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Abstract 
Developments of new probability models for data analysis are keen interest of importance for 

all fields. The log-Dagum distribution has a prominent role in the theory and practice of 

statistics. In this article, a new family of continuous distributions generated from a log Dagum 

random variable called the log-Dagum Weibull distribution is proposed. The key properties of 

the proposed distribution are derived. Its density function can be symmetrical, left-skewed, 

right-skewed and reversed-J shaped and can have increasing, decreasing, bathtub hazard rates 

shaped. The model parameters are estimated by the method of maximum likelihood and 

illustrate its importance by means of applications to real data sets. 

Keywords: probability distributions; log-dagum distribution; parameter estimation; weibull 

distribution 

    1.  Introduction 

 
Statistical distributions are extensively used in literature for modelling and forecasting real life 

phenomena. The recent literature has suggested several ways of extending well-known 

distributions. There has been an increased interest in defining new classes of univariate 

continuous distributions by introducing one or more additional shape parameter(s) to the 

baseline distribution. This induction of parameter(s) has been proved useful in exploring tail 

properties and also for improving the goodness-of-fit of the generator family. The well-known 

families are: the beta-G [9], Kumaraswamy-G  [6], McDonald-G [3], Gamma-X [2],Gamma-

G (type 1) [18], Gamma-G (type 2) [15], Gamma-G (type 3) [17],Log-Gamma-G [4],Logistic-

G [16],Exponentiated Generalized-G [7], Transformed-transformer [2], Exponentiated T-X 

[2],  Weibull-G [5], etc. 

The proposed new distribution generalizes the log-degum Weibull distributions. Some 

Structural properties of this distribution are obtained and estimation the parameters via the 

Method of maximum likelihood presented. 

This paper is organized as follows. In section 2; we present the generalized distribution 

including the corresponding probability density functions (pdf), survival function hazard 
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functions shape of hazard function and concavity. In section 3; Rth moments, L- moments 

quantile function and order statistics are presented. Section 4 contains the Shannon entropy and 

Renyi entropy. Section 5 Bonferroni and Lorenz curves. Section 6 is concerned with 

characterization via Hazard function, reverse hazard function and truncated moments of 

distribution. Estimation of model parameters is presented in section 7. Evaluation Measures 

and Practical Data Examples of the proposed model to real data are given in section 8, followed 

by concluding remarks. 
Let 푟(푡) be the probability density function (pdf) of a random variable 푇 Є [푎;  푏] for −∞ ≤

푎 < 푏 < ∞ and let 푊[퐺(푥)] be a function of the cumulative distribution function (cdf) of a 

random variable 푋 such that 푊[퐺(푥)] satisfies the following conditions: 

 (푖) 푊[퐺(푥)] Є [푎;  푏]; 

 (푖푖) 푊[퐺(푥)]  푖푠 푑푖푓푓푒푟푒푛푡푖푎푏푙푒 푎푛푑 푚표푛표푡표푛푖푐푎푙푙푦 푛표푛 − 푑푒푐푟푒푎푠푖푛푔, 푎푛푑       (1)            

 (푖푖푖)푊[퐺(푥)] → 푎 푎푠 푥 → −∞푎푛푑푊 [퐺(푥)]  ∈  푏 푎푠 푥 → ∞ 
Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by 

                                     퐹(푥) = ∫ 푟(푡)푑푡 [ ( )                                                       (2)                                                 

Where W[G(x)] satisfies the condition (1). The pdf corresponding to (2) is given by 

                                푓(푥) = 푊[퐺(푥)] 푟{푊[G(x)]}                                                    (3)      

In Table 1, we provide the W [G(x)] functions for some members of the T-X family of 

distributions. 

              Table 1: Different 푾[푮(풙)] functions for special models of the T-X family                                                                   

 
S.No.         푊[퐺(푥)]                     Range of T                                   Members of T-X family 

1                 퐺(푥)                       [0,1]                                           Beta-G (Eugene et al., 2002) 
                                                                                          Kw-G type 1 (Cordeiro and de Castero, 2011) 
                                                                                                   Mc-G (Alexander et al., 2012) 
                                                                                            Exp-G (Kw-G type 2) (Cordeiro et al., 2013) 
 
2        − 푙표푔 [퐺(푥)]                 [0,∞]                        Gamma-G Type-2 (Risti´c and Balakrishnan, 2012) 
                                                                                      Log-Gamma-G Type-2 (Amini et al., 2012) 
 
3        - log [1- G(x)]                 [0,∞]                    Gamma-G Type-1 (Zografos and Balakrishnan, 2009) 
                                                                                             Log-Gamma-G Type-1 (Amini et al., 2012) 
                                                                                                   Weibull-X (Alzaatreh et al., 2013)  
                                                                                                      Gamma-X (Alzaatreh et al., 2014) 
 
4         - log [1 - 퐺 (푥)]             [0,∞]                        Exponentiated T-X (Alzaghal et al., 2013) 
 

5         log [- log [1 - G(x)]        [−∞, ∞]                                        Logistic-X  
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6           log[ ( )
( )

]                     [−∞, ∞]                 Logistic-G (Torabi and Montazeri, 2014)proposed 
 
7             ( )

( )
                                  [0,∞]              Gamma-G Type-3 (Torabi and Montazeri, 2012) 

                                                                                                     Weibull-G 
 

 

The aim of this paper is to propose a new family of continuous distributions, called the log 

Dagum Weibull distribution, and to study some of its mathematical properties. 

 

  2.  The Log Dagum Weibull Distribution 

A random variable T has the log Dagum distribution with shape parameter β >  0 and 

λ > 0 if it’s cumulative distribution function (cdf) is given by 

                           휋(푡) = (1 + 푒 ) β        푡 ∈ 푅,     훽 >  0,    휆 >  0                               (4) 

and its corresponding probability density function (pdf) can be expressed as 

                        푟(푡) = 훽휆 푒 (1 + 푒 ) β             푡 ∈ 푅,     훽 >  0,    휆 > 0              (5)   

Let 퐺(푥) and 퐺⃑(푥) = 1 − 퐺(푥) be the baseline cdf and survival function (sf) by replacing 

푊[퐺(푥)] by 푙표푔( ( )
( ))  and 푟(푡) with (5) in equation (2), we define the cdf of the Log 

Dagum-X family by 

                                 퐹(푥) = 1 + ( )
( )                                                              (6) 

The Log Dagum family pdf is expressed as 

                푓(푥) = 1 + ( )
( )

( )
( )

  ( )
[ ( )]                                          (7) 

Henceforth, we denote by X a random variable having density function (7). The basic 

motivations for using the Log Dagum-x family in practice are to construct heavy tailed 

distributions that are not longer-tailed for modelling real data, to generate distributions with 

symmetric, left-skewed, right-skewed and reversed-J shaped, to define special models with all 

types of the hazard rate function (hrf), to provide consistently better fits than other generated 

models under the same baseline distribution. The fact is well-demonstrated by fitting the log 

Degum Weibull distribution to two real data sets. However, we expect that there are other 

contexts in which the LX special models can produce worse fits than other generated 

distributions. Clearly, the results indicate that the new family is a very competitive class to 

other widely known generators with one extra shape parameter. 
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The corresponding cumulative density function (cdf) probability density function (pdf), hazard 

function (hrf) and survival function are given as 

                    퐹 (푥 , 휆, Ө, 훽)   = (1 + (푒 − 1) )                                                       (8) 

                                       [Figure 1 about here.] 

Figure 1 gives the plots of the cumulative distribution function of the LDW distribution. 

The plots of this figure shows that for fixed 휆 and 훽and changing 휃 the curve stretch 

out insignificantly towards right as 휃increases. However, for fixed 훽 and 휃 and changing 

휆 the curve stretch out towards right significantly as 휆 increases. 

And   

       푓 (푥 , 휆, Ө, 훽) = (1 + (푒 − 1) ) (−1 + 푒 ) 푒 휃휆 훽 푥            (9) 

                                       [Figure 2 about here.] 

Plots of Figure 2 display the density functions of the LDW distribution. Figure 2 

portrays that changing 휆 against the fixed 훽 and 휃 the density function decreases. 

but changing 훽 against the fixed 휆 the nature of the curve towards right  as 휃 increases, however 

in case of changing 휃 with fixed 훽 and 휆 shift the curve towards left.  

 

                       푆 (푥 , 휆, Ө, 훽) = 1 − (1 + (푒 − 1) )                                           (10) 

 

                                               [Figure 4 about here.] 

The graph of survival function increases for different values of parameters then suddenly 

starts gradually decreases and converges to zero.  
 
 

           ℎ (푥 , 휆, Ө, 훽) = ( ( ) ) ( )

( ( ) )
                        (11) 

 

                                               [Figure 3 about here.] 

 

Hazard function is a significant indicator for observing the declining circumstance of a product 

which ranges from increasing, decreasing, bathtub (BT) shapes. So in this regard Figure 3 

speaks out itself and justifies the potential of the model. Moreover, the hazard function plots in 

Figure 3 also portray the declining circumstance of the product as time increases in terms of 

impulsive spikes at the end of either increasing or decreasing hazard rate. This implies that the 

hazard function is sensitive against different combinations of the parameters as time changes, 
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which seems to be a refine image of non stationary process and hence the hazard curve does 

not remain stable as times passes. Moreover, Figure 3 displays increasing, decreasing bathtub 

hazard shapes. 

 
Shape of hazard function: 
 
Shape of the density function can be described analytically .the critical point of the LDW 

density are the root of  the equation 
( )

( ( ) )
+

   

( ( ) )
 +

 ( )  

( ( ) )
- 

 

  ( )

( ( ) )
+ 

  
= 0 

There may be more than one root. 

Concavity: 

The concavity of hazard rate function ℎ′′(푥)= 0   

( )( )

( ( ) )
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 ( )  
- 

 

 ( )  
 + 

  
 =0 

 

                                                       [Figure 5 about here] 

  

for different value of parameters the hazard function is concave up and concave down where 

the point concavity change is called point of inflection.    

                           3.  Some Statistical Properties 
 

In this section, we study some statistical properties of the LDW distribution, including 
 Rth moments, L- moments quantile function and order statistics. 

3.1 Moments of LDWD. 

Let X is a particularly continuous non-negative random variable with PDF  푓(푋) , and 

then the R  ordinary moment of the (LDW) distribution is given by: 

         퐸(푥 ) = ∫ 푋∞ 푓(푋)푑푋                   

        퐸(푥 )  = ∫ 푋∞  (1 − (1 − 푒 ) ) (1 − 푒 ) 푒 휃휆훽 푥 dx             

       퐸(푥 ) = ∑ (−k)h(−1)h

ℎ!
∞
h=0 ∫ 푋∞  ((1 − 푒 ) ) (1 − 푒 ) 푒 휃휆훽 푥 dx 

       퐸(푥 ) = ∫ 푋∞  (1 − 푒 ) 푒 휃휆훽 푥 dx 

   Let 푦 = 푒휃푥훽                 푑푦 = 푒휃푥훽
휃훽푥훽−1dx                            푥 = 1 ln(푦)

1
훽 

      퐸(푥 )   = 휆훽 ∑ ( ) ( )
!

∞ ∫ ( 1 ln(푦)
1
훽)

푟
∞

0  (1 − y) 푑푦 

      퐸(푥 ) = ∑ (−k)h(−1)h

ℎ!
∑ (−1)m

푚!
휆훽−1
m=0

∞
h=0 ∫ (ln 푦)∞  y dy          

        Let      푙푛푦 = −푧          푦 = 푒     푑푦 = −푒 푑푧 
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      퐸(푥 ) = ∑ (−k)h(−1)h

ℎ!
∑ (−1)m

푚!
휆훽−1
m=0

∞
h=0 ∫ (−z)∞  푒 (−푒 )푑푧 

     퐸(푥 ) = 휆훽
휃

푟
훽
 ∑ ( ) ( )

!
∑ ( )

! ∫ (z)
푟
훽∞

0  푒 ( )푑푧 

      Let      z(푚 + 1) = 푔       푧 = ( )    푑푦 = ( ) 

      퐸(푥 )    = 휆훽 1  ∑ ( ) ( )
!

∑ ( )
! ∫ ( 푔

(푚+1))
푟
훽∞

0  푒 ( ) 

     퐸(푥 ) = 휆훽
휃

푟
훽
 ∑ ( ) ( )

!
∑ ( )

!
1

(푚+1)
푟
훽+1

훤(푟
훽 + 1) 

3.2 L-Moments: 
                             퐵 = 퐸(푥(퐹(푥) ) 

Where                F(x) = (1 + (푒 − 1) )  

                         퐵 = 퐸(푥(1 + (푒 − 1) )  

                           퐵   = ∫ 푥 1 − 1 − 푒 푓(푥)푑푥 

퐵 == 푥 1 − 1 − 푒휃푥훽 −휆 −훽푘
(

∞

0
(1 − (1 − 푒휃푥훽

)
−휆

)
−훽−1

(1 − 푒휃푥훽
)

−휆−1
푒휃푥훽

휃휆 훽2푥훽−1푑푥 

                       = ∫ 푥 1 − 1 − 푒
( )

( 1 − 푒 ) 푒 휃휆 훽 푥 푑푥 

                      = ∑ ( ) ( )
! ∫ 푥 1 − 푒휃푥훽 휆훽(푘+1)−1∞

0 푒휃푥훽
휃휆 훽2푥훽−1푑푥 

          Let       푒 = y,      푒  βθ푥 dx = dy,     푥 = (푙푛푦) 푑푦 

When       x→ 0 ,    y→ 1    and                    x→ ∞ ,    y→ ∞     

              퐵  = 휆β

휃
1
훽

∑ ( ) ( )
! ∫ (푙푛푦)

1
훽(1 − y)휆훽(푘+1)−1∞

0  푑푦 

Expanding  (1 − y) ( )  using binomial expension 

퐵 =
휆β

휃

(−k)h(−1)h

ℎ!

∞

h=0

em+1  
휆훽(푘 + 1) − 1

m
(−1)

( ( ) )

(푙푛푦) (y)m
∞

1
 푑푦 

        Let  푙푛푦 = −푧                    푦 = 푒                   푑푦 = −푒 푑푧 

     When   푦 → 1,        푧 → 0                   when    푦 → ∞,        푧 → ∞ 

=
휆β

휃

(−k)h(−1)h

ℎ!

∞

h=0

em+1  
휆훽(푘 + 1) − 1

m
(−1)

( ( ) )

(푙푛푦) (y)m
∞

1
 푑푦 
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=
휆β

휃

(−k)h(−1)h

ℎ!

∞

h=0

em+1  
휆훽(푘 + 1) − 1

m
(−1)

( ( ) )

e  푧 e dz 

=
휆β

휃

(−k)h(−1)h

ℎ!

∞

h=0

em+1  
휆훽(푘 + 1) − 1

m
(−1)

( ( ) )

e ( )  푧 dz 

     Let   푧(m + 1) = g             ( ) = 푧           ( ) = 푑푧 

    When      푧 → 0  ,       푔 → 0         When                푧 → ∞ ,       푔 → ∞ 

=
휆β

휃

(−k)h(−1)h

ℎ!

∞

h=0

em+1  
휆훽(푘 + 1) − 1

m
(−1)

( ( ) )

(
1

(m + 1)
e  푔 dg 

 퐵 == 휆 ∑ (−k)h(−1)h

ℎ!
∞
h=0 em+1 ∑ ∑  ( ) (−1)( ( ) ) (

( )

( )
 

 

3.3    Quantile function 

The quantile function is another way of describing a probability distribution. It can 

also be called the inverse cdf. It can be used to generate random samples for probability 

distributions and thereby can serve as an alternative to the pdf. In general, it is given as: 

                      퐺(푥) = 푢 
                            (1 + (푒 − 1) ) = 푢 
         
                           1 + (푒 − 1) = 푢−1/훽 
 

                           (푒 − 1) = 푢−1/훽 − 1 

                   푒 − 1 = 푢−1
훽 − 1

−1
휆
 

                     푒 = 푢 − 1
/

+ 1 

                  푥 = 푙표푔 푢 − 1

/

 

3.4 Ordered Statistic:  

The pdf of the jth order statistic for a random sample of size n from a distribution 

function 퐹(푥) and an associated pdf 푓(푥) is given by: 
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             푓 , (푥) = ᴉ
( )( )ᴉ

[퐹(푥)] [1 − 퐹(푥)] 푓(푥) 

where 푓(푥) and 퐹(푥)are the pdf and cdf of the LDWD, respectively. The pdf of the jth order 

statistics for a random sample of size n from the LDW distribution is, however, given as 

follows 

푓 , (푥) =
푛ᴉ

(푗 − 1)(푛 − 푗)ᴉ
  1 + 푒 − 1 1 −   [(1 + 푒 − 1 )  

(1 + (푒 − 1) ) (−1 + 푒 ) 푒 휃휆훽 푥   

So, the pdf of minimum order statistics is obtained by substituting 푗 = 1 we have: 

  푓 , (푥) = ᴉ
( )( )ᴉ

1 −   [(1 + 푒 − 1 ) 1 + 푒 − 1  

(−1 + 푒 ) 푒 휃휆훽 푥  

While the corresponding pdf of maximum order statistics is obtained by making the 

substitution of 푗 = 푛 in above equation  

 푓 , (푥) =   ᴉ
( )( )ᴉ

  1 + 푒 − 1 1 + 푒 − 1  

 (−1 + 푒 ) 푒 휃휆훽 푥  

 4.    Entropies 

Entropy is the measure of uncertainty. It is actually a concept of physics. 
 
4.1 Shannon Entropy: 

                     s = − ∫ f(x)lnf(x)dx  

 f(x) = (1 + (푒 − 1) ) (−1 + 푒 ) 푒 휃휆 훽 푥  

푙푛푓(푥) = −(훽 + 1)ln (1 + 푒 − 1 ) − (휆 + 1) ln −1 + 푒 + 휃푥 + ln(휃휆 훽 ) + (β − 1)lnx 

 푙푛푓(푥) = 휆(훽 + 1)ln (푒 − 1) − (휆 + 1) ln −1 + 푒 + 휃푥 + ln(휃휆 훽 ) + (β − 1)lnx 

S=(1 − 휆훽) ∫ 푓(푥) ln 푒 − 1 dx −  휃 ∫ 푓(푥) 푥 푑푥 − ln(휃휆 훽 ) ∫ 푓(푥) 푑푥 − 

       (β − 1) ∫ 푓(푥) 푙푛푥푑푥 

Where   ∫ 푓(푥) 푑푥 = 1 ,        ∫ 푓(푥) 푙푛푥푑푥 = 퐸(푙푛푥),       ∫ 푓(푥) 푥 푑푥 = 퐸 푥  

                  ln 푒 − 1 = ∑ ( )
!

 

 푆 = (1 − 휆훽) ∑
( ) ′

!
− 휃퐸 푥 − 푙푛 (휃휆 훽 ) − (β − 1) 퐸(푙푛푥) 
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4.2      Renyi Entropy: 

 

푅 =
1

1 − 푘
푓(푥) 푑푥 

 푅 = ∫ ( (1 + (푒 − 1) ) (−1 + 푒 ) 푒 휃휆 훽 푥 )) 푑푥 

R=  휃 휆  훽 ∫ (1 − (1 − 푒 ) ) ( )(1 − 푒 ) ( )푒 푥 ( ) ) 푑푥 

푅 =  휃 휆  훽 ∑ ( ) ( )
! ∫ (1 − 푒 ) ( ))(1 − 푒 ) ( )푒 푥 ( ) dx 

Let 푒 = y,      푒  βθ푥 dx = dy,     푥 = (푙푛푦) 푑푦 

When       x→ 0 ,    y→ 1    and                    x→ ∞ ,    y→ ∞     

푅 = 휃 휆  훽 ∑ ( ) ( )
! ∫ (1 − y) ( ) y  

( )
(푙푛푦) ( )dy 

R =  
( )

∑ ( ) ( )
!

∑ ∑ (−1)( ) ∫ y   (푙푛푦) ( )dy 

Let  푙푛푦 = −푧                    푦 = 푒                   푑푦 = −푒 푑푧 

When   푦 → 1,        푧 → 0                   when    푦 → ∞,        푧 → ∞ 

푅 =  
( )

∑ ( ) ( )
!

∑ ∑ (−1)( ) ∫ e ( )  푧 ( )푒 dz 

=
1

1 − k
휃 휆  훽

휃( )

(−k) (−1)
ℎ!

(−1)
( )

e (( ) )  푧 ( )dz 

Let   푧((m + k − 2)) = g             ( ) = 푧           ( ) = 푑푧 

When                푧 → 0  ,       푔 → 0         When                푧 → ∞ ,       푔 → ∞ 

=
1

1 − k
휃 휆  훽

휃
( )

(−k) (−1)
ℎ!

(−1)
( )

1

(m + k − 2) ( )
푔 ( )  e dg 

 R =  
( )

∑ ( ) ( )
!

∑ ∑ (−1)( ) ( )

( ) ( )
 

 
  5.   Bonferoni and Lorenz Curves 

In 1905, Max O. Lorenz represented a model for inequality of wealth distribution 

and C.E. Bonferroni in 1930 proposed a measure of income inequality. 

Both are used in financial mathematics to check equal distribution of wealth. 
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Bonferroni and Lorenz curves are defined as follows: 

퐸(푝) =
1

푝휇 푥 푓(푥)푑푥 

and 

퐿(푝) =
1
휇 푥 푓(푥)푑푥 

respectively, where 푝, 푞 ∈ (0,1). 

퐸(푝) =
1

푝휇
푥 (1 − (푒휃푥훽

− 1)
−휆

)
−훽−1

(−1 + 푒휃푥훽
)

−휆−1
푒휃푥훽

휃휆 훽2푥훽−1dx 

Let   (1 − 푒 )   = y,      (1 − 푒 ) 푒 휆 βθ푥 dx = dy,   

               푥 = 1 − 푦  

When       x→ 0 ,    y→ 0    and                    x→ 푞 ,    y→ (1 − 푒 )     

     퐸(푝) = 1

푝휇

β

휃
1
훽

∫ 푙푛(1−푒휃푞훽
)

−휆

(1 − y−
1
휆)

1
훽
(1 − y)−훽dy 

     퐸(푝) = 1

푝휇

β

휃
1
훽

∑ (푎)푛

푛!
∞
푛=0 ∫ 푙푛(1−푒휃푞훽

)
−휆

(1 − y−
1
휆)

1
훽
yndy 

Let               푙푛(1 − y−
1
휆)

1
훽

= z                            1 − y = e  

     푦 = (1 − e )       d 푦 = −휆(1 − e ) 푑푧      

     When       y → 0 ,    z → 0    ,    y → (1 − 푒 )                 z → 휃푞  

 

      퐸(푝) = 1

푝휇

β

휃
1
훽

∑ (푎)푛

푛!
∞
푛=0 ∫ z

1
훽(1 − 푒푧)휃푞훽

 λ(1 − 푒푧) 푒zdz 

        퐸(푝) = 1

푝휇

λβ

휃
1
훽

∑ (푎)푛

푛!
∞
푛=0 ∫ z

1
훽(1 − 푒푧) ( )휃푞훽

 푒zdz 

Expanding (1 − 푒 )−휆(푛+1)−1 by using binomial expansion 

 퐸(푝) = 1

푝휇

λβ

휃
1
훽

∑ (푎)푛

푛!
∞
푛=0 ∑ (−1)푚

푚!
( )

푛
∞
푚=0 ∫ z

1
훽푒−푛푧휃푞훽

 푒zdz 

    퐸(푝) = 1

푝휇

λβ

휃
1
훽

∑ (푎)푛

푛!
∞
푛=0 ∑ (−1)푚

푚!
( )

푛
∞
푚=0 ∫ z

1
훽푒−푧(푛−1)휃푞훽

dz 
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     퐸(푝) =  λβ ∑ ( )
!

∞ ∑ ( )
!

( ) ∑ ( )
!

(푛 − 1)∞∞ ∫ z dz     

퐸(푝) = λβ ∑ ( )
!

∞ ∑ ( )
!

( ) ∑ ( )
!

(푛 − 1) (∞∞ )  

 퐸(푝) = λβ ∑ ( )
!

∞ ∑ ( )
!

( ) ∑ ( )
!

(푛 − 1)∞∞ ( )  

 퐸(푝) = λβ휃 ∑ ( )
!

∞ ∑ ( )
!

( ) ∑ ( )
!

(푛 − 1)∞∞  

and 

 퐿(푝) = λβ휃 ∑ ( )
!

∞ ∑ ( )
!

( ) ∑ ( )
!

(푛 − 1)∞∞  

   6.   Characterization 

In order to develop a stochastic function for a certain problem, it is necessary to know 

whether function fulfils the theory of specific underlying probability distribution, it is 

required to study characterizations of specific probability distribution. Different 

characterization techniques have developed. Glanzel (1987, 1988 and 1990), Hamedani . 

(1993, 2002, 2011 and 2015), Ahsanullah and Hamedani (2007, 2012), Ahsanullah et al. 

(2013), Shakil et al. (2014), and Merovci et al. (2016) have worked on characterization. 

 

6.1 Characterization based on Hazard function 

Definition: Let 푥 be a continuous random variable with pdf 푓(푥) if and only if the 

hazard function ℎ(푥)of a twice differentiable function 퐹, satisfies equation  

                                   [푙푛푓(푥)] =
′( )
( )

− ℎ(푥) 

 For random variable 푋 having LDW distribution with hazard rate function we obtain the 

following equation 

ℎ˴(푥)(1 − (1 + 푒 − 1 ) −  ℎ(푥)(1 + (−1 + 푒 ) ) β (−1 + 푒 ) 푒 휃휆훽 푥  =

[ 1 + 푒 − 1 (−1 + 푒 ) 푒 휃휆훽 푥 ] 

 ℎ(푥)(−1 + 푒 − 1 ) = 1 + 푒 − 1 (−1 + 푒 ) 푒 휃휆훽 푥  

           ℎ(푥) =
( )

( )
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After manipulation, integrating and simplifying, we obtain as 

퐹(푥) = (1 + 푒휃푥훽 − 1
−휆

)
−훽

 

This is the cdf of LDW distribution. 

6.2 Characterization based on reversed hazard Function: 

푑
푑푥

[푙푛푓(푥)] =
휑′(푥)
휑(푥) − 휑(푥) 

For random variable 푋 having LDW distribution with hazard rate function we obtain the 

following equation 

휑 (푥)(1 + 푒 − 1 ) + 휑(푥) 1 + 푒 − 1 (−1 + 푒 ) 푒 휃휆훽 푥  =  [ 1 +

푒 − 1 (−1 + 푒 ) 푒 휃휆훽 푥 ] 

 휑(푥) 1 + 푒 − 1  = [ 1 + 푒 − 1 (−1 + 푒 ) 푒 휃휆훽 푥  

휑(푥) =
[ 1 + 푒 − 1 −1 + 푒 ) 푒 휃휆훽 푥

1 + 푒 − 1
 

After manipulation, integrating and simplifying, we obtain as 

퐹(푥) = 1 + 푒 − 1  

6.3 Characterization through Ratio of Truncated Moments 
In this section, we characterize WD distribution using Theorem 1 (Glanzel; 1987) on the basis of simple 

relationship between two functions of X. Theorem 1 is given in appendix A. 

Preposition 

Suppose that random variable 푋:ῼ→ (0, ∞) is continuous. Let  

 ℎ (푥) = 휆훽 1 + 푒휃푥훽 − 1
−휆 훽+1

푒휃푥훽 − 1
휆+1

and ℎ (푥) = 2푒휃푥훽

1+ 푒휃푥훽−1
−휆 −훽−1

푒휃푥훽−1
−휆−1

 

,푥 > 0 

The pdf of X is (9) if and only if 푝(푥)has the form 푝(푥) = 푒 ,  푥 > 0 

Proof: 

For random variable X having LDW distribution with pdf (9) and cdf (8), we proceeds as 

1 − 푓(푋) 퐸(ℎ (푥)/푋 ≥ 푥) = 푒−휃푥훽
 

1 − 푓(푋) 퐸(ℎ (푥)/푋 ≥ 푥) = 푒−2휃푥훽
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                        푝(푥) = 푒−휃푥훽
        and      푝 (푥) = 푒 휃훽푥  

푠 (푡) = ( ) ( )
( ) ( ) ( ) =−2휃훽푥훽−1   and 푠(푡) = −2휃푥   

Therefore in the light of Theorem 1, X has pdf (9) 

 

 

                                7.  Maximum Likelihood Estimation 

Several approaches for parameter estimation have been proposed in the literature but the 

maximum likelihood method is the most commonly employed. 

Let 푋  ,   푋  ,    …  , 푋      be a random sample of size n of the LDW distribution then the total 

log-likelihood (LL) function is given  

   퐿(휆, 휃, 훽) = 훽 ∏ 1 + 푒 − 1 휆  

∏ (−1 + 푒 ) 휃 ∏ 푒 ∏ 푥   , 

퐿(휆, 휃, 훽) = 2푛Log[훽] + 푛Log[휃] + 푛Log[휆] + 휃 푥퐼
훽 + (

푛

퐼=1

훽 − 1) Log[푥퐼]
푛

퐼=1

 

  −(휆 + 1) Log 푒 − 1 + 휆(훽 + 1) Log(1 +   푒 − 1 )
  

, 

The First derivatives of the log-likelihood function are given as follow 

  ( , , ) =
훽

+ 휃훽 푥퐼
훽−1 +

푛
퐼=1

∑ Log[푥퐼]푛
퐼=1 − (휆 + 1) 휃훽푥퐼

훽−1푛
퐼=1 + 2휆 β푥퐼

훽−1휃
푛
퐼=1 , 

        ( , , ) = − Log[푒푥퐼
훽휃 − 1]

푛

퐼=1
+ 휆(훽 + 1)   Log(1 +   푒푥퐼

훽휃 − 1 )
푛

퐼=1
, 

      ( , , ) = + 푥 − (휆 + 1) 푥 + 휆(훽 + 1) 푥 , 

Equating equations to zero and solving them numerically, one can obtain the estimates of the 
unknown parameters. 
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8  Simulation Study 
 

 
This section deals the simulation study. In proposed model we generated  random variables 

by using CDF of LDWD with four different value of parameters for n=25,50,100,200. 

Parameters are estimated with method of MLE by using each generated random variable. 

In statistical study, bias states to the tendency of a measurement process to over or under 

estimate the value of population parameters. Bias of MLEs can be fundamental. Squared 

error is a function which obtained from square values of bias. MSE is always constructive. 

Bias shows the contrasts between estimated values of parameter variation from true value of 

parameter. 

By using the estimated parameters, we calculated Bias and MSE of LDWD and also calculate 

their average mean which are shown in different graphs. The resulting Behaviour of these 

Bias and MSE of these estimated parameters are also shown below with the help of graphs. 

All simulations were done on computational software `Mathematica 8.0. 

The analysis computes the coming values: 

 Average bias of the simulated estimates: 
1

1000
(훩∗ − 훩) 

 Average mean square error (MSE) of the simulated estimates: 

                                   
1

1000
(훩∗ − 훩)  

The results are reported in Tables 1 and 2 . 
 

                                          [Table 2 about here.] 
                                         [Table 3 about here.] 
 

   9.      Evaluation Measures and Practical Data Examples 
We illustrate the usefulness of the Log Dagum Weibull distribution and compare the results 

with the WD GD LD  EED and NEED distributions by means of four real data sets. , one of 

which is data of leukaemia-free survival times of 50 patients with Autologous transplant 

obtained from [11] and the second data set contains Lifetime of 50 devices [13], Third data set 
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consists of 100 uncensored data on breaking stress of carbon fibres (in Gba) [32], fourth data 

consist times to failure of eighteen electronic devices [33]    

 In this section we illustrate the usefulness of the Log Dagum Weibull distribution .We estimate 

the unknown parameters of LDWD using MLE method and compare the log likelihood with 

some other distributions including EED, WD,GD,NEED and LD. We will check goodness of 

fit of our model with some test statistics like AD test, CVM test, K-S test and p-value. All 

calculations are executed on computational software MATHEMATICA 11.0 

 

Numerical measures 

In order to demonstrate the proposed methodology, we consider four different practical data 

sets described below with their analysis. They represent different level of skewness ranging 

from negative skewness to positive skewness along with various demonstration of failure rate 

pattern, like increasing, decreasing, and bathtub shape. Moreover, perfection of competing 

models is also tested via the Kolmogrov-Simnorov (K S),the Anderson Darling (퐴∗) and the 

Cramer-von Misses (푊∗) statistics. The mathematical expressions for the statistics are given 

by 

퐾푆 = max
푖

푚
− 푧 , 푧 −

푖 − 1
푚

, 

 

퐴∗ =
2.25
푚

−
0.75

푚
+ 1 {−1 −

1
푚

(2푖 − 1)ln (푧 (푧 ))}, 

and 

푤∗ = 푧 −
2i − 1

2푚
+

1
12m

. 

where 푚 denotes the number of classes, 푧푖 =  퐹푋(푥푖), the 푥푖′푠 being the ordered 

observations respectively. 

 

Data set 1. The first  data  set obtained  from  [12] of leukemia-free survival times of 50 patients 

with Autologous transplant.Data sets are presented in the following tables : 0.030 , 0.493, 

0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500 ,2.763, 2.993 ,3.224 ,3.421, 4.178, 4.441, 5.691, 

5.855, 6.941, 6.941, 7.993, 8.882 ,8.882, 9.145, 11.480, 11.513, 12.105 ,12.796 ,12.993 

,13.849, 16.612,17.138, 20.066 ,20.329 ,22.368 ,26.776 ,28.717, 28.717 ,32.928 ,33.783, 

34.211,34.770, 39.539 ,41.118, 45.033, 46.053, 46.941, 48.289,57.401, 58.322 ,60.625. 
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The measures of goodness of fit including the Akaike information criterion (AIC), consistent 

Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn 

information criterion (HQIC), Anderson-Darling (퐴∗), Cram´er–von Mises (푊∗) and 

Kolmogrov-Smirnov (K-S) statistics are computed to compare the fitted models. The 

statistics 퐴∗ and 푊∗ are described in details in [8]. In general, the smaller  values of these 

statistics, better fit to the data. The required computations are carried out in the Mathematica 

11.0. 

 

                                              [Table 4 about here] 

                                              [Table 5 about here] 

Analysis: 

Table 4 and 5 represents the results of test statistics and information criterion respectively for 

data set 1. Minimum test statistics and information criterion shows the goodness of fit of our 

designed model.  

Data set 2: Second data set Lifetime of 50 devices are obtained from [14]. 

0.1, 0.2, 1, 1, 1 ,1 ,1, 2, 3, 6, 7, 11 ,12 ,18, 18 ,18 ,18, 18, 21 ,32, 36 ,40, 45 ,46, 47, 50, 55 

,60, 63, 63, 67, 67 ,67 ,67, 72 ,75, 79 ,82, 82, 83, 84, 84 ,84, 85, 85, 85 ,85, 85, 86 ,86. 

We fit the LDW model and other competitive models such as the Exponentiated exponential 

distribution (EED) [10], Weibull distribution (WD) [11],  Gamma distribution (GD) 

[10],NEED Nadarajah Exponentiated exponential distribution and Lomax distribution (LD) 

to data sets.  

                                                    [Table 6 about here.]   
                                                    [Table 7 about here] 
 
Analysis:  
Tables 6 represents the results of test statistics for data set 2.Minimum test statistics shows the 

goodness of fit of our designed model. It can be easily seen that our model has better fitness 

than other five models                                               

 
Data set 3: This data set consists of 100 uncensored data on breaking stress of carbon fibres 
(in Gba), [32].  
.0.39,0.81,0.85,0.98,1.08,1.12,1.17,1.18,1.22,1.25,1.36,1.41,1.47,1.57,1.57,1.59,1.59,1.61,1.6

1,1.69,1.69,1.71,1.73,1.8,1.84,1.84,1.87,1.89,1.92,2,2.03,2.03,2.05,2.12,2.17,2.17,2.17,2.35,2

.38,2.41,2.43,2.48,2.48,2.5,2.53,2.55,2.55,2.56,2.59,2.67,2.73,2.74,2.76,2.77,2.79,2.81,2.81,2

.82,2.83,2.85,2.87,2.88,2.93,2.95,2.96,2.97,2.97,3.09,3.11,3.11,3.15,3.15,3.19,3.19,3.22,3.22,
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3.27,3.28,3.31,3.31,3.33,3.39,3.39,3.51,3.56,3.6,3.65,3.68,3.68,3.68,3.7,3.75,4.2,4.38,4.42,4.

7,4.9,4.91,5.08,5.56. 

                                                      [Table 8 about here.] 

                                                      [Table 9 about here.] 

Analysis: 

Table 8 and 9 represents the results of test statistics and information criterion respectively for 

data set 3. Minimum test statistics and information criterion shows the goodness of fit of our 

designed model 

 

Data set3: This data consist times to failure of eighteen electronic devices [33]  used to show 

how the proposed distribution can be applied in practice.    
5,11,21,31,46,75,98,122,145,165,196,224,245,293,321,330,350,420 

 

                                                           [Table 10 about here.] 

                                                          [Table 11 about here.] 

  

Concluding Remarks: 

There has been an increased interest in defining new generated classes of univariate continuous 

distributions. The extended distributions have attracted several statisticians to develop new 

models. In this paper we propose the new log Dagum-X family of distributions. We study some 

of its mathematical properties. The maximum likelihood method is employed for estimating 

the model parameters. One special model, the distribution Weibull is considered and its 

properties are studied. It is fitted to two real data sets. The proposed special model consistently 

better fit than other competing models. We hope that the new family and its generated models 

will attract wider application in several areas such as engineering, survival and lifetime data, 

hydrology, economy. 
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Appendix: 

 

Theorem 1: 

Suppose that probability space (  ῼ, 퐹, 푃) and interval [푔 ,푔 ,] with 푔 < 푔 (푔 , = −∞, 푔 , =

∞)are given. Let continuous random variable 푋: ῼ → [푔 , 푔 ] has distribution function F. Let 

real functions 푔  푎푛푑 푔  be continuous on [푔 , 푔 ] such that  
( ( )/ )
( ( )/ ) = 푝(푥) is real function in simple form. Assume that 푔 , 푔 ∈ 푐([푔 , 푔]), 푝(푥) ∈

푐 ([푔 , 푔 ]) and 퐹 is two times continuously differentiable and strictly monotone function on 

[푔 , 푔 ] : As a final point, assume that the equation 푔 푝(푥) = 푔 has no real solution in [푔 , 푔 ]. 

then F(x)=∫ 푘
′( )

( ) ( ) ( ) exp(−푠푡) 푑푡 is obtained from the function 푔 , 푔 ,푝(푡) and 

푠(푡).where S(t) is obtained from equation 푠 ′(푡) =
′( ) ( )

( ) ( ) ( ) and k is constant, picked to 

make ∫ 푑푓 = 1 
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                                 Figure 1: Cumulative Distribution plot of LDWD 

 

                                                            
  

                                       
                                           Figure 2: Density plots of LDWD 
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                                              Figure 3: Survival plot of LDWD 
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                                             Figure 4:Hazard plot of LDWD 

 

                                     
                                         Figure 5: Shape of Hazard function     
                                         

    
 
 
 Table 2: Average mean of Bias and MSE values for estimators  Ө , 훽 and 휆 0f data 1 
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푛 Bias(Ө ) Bias(훽) Bias(휆) MSE(Ө ) MSE(훽) MSE(휆) 

25 0.65234 −0.08837 0.56572 0.56572 0.40559 0.86286 

50 0.35310 0.23613 0.17950 0.29754 0.52918 0.15562 

100 0.27740 0.46278 −0.01169 0.11882 0.72056 0.04713 

250` 0.44889 −0.03051 0.07439 0.24297 0.20479 0.03035 

 

 

Table 3: Average mean of Bias and MSE values for estimators  Ө , 훽 and 휆 of data 2 
 

푛 Bias (Ө ) Bias(훽) Bias(휆) MSE(Ө ) MSE(훽) MSE(휆) 

25 1.00745 −0.44500 −0.34131 1.26654 0.25397 0.21862 

50 0.57483 −0.23206 −0.39724 0.39676 0.09400 0.19138 

100 0.43445 0.41399 −0.68022 0.28879 0.63077 0.50529 

 

          

                  Table 4:  AD, CVM, The K-S statistics and p-values for the data set 1  

Distributions 퐴∗ 푊∗ K-S p-value 

LDWD 0.403996 0.0651719 0.076948 0.943568 

EED 0.362828 0.0483839 0.084435 0.868171 

WD 0.411538 0.0562415 0.0868536 0.845013 

GD 0.369975 0.0496265 0.0847622 0.86513 

LD 2.504843 0.3799524 0.19666206 0.04182 

NEED 0.666096 0.0962511 0.0906376 0.805953 

 

          

 

 

 

 

 

 

 

           Table 5:  Information Criteria of Different Distributions for Data 1 
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Distributions AIC AICC BIC HQIC CAIC 

LDWD 394.682 395.140 398.235 396.37 395.140 

EED 394.954 395.209 398.778 396.41 395.209 

WD 395.433 395.689 399.257 396.89 395.689 

GD 395.057 395.312 398.881 396.51 395.312 

LD 394.783 395.304 400.5187 396.97 395.304 

NEED 396.045 396.301 399.869 397.50 396.301 

 

                          Table:6 The K-S statistics and p-values for the data sets 2 

Distributions 퐴∗ 푊∗ K-S p-value 

LDWD 0.41395 0.06328 0.07134 0.9135 

EED 0.36282 0.04838 0.08444 0.8682 

WD 0.41153 0.05624 0.08685 0.8450 

GD 0.36997 0.04962 0.08476 0.8651 

LD 8.09533 1.66869 0.3377 0.00002 

NEED 8.11488 1.67229 0.322722 0.00006 

  

                       Table 7:  Information Criteria of Different Distributions for Data 2 

Model AIC AICC BIC CAIC 

LDWD 455.064 455.586 460.800 455.586 

EED 483.99 484.246 487.814 484.246 

WD 486.004 486.259 489.828 486.259 

GD 484.38 484.636 488.204 484.636 

NEED 516.033 519.857 516.289 516.857 

LD 474.0873 474.3427 477.9114 474.3427 

 

                   

               

 

 

 

                    Table 8:  Information Criteria of Different Distributions for Data 3 
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Model AIC BIC AICC HQIC CAIC 

LDWD 288.62 296.43 288.8685 296.4883 296.4883 

 GD 290.4673 295.6775 290.5909 292.576 290.5909 

WD 289.06 296.87 289.3086 292.2217 289.3086 

EED 296.36460 301.574 296.4883 298.4733 296.4883 

NEED 393.8472 399.0575 393.9709 395.9559 393.9709 

LD 474.0873 477.9114 474.3427 475.54356 474.3427 

 
 
 
 
                         Table 9: The K-S statistics and p-values for the data sets 3  

 
Distributions 퐴∗ 푊∗ K-S p-value 

LDWD 0.39666 0.06508 0.0618 0.8395 

EED 1.2341 0.2303 0.1077 0.19618 

WD 18.9521 3.7772 0.3341 4.02837

× 10  

GD 200.5016 32.9885 0.9996 2.22044

× 10  

LD 79.3018 17.3623 0.8210 −2.22044

× 10  

NEED 16.9307 3.35163 0.3170 3.73137

× 10  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         Table 10: The K-S statistics and p-values for the data sets 4 
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Distributions 퐴∗ 푊∗ K-S p-value 

LDWD 0.1725 0.02361 0.0840 0.9996 

EED 0.4456 0.07077 0.12138 0.9535 

WD 0.4609 0.0644 0.1132 0.9752 

GD 0.4487 0.06986 0.1206 0.956104 

LD 28.2328 5.0981 0.9157 1.5487

× 10  

NEED 2.46950 0.4826 0.28141 0.115548 

 
 
 
                     Table 11:  Information Criteria of Different Distributions for Data 4 

Model AIC BIC HQIC AICC CAIC    

LDWD 208.2915 210.9626 208.6598 210.0058 210.0057 

GD 226.1 227.9 226.9 229.9 229.9 

WD 395.433 397.214 395.6789 396.233 396.233 

EED 225.2528 227.0335 225.4983 226.05277 226.0527 

NEED 237.8595 239.6403 238.10512 238.6596 238.65956 

LD 341.4154 343.1962 341.6609 342.2154 342.2154 
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