

1 *Type of the Paper (Article)*

2 **Preparation and Tribological Behaviours of** 3 **Lubrication Enhanced PEEK Composites**

4 **Yan Yutao^{1,*}, Jiang Cheng¹, Huo Yuqiu^{2,*}, Li Chaofeng¹**

5 ¹ School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 11089, China;
6 ytyan@mail.neu.edu.cn

7 ² Department of chemistry, College of Science, Northeastern University, Shenyang, 11089, China; huoyuqiu@
8 mail.neu.edu.cn

9 * Correspondence: ytyan@mail.neu.edu.cn, huoyuqiu@mail.neu.edu.cn;

10 **Abstract:** Poly-ether-ether ketone (PEEK) is a great potential thermoplastic in industry and medical
11 treatment and health. In this work, the PEEK/GO and PEEK/MoS₂ composites were prepared by a
12 novel hot isostatic pressing method. The addition of GO alters the tribological behaviours
13 mechanism, fatigue wear mechanism is predominant to PEEK/GO composites. However, the
14 combination of abrasive and adhesive wear mechanisms is observed for PEEK/MoS₂ composites
15 and PEEK. The reason is the hardness and tensile strength of composites are increased with the
16 appropriate addition of GO. The response time to stable friction state of PEEK/GO and PEEK/MoS₂
17 composites reduces in compared with PEEK, which conduce to shorten running-in time, reduce
18 energy consumption and improve the tribological performances of composites. The addition of GO
19 and MoS₂ can effectively decrease the friction coefficient and wear rate, and the optimal content of
20 GO and MoS₂ was 0.7 wt.% and 15 wt.%, respectively. The results indicate that PEEK/GO and
21 PEEK/MoS₂ are impressive composites that possess super tribological properties.

22 **Keywords:** poly-ether-ether ketone; graphene oxide (GO); MoS₂; tribological behaviours;
23 mechanism

24

25 **1. Introduction**

26 Poly-ether-ether ketone (PEEK), first synthesized by Bonner in 1962, is an excellent aromatic
27 semi-crystalline thermoplastic engineering plastic with great mechanical properties [1,2], excellent
28 chemical corrosion resistance, thermal stability and suitable tribological characteristics [3], high
29 radiation resistance [4], good machinability and electrical properties [5]. PEEK is widely used in the
30 fields of aerospace, nuclear industries, machinery, transportation, electronics, energy, marine,
31 medical treatment and health etc. [6,7]. In most cases, PEEK composites are selected in
32 non-lubricated applications, which are also required to withstand high loads and long working
33 hours. However, the PEEK exhibits relatively high friction coefficient and low wear resistance due to
34 its stronger adhesion to counterpart materials, which makes difficult to meet the operating
35 requirements under harsh dry sliding contacts conditions [1,6,8]. The properties of PEEK composites
36 are affected by the preparation methods, the conventional method including injection moulding
37 [9,10], compression moulding [11,12] and extrusion[13,14].

38 Graphene was first obtained from graphite by Geim et al. at Manchester University in 2004 [15]. It
39 possesses outstanding conductive capacity [16], extraordinary thermal conductivity [17],
40 outstanding mechanical properties [16] and excellent tribological properties [17]. Puértolas et al. [3]
41 has prepared the graphene nanoplatelet/PEEK composites by solvent-free melt-blending and
42 injection molding, and studied its thermal characterizations, mechanical properties and tribological

43 behaviours. The results indicate that microstructural parameters and thermal conductivity of the
44 composites are not modified. However, there is an increase in the modulus and hardness, as well as
45 a decrease in the toughness, friction coefficient and wear factor owing to the addition of graphene
46 nanoplate. Yetgin [18] has carried out the research on the friction and wear properties of
47 polypropylene (PP) composites with graphene oxides (GO) prepared by a twin-screw extruder
48 followed by injection moulding. It is found that the friction coefficient and wear rate of PP
49 nanocomposites are increased with increase of applied loads and sliding speeds, but lower than that
50 of unfilled PP. Interestingly, the addition of GO increases the tensile strength, but has little effect on
51 hardness. It was reported that the addition of graphene clearly enhanced the friction reduction and
52 wear resistance properties of polyimide by Roy [19]. A number of research results show that the
53 addition of graphene can obviously enhance the friction reduction and wear resistance of polymers,
54 such as PEEK [3,6,9], polytetrafluoroethylene (PTFE) [20], polyphenylene sulphide (PPS) [21],
55 acrylonitrile butadiene rubbers (NBRs) [22], phenolic [23], bismaleimide (BMI) [7], polyamide (PA)
56 [16], ultra-high molecular weight polyethylene (UHMWPE) [24] and so on.

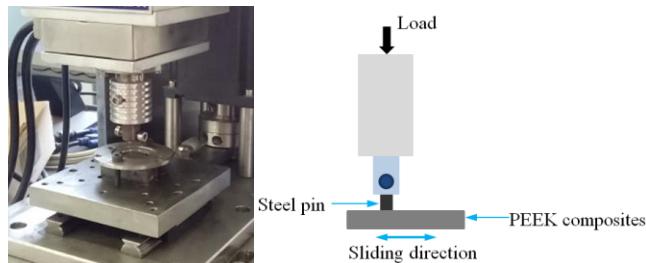
57 It is well known that molybdenum disulfide (MoS_2) is one of super solid lubricants and friction
58 modifiers owing to its unique layered structure with the weak van der Waals interaction between
59 layers [7,25]. Many research results indicate that the addition of MoS_2 in lubricating oils or greases
60 has greater effects on a friction reduction, wear resistance and prolonged life expectancy for the
61 friction system [26-28]. Tang et al. [29] has synthesized the MoS_2 flower-like microspheres via
62 Pluronic F-127 assisted hydrothermal method and studied its tribological properties as an additive
63 in liquid paraffin. On the other hand, MoS_2 has also been studied as one of the solid lubricant fillers
64 to improve the self-lubricating properties of polymers matrix in dry sliding conditions. Chen et al.
65 [12] has investigated the characteristics of polyimide composite which composes of carbon fiber and
66 MoS_2 obtained by a one-step hydrothermal method. The friction and wear properties as well as the
67 hardness and thermal stability of polyimide composite are improved. Zalaznik et al. [25] has studied
68 the thermal, mechanical and tribological properties of PEEK/ MoS_2 composites. The results exhibit
69 the content of MoS_2 had a certain effect on the thermal, mechanical and tribological properties. It is
70 reported that the tribological properties of high-density polyethylene/ MoS_2 composite is related to
71 crystallinity and thermo-mechanical properties [30]. The composites with lower damping factors
72 and better crystallinity show better tribological properties. The composites with different content of
73 MoS_2 exhibit the different wear mechanisms due to the enhancement of heat dissipation
74 performance of MoS_2 . The low content is mainly the combination of adhesive wear and abrasive
75 wear, while the high content shows a certain fatigue wear characteristics.

76 Based on the above investigations, the PEEK composites with different content of GO and MoS_2
77 are obtained via a novel hot isostatic pressing method in this paper. The mechanical properties and
78 tribological behaviours are studied. In particular, the response time to a stable friction state of
79 composites is investigated. The mechanism of friction and wear is investigated by SEM and three
80 dimensional optical morphologies.

81 **2. Materials and Methods**

82 *2.1 Materials*

83 The PEEK was provided in a powder form by Jilin Joinature Polymer Co., Ltd, China (770PF, an
84 average size $d=75 \mu\text{m}$, glass transition temperature $T_g=147^\circ\text{C}$, melting temperature $T_m=343^\circ\text{C}$,
85 density $\rho=1.3 \text{ g/cm}^3$). Molybdenum disulfide (MoS_2) nanopowders was commercially purchased


86 from Shanghai Yao Tian Nano Material Co., Ltd, China ($\geq 99\%$, an average size $d=200$ nm, density
87 $\rho=5.06$ g/cm³). Graphene oxide (GO) were prepared following a modified Hummer's method by our
88 research group in the Chemistry Laboratory. The detailed information of GO has been exhibited in
89 Reference [31]. All materials were used as received without any further treatments.

90 *2.2 Composites preparation*

91 PEEK composites were prepared by using our lab's novel hot isostatic pressing method in which
92 the heating and cooling stages of a production cycle take place in the same mold at a selected
93 temperature and pressure [32]. The certain mass percentage of GO and/or MoS₂ were dispersed into
94 PEEK by planetary ball mill with a speed of 800 r/min for 8 h at room temperature, respectively. The
95 mixture was dried in a vacuum oven at 100 °C for 24 h. Subsequently, the constant weight mixture
96 was loaded into a mould coated with a high temperature mould release agent MS-605, which was
97 pressed utilizing a pressure of 5 MPa at room temperature for 30 min to remove gas. Next, the
98 temperature was heated to 390±5 °C and remained for 10 h by electric heating furnace at a pressure
99 of 3.5 MPa. Follow that, the temperature was cool down to room temperature under the pressure of
100 3.5 MPa, so the composites were obtained. The PEEK/GO composites with GO content of 0.3 wt.%,
101 0.5 wt.%, 0.7 wt.%, 0.9 wt.% and 1.0 wt.% were recorded as PG03, PG05, PG07, PG09 and PG1,
102 respectively. The PEEK/MoS₂ composites, with different MoS₂ content 5.0 wt.%, 10 wt.%, 15 wt.%, 20
103 wt.% and 25 wt.%, were labeled as PM5, PM10, PM15, PM20 and PM25, respectively. The
104 PEEK/GO/MoS₂ composite with 0.7 wt.% GO and 15 wt.% MoS₂ was labeled as PG07PM15. The
105 composites were cut with the help of diamond cutter as per requirements. Dispersion of GO and
106 MoS₂ in PEEK was observed by a scanning electron microscopy (SEM, Quanta 250 FEG, FEI, Czech
107 Republic) equipped with energy dispersive spectrometry (EDS).

108 *2.3 Tribological behaviours*

109 Tribological behaviours of composites were investigated on a commercial tribological tester
110 (HSR-2M, Zhongke Kaihua Technology Development Co., Ltd., China) in a pin-on-flat configuration
111 under reciprocation motion. The friction face of the composites was held in continuous sliding
112 contact with the steel counterpart, and a schematic diagram is shown in Figure 1. The upper
113 specimen, i. e., the pin, was a 45 steel cylinder (a diameter of 3 mm, a length of 12 mm, a roughness
114 of $R_a=0.4$ μm) and the lower specimen, i. e., the flat, was a composites cuboid (a length of 20 mm, a
115 width of 15 mm, a thickness of 10 mm, a roughness of $R_a=0.6$ μm). All tribological experiments had
116 duration of 20 min under a constant normal load of 150 N, with a reciprocation frequency of 10 Hz
117 and stroke of 3 mm. It was conducted under dry sliding conditions at room temperature. The normal
118 load and friction force were measured by the sensors simultaneously during the tribological
119 experiment. Then the friction coefficients were calculated by computer automatically. The wear
120 volume of composites was obtained by the measuring system of HSR-2M tribometer. Before each
121 experiment, all steel pins and composites were ultrasonically cleaned with deionized water for 20
122 min at room temperature to ensure the surfaces cleanliness. The wear rate K was calculated by
123 expression $K=\Delta V/PS$, where ΔV is the volume loss of the sample (mm³), P is the normal load (N), S is
124 the sliding distance (m). The experiments of each composite were carried out at least three times
125 valid experiment to ensure a relevant statistical evaluation. The average value of friction coefficient
126 and wear rate was presented in this work, with corresponding standard deviations. The worn
127 surfaces of composites were inspected with SEM and their three dimensional morphologies were
128 observed by a three dimensional ultrafine optical microscope (Leica DVM6, Germany). Before
129 examination, the samples were ultrasonically cleaned in the deionized water bath for 20 min, and
130 then plated with a thin gold layer.

131
132 **Figure 1.** Schematic diagram of the pin-on-flat contact configuration of reciprocation sliding friction
133 apparatus.

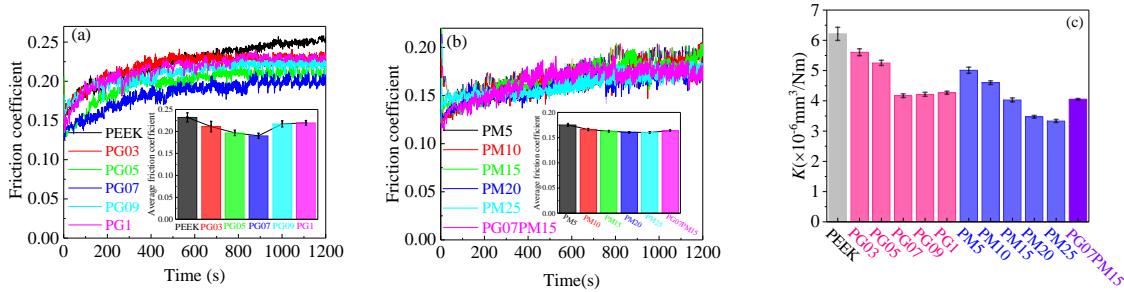
134 **2.4 Mechanical properties**

135 The Vickers hardness was measured on planar composite samples by a THV-5 digital Vickers
136 microhardness tester (Beijing Time High Technology Co., Ltd., China) according to Chinese National
137 Standard GB/T4340-2009. Before measuring, all samples surface were polished by a Masterlam
138 polisher (Kulzer Lamplan, France), which cleaned in distilled water for 20 min by ultrasonic cleaner.
139 A standard Vickers indenter was utilized, with a load of 1.961 N at indentation loading time of 15 s
140 at room temperature. The indentation data were obtained by measuring system of the Vickers
141 hardness tester. Based on load and indentation data, the Vickers hardness was calculated from
142 expression $HV=0.1891F/d^2$, where HV is the Vickers hardness, F is the test load (N) and d is the
143 indentation diagonal arithmetic mean value (mm). An average value of at least five random
144 positions on each composite sample and their standard deviation were presented in this work.

145 Tensile test was carried out by AG-XPLUS electronic universal testing machine (Shimatsu
146 Manufacturing Co., Ltd., Japan) according to ASTM D3039M-14 standard test method. Nominal
147 dimensions of tensile composite were 50 mm in length, 5 mm in width and 1mm in thickness. The
148 sample had 12 mm smooth transition from gauge to 15 mm wide shoulders. Tests were carried out at
149 a speed 1 mm/min and at room temperature. Tensile strength was obtained by the calculating
150 software of testing machine. At least three samples of each composite were measured to obtain the
151 average values and standard deviation. Fractography analysis was carried out on tensile fracture
152 surfaces, which were coated with a thin gold layer by a sputtering device to make them electric
153 conduction. The fracture surface morphology of composite was observed by SEM in the secondary
154 electron mode at 10 kV. Representative fracture surfaces were shown.

155 **2.5 Thermal characterizations**

156 Differential scanning calorimetry (DSC) tests were carried out using a Netzsch STA449F3,
157 Germany. After 10 mg composite was pre-dried at 120 °C for 1 h, it was heated in an aluminum pan
158 from room temperature up to 400 °C at a heating rate of 20 °C /min under nitrogen atmosphere. The
159 thermal gravimetric analysis (TGA) tests were conducted by a Pyris1 Perkin-Elmer, USA. The 5 mg
160 dried samples were loaded into ceramic pans and heated up to 800 °C at a heating rate of 20 °C /min
161 under nitrogen atmosphere. All composite samples were measured in triplicates.

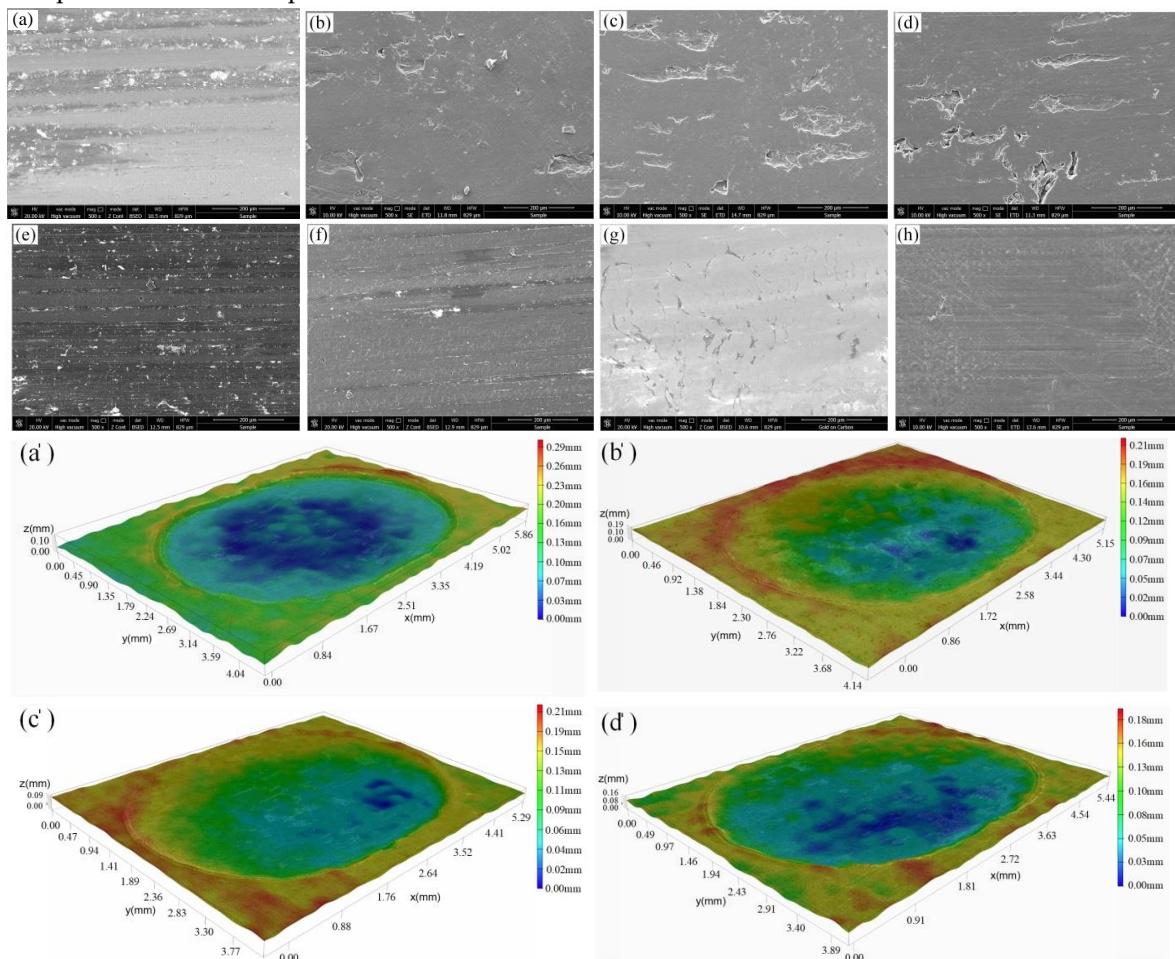

162 **3. Results**

163 **3.1 Tribological behaviours**

164 Friction coefficients of the situ measurements of the samples under a dry sliding condition are
165 shown in Figure 2. It can be clearly seen that the friction coefficient of PEEK and PEEK/GOs is
166 gradually increasing and then fluctuating in a stable range (Figure 2a). The variation of average
167 friction coefficient gradually decreases, and then increases with increasing of the GO content.

168 However, the average friction coefficient of all PEEK/GOs is lower than that of PEEK. The average
169 friction coefficient of PEEK sample is 0.2319, suggesting PEEK has poor friction reduction capacity,
170 which is coincide with the results of Li et al. [33]. The PG05 has an average friction coefficient of
171 $\mu=0.1966$, its value is only 85% that of PEEK. The PG07 has a minimum average friction coefficient of
172 $\mu=0.1901$, reduces 18% compared to PEEK, indicating the best friction reduction abilities. When GO
173 content exceeds 0.7 wt.%, the average friction coefficient began to increase. For instance, PG09 has an
174 average friction coefficient of $\mu=0.2171$, and increases 14% than that of PG07. But the response time
175 to a stable friction state is obviously different. The response time of PEEK is about 950 s. However,
176 the response time of PEEK/GOs reduces with increasing of the GO content. Such as the response
177 time of PG03 is about 500 s and reduces 47% compared to PEEK, and the values of PG05 and PG07
178 are about 400 s. The PG09 and PG1 decrease 63% compared with PEEK. It can be clearly found that
179 the response time to the stable friction state decreases with the increasing of GO content. It is very
180 important to reach stable friction state of friction pair quickly, which can greatly shorten the
181 running-in time, reduce energy consumption and improve the performance of composites.
182 Meanwhile, it can be observed that the friction coefficient of PEEK/MoS₂s and PEEK/GO/MoS₂ is
183 gradually increasing at the beginning of the experiment, and then fluctuating in a stable interval
184 with time in Figure 2b. The response time of all PEEK/MoS₂s is about 350 s and less than that of
185 PEEK, indicating the effect of MoS₂ content on response time is very small. It can be concluded that
186 the MoS₂ can effectively reduce the response time of PEEK/MoS₂s. For PG07PM15, the response time
187 is around 380 s, lower than that of PG07, but higher than that of PM15, decreasing 60% compared
188 with PEEK. The average friction coefficient of all PEEK/MoS₂s decreases with increasing of the MoS₂
189 content, i. e., the larger the MoS₂ content, the smaller the average friction coefficient. Such as the
190 average friction coefficient of PM5 reduces 24% compared with PEEK. Moreover, the PM25 has a
191 minimum average friction coefficient of $\mu=0.1602$, which reduces 31% than that of PEEK. However,
192 the average friction coefficient is not result in a significant change while the MoS₂ content exceeds 15
193 wt.%. For example, the average friction coefficient of PM15 is 0.1626, while the values of PM20 and
194 PM25 only decrease 1.2% and 1.5% that of PM15, respectively. Furthermore, the average friction
195 coefficient of PG07PM15 is 0.1637, which is 86% that of PG07 and 1.02 times that of PM15,
196 respectively. This is because that the high response time and average friction coefficient of PEEK is
197 mainly attributed to strong adhesion and plough effect on the rubbing surface, owing to its low
198 hardness, easy plastic deformation and poor friction heat dissipation. But the friction heat loss is
199 improved and the adhesive effect is reduced for composites. On the other hand, GO and MoS₂ play a
200 key role of reducing friction coefficient of composites owing to their self-lubricant. The better
201 friction reduction of PEEK/MoS₂ than PEEK/GO is attributed to the better self-lubricant of MoS₂.
202 However, the excessive GO leads to the increase of friction coefficient. This is due to the stress
203 concentration and increased fragility, weakening the bonding strength between GO and PEEK
204 matrix.
205 Figure 2c shows the variation of wear rate of PEEK, PEEK/GOs, PEEK/MoS₂s and PEEK/GO/MoS₂.
206 The wear rate of PEEK is 6.213×10^{-6} mm³/Nm, which is in the same order of magnitude with value
207 obtained by Zhang et al. under a dry sliding condition [2]. The wear rate of PEEK/GOs significantly
208 decreases, and then slightly fluctuates in a very small scale with increasing of GO content. When the
209 GO content increases from 0.5 wt.% to 0.7 wt.%, the wear rate decreases obviously. However, the GO
210 content exceeds 0.7 wt.%, the wear rate is basically constant. Regardless of the GO content, the wear
211 rate of all PEEK/GOs is less than that of PEEK, indicating the positive effect of GO on the wear
212 resistance. Such as the wear rate of PG03 and PG05 is 90% and 85% that of PEEK, respectively.

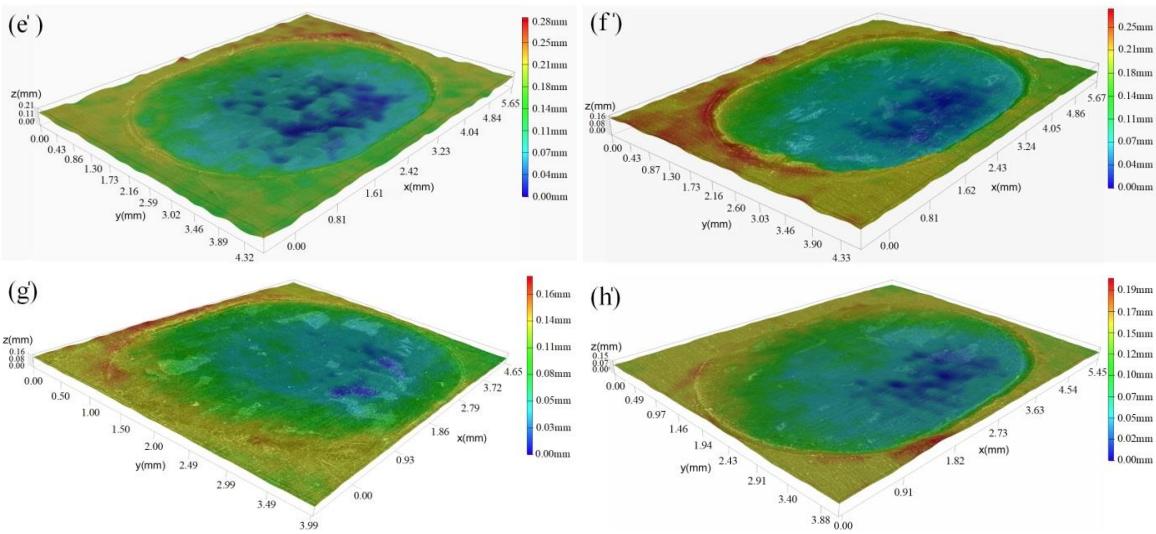
213 Nevertheless, PG07 has the lowest wear rate of $K=4.169 \times 10^{-6} \text{ mm}^3/\text{Nm}$, which is 33% lower than that
 214 of PEEK. In other words, PG07 has the best wear resistance. The variation of wear rate of
 215 PEEK/MoS₂s is obvious decrease with the increasing of MoS₂ content. When the MoS₂ content is less
 216 than 20%, the wear rate of PEEK/MoS₂s approximately reduces linear, whereas the difference in
 217 wear rate between PM20 and PM25 is minimal. But, the wear resistance of PEEK/MoS₂s is
 218 significantly increased in compared with PEEK. For instance, the PM5 has the maximum wear rate
 219 of $K=5.011 \times 10^{-6} \text{ mm}^3/\text{Nm}$, which is 19% lower than that of PEEK, while PM25 has the minimum
 220 wear rate of $K=3.333 \times 10^{-6} \text{ mm}^3/\text{Nm}$, reduces 46% compared with PEEK. The wear rate of PM5 is 1.5
 221 times that of PM25. The wear rate of PG07PM15 decreased by 35% compared with PEEK, which was
 222 almost equal to that of PM15 and less than that of PG07. It can be concluded that MoS₂ plays a major
 223 role in the wear resistance of PG07PM15. It is worth to note that the abilities of friction reduction and
 224 wear resistance of the composites with both GO and MoS₂ is not necessarily better than that of the
 225 composites with single GO or MoS₂.



226 **Figure 2.** Friction coefficient of PEEK and PEEK/GOs (a), PEEK/MoS₂s and PEEK/GO/MoS₂ (b), wear rate of
 227 PEEK, PEEK/GOs, PEEK/MoS₂s and PEEK/GO/MoS₂ (c).

228 To facilitate the understanding of the mechanism of friction and wear, representative SEM images
 229 and the corresponding 3D optical morphologies of the worn surface after sliding wear tests of PEEK,
 230 PEEK/GOs, PEEK/MoS₂s and PG07PM15 are detected in Figure 3. The PEEK (Figure 3a, a') exhibits
 231 unevenly grooves parallel to the sliding direction and irregular removed material adhered back to
 232 the surface, which show signs of abrasive wear and adhesive wear mechanism. Meanwhile, there are
 233 large amount of debris on the worn surface. The typical combination mechanism of abrasive wear
 234 and adhesive wear has been previously observed under a dry sliding condition [34]. A clear
 235 boundary is produced between the worn area and non-worn area owing to PEEK stacked under the
 236 compressive load and friction force. The deep wear scratch on the surface of PEEK can be visibly
 237 seen, and the worn surface is very rough, too. The worn surface of PG03 (Figure 3b, b') is smoother
 238 than that of PEEK. Several very shallow grooves caused by abrasive wear, a typical lamellar
 239 dissection, fatigue fracture caused by cyclic load and the presence of micro-cracks, short stripped
 240 pits parallel to the sliding direction and a small amount of adhesive debris marks, indicating a
 241 certain wear characteristics of brittle materials. There is an obvious partition boundary similar with
 242 that of PEEK for PG03, PG07 and PG1. However, the height of the materials accumulation is smaller,
 243 and the wear depth of the composites is significantly smaller than that of PEEK (Figure 3c, d, c', d').
 244 Such characteristics maybe contributed to the decrease of melting temperature of PEEK/GO. But the
 245 wear degree of the PEEK/GOs is obvious differences with content. With the increase of GO content,
 246 the fatigue wear becomes more and more dominant, and the adhesive wear and abrasive wear
 247 gradually reduce. This indicates PEEK/GOs show signs of severe fatigue wear, adhesive wear and
 248 mild abrasive wear. The PM5 (Figure 3e) represents more even grooves parallel to the sliding
 249 direction, plastic deformation, randomly adhered material and a certain amount of wear debris.
 250 Nevertheless, the worn surface of PM15 (Figure 3f) exhibits a small quantity of shallow grooves,
 251 adhered material and wear debris. Simultaneously, a water wave-like morphology is obviously
 252 observed. As same as PEEK, the worn surfaces of PM5 and PM15 result from the same wear
 253 mechanism, i. e., mainly abrasive wear and adhesive wear, just the wear degree of the individual
 254 components are different. Whereas, in the case of PM25 (Figure 3g), the worn surface shows a
 255 completely different morphological features from that of PM5 and PM15, which is very smooth and
 256 covered by an almost uniform and essentially continuous light gray layer, and that is torn signs
 257

258 along the sliding direction. In addition, these gray layers can avoid direct contact between
 259 composites and the counterpart, which further improves the tribological properties of composites. It
 260 can be observed that there is very little adhesive material and plastic deformation on the worn
 261 surface, but no obvious grooves and wear debris. This indicates that PEEK/MoS₂s possesses better
 262 friction reduction and wear resistance compares to PEEK and PEEK/GOs. As shown in Figure 3e', f',
 263 g', there is still an obvious wear area boundary like all others composites. The accumulation of
 264 boundary materials is contributed to the plastic deformation of PEEK matrix. With increasing of
 265 MoS₂ content, the wear depth of worn surface reduces and the coverage rate of MoS₂ film increases,
 266 which are contribute to the unique lubrication characteristics of MoS₂. Furthermore, it is worth noted
 267 that the MoS₂ content has a positive contribution to wear resistance, i. e., the higher the MoS₂
 268 content, the better the wear resistance (Figure 2c). The PG07PM15 (Figure 3h, h') represents very
 269 even shallow narrow grooves parallel to the sliding direction, a small quantity of micro-cracks, a
 270 water wave-like scratch, spalling pit and plastic deformation, which is smoother than that of PG07
 271 and PM15. It can be observed that the worn surface shows neither the severe sheet spalling caused
 272 by the fatigue wear in the case PG07, nor the deep grooves and wear debris in the case PM15.
 273 Compared with other composites, a typical wear area boundary is observed in Figure 3h'. Such
 274 morphology features indicate that the wear mechanism of PG07PM15 is the combination of slight
 275 fatigue wear, mild abrasive wear and adhesive wear. It can be concluded that the synergism
 276 between GO and MoS₂ help to form a good and tenacious lubricant films on the interface between
 277 composites and counterpart.


278

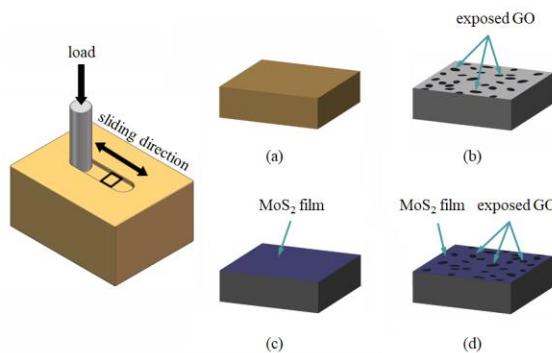
279

280

281

282

283


284 **Figure 3.** SEM images and 3D optical morphologies of worn surfaces. (a, a') PEEK, (b, b') PG03, (c, c') PG07, (d, d') PG1, (e, e') PM5, (f, f') PM15, (g, g') PM25, (h, h') PG07PM15.

285 In order to better explain the tribological properties of composites, Figure 4 presents the
 286 corresponding schematic diagram under a dry sliding condition. In the case PEEK (Figure 4a), the
 287 grooves of worn surface are mostly contributed to the stiffness of counterpart of steel pin is much
 288 higher than that of PEEK. During the friction and wear process, the hard protuberances on the steel
 289 pin penetrate into the PEEK and remove the softer PEEK under applied contact load and friction
 290 shear. On account of the combination of the plastic deformation, delamination and friction shear, the
 291 PEEK is transferred to the counterpart surface to form a lubricant film, which back to the originating
 292 PEEK surface-adhered material.

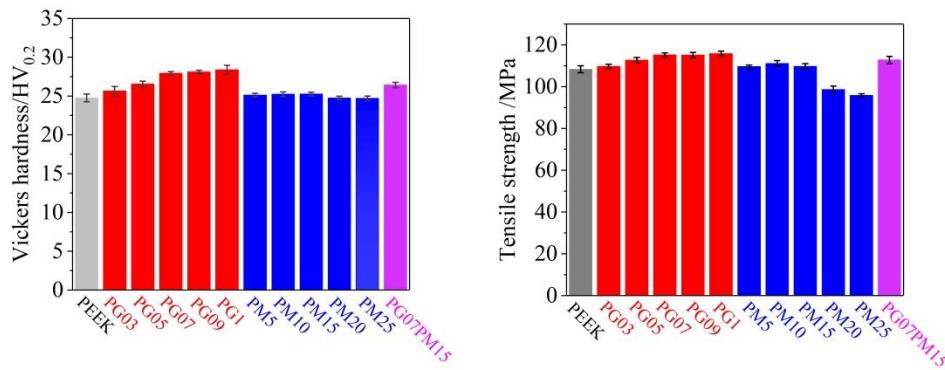
293 For the PEEK/GOs (Figure 4b), the wear characteristics may be the fact that the hardness and
 294 tensile strength of the composites is improved by addition of GO with large specific surface area and
 295 wrinkle, leading to less flow stress and considerably less plastic deformation for the
 296 sliding contact surface, as well as a decrease in the toughness of composites. Moreover, GO
 297 may agglomerate in the PEEK matrix, which is more likely to lead to the initiation of micro-cracks.
 298 Under the repeated stresses, the GO will be exposed gradually on the worn surface carrying most of
 299 applied load, promotes the formation of protective and in situ tribolayer in the interface between the
 300 composites and steel pin. This morphology features indicate that the addition of GO changes the
 301 main wear mechanism of composites from adhesive wear and abrasive wear to fatigue wear. The
 302 strong interface bonding of the composites made GO difficult to be detached from the PEEK matrix
 303 and effectively improved the wear resistance of the composites. However, the lubricant films on the
 304 interface will be destroyed by desquamate caused by fatigue wear as well as wear debris generated
 305 by fatigue wear. The abrasive wear is produced on the surface of composites by wear debris, which
 306 results in the shallow grooves marks. Simultaneously, the wear debris plays a certain role in
 307 grinding composites, which make its surface smooth. For PEEK/MoS₂s (Figure 4c), the MoS₂ is more
 308 easily released from the composites and exposed on the worn surface owing to the weaker bonding
 309 strength of MoS₂ and PEEK matrix. More importantly, the MoS₂ layered structure formed via weak
 310 van der Waals interactions between each layer gives better tribological performance, which makes
 311 easier to form a continuous and complete lubricant layer between the interfaces. At the same time,
 312 the softer lubricant films can effectively cover the worn surface, fill the wear marks, and make the
 313 small wear debris hidden in them. This corresponds to the better friction reduction and wear
 314 resistance of PEEK/MoS₂s in Figure 2b, c. However, for PG07PM15, GO and MoS₂ would be


315

316 concurrently exposed on the worn surface during the tribological test in Figure 4d. The GO with
 317 high mechanical strength can withstand load applied and play a certain role in lubrication, which
 318 can restrain composites being further worn off, and then the MoS₂ mostly play the lubricant effect. In
 319 a word, the lubricant films formed provides a low strength junction at the interface, resulting in
 320 lower friction coefficient and wear rate than that of PEEK. So regardless of GO or MoS₂ which are
 321 exposed to worn surface, they both can effectively avoids direct touch of the two contact surface,
 322 thus further inhibiting the wear of composites. However, the generated heat, which cannot be taken
 323 away timely or dissipated during the process of friction, will lead to the further softening of the
 324 composites and the enhancement of adhesive wear. In the meantime, the abrasive debris, difficultly
 325 discharged from the worn surface, will result in the inevitable abrasive wear under a dry sliding
 326 condition. On the contrary, the phenomenon of wear surface adhesion and a large amount of debris
 327 deposition are not almost observed due to the presence of water lubrication [3].

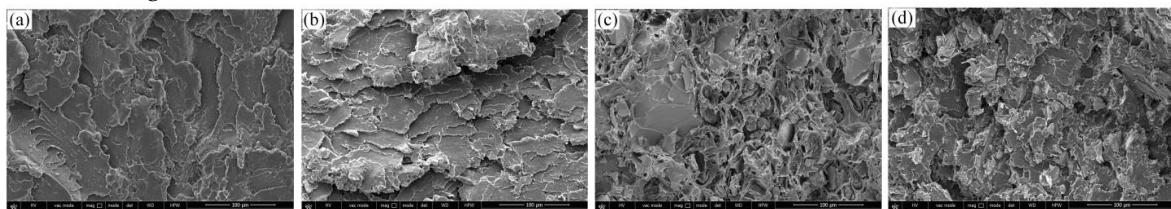
328

329 **Figure 4.** Schematic illustration of friction and wear of PEEK, PEEK/GOs, PEEK/MoS₂s and PEEK/GO/MoS₂.
 330 It is well known that the nanofillers have an inherent tendency to form agglomerates due to the large
 331 surface area in the polymer matrix, and lead to decreasing of the reinforcing effects [3,11,25,35]. The
 332 homogeneity of distribution has an important effect on its hardness, tensile strength and tribological
 333 properties. In order to evaluate the dispersion of GO and MoS₂, the EDS analysis of element
 334 distribution was carried out for PG07PM15 in Figure 5. It can be clearly observed that the GO and
 335 MoS₂ were evenly dispersed in the PEEK matrix. This indicates that the hot isostatic pressing
 336 method used to prepare PEEK composites was reasonable and effective in this work, and the
 337 prepared composites could meet the experimental requirements.


338

339 **Figure 5.** EDS mapping images of the PG07PM15.

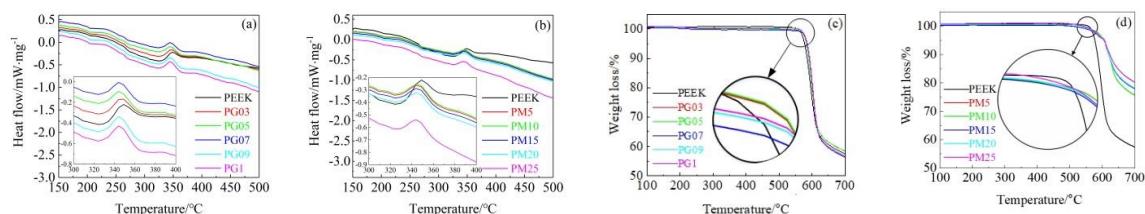
340 3.2 Mechanical properties


341 The tribological properties of a material are closely related to its hardness, which is always
 342 considered to represent the scratch resistance, abrasive resistance and cutting resistance of the
 343 material surface [36,37]. To invest the reason of the super wear performance of composites, the
 344 Vickers hardness and tensile strength of PEEK, PEEK/GOs, PEEK/MoS₂s and PEEK/GO/MoS₂ are
 345 studied in Figure 6. As shown in Figure 6a, the Vickers hardness of PEEK/GOs increases with the
 346 increasing of GO content. The Vickers hardness of PG03 is 25.65 HV. And PG1 reaches to 28.39 HV,

347 which is about 15% higher than that of PEEK. Interestingly, the Vickers hardness of PG07 is around
348 13% higher than that of PEEK, which is only 2% lower than that of PG1. This variation trend of the
349 Vickers hardness on PEEK/GO is consistent with the reported results of Puértolas et al. [3] and Lin et
350 al. [36]. So consideration the relationship of GO content with the Vickers hardness, the best GO
351 content is 0.7 wt.%. It can be seen that the Vickers hardness of PEEK/MoS₂s is gradually increased
352 firstly, and then decreased with the increasing of MoS₂ content. Simultaneously, the effect of MoS₂
353 on the Vickers hardness of composites is not significant. When the MoS₂ beyond 15 wt.%, the Vickers
354 hardness decreased. The PM15 is the largest, which is 25.26 HV, and it is only 2% higher than that of
355 PEEK. PM20 and PM25 are almost the same as PEEK. This is coincide with the results of Zalaznik et
356 al. [25, 38]. From the standpoint of improving the Vickers hardness of PEEK/MoS₂, the optimal
357 content of MoS₂ is 15 wt.%. The Vickers hardness of PG07PM15 is around 1.1 times that of PEEK, and
358 it is 26.42 HV. Interestingly, its Vickers hardness is 5% higher than that of PM15, but 6% lower than
359 that of PG07. So it confirms that GO has a better effect on improving the Vickers hardness of
360 composites than MoS₂. The Vickers hardness enhancement of all composites could be associated to
361 interfacial interactions between the GO/MoS₂ and the PEEK matrix, which would restrain the plastic
362 deformation of the PEEK matrix. In addition, the addition of the GO or MoS₂ could reinforce the
363 formation of cross-networked structures and produces the reorganization of amorphous polymer
364 chains in the composites, in which provided a higher resistance against the normal load applied. The
365 higher hardness of PEEK/GOs is related to the high hardness of GO [39]. The excellent hardness is
366 benefit to the tribological properties of composites, which is coincide with the results of Figure 2.
367 In generally, the tensile strength of a material has close relationship with its tribological behavior
368 [2,3]. As shown in Figure 6b. The tensile strength of PEEK is 108.3 MPa, which is in agreement with
369 Yang et al. [40]. The tensile strength of PEEK/GOs increases with the increasing of GO content. The
370 variation of tensile strength is approximately linearly under the GO content of 0.7 wt.%. After that,
371 the increment of tensile strength begins to decrease. The tensile strength of PG07 is 6 % higher than
372 that of PEEK, while PG1 is only 0.5% higher than that of PG07. Moreover, the introduction of GO
373 could drastically affect the toughness of the composites. The contribution of GO to the improvement
374 of tensile strength is due to GO has good compatibility with PEEK and strong binding force,
375 improves the crystallinity and uniformity of PEEK matrix. However, when the GO content exceeds
376 0.7 wt.%, the tensile strength of the PEEK/GOs increases very little due to the stress concentration
377 caused by GO agglomeration. The tensile strength of PEEK/MoS₂s increases firstly, and then
378 decreases with the increasing of MoS₂ content. The tensile strength of PM10 is 111.1 MPa and it is 3%
379 higher than that of PEEK. Interestingly, when the MoS₂ content exceeds 15 wt.%, the tensile strength
380 of PEEK/MoS₂ is lower than that of PEEK. Such as the tensile strength of PM25 is only 88% of that of
381 PEEK. It is worth note that the MoS₂ has positive effect on increment of the tensile strength of
382 composites, but the excessive content will have negative effect. The lamellar structure of MoS₂ causes
383 shear slip of the composites under stress. The tensile strength of PG07PM15 is smaller than that of
384 PG07, and higher than that of PEEK and PM15, its value reaches to 112.8 MPa, which is coincide
385 with the results of hardness. As stated above, the GO is superior to MoS₂ to improvement of tensile
386 strength of the PEEK matrix, which is coincide with the results of Mittal et al. [41] and Puértolas et al.
387 [3].

388
389 **Figure 6.** (a) Vickers hardness and (b) tensile strength of the different PEEK, PEEK/GOs, PEEK/MoS₂s and
390 PEEK/GO/MoS₂.

391 In order to investigate the fracture properties of the composite, SEM images of fracture surface of
392 the PEEK, PG07, PM15 and PG07PM15 after the tensile test are shown in Figure 7. The fracture
393 surface of PEEK (Figure 7a) exhibits a relative smooth river and tongue patterns, in which appears
394 ravines and penetrating cracks, but there is no obvious fracture dimple, fracture gully and tearing
395 shape, reflecting that PEEK is a typical brittle fracture mode due to high strain rate, and its tensile
396 resistance is likely the fiber cracking and pill-out. For PG07 (Figure 7b), the fracture surface shows a
397 relatively rough squamous-like morphology with cellular on account of its brittleness, which is
398 consistent with the decrease in toughness. The GO have good compatibility with PEEK matrix
399 interface, which would cause crack deflection and disproportionation, could absorb tensile fracture
400 energy and hinder the crack propagation. Therefore, the tensile strength of PEEK/GO can be
401 improved. In case of PM15 (Figure 7c), the fracture surface exhibits a rougher morphology with
402 wrinkle and a large amount of sheet faults in comparison with the PEEK, which indicates more
403 effective reinforcement of the toughness. The MoS₂ are embedded in PEEK in its original layered
404 structure, which is more likely to cause interlaminar slippage of the PEEK/MoS₂. Meanwhile, the
405 addition of MoS₂ would destroy the continuity of PEEK, and there are many microcracks around it,
406 in which promote the crack initiation and crack propagation. It is coincide with the tensile strength
407 of PEEK/MoS₂. As shown in Figure 7d, the fracture surface of the PG07PM15 shows a relative
408 rougher morphology in comparison with PEEK, exhibiting a different feature in compared with
409 PG07 and PM15, which indicates that the presence of GO and MoS₂ can dissipate much energy and
410 hinder the crack propagation during the fracture process. It can be observed that there are wrinkle,
411 stacked GO sheets, microvoids and microcracks on the fracture surface. However, the obvious
412 agglomeration phenomenon is not observed on the fracture surface, indicating a homogeneous
413 dispersion of GO/MoS₂ in the PEEK matrix. This is coincide with the results of Vickers hardness and
414 tensile strength.



415
416 **Figure 7.** SEM images of fracture surfaces (a) PEEK, (b) PG07, (c) PM15, and (d) PG07PM15.

417 3.3 Thermal properties

418 In order to further understand the super tribological performance of composites, the thermal
419 behaviours are estimate. Figure 8 illustrates the DSC and TGA curves of PEEK, PEEK/GOs and

420 PEEK/MoS₂s. As shown in Figure 8a, it can be observed that the melting temperature of PEEK, PG03,
 421 PG05, PG07, PG09 and PG1 is about 348.9 °C, 348.9 °C, 343.9 °C, 343.9 °C, 343.9 °C and 343.9 °C,
 422 respectively. The decrease of melting temperature of PEEK/GO is contributed to the GO. When the
 423 GO content exceeds 0.5 wt.%, the melting temperature is basically constant and is 5 °C lower than
 424 that of PEEK. This is coinciding with the results of Puértolas et al. [3]. Interestingly, the melting
 425 temperature of all PEEK/MoS₂s is almost the same, its value is around 343.9 °C, and lower than that
 426 of PEEK in the Figure 8b. It is coincide with the results reported by Zalaznik et al [25]. It is worth
 427 note that the MoS₂ content has no significant effect on the melting temperature. The reason is
 428 because the addition of MoS₂ or GO destroys the continuity of PEEK matrix, and the motion of the
 429 polymer chain is segmented during crystallization, in which inhibits molecular stacking, results in
 430 the formation of less perfect crystallites. As shown in Figure 8c, the PEEK/GOs exhibit a similar
 431 thermal decomposition process with PEEK, which can be mainly ascribed to the decomposition of
 432 PEEK polymer molecular chains. The onset decomposition temperature of PEEK/GOs increases with
 433 the increasing of GO content. The onset decomposition temperature and weight residue of PEEK are
 434 approximately 578 °C and 56%, respectively. Compared to PEEK, for lower GO content, i.e. PG03
 435 and PG05, the thermal decomposition temperature improves 5 °C, while that of PG07, PG09 and PG1
 436 improves about 10 °C. In consequence, it can be seen that GO can effectively increase the thermal
 437 stability of composites, and PEEK/GOs have higher thermal stability with increasing GO content. It
 438 is observed that PEEK/MoS₂s exhibit a different thermal decomposition process to the PEEK (Figure
 439 8d), which can be ascribed to the barrier effect of MoS₂ on the diffusion of PEEK. The decomposition
 440 temperature of PM5 and PM10 is approximately 603 °C. Nevertheless, the decomposition
 441 temperature of composites reaches to 608 °C, when the MoS₂ content exceeds 15 wt.%. The
 442 decomposition temperature is higher than that of PEEK by about 25-30 °C. It indicates that the
 443 presence of MoS₂ can effectively enhance the thermal stability of PEEK matrix. However, the weight
 444 residue of PM5, PM10, PM15, PM20 and PM25 is 74%, 74%, 76%, 77% and 79%, respectively.
 445 Compared with the PEEK, the weight residue increases 32~41%. The similar observations were
 446 reported by Chen et al. [12] and Gong et al. [42]. Therefore, it can be seen that the MoS₂ can obviously
 447 promote the thermal stability of composites. Furthermore, it can be worth note that the effect of
 448 MoS₂ on the thermal stability of composites is better than that of GO. This is mainly attributed to the
 449 MoS₂ excellent high temperature resistance and the interaction between PEEK matrix, which results
 450 in the formation of a stable network structure within the composites, preventing the PEEK chain
 451 segments from decomposition at high temperature [7,43]. In addition, the charring effect of MoS₂ at
 452 high temperature also contributes to the thermal stability of composites. As is well known, a large
 453 amount of heat will be generated during the process of friction and wear, especially under dry
 454 friction conditions [44]. It will lead to excessive degradation of the polymer and poor tribological
 455 properties. Therefore, the excellent thermal stability of composites effectively prevents the high
 456 temperature harm, and improves their tribological performances in dry sliding friction and wear
 457 conditions.

459 **Figure 8.** DSC and TGA curves. (a, b) PEEK and PEEK/GOs and (c, d) of the PEEK and PEEK/MoS₂s.

460 **5. Conclusions**

461 In this study, PEEK/GO and PEEK/MoS₂ composites have successfully prepared via a novel hot
462 isostatic press method. The mapping-mode EDS exhibits that the GO and MoS₂ are evenly
463 distributed in the PEEK matrix. The wear rate of PEEK/GOs, PEEK/MoS₂s and PEEK/GO/MoS₂
464 obviously reduces owing to the addition of GO and MoS₂. The response time to stable friction state
465 reduces in compared to PEEK matrix due to the addition of GO and MoS₂ and it obviously decreases
466 with increasing of the GO content. In addition, the addition of GO and MoS₂ effectively decreases the
467 friction coefficient of PEEK matrix. PEEK exhibits typical combination of abrasive wear and
468 adhesive wear mechanism. The severe fatigue wear, light adhesive wear and mild abrasive wear
469 mechanism are found for PEEK/GO, and the fatigue wear severity increased with the increase of GO
470 content. However, the PEEK/MoS₂ shows the abrasive wear and little adhesive wear mechanism,
471 and it was related to the MoS₂ content. The wear mechanism of GO/PEEK/MoS₂ is mostly slight
472 fatigue wear, mild abrasive wear and adhesive wear. The good wear resistance and friction
473 reduction of composites are attribute to the enhancement of its hardness, tensile strength and
474 thermal stability after the addition of GO and MoS₂.

475 **Author Contributions:** Conceptualization, Yutao Yan.; and Yuqiu. Huo.; methodology, Yutao.Yan.;
476 investigation, Yutao Yan; Cheng Jiang; Chaofeng Li; writing—original draft preparation, Yutao.Yan.;
477 writing—review and editing, Yutao.Yan.; Yuqiu Huo; funding acquisition, Yutao.Yan. All authors have read
478 and agreed to the published version of the manuscript.

479 **Funding:** This research was funded by National Natural Science Foundation of China, grant number 51875095.

480 **Conflicts of Interest:** The authors declare no conflict of interest.

481 **References**

1. D. Kumar, T. Rajmohan, S. Venkatachalam. Wear behavior of PEEK matrix composites: a review, Materials Today Proceedings, 2018, 5(6): 14583-14589.
2. Z. Zhang, C. Breidt, L. Chang, K. Friedrich. Wear of PEEK composites related to their mechanical performances, Tribology International, 2004, 37(3): 271-277.
3. J. A. Puértolas, M. Castro, J. A. Morris, R. Ríos, A. Ansón-Casaos. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites, Carbon, 2019, 141: 107-122.
4. M. S. Jahan, B. M. Walters, T. Riahanasab, R. Gnawali, D. Adhikari, H. Trieu. A comparative study of radiation effects in medical-grade polymers: UHMWPE, PCU and PEEK, Radiation Physics and Chemistry, 2016, 118: 96-101.
5. J. J. Zhu, L. Ma, R. Dwyer-Joyce. Friction and wear behaviours of self-lubricating peek composites for articulating pin joints, Tribology International, 2020, 149: 105741.
6. H. J. Song, N. Li, Y. J. Li, C. Y. Min, Z. Wang. Preparation and tribological properties of graphene/poly(ether ether ketone) nanocomposites, Journal of Materials Science, 2012, 47: 6436-6443.
7. Z. Y. Chen, H. X. Yan, T. Y. Liu, S. Niu. Nanosheets of MoS₂ and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites, Composites Science and Technology, 2016, 125: 47-54.
8. M. Sharma, J. Bijwe, P. Mitschang. Wear performance of PEEK-carbon fabric composites with strengthened fiber-matrix interface, Wear, 2011, 271(9-10): 2261-2268.
9. A. Tewatia, J. Hendrix, Z. Z. Dong, M. Taghon, S. Tse, G. Chiu, W. E. Mayo, B. Kear, T. Nosker, J. Lynch. Characterization of melt-blended graphene-poly(ether ether ketone) nanocomposite, Materials Science and Engineering: B, 2017, 216: 41-49.
10. Z. S. Cao, L. Qiu, Y. Z. Yang, Y. K. Chen, X. G. Liu. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites, Applied Surface Science, 2015, 353: 873-881.
11. M. C. Kuo, C. M. Tsai, J. C. Huang, M. Chen. PEEK composites reinforced by nano-sized SiO₂ and Al₂O₃ particulates, Materials Chemistry and Physics, 2005, 90(1): 185-195.

508 12. B. B. Chen, X. Li, Y. H. Jia, X. F. Li, J. Yang, F. Y. Yan, C. S. Li. MoS₂ nanosheets-decorated carbon fiber
509 hybrid for improving the friction and wear properties of polyimide composite, *Composites Part A: Applied
510 Science and Manufacturing*, 2018, 109: 232-238.

511 13. M. Rinaldi, D. Puglia, F. Dominici, V. Cherubini, L. Torre, F. Nanni. Melt processing and mechanical
512 property characterization of high-performance poly(ether ether ketone)-carbon nanotube composite,
513 *Polymer International*, 2017, 66(12): 1731-1736.

514 14. Z. Wahab, Z. M. Marsh, A. Tessema, A. Kidane, M. Stefk, B. L. Anneaux, H. J. Ploehn. Effect of
515 nanodiamond (ND) surface functionalization on the properties of ND/PEEK composites, *IEEE
516 Transactions on Components Packaging and Manufacturing Technology*, 2017, 7(2): 165-177.

517 15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A.
518 Firsov. Electric field effect in atomically thin carbon films, *Science*, 2004, 306(5696): 666-669.

519 16. I. Clavería, D. Elduque, A. Lostalé, Á. Fernández, P. Castell, C. Javierre. Analysis of self-lubrication
520 enhancement via PA66 strategies: texturing and nano-reinforcement with ZrO₂ and graphene, *Tribology
521 International*, 2019, 131: 332-342.

522 17. F. Wang, H. Y. Wang, J. Mao. Aligned-graphene composites: a review, *Journal of Materials Science*, 2019,
523 54: 36-61.

524 18. S. H. Yetgin. Tribological properties of compatibilizer and graphene oxide-filled polypropylene
525 nanocomposites, *Bulletin of Materials Science*, 2020, 43(1): 89.

526 19. A. Roy, L. W. Mu, Y. J. Shi. Tribological properties of polyimide-graphene composite coatings at elevated
527 temperatures, *Progress in Organic Coatings*, 2020, 142: 105602.

528 20. S. S. Kandanur, M. A. Rafiee, F. Yavari, M. Schrammeyer, Z. Z. Yu, T. A. Blanchet, N. Koratkar. Suppression
529 of wear in graphene polymer composites, *Carbon*, 2012, 50(9): 3178-3183.

530 21. B. L. Pan, J. Zhao, Y. Q. Zhang, Y. Z. Zhang. Wear performance and mechanisms of polyphenylene
531 sulfide/polytetrafluoroethylene wax composite coatings reinforced by graphene, *Journal of
532 Macromolecular Science, Part B-Physics*, 2012, 51(6): 1218-1227.

533 22. N. Agrawal, A. S. Parihar, J. P. Singh, T. H. Goswami, D. N. Tripathi. Efficient nanocomposite formation of
534 acrylo nitrile rubber by incorporation of graphite and graphene layers: reduction in friction and wear rate,
535 *Procedia Materials Science*, 2015, 10: 139-148.

536 23. R. B. Surya, S. Balaji, A. N. A. B. Mohamed. Tribological performance of graphene/graphite filled phenolic
537 composites-a comparative study, *Composites Communications*, 2019, 15: 34-39.

538 24. A. Chih, A. Ansón-Casaos, J. A. Puértolas. Frictional and mechanical behaviour of graphene/UHMWPE
539 composite coatings, *Tribology International*, 2017, 116: 295-302.

540 25. M. Zalaznik, S. Novak, M. Huskić, M. Kalin. Tribological behaviour of a PEEK polymer containing solid
541 MoS₂ lubricants, *Lubrication Science*, 2016, 28(1): 27-42.

542 26. H. X. Wu, S. C. Yin, Y. Du, L. P. Wang, H. F. Wang. An investigation on the lubrication effectiveness of
543 MoS₂ and BN layered materials as oil additives using block-on-ring tests, *Tribology International*, 2020,
544 151: 106516.

545 27. V. Bhardwaj, R. K. Pandeyb, V. K. Agarwal. Experimental investigations for tribo-dynamic behaviours of
546 conventional and textured races ball bearings using fresh and MoS₂ blended greases, *Tribology
547 International*, 2017, 113: 149-168.

548 28. M. R. Yi, C. H. Zhang. The synthesis of MoS₂ particles with different morphologies for tribological
549 applications, *Tribology International*, 2017, 116: 285-294.

550 29. G. G. Tang, J. Zhang, C. C. Liu, D. Zhang, Y. Q. Wang, H. Tang, C. S. Li. Synthesis and tribological
551 properties of flower-like MoS₂ microspheres, *Ceramics International*, 2014, 40(8): 11575-11580.

552 30. K. H. Hu, X. G. Hu, J. Wang, Y. F. Xu, C. L. Han. Tribological properties of MoS₂ with different
553 morphologies in high-density polyethylene, *Tribology Letters*, 2012, 47(1): 79-90.

554 31. S. B. Zhang, Y. T. Yan, Y. Q. Huo, Y. Yang, J. L. Feng, Y. F. Chen. Electrochemically reduced graphene
555 oxide and its capacitance performance, *Materials Chemistry and Physics*, 2014, 148(3): 903-908.

556 32. Y. T. Yan, C. F. Li, D. Wang, Y. Li, T. L. Zhang. A novel hot isostatic pressing device, *Chinese Patent*, 2019,
557 ZL201810031099. X.

558 33. E. Z. Li, W. L. Guo, H. D. Wang, B. S. Xu, X. T. Liu. Research on tribological behavior of PEEK and glass
559 fiber reinforced PEEK composite, *Physics Procedia*, 2013, 50: 453-460.

560 34. M. Kalin, M. Zalaznik, S. Novak. Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled
561 with graphene, WS₂ and CNT nanoparticles, *Wear*, 2015, 332-333: 855-862.

562 35. S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhau, F. A. Nüesch, B. T. T. Chu. Size and synergy effects
563 of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of
564 epoxy composites, *Carbon*, 2012, 50(15): 5380-5386.

565 36. Q. L. Lin, L. J. Qu, Q. F. Lü, C. Q. Fang. Preparation and properties of graphene oxide nanosheets/cyanate
566 ester resin composites, *Polymer Testing*, 2013, 32(2): 330-337.

567 37. Q. L. Lin, R. G. Zheng, P. H. Tian. Preparation and characterization of BMI resin/graphite oxide
568 nanocomposites, *Polymer Testing*, 2010, 29(5): 537-543.

569 38. M. Zalaznik, M. Kalin, S. Novak, G. Jakša. Effect of the type, size and concentration of solid lubricants on
570 the tribological properties of the polymer PEEK, *Wear*, 2016, 364-365: 31-39.

571 39. X. R. Zhang, X. Q. Pei, Q. H. Wang. Friction and wear studies of polyimide composites filled with short
572 carbon fibers and graphite and micro SiO₂, *Materials and Design*, 2009, 30(10): 4414-4420.

573 40. L. L. Yang, S. L. Zhang, Z. Chen, Y. L. Guo, J. S. Luan, Z. Geng, G. B. Wang. Design and preparation of
574 graphene/poly(ether ether ketone) composites with excellent electrical conductivity, *Journal of Materials
575 Science*, 2014, 49(5): 2372-2382.

576 41. V. Mittal, A. U. Chaudhry. Polymer-graphene nanocomposites: effect of polymer matrix and filler amount
577 on properties, *Macromolecular Materials and Engineering*, 2015, 300(5): 510-521.

578 42. K. L. Gong, X. H. Wu, G. Q. Zhao, X. B. Wang. Nanosized MoS₂ deposited on graphene as lubricant
579 additive in polyalkylene glycol for steel/steel contact at elevated temperature, *Tribology International*,
580 2017, 110: 1-7.

581 43. Y. H. Lai, M. C. Kuo, J. C. Huang, M. Chen. On the PEEK composites reinforced by surface-modified
582 nano-silica, *Materials Science and Engineering A*, 2007, 458(1-2): 158-169.

583 44. B. B. Chen, X. Li, Y. H. Jia, L. Xu, H. Y. Liang, X. F. Li, J. Yang, C. S. Li, F. Y. Yan. Fabrication of ternary
584 hybrid of carbon nanotubes/graphene oxide/MoS₂ and its enhancement on the tribological properties of
585 epoxy composite coatings, *Composites Part A: Applied Science and Manufacturing*, 2018, 115: 157-165.

586

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).