9. EÜnal, E.; Gökdogan, A.; Çelik, E. Solutions of Sequential Conformable Fractional Differential  
452 Equations around an Ordinary Point and Conformable Fractional Hermite Differential Equation.  
453 *British Journal of Applied Science & Technology* **2015**, 10(2), 1-11.
- 454 10. Al Masalmeh, M. Series Method to solve conformable fractional Riccati Differential equations.  
455 *International Journal of Applied Mathematics Research* **2017**, 6(1), 30-33.
- 456 11. Al Horani, M.; Khalil, R. Total fractional differential with applications to exact fractional differential  
457 equations. *International Journal of Computer Mathematics* **2018**, 95(6-7), 1444-1452.
- 458 12. Al Horani, M.; Hammad, M.A.; Khalil, R. Variations of parameters for local fractional  
459 nonhomogeneous linear differential equations. *J. Math. Computer Sci.* **2016**, 16, 147-153.
- 460 13. Khalil, R.; Al Horani, M.; Anderson, D. Undetermined coefficients for local differential equations. *J.*  
461 *Math. Computer Sci.* **2016**, 16, 140-146.
- 462 14. Hammad, M.A.; Khalil, R. Abel's formula and wronskian for conformable fractional differential  
463 equation. *International Journal of Differential Equations and Applications* **2014**, 13(2), 177-183.
- 464 15. Hammad, M.A.; Khalil, R. Legendre fractional differential equation and Legendre fractional  
465 polynomials. *International Journal of Applied Mathematical Research* **2014**, 3(3), 214-219.
- 466 16. Silva, F.S.; Moreira, M.D.; Moret, M.A. Conformable Laplace Transform of Fractional Differential  
467 Equations. *Axioms* **2018**, 7(55).
- 468 17. Al-Zhour, Z.; Al-Mutairi, N.; Alrawajeh, F.; Alkhasawneh R., Series solutions for the Laguerre and  
469 Lane-Emden fractional differential equations in the sense of conformable fractional derivative.  
470 *Alexandria Engineering Journal* **2019**, 58(4).
- 471 18. Hammad, M.A.; Alzaareer, H.; Al-Zoubi, H.; Dutta H, Fractional Gauss hypergeometric differential  
472 equation. *Journal of Interdisciplinary Mathematics* **2019**, 22(7), 1113-1121.
- 473 19. Derrick, W.R.; Grossman, S.I. *Elementary Differential Equations with Applications*; Addison-Wesley  
474 Publishing Company, Inc., de Reading, 1981.
- 475 20. Fulton, C.T.; Wu, L.; Pruess, S. A Sturm Separation Theorem for linear 2nth order Self-adjoint  
476 Differential Equation, *Journal applied Mathematics and Stochastic Analysis* **1995**, 8(1), 29-46.
- 477 21. Kaabar, M. Novel Methods for Solving the Conformable Wave Equation. *Journal of New Theory* **2020**,  
478 31, 56-85.
- 479 22. Choi, G.; Jung, S.M. Invariance of Hyers-Ulam stability of linear differential equations and its  
480 applications. *Advances in Differential equations*, **2015**.
- 481



© 2020 by the authors. Submitted for possible open access publication under the terms  
and conditions of the Creative Commons Attribution (CC BY) license  
(<http://creativecommons.org/licenses/by/4.0/>).