

1 Article

2

Polyethylene Identification in Ocean Water Samples

3 by Means of 50 Kev Energy Electron Beam

John I. Adlish ^{1,2},4 Davide Costa ², Enrico Mainardi ², Piero Neuhold ^{2,*}, Riccardo Surrente ², Luca J. Tagliapietra ^{2,*}5 ¹ Biology Department, Truckee Meadow Community College, NV, USA; jadlish@tmcc.edu (JIA)6 ² Particle Physics Department, BabuHawaii Foundation, NV, USA; john.adlish@babuhawaiifoundation.org7 (JIA), davide@babuhawaiifoundation.org (DC), enrico.mainardi@babuhawaiifoundation.org (EM),8 piero@babuhawaiifoundation.org (PN), rick@babuhawaiifoundation.org (RS),9 lucaj@babuhawaiifoundation.org (LJT);10 * Correspondence: piero@babuhawaiifoundation.org (PN), lucaj@babuhawaiifoundation.org (LJT);

11 Received: date; Accepted: date; Published: date

12 **Abstract:** The study presented hereafter shows a new methodology to reveal traces of polyethylene
13 (the most common microplastic particles, known as a structure of C_2H_4) in a sample of ocean water
14 by the irradiation of a 50 keV, 1 μ A electron beam. This is performed by analyzing the photon
15 (produced by the electrons in water) fluxes and spectra (i.e. fluxes as a function of photon energy)
16 at different types of contaminated water with an adequate device and in particular looking at the
17 peculiar interactions of electrons/photons with the potential abnormal atomic hydrogen (H),
18 oxygen (O), carbon (C), phosphorus (P) compositions present in the water, as a function of living
19 and not living organic organisms with a PO_4 group RNA/DNA strands in a cluster configuration
20 through a volumetric cells grid.

21

22 **Keywords:** Microplastics; Polyethylene Ocean Water; Microplastics identification; Microorganisms
23 identification; Ocean Water quality; Drinking water; Food quality; Cancer and microplastics;
24 plastic and ocean; particle physics; particle accelerators in environmental studies.

25

26

1. Introduction

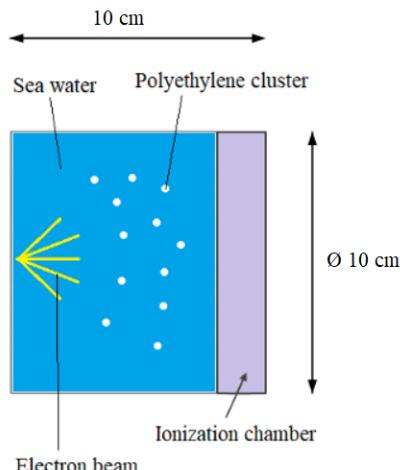
27 Plastic is the most common type of marine debris found in oceans and it is the most widespread
28 problem affecting the marine environment. It also threatens ocean health, food safety and quality,
29 human health, coastal tourism and contributes to climate change [1,2,3,4,5]. Plastic debris can come
30 in many different shapes and sizes, but those that are less than five millimeters across (or the size of
31 a sesame seed) are called "microplastics". One of the most common microplastic in use today is
32 Polyethylene, with most of the known kinds having the chemical formula $(C_2H_4)_n$. It is a linear,
33 man-made, homo-polymer, primarily used for packaging (plastic bags, plastic films, geomembranes,
34 containers including bottles, etc.).35 As of 2019, over 100 million tons of polyethylene resins are being produced annually, accounting for
36 34% of the total plastics market.37 This is an emerging field of study, and not much is known yet about microplastics and their impact
38 on the environment. The NOAA Marine Debris Program is pursuing efforts within the NOAA to
39 research this important topic.40 Different standardized field methods have been developed for the collection of microplastic samples
41 in sediment [6,7,8,9,10,11,12,13], sand and surface water which continue to be tested. In the end, the
42 field and laboratory protocols will allow a global comparison of the quantity of microplastics
43 released into the environment, which is the first step in determining the final distribution, impacts
44 and fate of these debris.

45 Microplastics come from a variety of sources, including larger plastic debris that degrade into
46 smaller and smaller pieces. In addition, microspheres, a type of microplastic, are tiny particle pieces
47 of plastic polyethylene that are added as exfoliators to health and beauty products, such as some
48 detergents and toothpastes passing easily through water filtration systems, posing a threat to aquatic
49 life.

50 The most visible impacts of marine plastics are the ingestion, suffocation, and entanglement of
51 hundreds of marine species. Marine wildlife such as seabirds, whales, fishes and turtles, mistake
52 plastic waste for prey, and most die of starvation as their stomachs are filled with plastic debris.
53 They also suffer from lacerations, infections, reduced ability to swim, and internal injuries. Floating
54 plastics also contribute to the spread of invasive marine organisms and bacteria, which disrupt
55 ecosystems. Plastic degrades (breaks down into pieces), but it does not biodegrade (break down
56 through natural decomposition). This has become a problem over time, as all the plastic pieces that
57 they have been generated over the last seven decades have steadily increased theirs presence as ppm
58 creating a biological alteration.

59 According to the United Nations Environment Program, these plastic microspheres first appeared in
60 personal care products about fifty years ago, with plastic replacing more and more natural
61 ingredients.

62 Until 2012, this problem was still relatively unknown, with an abundance of products containing
63 plastic microspheres on the market and leading now, to an increase microplastic detection and
64 identification demand.


65 Ocean water also contains microorganisms, live matter and not, such as viruses, bacteria, and
66 microorganisms like plankton with a different PO_4 phosphorus content
67 [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. Viruses, for example, are intracellular parasites
68 composed of a nucleic acid surrounded by a protein coat, the capsid. Some viruses contain a lipid
69 envelope, derived from the host, surrounding the capsid. The nucleic acid found in viruses can
70 consist of either RNA or DNA. RNA is composed of nucleotides, each containing a sugar
71 (deoxyribose), a Nitrogen containing Base (Adenine, Uracil, Guanine, and Cytosine), and a
72 phosphate group PO_4 . Members of the family Coronoviridae measure 80-160 nm in diameter.
73 Generally, there are 1-10 Million viruses and about 100,000 to 1 Million bacteria cells for each
74 milliliter of ocean water.

75 The proposed methodology is based on a sub-atomic particles analysis and their subsequent
76 detection, able to identify polyethylene particles in water among microorganisms. It could be an
77 interesting research approach for the ocean studies field and for the food and beverage industries
78 field in order to detect microplastic contamination in their products. This type of approach would
79 make easier testing water samples and analyzing data in real time in comparison to the state of the
80 art of others detection processes, and also allows test procedures for quality assurance in the food
81 and beverage industries with a simple hardware.

82 .

83 **2. Materials and Methods**

84 The physical model under analysis and its simulation by MCNPX Monte Carlo simulation sub
85 atomic particles code [30,31,32] are based on an electron beam source of 50 keV and 1 μA , easily
86 accessible from an extraction line of an industrial linear/circular particle accelerator, interacting with
87 the water sample target. The beam energy and current have been based on cross sections
88 considerations and radiation requirements; the beam interacts with a cylindrical sample volume,
89 with axis on x, of ocean water of radius $r=5$ cm and height $h=10$ cm as a sample tank (Fig. 1) which
90 is analysed at $x=10$ cm through a double plates ionization chamber detector.

91

92

Figure 1 Physical Model x-z section - Ocean Water and Polyethylene

93 The ocean water, taken into account is chemically known as showed in Table 1 [12].

94

Element	Element (%)	Element	Element (%)
Oxygen	85.7	Molybdenum	0.000001
Hydrogen	10.8	Zinc	0.000001
Chlorine	1.9	Nickel	0.00000054
Sodium	1.05	Arsenic	0.0000003
Magnesium	0.135	Copper	0.0000003
Sulfur	0.0885	Tin	0.0000003
Calcium	0.04	Uranium	0.0000003
Potassium	0.038	Chromium	0.00000003
Bromine	0.0065	Krypton	0.00000025
Carbon	0.0028	Manganese	0.0000002
Strontium	0.00081	Vanadium	0.0000001
Boron	0.00046	Titanium	0.0000001
Silicon	0.0003	Cesium	0.00000005
Fluoride	0.00013	Cerium	0.00000004
Argon	0.00006	Antimony	0.000000033
Nitrogen	0.00005	Silver	0.00000003
Lithium	0.000018	Yttrium	0.00000003
Rubidium	0.000012	Cobalt	0.000000027
Phosphorus	0.000007	Neon	0.000000014
Iodine	0.000006	Cadmium	0.000000011
Barium	0.000003	Tungsten	0.00000001
Aluminum	0.000001	Lead	0.000000005
Iron	0.000001	Mercury	0.000000003
Indium	0.000001	Selenium	0.000000002

95

Table 1 Ocean Water Weight Chemical Composition

96 Among the all possible sub-atomic particles generated only photons (coming from electron coherent
 97 and incoherent scattering, absorption, knock on, decay, fluorescence, bremsstrahlung, and
 98 photoelectric effect) have been taken into account, as reported in Table 2 (where the percent
 99 contribution of different phenomena which create photons are shown) and Table 3 (where the
 100 percent contribution of different elements to the production of photons are shown), as the other
 101 ones are actually negligible . As for Table 2, the photoelectric effect is consisting in the absorption of
 102 the incident photon energy E, with emission of several fluorescent photons and the ejection or
 103 excitation of an orbital electron of binding energy $e < E$. Photon of first fluorescence are emitted with
 104 energy greater than 1 keV and those of second fluorescence are still greater than 1 keV and caused by
 105 residual excitation of first fluorescence process leading to a second emission.

106

107

	Ocean Water No Contamination	Polyethylene 10 ppm	Polyethylene 100 ppm	Polyethylene 1000 ppm	Polyethylene 10000 ppm
Bremsstrahlung	99.1265%	99.1237%	99.1182%	99.1545%	99.3538%
1st Fluorescence	0.8733%	0.8755%	0.8812%	0.8449%	0.6448%
2nd Fluorescence	0.0002%	0.0008%	0.0006%	0.0006%	0.0015%
Norm	100.0000%	100.0000%	100.0000%	100.0000%	100.0000%

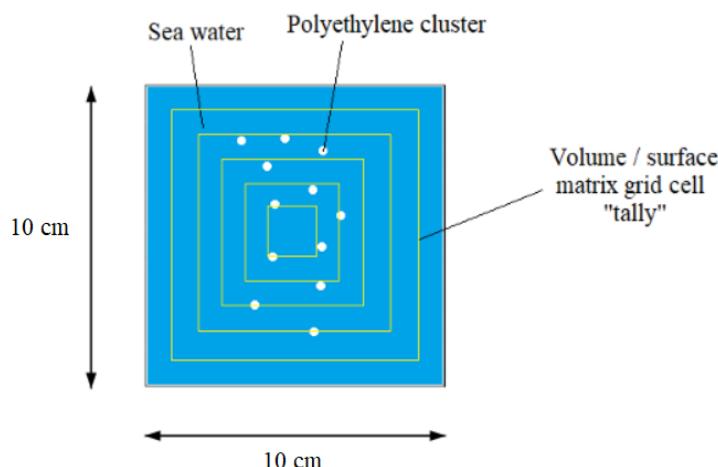
108

Table 2 Photon Creation

109

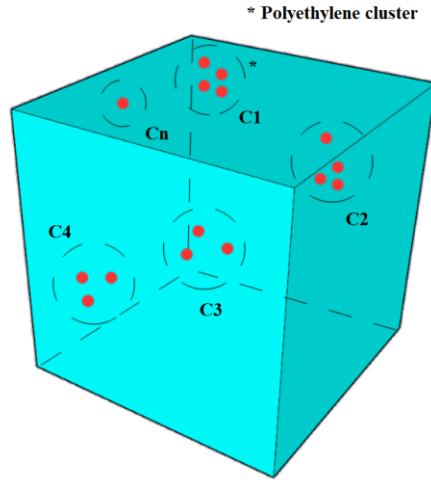
Element	Ocean Water No Contamination	Polyethylene 10 ppm	Polyethylene 100 ppm	Polyethylene 1000 ppm	Polyethylene 10000 ppm
Oxygen	76.210%	76.273%	76.387%	73.211%	52.813%
Hydrogen	7.585%	7.405%	6.998%	6.686%	4.259%
Chlorine	12.357%	12.107%	12.179%	11.938%	8.902%
Sodium	1.924%	1.912%	1.873%	1.912%	1.384%
Magnesium	0.306%	0.325%	0.316%	0.370%	0.244%
Sulfur	0.490%	0.573%	0.536%	0.448%	0.372%
Calcium	0.429%	0.512%	0.434%	0.409%	0.277%
Potassium	0.316%	0.360%	0.337%	0.384%	0.330%
Bromine	0.322%	0.294%	0.281%	0.340%	0.198%
Carbon	0.000%	0.193%	0.628%	4.257%	31.188%
Strontium	0.056%	0.046%	0.031%	0.044%	0.029%
Silicon	0.005%	0.000%	0.000%	0.000%	0.000%
Argon	0.000%	0.000%	0.000%	0.000%	0.004%

110


Table 3 Nuclide Photon Activity

111

112 The polyethylene particles have been described in 11 cluster configurations (Table 4) through a
 113 highly sophisticated volumetric cells grid (Figs. 2-3); each cluster is composed by microspheres of
 114 radius 0.1 mm and volume of 4.19E-3 mm³ per particle with a mutual distance of 1-9 cm among
 115 clusters along all the axes (Fig. 3) and evaluated on atomic fraction of C, H in the ocean water sample
 116 tank at different concentrations from 10 ppm up to 10000 ppm (Table 5-6-7-8).
 117
 118


	(10 ppm)	(100 ppm)	(1000 ppm)	(10000 ppm)
Cluster N	ppm per cluster	ppm per cluster	ppm per cluster	ppm per cluster
1	1	10	100	1000
2	0.5	5	50	500
3	2	20	200	2000
4	1.3	13	130	1300
5	1.9	19	190	1900
6	0.3	3	30	300
7	0.8	8	80	800
8	0.4	4	40	400
9	0.2	2	20	200
10	0.9	9	90	900
11	0.7	7	70	700
Norm	10	100	1000	10000

119 **Table 4 ppm contamination in Cluster Configuration**
 120

121

122 **Figure 2 Geometrical Model x-z section**
 123
 124

125

126

Figure 3 Volumetric Cluster Cells 3D

127

128

129

130

	(10 ppm)	(10 ppm)	Particles N	Volume (mm ³)
Cluster N	ppm per cluster	% ppm cluster	per cluster	per cluster
1	1	10%	262	1
2	0.5	5%	131	1
3	2	20%	525	2
4	1.3	13%	341	1
5	1.9	19%	498	2
6	0.3	3%	79	0.3
7	0.8	8%	210	1
8	0.4	4%	105	0.4
9	0.2	2%	52	0.2
10	0.9	9%	236	1
11	0.7	7%	184	1
Norm	10	100.00%	2623	11

131

Table 5 10 ppm - Particles and Volume

132

133

134

135

136

137

138

139

140

	(100 ppm)	(100 ppm)	Particles N	Volume (mm ³)
Cluster N	<i>ppm per cluster</i>	<i>% ppm cluster</i>	<i>per cluster</i>	<i>per cluster</i>
1	10	10%	2623	11
2	5	5%	1311	5
3	20	20%	5245	22
4	13	13%	3409	14
5	19	19%	4983	21
6	3	3%	787	3
7	8	8%	2098	9
8	4	4%	1049	4
9	2	2%	525	2
10	9	9%	2360	10
11	7	7%	1836	8
Norm	100	100.00%	26227	110

141

Table 6 100 ppm - Particles and Volume

142

143

144

145

146

	(1000 ppm)	(1000 ppm)	Particles N	Volume (mm ³)
Cluster N	<i>ppm per cluster</i>	<i>% ppm cluster</i>	<i>per cluster</i>	<i>per cluster</i>
1	100	10%	26227	110
2	50	5%	13113	55
3	200	20%	52454	220
4	130	13%	34095	143
5	190	19%	49831	209
6	30	3%	7868	33
7	80	8%	20981	88
8	40	4%	10491	44
9	20	2%	5245	22
10	90	9%	23604	99
11	70	7%	18359	77
Norm	1000	100.00%	262268	1099

147

Table 7 1000 ppm - Particles and Volume

148

149

150

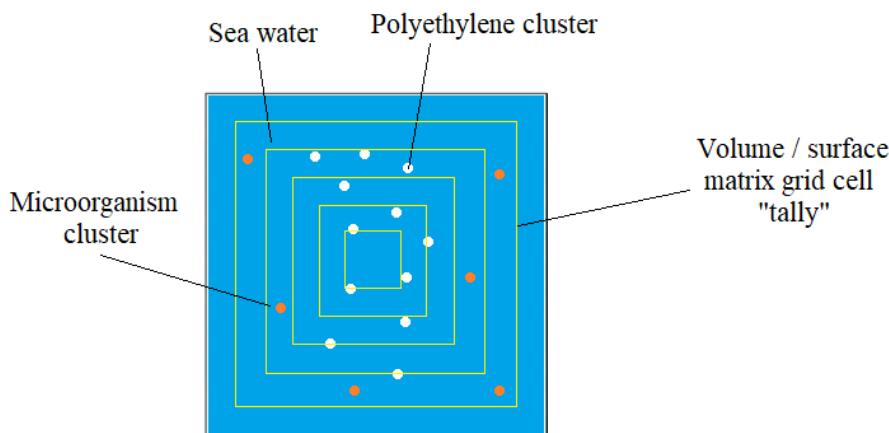
151

152

153

	(10000 ppm)	(10000 ppm)	Particles N	Volume (mm ³)
Cluster N	ppm per cluster	% ppm cluster	per cluster	per cluster
1	1000	10%	262268	1099
2	500	5%	131134	549
3	2000	20%	524535	2198
4	1300	13%	340948	1429
5	1900	19%	498308	2088
6	300	3%	78680	330
7	800	8%	209814	879
8	400	4%	104907	440
9	200	2%	52454	220
10	900	9%	236041	989
11	700	7%	183587	769
Norm	10000	100.00%	2622676	10989

154


Table 8 - 10000 ppm - Particles and Volume

155

156 It must be underlined that it has been taken into consideration also a benchmark model in order to
 157 evaluate a potential enrichment in microorganism, bacteria and viruses which can be alter mainly
 158 the carbonium and in particularly the phosphorus PO₄ group analysis outcome; these all are
 159 analyzed on multiple "tallies" (control check volumes/surfaces) in order to evaluate energy
 160 distributions and particles mean free path (yellow squares, Fig 4). In order to do that, in the
 161 benchmark, it has been kept constant a 100-ppm polyethylene content in the ocean water sample in
 162 cluster configuration, and different enriched mixture scenarios at 0.7 ppm, 7 ppm, 70 ppm, 700 ppm
 163 of potential living/no living matter and microorganisms have been studied adjusting their own
 164 contributions in the final solution in terms of atomic C, H, O, P content and the result in terms of
 165 particle spectra and fluxes.

166

167

168

169

Figure 4 Ocean Water Polyethylene + Microorganisms, x-z section model

170

171 MCNPX has been performed chronologically in different cluster stages: Stage 1, with 0 ppm
 172 contamination to investigate the physics involved in the basic case then Stage 2, evaluating an
 173 escalating contamination grade as maximum stress test: 10 ppm, 100 ppm, 1000 ppm, 10000 ppm
 174 (Table 9-10), just as a benchmark to determine the sub-atomic particles stopping power and
 175 shielding effects giving the photon fluxes and energy spectra thanks to all the experimental cross
 176 sections involved in this cases (Figs. 5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24) .
 177 MCNPX code by various variance reduction techniques fulfils 10 statistical tests [30] with an average
 178 relative error of 2%.

179

180

	C	H
ppm	(mg/l)	(mg/l)
10	8.57142857	1.42857143
100	85.7142857	14.2857143
1000	857.142857	142.857143
10000	8571.42857	1428.57143

181

Table 9 Polyethylene ppm

182

183

Element	Origin Element (%)	Element (ppm)	10 ppm Polyethylene (ppm)	100 ppm Polyethylene (ppm)	1000 ppm Polyethylene (ppm)	10000 ppm Polyethylene (ppm)
Oxygen	85.70	8.57E+05	8.570E+05	8.569E+05	8.561E+05	8.484E+05
Hydrogen	10.80	1.08E+05	1.080E+05	1.080E+05	1.081E+05	1.094E+05
Chlorine	1.90	19000	1.900E+04	1.900E+04	1.898E+04	1.881E+04
Sodium	1.05	10500	1.050E+04	1.050E+04	1.049E+04	1.040E+04
Magnesium	0.14	1350	1.350E+03	1.350E+03	1.349E+03	1.337E+03
Sulfur	0.09	885	8.850E+02	8.849E+02	8.841E+02	8.762E+02
Calcium	0.04	400	4.000E+02	4.000E+02	3.996E+02	3.960E+02
Potassium	0.04	380	3.800E+02	3.800E+02	3.796E+02	3.762E+02
Bromine	0.01	65	6.500E+01	6.499E+01	6.494E+01	6.435E+01
Carbon	0.00	28	3.657E+01	1.137E+02	8.851E+02	8.599E+03

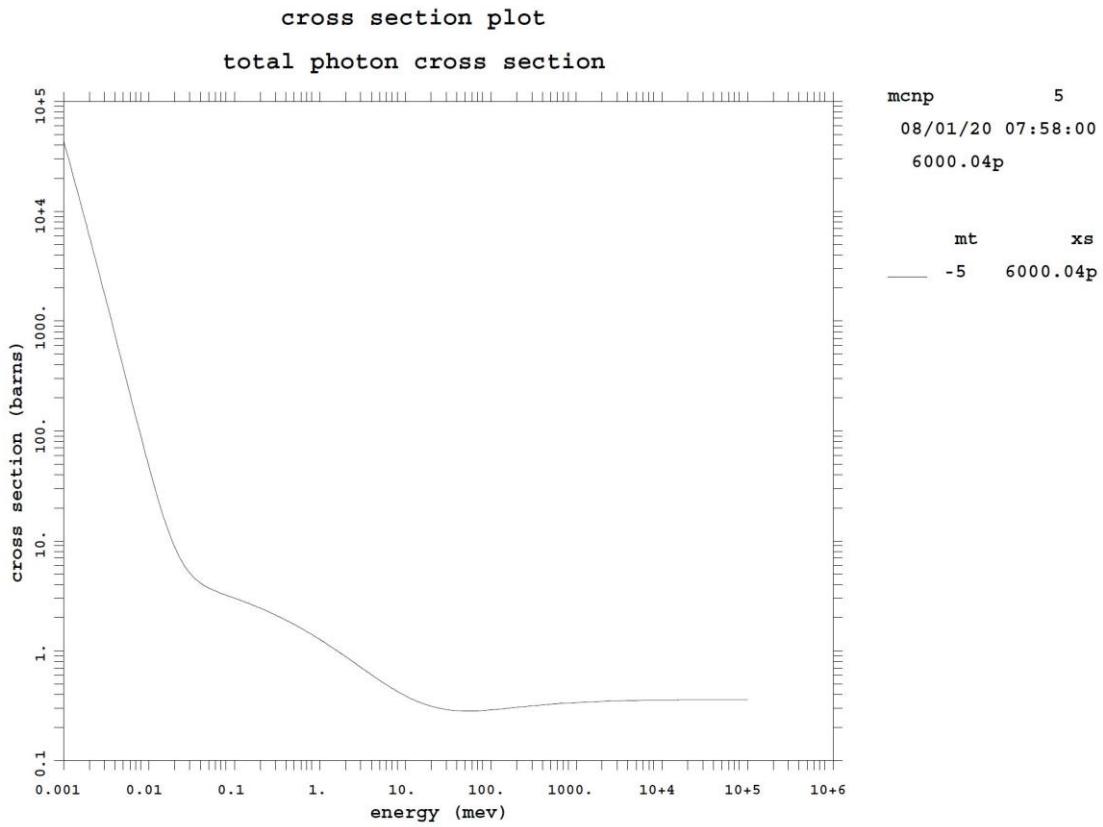
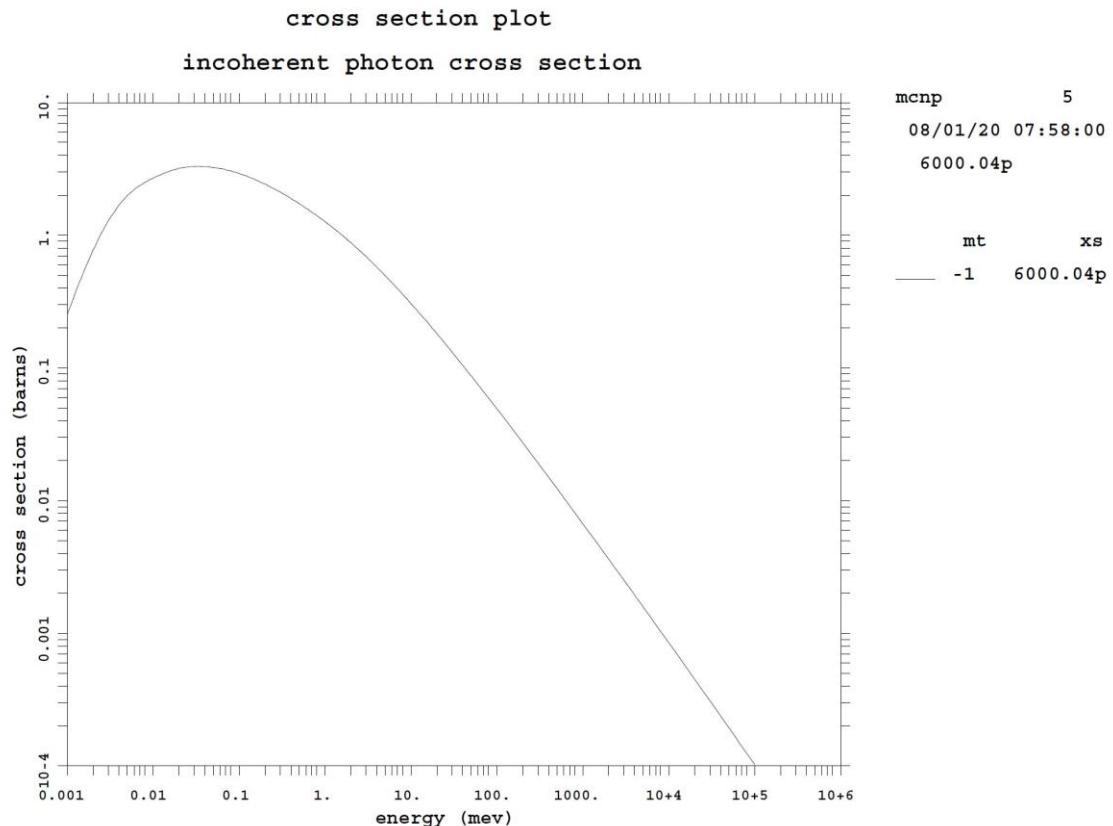

184

Table 10 Ocean Water Vs Polyethylene ppm composition

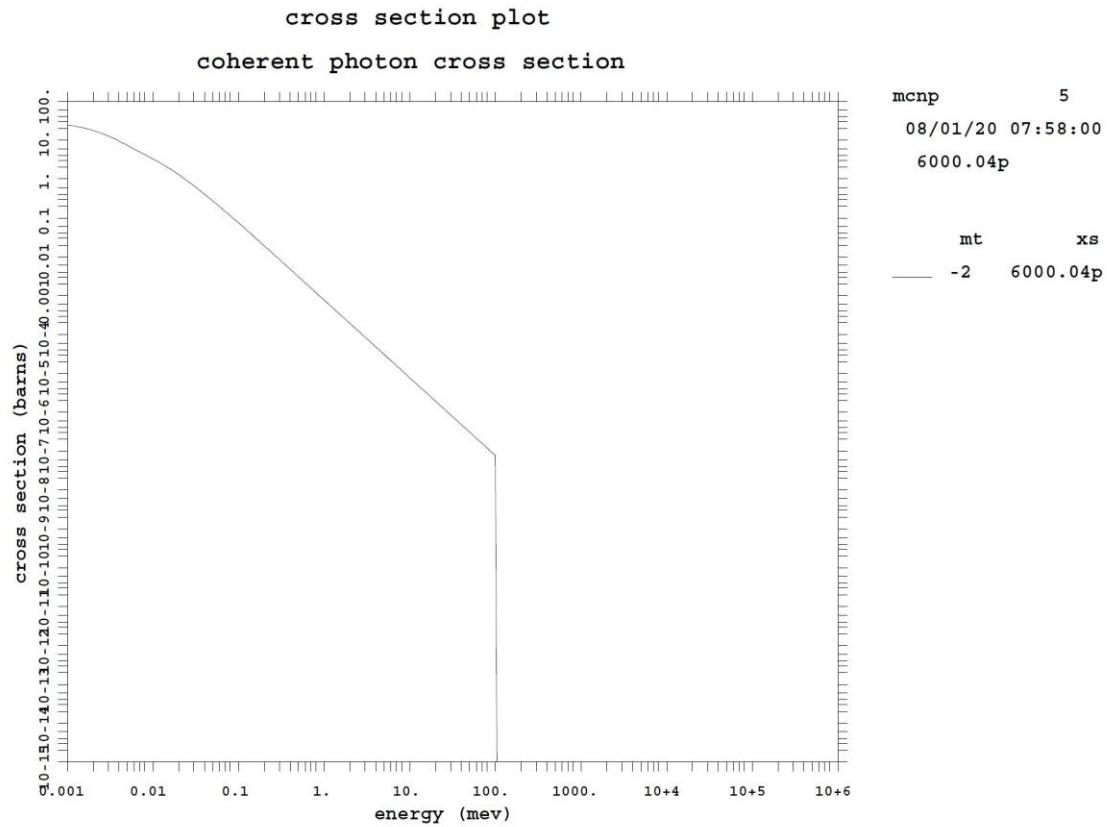
185

186


187

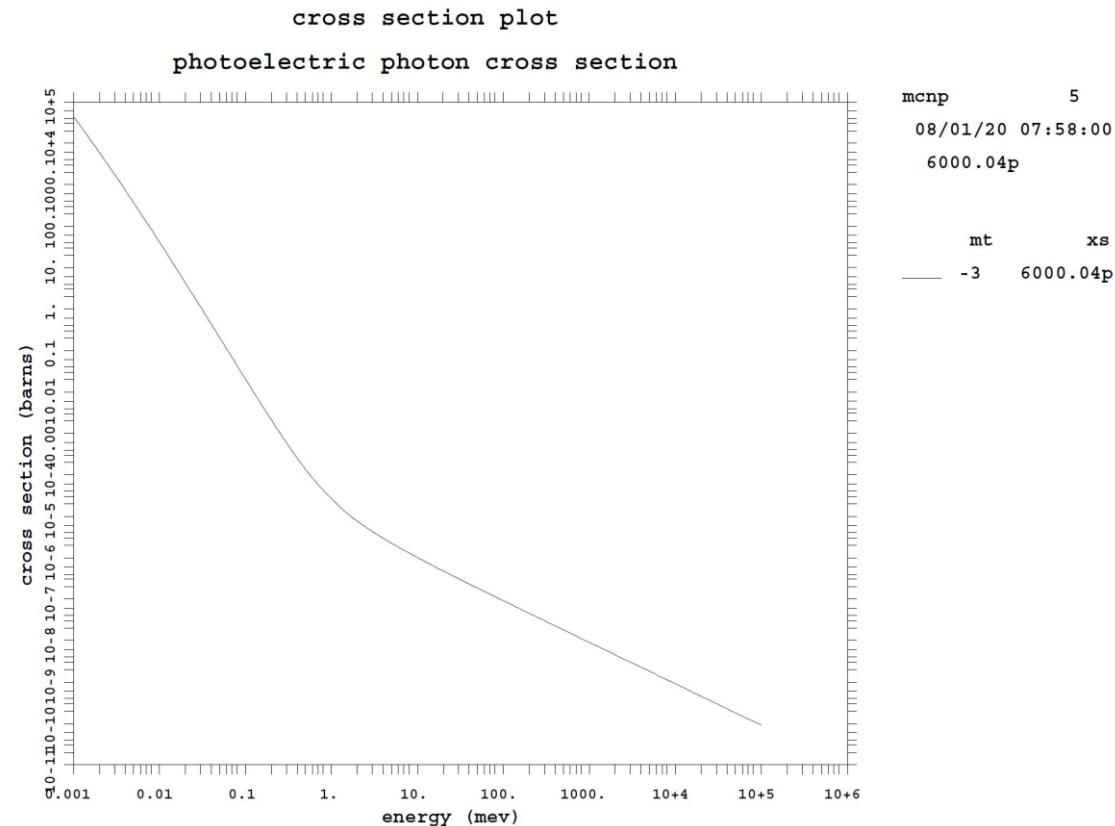
188

189


Figure 5 Carbon total photon cross section as a function of energy

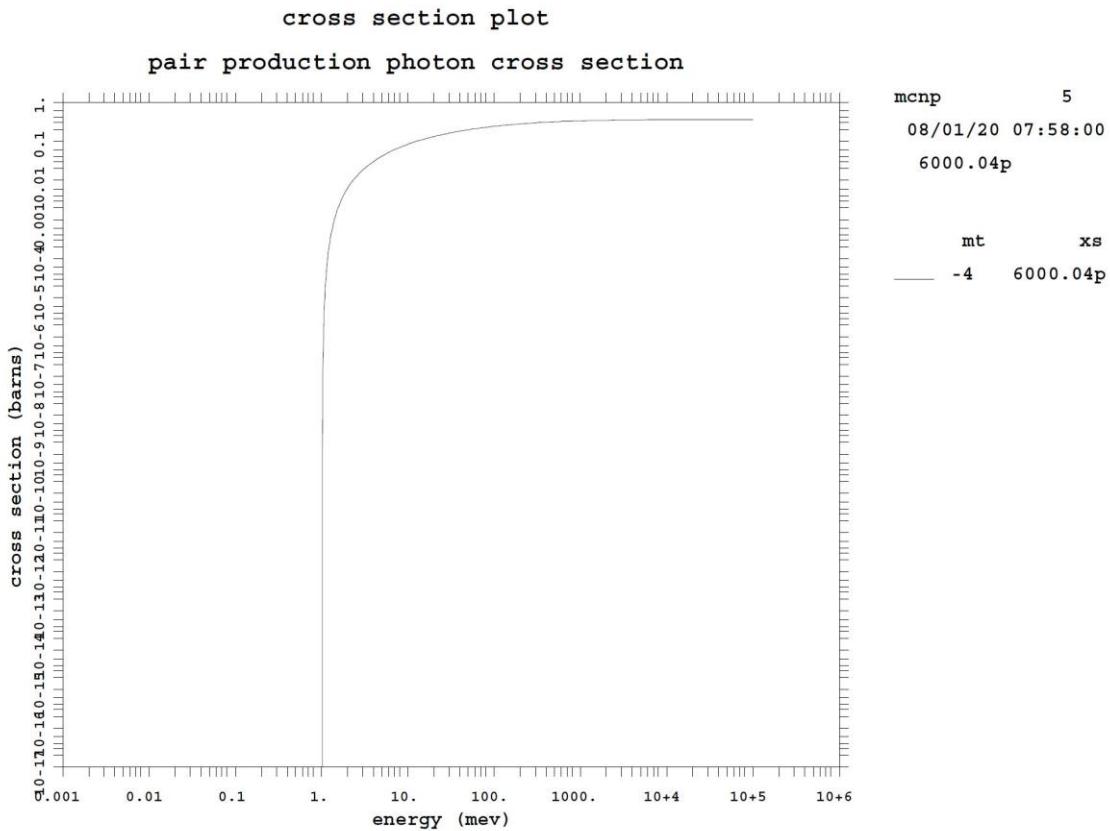
190

191


Figure 6 Carbon incoherent photon cross section as a function of energy

192

193


Figure 7 Carbon coherent photon cross section as a function of energy

194

195

Figure 8 Carbon photoelectric photon cross section as a function of energy

196

197

Figure 9 Carbon pair production photon cross section as a function of energy

198

199

Figure 10 Oxygen total photon cross section as a function of energy

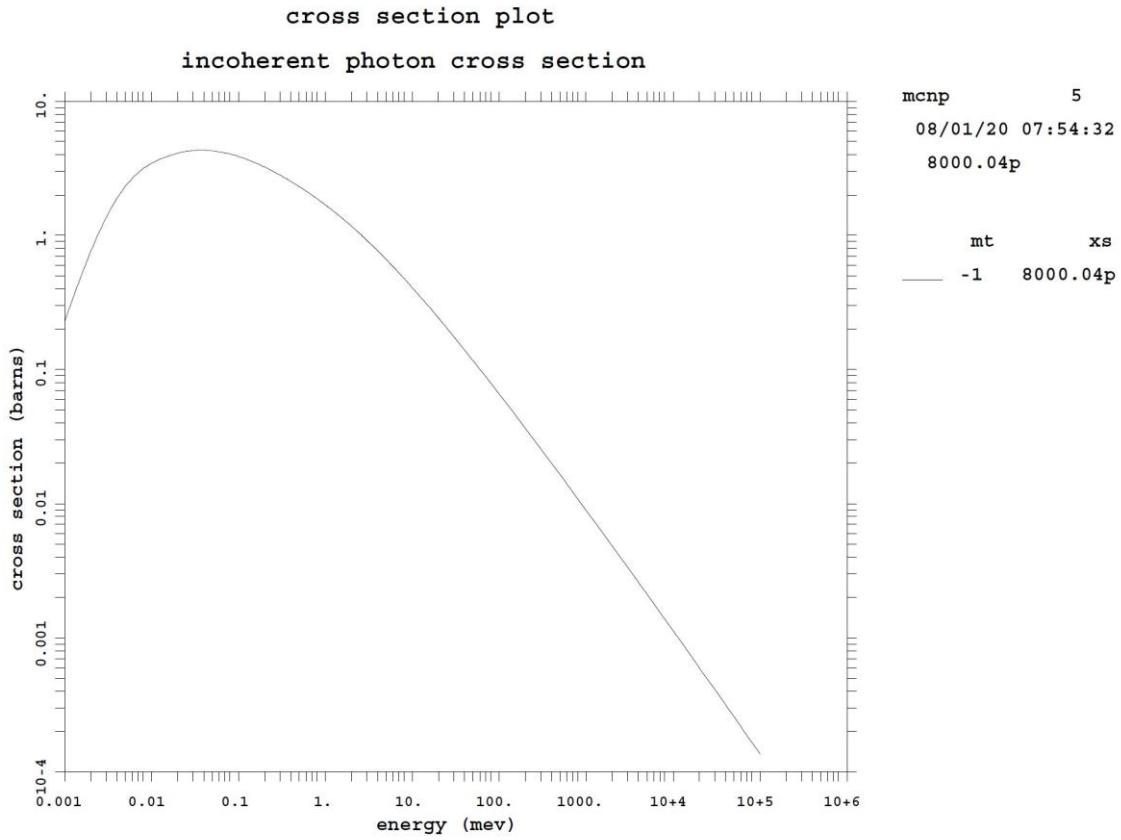
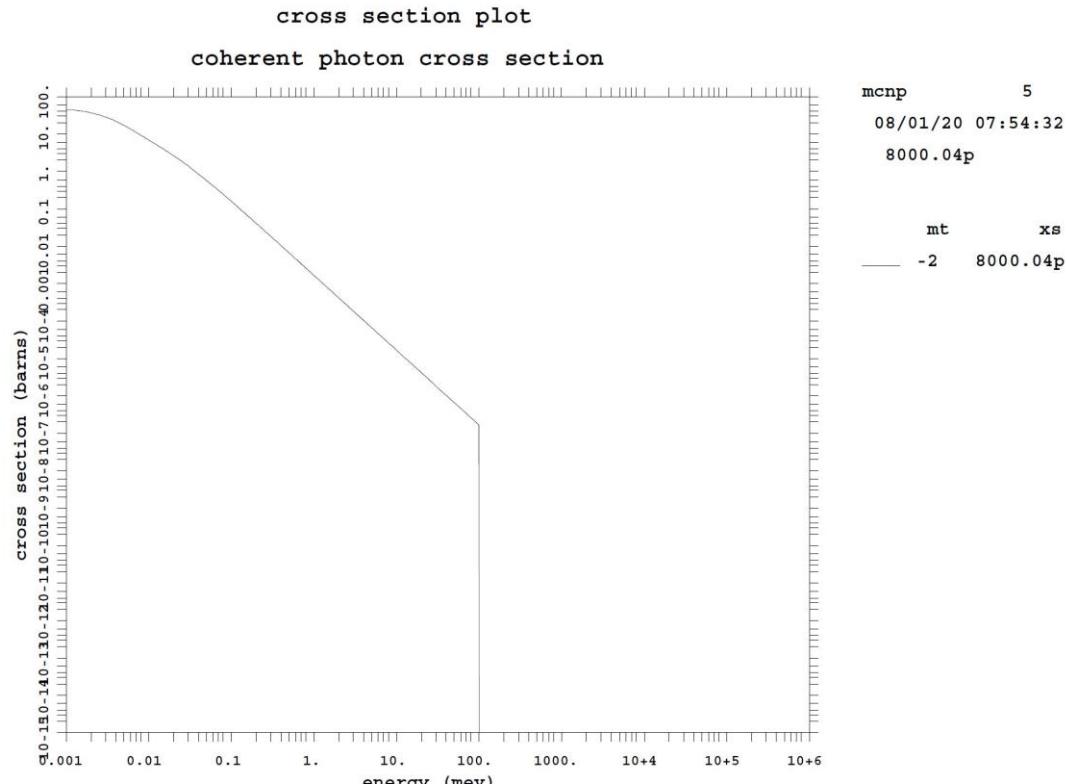
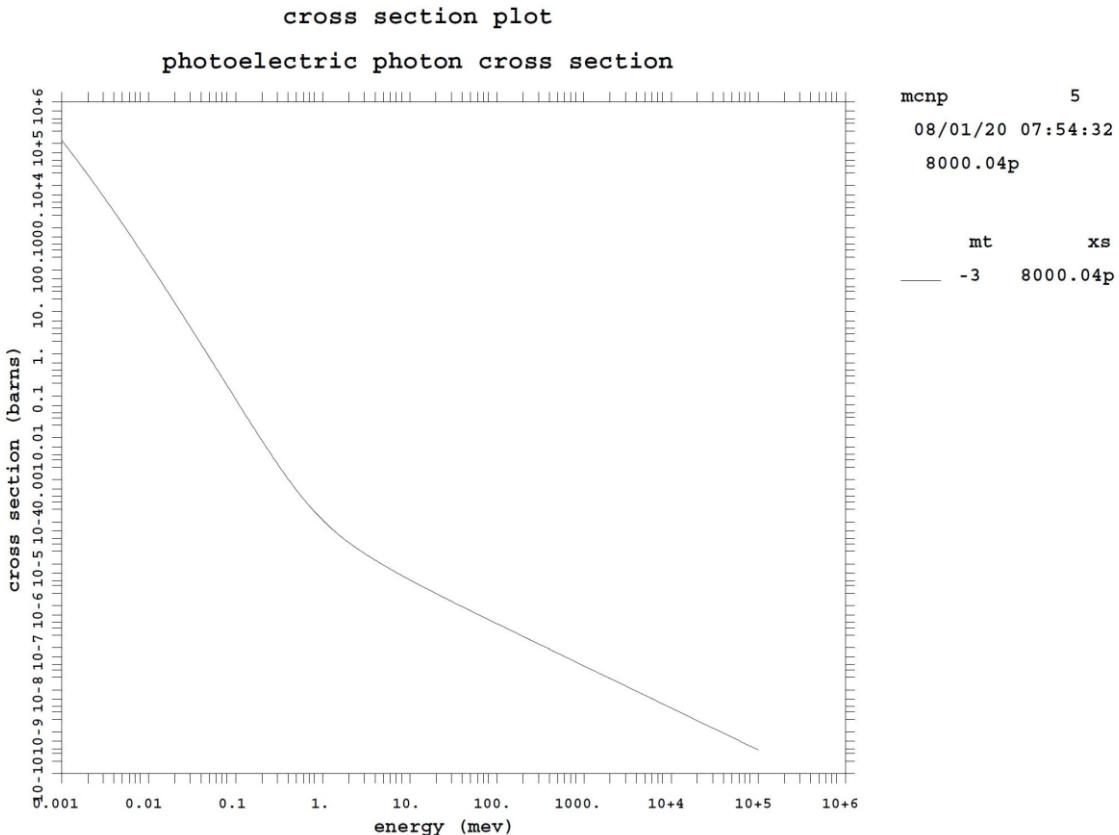
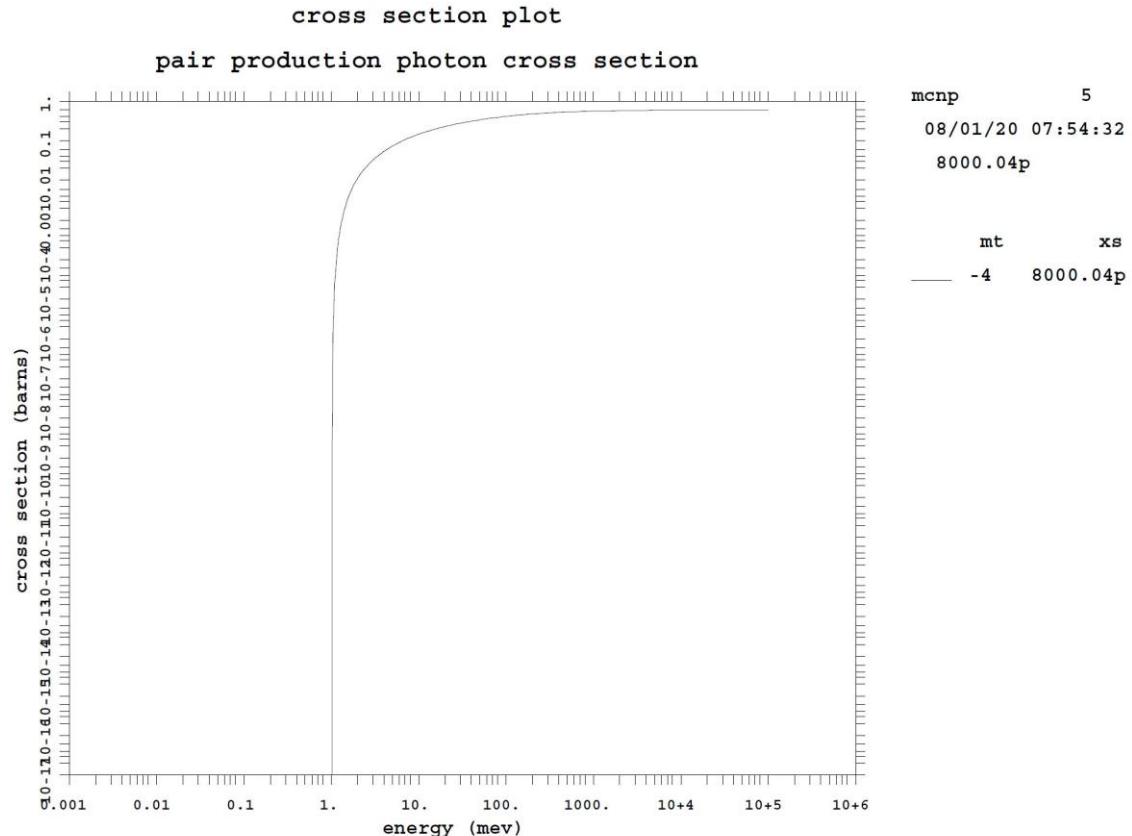


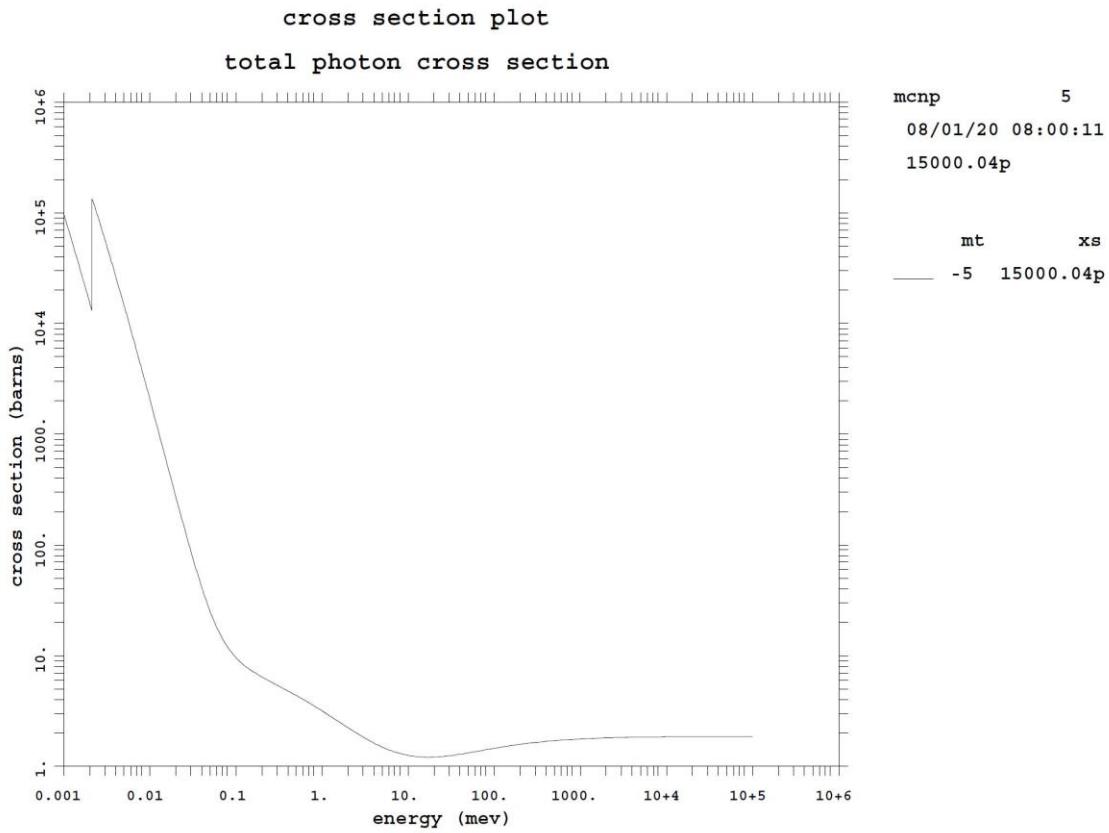
Figure 11 Oxygen incoherent photon cross section as a function of energy


Figure 12 Oxygen coherent photon cross section as a function of energy

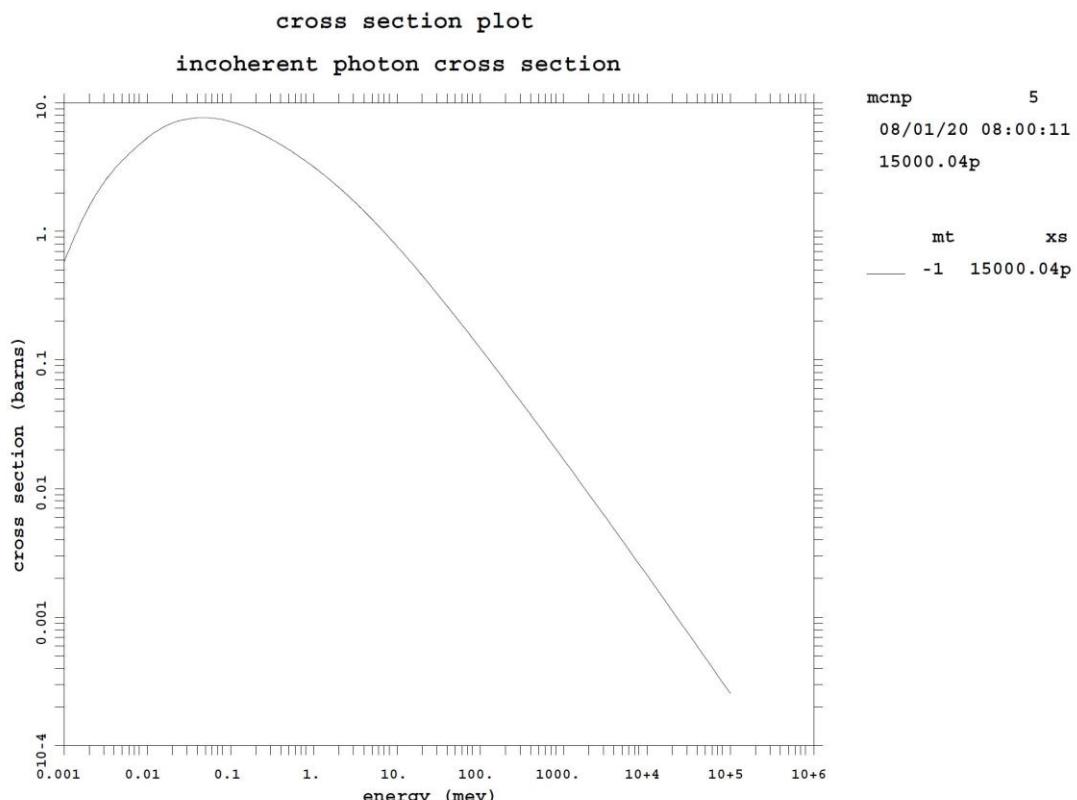
205

206


Figure 13 Oxygen photoelectric photon cross section as a function of energy

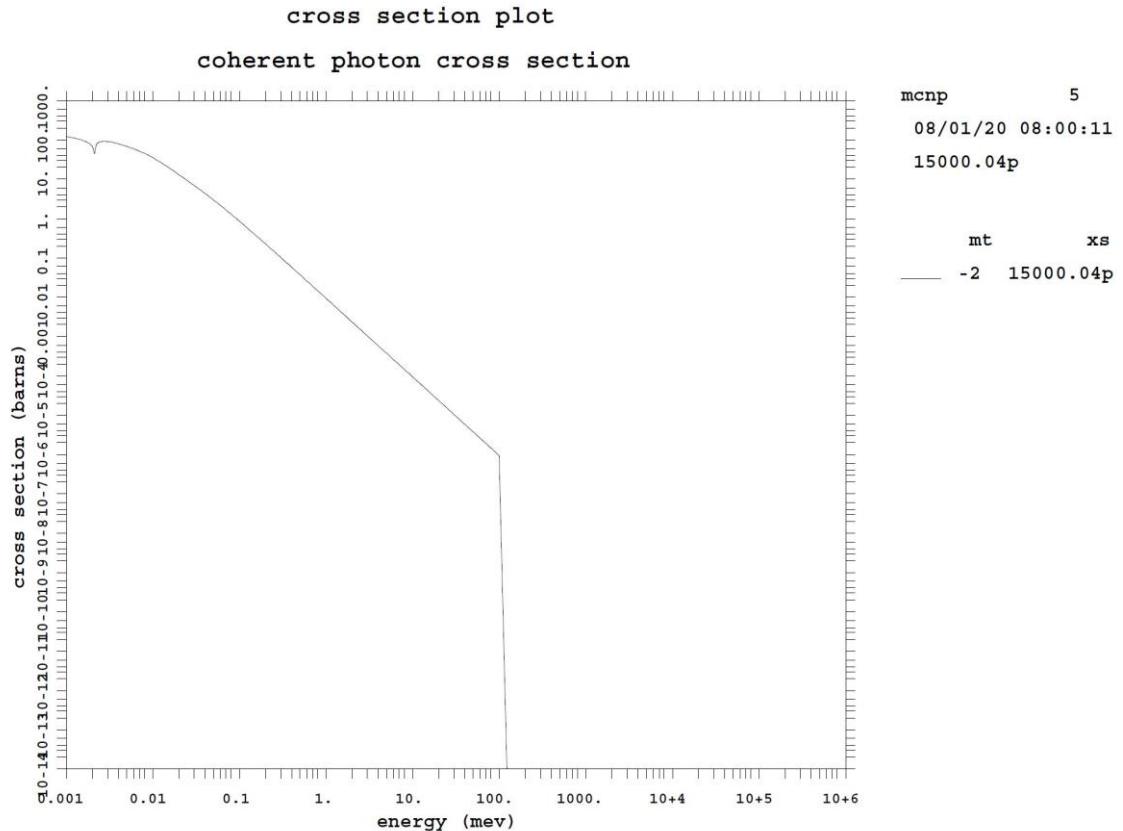
207

208


Figure 14 Oxygen pair production photon cross section as a function of energy

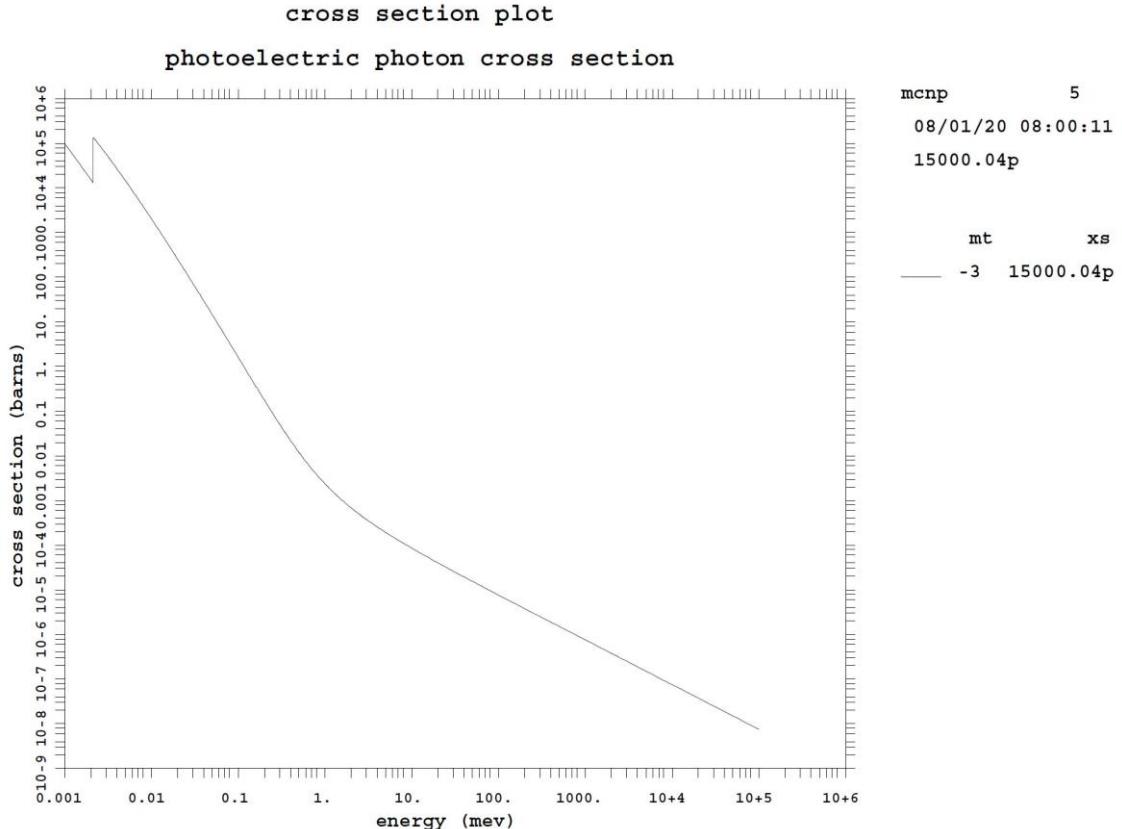
209

210


Figure 15 Phosphorus total photon cross section as a function of energy

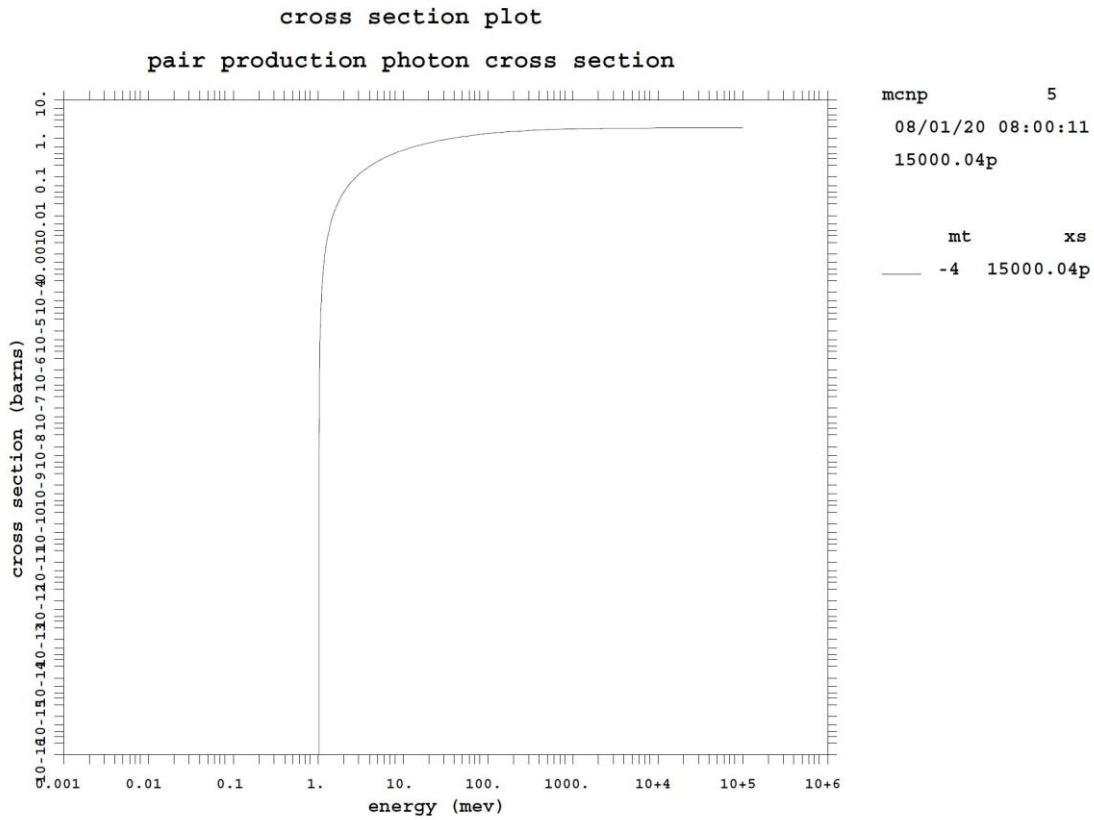
211

212


Figure 16 Phosphorus incoherent photon cross section as a function of energy

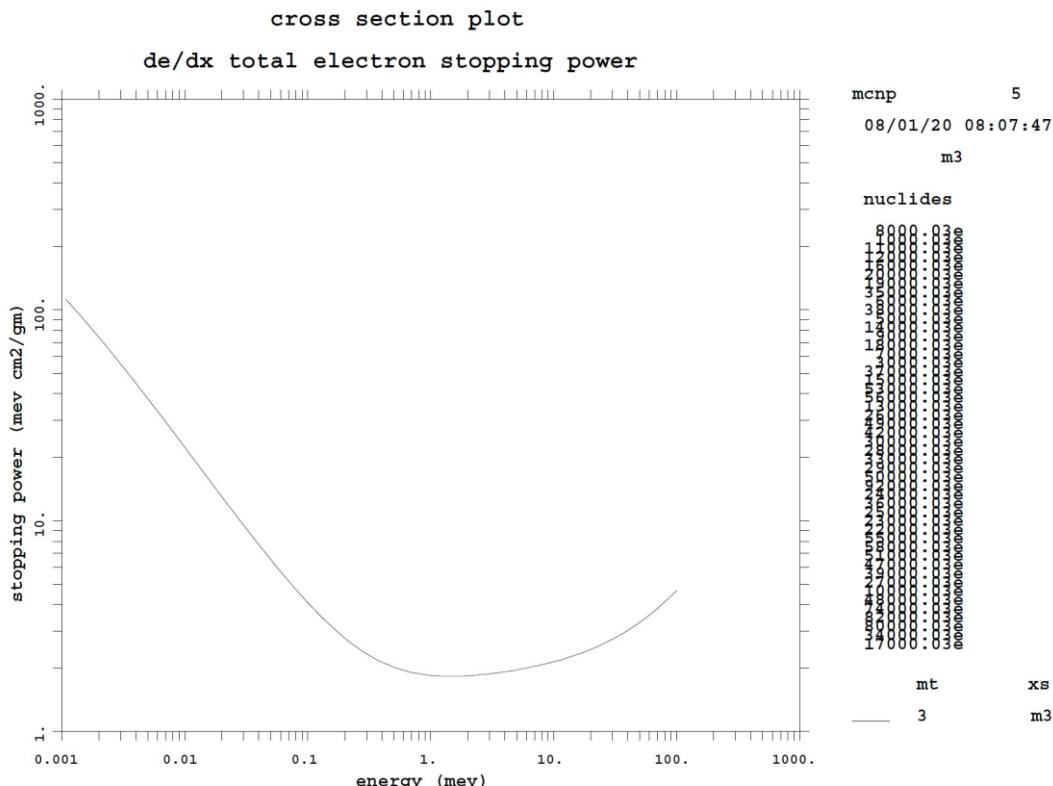
213

214


Figure 17 Phosphorus coherent photon cross section as a function of energy

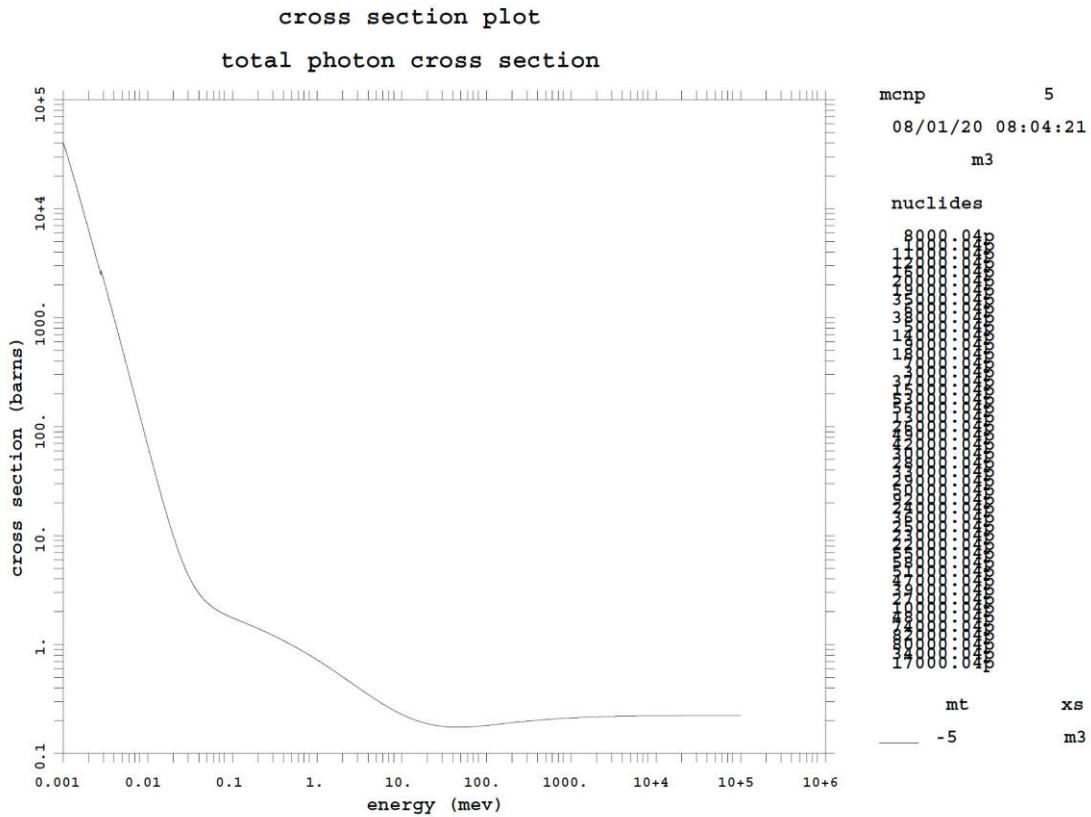
215

216


Figure 18 Phosphorus photoelectric photon cross section as a function of energy

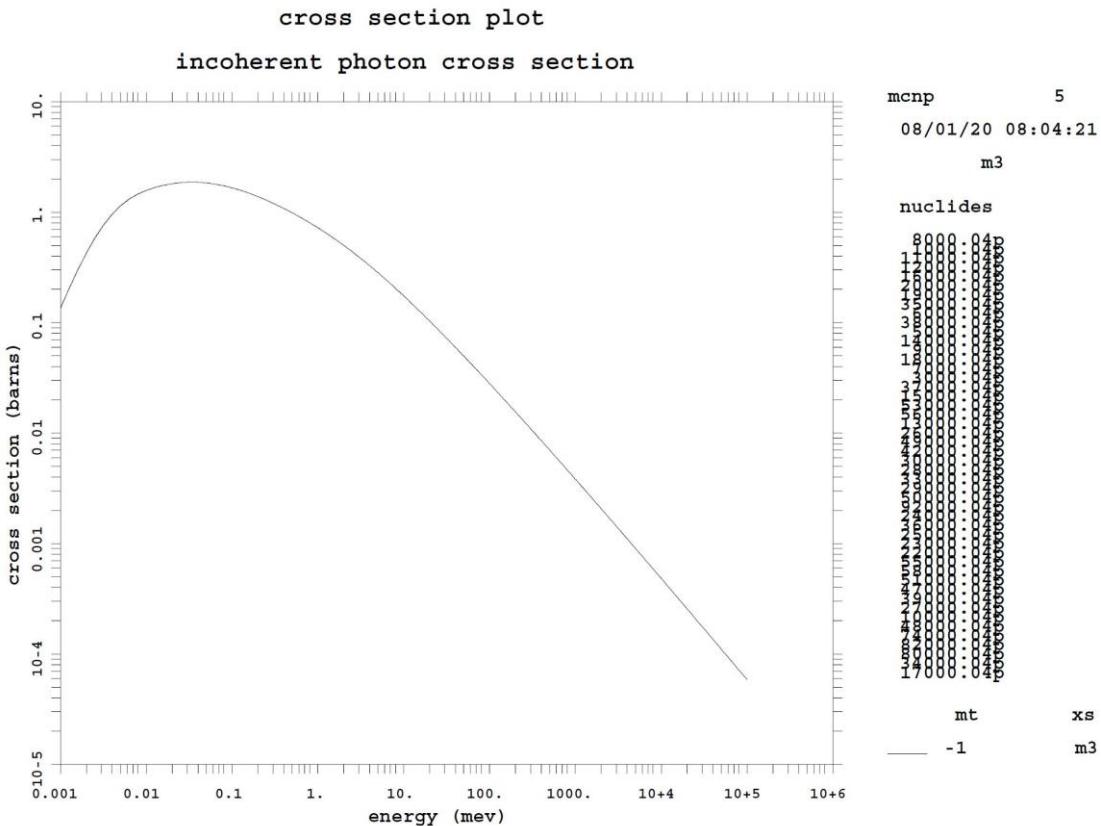
217

218
219


Figure 19 Phosphorus pair production photon cross section as a function of energy

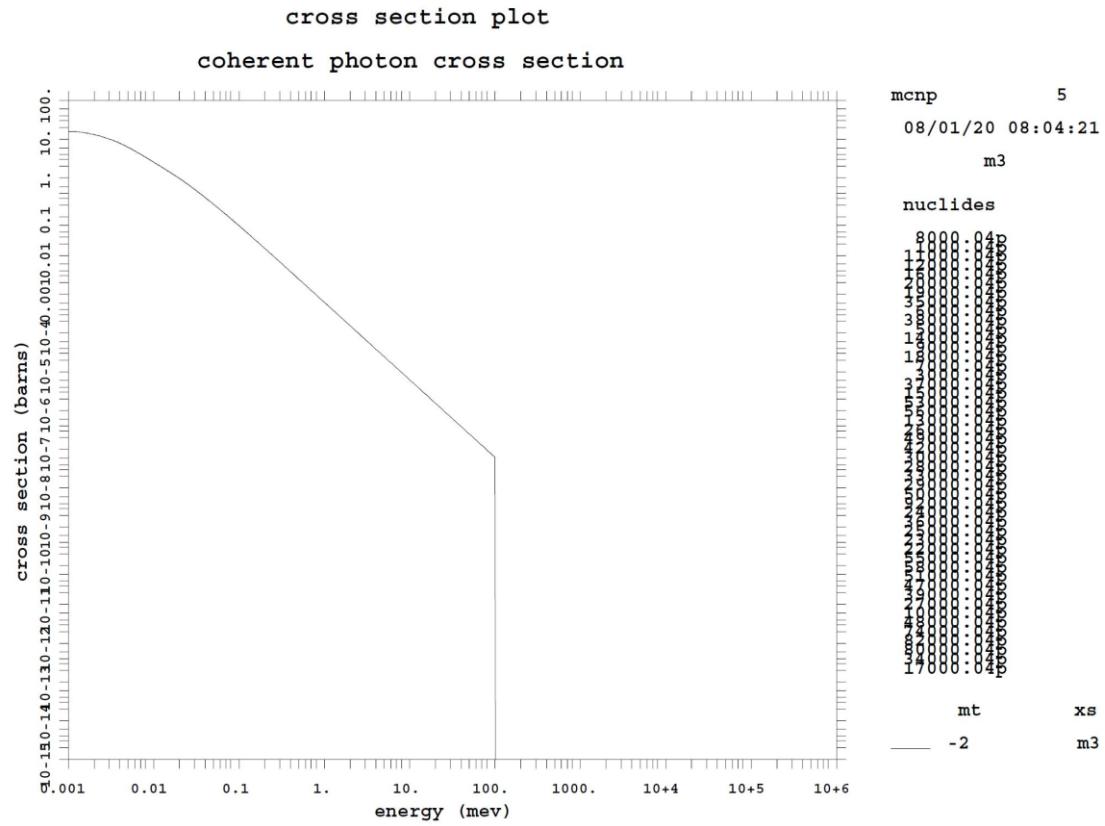
220

221


Figure 20 Ocean Water total electron stopping power as a function of energy

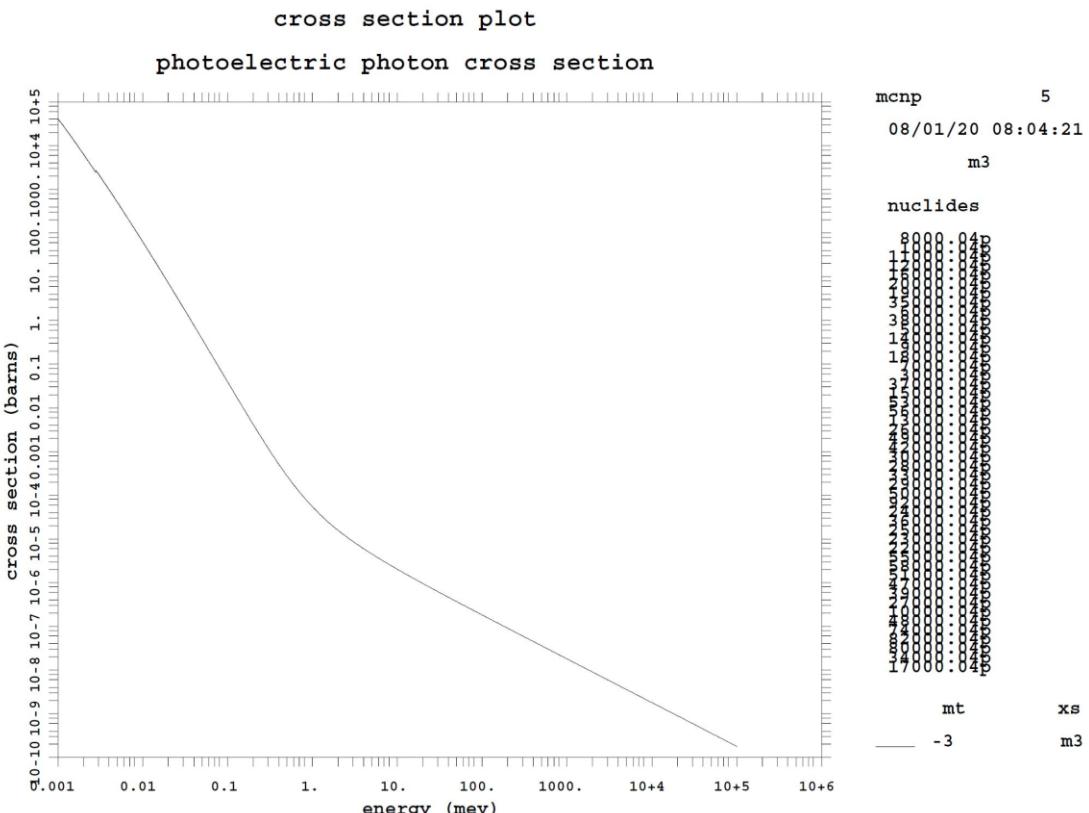
222

223


Figure 21 Ocean Water total photon cross section as a function of energy

224

225


Figure 22 Ocean Water incoherent photon cross section as a function of energy

226

227

Figure 23 Ocean Water coherent photon cross section as a function of energy

228

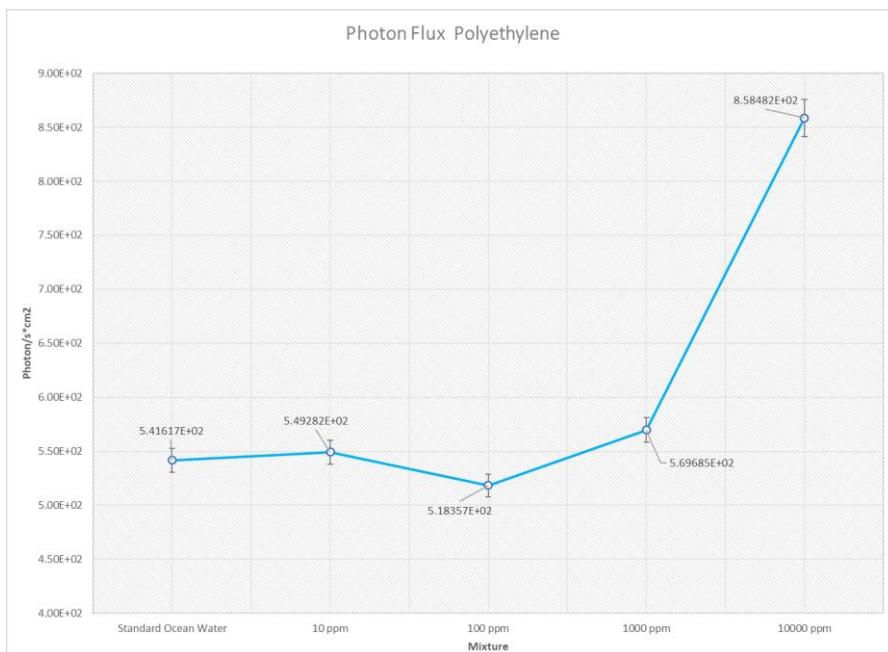
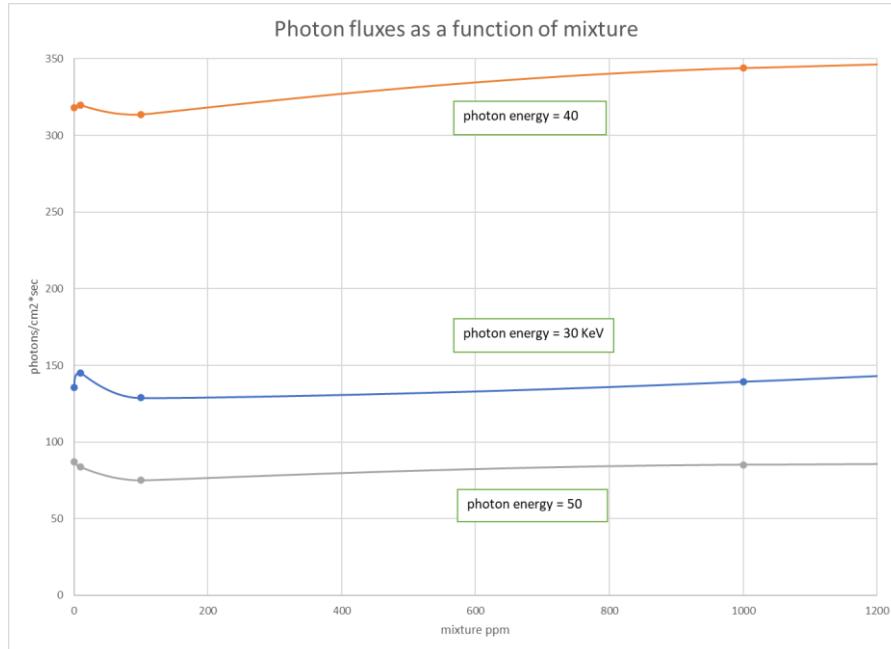

229

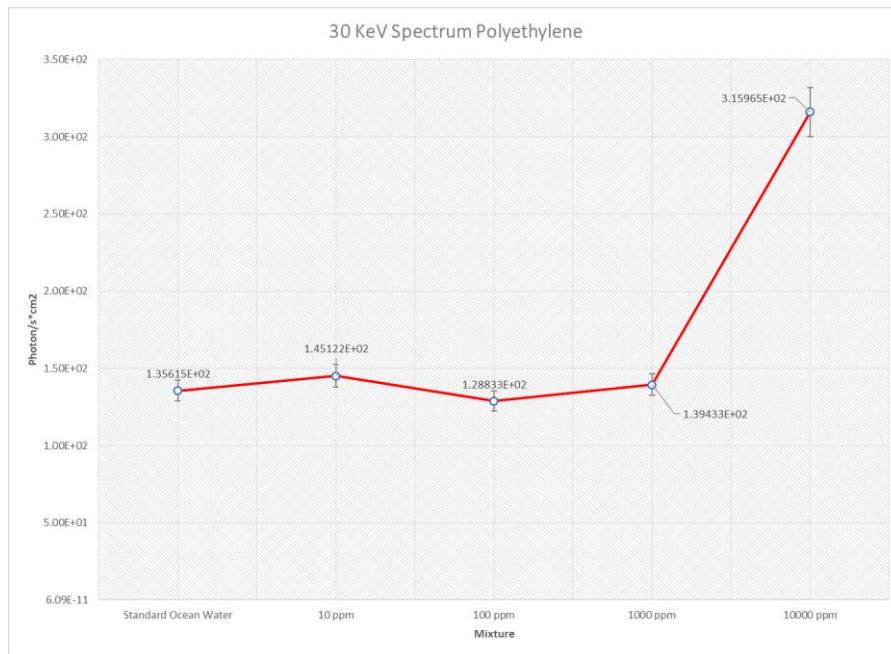
Figure 24 Ocean Water photoelectric photon cross section as a function of energy


230 **3. Results**

231 In this section there will be a discussion on the results of the analysis showing the photon fluxes and
 232 energy spectra of the Monte Carlo simulations in the presence of polyethylene contaminations and
 233 without it at the detector chamber, located at $x= 10$ cm on the top of the sample tank on the x-axis.
 234 The study analysed the photon fluxes and their contributions on three discrete energy bins: 30 keV,
 235 40 keV, 50 keV at different polyethylene grades with an energy spectrum peak located at 40 keV. The
 236 reason of 40 keV peak can be explained thank to cross section considerations and energy spectrum
 237 degradation. As shown in Fig. 21, the total photon cross section value (in barns) decreases as a
 238 function of the energy from 8 barns at 40 keV to 3 barns at 50 keV. Moreover, the detection surface is
 239 located at $x=10$ cm after the primary injection beam at $x=0$ cm, leading to detect a particle flux and
 240 spectrum in a different energy configuration due to scattering, fluorescence, absorption and
 241 photoelectric effect which are responsible to: leave an intact high energy photon band after $x=5$ cm
 242 and made negligible the energy contribution for the low band spectrum $E<20$ keV. Between the
 243 interval $5< x < 10$ cm, the photon flux, present in a high energy band configuration, interacts due to
 244 scattering, fluorescence, absorption and photoelectric effect with the non-homogeneous media
 245 causing a degradation of the 50 keV energy bin leading to an average value of 40 keV.
 246 As shown in Figs. 25-26 the total photon flux and, each flux evaluated on 30 keV, 40 keV, 50 keV,
 247 increase between 0-10 ppm of 1.4%, due to electron bremsstrahlung and photoelectric-fluorescence on
 248 polyethylene particles. However it has to be underlined that, in the beginning of contamination
 249 process, the main atomic element present in the water is oxygen with a weight percentage of
 250 85.70% and its photon cross sections (Figs. 10-11-12-13-14), show a higher value (in barn unities)
 251 compared to the carbon ones (Figs. 5-6-7-8-9). These cross sections considerations are the main
 252 reason to understand the decreasing of 5.6% between 10-100 ppm where the amount of oxygen is
 253 reducing, and the amount of carbon is increasing but with a less effective cross section value.
 254 However, after 100 ppm due to the electron stopping power and the bremsstrahlung/photoelectric
 255 process on the mixture, the photon flux trend starts to increase of 10% up to 1000 ppm and of 50.7%
 256 from 1000-10000 ppm.

257 The graphs below show the fluxes and photon energy spectra (Figs. 25-26-27-28-29) and the different
 258 behaviours as a function of polyethylene contamination on 3 discrete energy bins:

Figure 25 Photon Flux - Ocean Water Vs Contamination

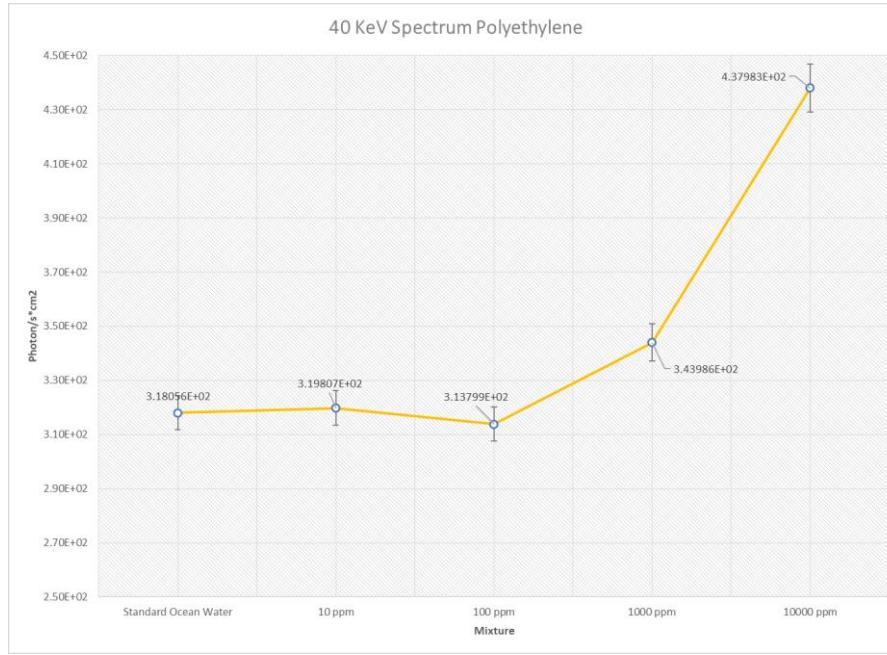

261

262

Figure 26 - Photon Fluxes - Spectrum Vs Contamination

263

264



265

266

Figure 27 - 30 keV - Ocean Water Vs Contamination

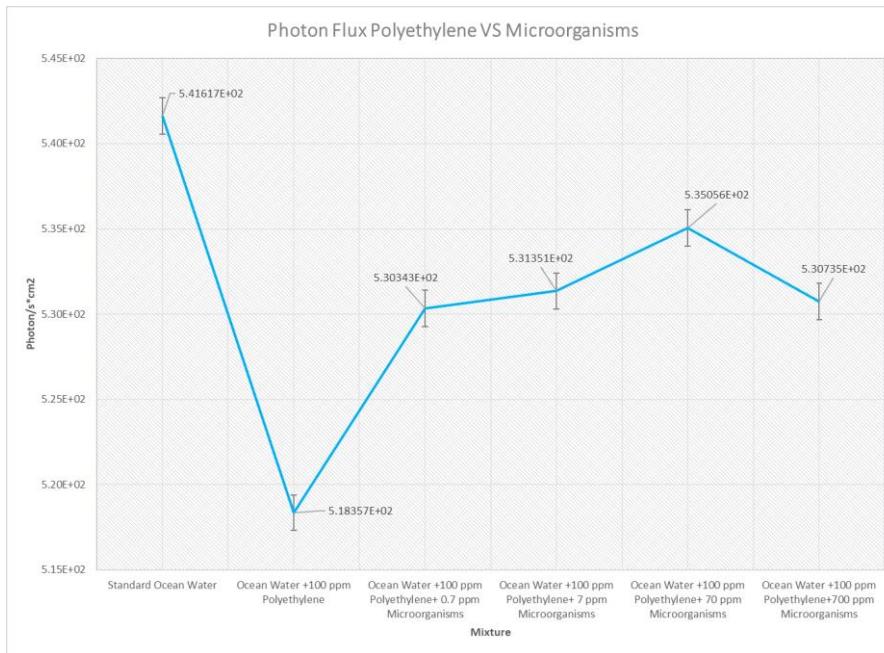
267

268

269

270

271

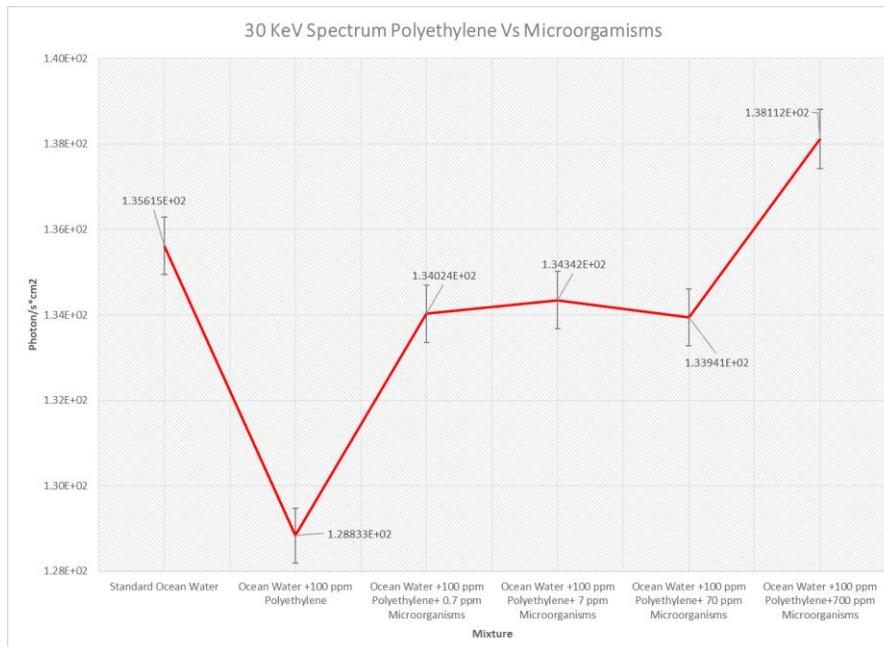

272

273

274

275 As mentioned in chapter 2, the graphs below show the photon fluxes and energy spectra (Figs.
 276 30-31-32-33) and the different behaviours of fixed contamination test case of 100 ppm polyethylene,
 277 in cluster configuration, and mixed as a function of microorganisms group PO₄, evaluated on 3
 278 discrete energy bins: 30 keV, 40 keV, 50 keV.

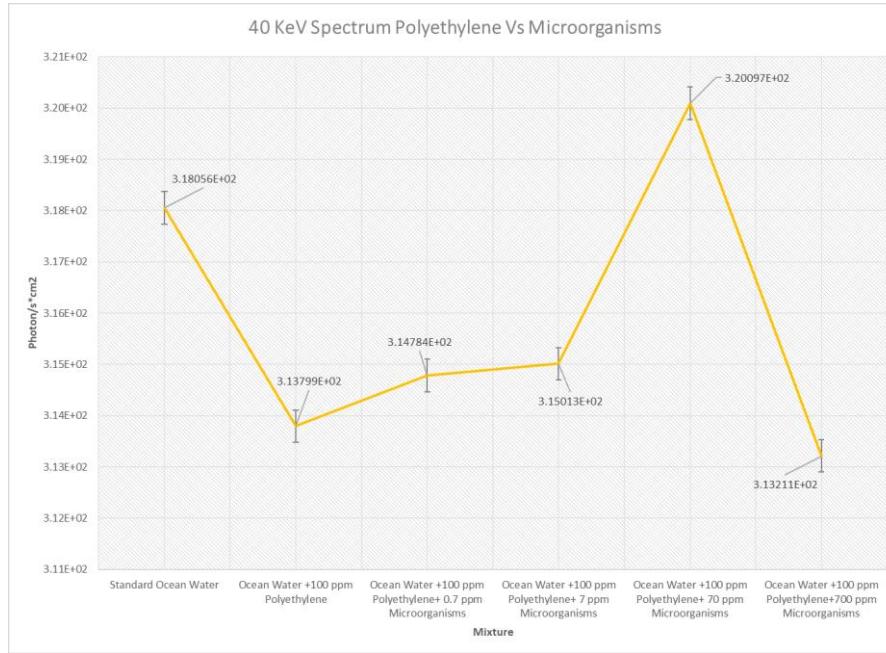
279


280

281

Figure 30 Photon Flux - Polyethylene Vs Microorganisms

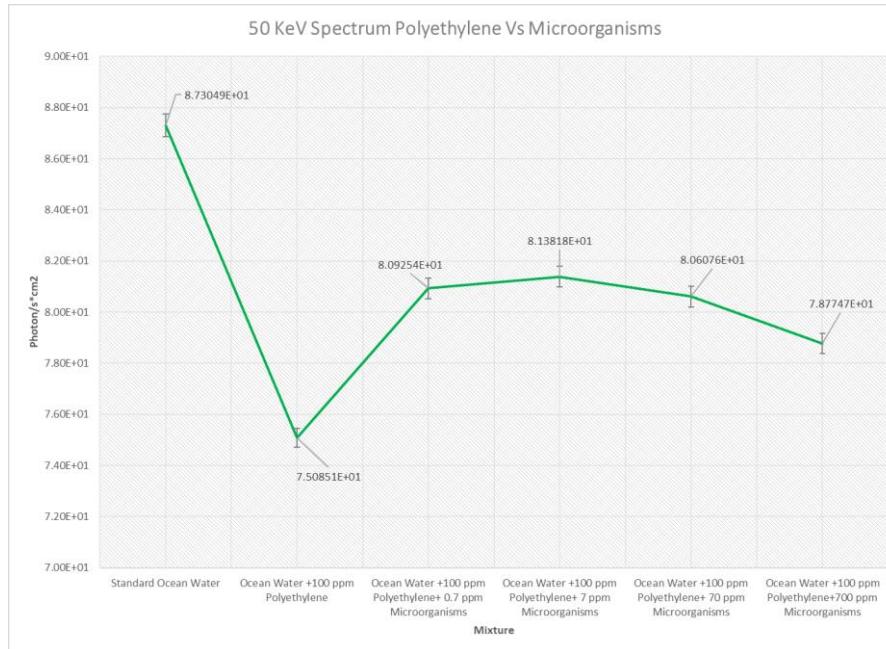
282


283

284

285

Figure 31 - 30 KeV - Polyethylene Vs Microorganisms



286

287

Figure 32 - 40 KeV - Polyethylene Vs Microorganisms

288

289

290

Figure 33 - 50 KeV - Polyethylene Vs Microorganisms

291

292

293

294

295

296 4. Discussion

297 The Photon fluxes and spectra can discriminate the amount of polyethylene contamination thanks to
298 its own “particle signature” in terms of photon flux at the detector point combined with the
299 spectrum analysis, as reported for 30 keV, 40 keV, 50 keV.

300 As shown in Figs. 27-28-29 the photon flux associated with the sample of ocean water at different
301 concentrations of polyethylene shows a trend in term of photon/s*cm² and differences from an
302 energy spectrum point of view to evaluate in their own contributions counting the number of
303 photons on each energy line:

- 304 1. the 10-ppm polyethylene case can be discriminated thanks to the photon flux counts at the
305 detector evaluated on the 30 keV, 40 keV spectra compared to the “standard ocean water”
- 306 2. the 100-ppm polyethylene case can be discriminated thanks to the photon flux counts at the
307 detector and the 30 keV, 40 keV, 50 keV spectra compared to the “10 ppm”
- 308 3. the 1000-ppm polyethylene case can be discriminated thanks to the photon flux counts at the
309 detector and the 30 keV, 40 keV, 50 keV spectra compared to the “100 ppm”
- 310 4. the 10000-ppm polyethylene case can be discriminated thanks to the photon flux counts at
311 the detector and the 30 keV, 40 keV, 50 keV spectra compared to the “1000 ppm”

312 As shown in Fig. 30 the photon flux, starting from the ocean water plus 100 ppm polyethylene
313 contamination, is increasing as a function of the ppm amount of microorganisms added in the water
314 sample tank. This behavior is due to an increase, from 0.7 ppm to 700 ppm, of P (present in the PO₄
315 group in the sample) and to a change, subsequently, in the cross sections value affecting the
316 photon population (Figs. 15-18). In presence of microorganism living/not living matter the photon
317 flux is showing, taking a parametric comparison case of 100 ppm polyethylene, an increase of: 2.3%
318 from 0 to 0.7 ppm of microorganisms, 0.2% from 0.7 to 7 ppm of microorganisms, 0.7% from 7 to 70
319 ppm of microorganisms and a decrease of: 1% from 70 to 700 ppm of microorganisms. Furthermore,
320 it has to be underlined that, even if there is a significant change in the total photon population
321 counts, what has been one of the research main goals was to discriminate the amount of
322 microorganisms present in the sample tank through a spectrum analysis and relative photon flux
323 counts on the 3 energy bins.

324 As shown the photon flux associated with the 100-ppm polyethylene at different concentrations of
325 microorganisms increase in terms of photon/s*cm² and differences appear in the contribution to the
326 total by different energy photons. (Figs. 31-32-33):

- 327 5. the 0.7-ppm microorganisms case can be discriminated thanks to the photon flux counts at
328 the detector evaluated on the 30 keV, 50 keV spectrum lines compared to the “ocean
329 water+100 ppm polyethylene” at the same energy conditions.
- 330 6. the 7-ppm microorganisms case can be discriminated thanks to the photon flux counts at the
331 detector evaluated on the 50 keV spectrum line compared to the “ocean water+100 ppm
332 polyethylene +0.7 ppm microorganisms” at the same energy condition.
- 333 7. the 70-ppm microorganisms case can be discriminated thanks to the photon flux counts at
334 the detector evaluated on the 40 keV, 50 keV spectrum lines compared to the “ocean
335 water+100 ppm polyethylene +7 ppm microorganisms” at the same energy conditions.
- 336 8. the 700-ppm microorganisms case can be discriminated thanks to the photon flux counts at
337 the detector evaluated on the 40 keV, 50 keV spectrum lines compared to the “ocean
338 water+100 ppm polyethylene +70 ppm microorganisms” at the same energy conditions.

339

340 **5. Conclusions**

341 This study proposes a new approach to identify low contaminations of polyethylene mixed in water
342 showing a Monte Carlo simulation performed by the MCNPX subatomic particles code evaluating
343 the secondary photon (generated by an electron beam of 50 keV and 1 μ A) energy spectra and fluxes
344 to be revealed by an adequate detector.

345 Different type of contamination grades can be discriminated thanks to their trend Vs photon/s*cm²
346 evaluated on at least three energy bins:30-40-50 keV. Every single contamination is unique in its own
347 "spectrum photon signature" and flux acting as unique identifier in the detection process so that, in
348 combination with the microorganisms analysis can give the ppm amount of polyethylene in: ocean
349 water, drinking/not drinking water, food/beverage processing.

350 **Patent N/A**

351 **Author Contributions:** Conceptualization, Luca J. Tagliapietra. and Piero Neuhold.; methodology, Luca J.
352 Tagliapietra, Piero Neuhold and John I. Adlish.; software, Luca J. Tagliapietra, Piero Neuhold; validation,
353 Enrico Mainardi. and John. I Adlish.; investigation, Enrico Mainardi, Davide Costa.; data curation, Riccardo
354 Surrente.; writing—original draft preparation, Piero Neuhold, Davide Costa.; writing—review and editing,
355 Luca J. Tagliapietra, Piero Neuhold, John I. Adlish; visualization, Riccardo Surrente.; All authors have read and
356 agreed to the published version of the manuscript.

357 **Funding:** This research received no external funding

358 **Acknowledgments:** We deeply thank: Dr. Giulio Magrin, Dr. Alessandro Alemberti, Dr. Ilaria A. Valli

359 **Conflicts of Interest:** The authors declare no conflict of interest

360

361 **References**

362

363 1. National Geographic Society, *Microplastics*, 2019

364 2. Kara Rogers, *Microplastics "Plastic Particulate"*, Britannica, 2019

365 3. Ian A. Kane, Michael A. Clare, Elda Miramontes, Roy Wogelius¹, James J. Rothwell, Pierre Garreau,

366 Florian Pohl, "Seafloor microplastic hotspots controlled by deep-sea Circulation", *Science* 2020

367 4. Madeleine Smith, David C. Love, Chelsea M. Rochman, Roni A. Neff, "Microplastics in Seafood and the

368 Implications for Human Health" NCBI 2018

369 5. National Research Council (US) Safe Drinking Water Committee, "Drinking Water and Health", National

370 Academies Press (US) 1977

371 6. Charlotte Weschab, Anne-Kathrin Barthelc, UlrikeBraund, Roland Kleina, Martin Paulusa, "No

372 microplastics in benthic eelpout (*Zoarces viviparus*): An urgent need for spectroscopic analyses in microplastic

373 detection" *Environmental Research* 2016

374 7. Joana Correia Prata, João P. da Costa, Armando C. Duarte, Teresa Rocha-Santos, "Methods for sampling and

375 detection of microplastics in water and sediment: A critical review", *TrAC Trends in Analytical Chemistry* 2018

376 8. Thomas Maes, Rebecca Jessop, Nikolaus Wellner, Karsten Haupt, Andrew G. Mayes, "A rapid-screening

377 approach to detect and quantify microplastics based on fluorescent tagging with Nile Red", *Scientific Reports* 2017

378 9. Catarina F. Araujo, Mariela M. Nolasco, Antonio M.P. Ribeiro, Paulo J.A. Ribeiro-Claro, "Identification of

379 microplastics using Raman spectroscopy: Latest developments and future prospects", *Water Research* 2018

380 10. Marine & Environmental Research Institute, "Guide to Microplastic Identification", 2012

381 11. Christian Segebade, Valeria N. Starovoitova, Tyler Borgwardt, Douglas Wells, "Principles, methodologies,

382 and applications of photon activation analysis: a review", Springer 2017

383 12. Joseph A. Cotruvo, WHO Water, Sanitation and Health Protection and the Human Environment World

384 Health Organization Geneva, 2006

385 13. Elke Fries†^a, Jens H. Dekiffab, Jana Willmeyera, Marie-Theres Nuelleab, Martin Ebertc and Dominique

386 Remyb, "Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and

387 scanning electron microscopy", Royal Society of Chemistry 2013

388 14. Bar-On, YM; Phillips, R; Milo, R (2018). "[The biomass distribution on Earth](#)". *PNAS*. **115** (25): 6506–6511.

389 [doi:10.1073/pnas.1711842115](#). [PMC 6016768](#). [PMID 29784790](#)

390 15. Mann, NH (17 May 2005). "The Third Age of Phage". *PLOS Biology*. **3** (5): 753–755.

391 [doi:10.1371/journal.pbio.0030182](#). [PMC 1110918](#). [PMID 15884981](#).

392 16. Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. *Microbiology and Molecular*

393 *Biology Reviews*. 2000;64(1):69–114. [doi:10.1128/MMBR.64.1.69-114.2000](#). [PMID 10704475](#).

394 17. Suttle CA. Viruses in the sea. *Nature*. 2005;437:356–361. [doi:10.1038/nature04160](#). [PMID 16163346](#).

395 Bibcode: 2005Natur.437..356S.

396 18. Bergh O, Børshøj KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments.

397 *Nature*. 1989;340(6233):467–8. [doi:10.1038/340467a0](#). [PMID 2755508](#). Bibcode: 1989Natur.340..467B.

398 19. Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF, Fuhrman JA, Lennon JT, Middelboe

399 M, Suttle CA, Stock C, Wilson WH, Wommack KE, Wilhelm SW, Weitz JS. Re-examination of the

400 relationship between marine virus and microbial cell abundances. *Nature Microbiology*. 2016;1:15024.

401 [doi:10.1038/nmicrobiol.2015.24](#). [PMID 27572161](#).

402 20. Brum JR, Schenck RO, Sullivan MB (September 2013). "Global morphological analysis of marine viruses

403 shows minimal regional variation and dominance of non-tailed viruses". *The ISME Journal*. **7** (9): 1738–51.

404 [doi:10.1038/ismej.2013.67](#). [PMC 3749506](#). [PMID 23635867](#).

405 21. Krupovic M, Bamford DH (2007). "Putative prophages related to lytic tailless marine dsDNA phage PM2

406 are widespread in the genomes of aquatic bacteria". *BMC Genomics*. **8**: 236. [doi:10.1186/1471-2164-8-236](#).

407 [PMC 1950889](#). [PMID 17634101](#).

408 22. Xue H, Xu Y, Boucher Y, Polz MF (2012). "High frequency of a novel filamentous phage, VCY φ, within an

409 environmental *Vibrio cholerae* population". *Applied and Environmental Microbiology*. **78** (1): 28–33.

410 [doi:10.1128/AEM.06297-11](#). [PMC 3255608](#). [PMID 22020507](#).

411 23. Roux S, Krupovic M, Poulet A, Debroas D, Enault F (2012). "Evolution and diversity of the Microviridae

412 viral family through a collection of 81 new complete genomes assembled from virome reads". *PLOS ONE*.

413 **7** (7): e40418. Bibcode:2012PLoS...740418R. [doi:10.1371/journal.pone.0040418](#). [PMC 3394797](#). [PMID 22808158](#).

414 24. Lawrence CM, Menon S, Eilers BJ, et al.. Structural and functional studies of archaeal viruses. *Journal of*

415 *Biological Chemistry*. 2009;284(19):12599–603. [doi:10.1074/jbc.R800078200](#). [PMID 19158076](#).

417 25. Prangishvili D, Forterre P, Garrett RA. Viruses of the Archaea: a unifying view. *Nature Reviews Microbiology*. 2006;4(11):837–48.

418 26. Enrico Mainardi,1 Richard J. Donahue, Walter E. Wilson, Eleanor A. Blakely, "Comparison of Microdosimetric Simulations Using PENELOPE and PITS for a 25 keV Electron Microbeam in Water", Radiation Research Society 2004

419 27. Maria do Perpetuo Socorro Progene, Marcondes Lima da Costa, José Francisco Berredo, Rosildo Santos Paiva, Priscila Denise Almeida, "Chemical composition of phytoplankton from the estuaries of Eastern Amazonia", <http://dx.doi.org/10.1590/1809-4392201305244>, ACTA 2014

420 28. Cristina Romera-Castillo, Maria Pinto, Teresa M. Langer, Xosé Antón Álvarez-Salgado, Gerhard J. Herndl, "Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean" *Nature Communications* 2018

421 29. Karina Yew-Hoong Gin, Xiaohua Lin and Sheng Zhang, "Dynamics and size structure of phytoplankton in the coastal waters of Singapore", *Journal of Plankton Research* 2000

422 30. Denis B. Pelowitz, Los Alamos National laboratory, MCNPX, 2005 LA-CP-05-0369

423 31. Morgan C. White, Los Alamos National Laboratory, Photo atomic Data Library MCPLIB04, 2003

424 32. Oak Ridge National Laboratory, MCNP-MCNPX Code Collection, 2006

425

426

427

428

429

430

431

432

433

434

435

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).