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Abstract

Developments of new probability models for data analysis are keen interest of importance for
all fields. The log-Dagum distribution has a prominent role in the theory and practice of
statistics. In this article, a new family of continuous distributions generated from a log Dagum
random variable called the log-Dagum Weibull distribution is proposed. The key properties of
the proposed distribution are derived. Its density function can be symmetrical, left-skewed,
right-skewed and reversed-J shaped and can have increasing, decreasing, bathtub hazard rates
shaped. The model parameters are estimated by the method of maximum likelihood and
illustrate its importance by means of applications to real data sets.

Keywords: probability distributions; log-dagum distribution; parameter estimation; weibull

distribution

1. Introduction

Statistical distributions are extensively used in literature for modelling and forecasting real life
phenomena. The recent literature has suggested several ways of extending well-known
distributions. There has been an increased interest in defining new classes of univariate
continuous distributions by introducing one or more additional shape parameter(s) to the
baseline distribution. This induction of parameter(s) has been proved useful in exploring tail
properties and also for improving the goodness-of-fit of the generator family. The well-known
families are: the beta-G [9], Kumaraswamy-G [6], McDonald-G [3], Gamma-X [2],Gamma-
G (type 1) [18], Gamma-G (type 2) [15], Gamma-G (type 3) [17],Log-Gamma-G [4],Logistic-
G [16],Exponentiated Generalized-G [7], Transformed-transformer [2], Exponentiated T-X
[2], Weibull-G [5], etc.

The proposed new distribution generalizes the log-degum Weibull distributions. Some
Structural properties of this distribution are obtained and estimation the parameters via the
Method of maximum likelihood presented.

This paper is organized as follows. In section 2; we present the generalized distribution

including the corresponding probability density functions (pdf), survival function hazard

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202009.0428.v1


https://doi.org/10.20944/preprints202009.0428.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2020

functions shape of hazard function and concavity. In section 3; Rth moments, L- moments
quantile function and order statistics are presented. Section 4 contains the Shannon entropy and
Renyi entropy. Section 5 Bonferroni and Lorenz curves. Section 6 is concerned with
characterization via Hazard function, reverse hazard function and truncated moments of
distribution. Estimation of model parameters is presented in section 7. Evaluation Measures
and Practical Data Examples of the proposed model to real data are given in section 8, followed
by concluding remarks.

Let r(t) be the probability density function (pdf) of a random variable T € [a; b] for —oo <
a < b < oand let W[G(x)] be a function of the cumulative distribution function (cdf) of a
random variable X such that W |G (x)] satisfies the following conditions:

() W[G(x)] € [a; b];

(it) WG (x)] is dif ferentiable and monotonically non — decreasing,and (1)
((iDOW[G(x)] » aas x » —coandW [G(x)] € basx — o

Recently, Alzaatreh et al. (2013) defined the 7-X family of distributions by
WI[G(x)

F(x) = r(t)dt )
Where W[ G(x)] satisties the condition (1). The pdf corresponding to (2) is given by
o0 = {Z W@ rwIGx) 3)

In Table 1, we provide the W [G(x)] functions for some members of the T-X family of
distributions.

Table 1: Different W[G(x)] functions for special models of the T-X family

doi:10.20944/preprints202009.0428.v1

S.No. WIG(x)] Range of T Members of T-X family

1 G(x) [0,1] Beta-G (Eugene et al., 2002)
Kw-G type 1 (Cordeiro and de Castero, 2011)

Mc-G (Alexander et al., 2012)
Exp-G (Kw-G type 2) (Cordeiro et al., 2013)

2 —log [G(x)] [0,00] Gamma-G Type-2 (Risti’c and Balakrishnan, 2012)
Log-Gamma-G Type-2 (Amini et al., 2012)

3 -log[1- G(x)] [0,00] Gamma-G Type-1 (Zografos and Balakrishnan, 2009)
Log-Gamma-G Type-1 (Amini et al., 2012)
Weibull-X (Alzaatreh et al., 2013)
Gamma-X (Alzaatreh et al., 2014)

4 -log[1-G%(x)] [0,00] Exponentiated T-X (Alzaghal et al., 2013)

5 log [- log [1 - G(x)] [—o0, 0] Logistic-X
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6 logf- %] [—00, 0] Logistic-G (Torabi and Montazeri, 2014)proposed
7 lfé’a) [0,50] Gamma-G Type-3 (Torabi and Montazeri, 2012)
Weibull-G

The aim of this paper is to propose a new family of continuous distributions, called the /og

Dagum Weibull distribution, and to study some of its mathematical properties.

2. The Log Dagum Weibull Distribution
A random variable T has the log Dagum distribution with shape parameter B > 0 and
A > 0 if it’s cumulative distribution function (cdf) is given by
tt)=A+e™ P teR >0 1>0 4)
and its corresponding probability density function (pdf) can be expressed as
r(t) = fre (1 + e )P teER, >0, 1>0 (5)

Let G(x) and G (x) =1 — G(x) be the baseline cdf and survival function (sf) by replacing

WI[G(x)] by lo g( — ( )) and r(t) with (5) in equation (2), we define the cdf of the Log

Dagum-X family by

F(x)—[1+ (Z2) ]ﬁ (6)

1-G(x)

The Log Dagum family pdf is expressed as

S -1-1
= 66\ G(x) A8 g(x)
fe = [1 * (1—G(x)) ] (1—G(x)) [1-G(0)]? )

Henceforth, we denote by X a random variable having density function (7). The basic

motivations for using the Log Dagum-x family in practice are to construct heavy tailed
distributions that are not longer-tailed for modelling real data, to generate distributions with
symmetric, left-skewed, right-skewed and reversed-J shaped, to define special models with all
types of the hazard rate function (hrf), to provide consistently better fits than other generated
models under the same baseline distribution. The fact is well-demonstrated by fitting the log
Degum Weibull distribution to two real data sets. However, we expect that there are other
contexts in which the LX special models can produce worse fits than other generated
distributions. Clearly, the results indicate that the new family is a very competitive class to

other widely known generators with one extra shape parameter.
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The corresponding cumulative density function (cdf) probability density function (pdf), hazard
function (hrf) and survival function are given as
Fiow(®,2,6,8) =1+ (™ — 17 ®

[Figure 1 about here.]

Figure 1 gives the plots of the cumulative distribution function of the LDW distribution.

The plots of this figure shows that for fixed A and fand changing 6 the curve stretch

out insignificantly towards right as fincreases. However, for fixed f and 8 and changing

A the curve stretch out towards right significantly as A increases.

And

fuow(,2,6,8) = (1+ (e = 1)) F (=1 + ") A1 0 p2af 1 (9)

[Figure 2 about here.]

Plots of Figure 2 display the density functions of the LDW distribution. Figure 2

portrays that changing A against the fixed f and 6 the density function decreases.

but changing 8 against the fixed A the nature of the curve towards right as 6 increases, however

in case of changing 6 with fixed  and A shift the curve towards left.
Siow(x,2,6,) =1~ (1+ (™ ~1)™H)~F (10)
[Figure 4 about here.]

The graph of survival function increases for different values of parameters then suddenly

starts gradually decreases and converges to zero.

B \-2\-B- B _a— B -
_ (1+(66x -1) l) B 1(_1+69x ) A-1,60x Blﬁzxﬁ 1
hippw(x,4,6,B) = PP

4y

[Figure 3 about here.]

Hazard function is a significant indicator for observing the declining circumstance of a product
which ranges from increasing, decreasing, bathtub (BT) shapes. So in this regard Figure 3
speaks out itself and justifies the potential of the model. Moreover, the hazard function plots in
Figure 3 also portray the declining circumstance of the product as time increases in terms of
impulsive spikes at the end of either increasing or decreasing hazard rate. This implies that the

hazard function is sensitive against different combinations of the parameters as time changes,

doi:10.20944/preprints202009.0428.v1
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which seems to be a refine image of non stationary process and hence the hazard curve does
not remain stable as times passes. Moreover, Figure 3 displays increasing, decreasing bathtub

hazard shapes.

Shape of hazard function:

Shape of the density function can be described analytically .the critical point of the LDW

<1+(e9’55—1)_l>_ﬁ_1(—1+e9"ﬁ)_l_lee"ﬁxﬁ‘z(—1+ﬁ)elﬁz

density are the root of the equation +
Y q 1-(1+(e8%F —1)-1)-8
Bt -1 B A1 B -1-2 B
<1+(e9"ﬁ—1) ) (—1+e9"ﬁ) e0xP x26-292 53 <1+(€0x —1) ) (—1+69x ) 07" x2F=2 9283 (~1-2)A
-+ —
1-(1+(e®%F —1)-2)-B 1-(1+(e9%F —1)-1)-8

e205F <_1+eexﬁ)‘“‘2(1+(eexﬁ_1)

1-(1+(e%F —1)-2)-B

-B-2
) x2ﬁ’—2 (—1—,8)92/33).2
+

o20xP <_1+eexlf)_M_Z(H(eexlf_l)_l)_w_zxzﬁ—z 92542

<1_<1+(eexﬁ_1)—l)“*>2

There may be more than one root.

=0

Concavity:

The concavity of hazard rate function h'(x)=0
-2 -
<1+<e9"B —1) )

-p-1

B-1 —A-1
(—1+e9xﬁ) %P 3 B=3(_21B)(~1+ )01 2
+

1-(1+(e%P _1)-1)-B

<1+<e9"3—1)_l> <—1+e9"3)_l_1e9"ﬁx2/3‘3(—1+/3)92/1ﬁ3

+

1-(1+(e%F —1)-%)-B

<1+(e9’fﬁ—1)_l) (—1+e9"3)_1_1e9"ﬁx23‘3ﬁ3(—2+2ﬁ')921

1-(1+(eb2P —1)-2)-B

<1+(99x[3_1)_’1> (—1+eex'8)_A_leexﬁx35_3ﬂ493l

_(1+(60x3_1)—l)—3

4.
T

B N g NP
208 (100) " (14(e-1) ) 14080100

+ +

1-(1+(e®P —1)-2)-8

-A-2 N
e20xF (—1+e9xﬁ) <1+(e9’cﬁ—1) ) x2B=3B3(—2423)02(~1-2)A
+

1-(1+(e®P —1)-2)-8
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-A-2 N
30205 (14005 <1+(e9x5—1) ) x3B-3p493(—1-2)2

1-(1+(e®*F —1)-2)-8

-1-3 -\ A1
e362F (—1+e9xﬁ) <1+(e9"ﬁ—1) ) x3F=3p% 93 (—2-)A(-1-2)

+

1-(1+(e®*P —1)-2)-8
—22— -\ P2
e20%F (_14¢07F) ’ 2<1+(e9’cﬁ—1) ) x2P=343 62 (~1-B)(~1+p)A?
1-(1+(e?*F —1)-1)-8

B p\ 212 g\ —2p-2
e20x (—1+eex ) <1+(eex —1) ) x2B-3B% 92(~1+B) 22

<1—<1+(e9x5—1)_1>_3>2

—22- N
e20%F (_140%F) ’ 2<1+(e""‘8—1) ) x?P3(-1-B)B3 (-2+2p)6%2

J’_

2 +
1-(1+(e*" —1)~1)—B
—21-2 N
e262F (—1+e9xﬁ) <1+(e9"ﬁ—1) ) x2F=3p*4 (—2+2B)6%22
-1 -B 2
<1—<1+(e9xﬁ—1) ) )
—21-2 -\ B2
402658 (—1+e9"B) <1+(eexB_1) ) x3F-3 54 (~1-B)0322
|
1-(1+(e%F —1)-2)-8
—22-2 N
3¢202F (—1+e9"ﬁ) <1+(e9"ﬁ—1) ) x3B=3p5 322
oY
1-(1+(efxf -1)
-21-3 -2\ A2
e30xF (—1+e9xﬁ) <1+(e9"ﬁ—1) ) x3P=3 (-1-p)B*(-2-224)6%2?
7 +
1—-(1+(e9*F —1)~1)=B
-21-3 -2\ 7282
e36%F (—1+99"B) <1+(e9x5—1) ) x3B=3 5 93(—2-21)22
-2 -B 2 i
<1—<1+(99"B—1) ) )
-21-3 -2\ A2
e30xF (—1+e9xﬁ) <1+(e9"ﬁ—1) ) x3P=3 (—1-p)B*(-1-2)6%2?
J’_

1-(1+(e*F —1)-2)-8

-22-3 -\ 282
e30xF (—1+e9xﬁ) <1+(e9"ﬁ—1) ) x3F=3p5 93 (—1-1)A2

(1—<1+(e9xﬁ—1)_l>_ﬁ)2

31— _a\"B-3
o208 (_11007F) 3<1+(30x5-1) A) X303 (<2-p)(~1-B)B*631°

1-(1+(e®%F —1)-2)-8
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P g\ 343 g A —2p-3
€303 (—14¢0%") <1+(e9x -1) ) x3B=3(~2-2p)B5 6323

<1—<1+(99’€B—1)_A>_B>2

-31-3 -a\"2B-3
£3058 (_1400F) <1+(e0xﬁ_1)) x3B3(<1-F)B5 633

(1—<1+(e99€[”—1)_)1>_ﬁ>2

-31-3 -1\3F-3
26305 (_14¢05) <1+(e9"3—1) ) x3F=3p6 6323
=0
3

(1—<1+(e9xﬁ—1)_1>_ﬁ>

[Figure 5 about here]

J’_

for different value of parameters the hazard function is concave up and concave down where

the point concavity change is called point of inflection.

3. Some Statistical Properties

In this section, we study some statistical properties of the LDW distribution, including
Rth moments, L- moments quantile function and order statistics.

3.1 Moments of LDWD.

Let X is a particularly continuous non-negative random variable with PDF f(X) , and

then the R™ ordinary moment of the (LDW) distribution is given by:

E(x") = [ X" f(X)dX

E(x") = f(:OXr (1= (1 — e0xPy=2)=B-1(1 _ o0xF)-A-1,62P gy p2, -1/,
E(x") = Yo S k)"( o J7XT (1= 8y 2)=h=1(1 = o0%")~A=10x g3 52 B =14y
E(x™) = fOOOXr 1- e"xﬁ)’w-leHng)waﬂ—ldx

1
Lety = e dy = % 9pxP~1dx x= %ln(y)l_f

3

E(x") =AB X5 0( k)h( nh fo 1n(y)g) 1 _y)lﬁ—ldy

o (RR(=Dh (1)
E(x") = Y= S [ (Iny)F y™dy

h!
dy = —e7?dz

—Z

Let Iny=-—z y=e
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E(x") = Xh- o( 01! 2/1/9—1(—1)"1 foo(—z)E e ?M(—e ?)dz

h! m=0 4

-k
E(x") = lﬁ Eh 0( )1;l(| nh 2/1[5' 1(= 1) f() (z )ﬂe z(m+1) 4,

m=0
g dg
Let zim+1) =g z= D YT e
1 oo CRnED Qag-1 (- 1) dg
E(x") = /13—1 Yhoo—p—— Tl fo (m+1))B (m+1)

1

K (-Dr a18-1 (1™
BGM) =4 B = Bl S — s TG+ D

meem (m+1)B
3.2 L-Moments:
By = E(x(F()")
Where Fx) =1+ (eexﬁ —1)P

By = E(x(1 + (%% — 1)4)~#

Be = [Px(1- (1)) rpax

@ L -1 —B-1 -1
B, == j % (1 - (1-¢*) ) (A-a-e"))  @a-ey ™’ oap2xfdx
0
- g\ -B(k+1)-1 8 8
=[x (1 - (1 — ef ) ) (1 —e9*")"2"1e0x" g3 B2xF~1dx
g AB(e+1)—1
— Zﬁo 0( k)h( 1) f ( ) e@xﬁglﬁzxﬂ—ldx

1
Let % =y, eexB BOxFldx =dy, «x = il(lny)fdy
68

When x— 0, y—>1 and X—> 00, y— 00
Bk — Eh 0( k)l;ls 1) f (lny)ﬁ(l )lﬂ(k+1)—1 dy
o
Expanding (1 — y)*#®*+D~1 ysing binomial expension
o (AB(k+1)-1)

_ Z( k)h( " m“Z Z </1ﬁ(k -Ir_nl) - 1) (—1)%m flm(lny)%(Y)'“ dy

eﬁh 0
Let Iny = —z y=e? dy = —e ?dz
When y -1, z—-0 when y — oo, Z > ©

o (AB(k+1)-1)

_ _B%hi k)h( )b - z z (/1,3(]( -Ir-nl) - 1) (—1)2m flm(lny)%(y)m dy
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0 (2B(k+1)-1) . )

C (—K)p(~1)" Bk +1)—1 1
_[iz( )h( ) m+1Z Z < 'B( ) )(_1)2mf e~Zm Zﬁe_ZdZ
0B h=0 m 0

w o (AB(k+1)-1)

h _ oo 1
= _EZ k)h( 1) em+1 z z (Aﬁ(k 1 1) (—1)2mf e—z(m+1) B4,
97 h= m 0
— [ g _
Let zlm+1) =g 2miD = 2 i dz
When z-0, g-0 When Zo>ow, g-oow

o (AB(k+1)-1)

_ B Z( k)h( D" HZ Z </1f>’(k ‘:nl) B 1)( 1)2m (;jwe‘g gFdg

eﬁho (m +1)l>’
1)

+1

(=) (1" AB(k G+
By == _EZh o k;l' em+1 Yo OZ( B(k+1)-1) ()lﬁ(k+1) 1)( 1)2m( B
oF (m+1)P

3.3 Quantile function

The quantile function is another way of describing a probability distribution. It can
also be called the inverse cdf. It can be used to generate random samples for probability
distributions and thereby can serve as an alternative to the pdf. In general, it is given as:

Gx)=u

A+ -nHF=u

1+ % — 1) A =u"1/B

e 1y t=y k-1

_1 7
xB—1=<u ﬁ—l)

5 1 -1/
efx" = (u B — 1) +1

171/B
) _L 7
= |5 log <u B — 1) ]

3.4 Ordered Statistic:
The pdf of the jth order statistic for a random sample of size n from a distribution

function F(x) and an associated pdf f(x) is given by:
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i j—1 _ n—j
fin() = e [FCOV[1 = FCOT™ £ ()
where f(x) and F (x)are the pdf and cdf of the LDWD, respectively. The pdf of the jth order

statistics for a random sample of size n from the LDW distribution is, however, given as

follows

s (G PN N Y ECE

G—-Dm—-)
(1 + (eHxB _ 1)—/1)—[?—1(_1 + erﬁ)—A—lerﬁellﬁzxﬁ—l

So, the pdf of minimum order statistics is obtained by substituting j = 1 we have:

fin) = g [t 1w (e =) ] (1 (e 1))

(_1 + erﬁ)—A—lerﬁellﬁzxﬁ—l
While the corresponding pdf of maximum order statistics is obtained by making the

substitution of j = n in above equation

fin(x) = ml (1 + (eexﬁ - 1)_/1)_[;]11_1 <1 n (eexﬁ _ 1)_’1)

(_1 + eexﬂ)—l—leexﬁg;{ﬁzxﬁ—l

—[)’—1

4. Entropies
Entropy is the measure of uncertainty. It is actually a concept of physics.
4.1 Shannon Entropy:
s=— fooo f(x)Inf(x)dx
f(x) = (1 + (€% — 1)) F-1(=1 + e¥") 210479 p2xh~1
Inf(x) = —(8 + DIn(1 + (eexB - 1)_1) —(A+Dln (—1 + eexﬁ) +6xF +1n(61 82) + (B — 1Inx
Inf(x) = 28 + DIn(e®” = 1) = A+ DIn(=1+ ") + 6x# +In(62 ) + (- Dinx
S=(1=28) J; f)In (%" — 1) dx — 6 f;” f(x) xPdx — In(62 ) J,” f (x) dx —
(B—1) [y f(x) lnxdx
Where [ f()dx=1, [7f()Inxdx =E(nx), [, f(x)xPdx = E(xF)

0)kxkB

(e 1) = 5.2

5= (1= A9 220 S _ g (x8) - n (0267 — (B — 1) E(lnx)
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4.2  Renyi Entropy:

1 0
= mfo (FG0) dx
R=—["((1+ (8% — 1) 1)B-1(—1 + 9%’ )A162F g} p2yB-1))k gy
1-k“0

R_li gk 1k ﬁzk f°°(1 —(1- eexﬁ)—/‘t)—k(ﬁﬂ)(l _ eexﬁ)—k(,1+1)ek6xﬁxk(ﬁ—)1) dx

R = 11 FLIL ﬂzkz > = k)h( Dk f (1- exﬁ’);tk(ﬁu))(l_eexﬁ)—k(ul)ekexﬁ’xk(ﬁ—)ldx

1
Let % = y, e0x" BOxFldx =dy, «x = il(ln}’)Ed}’
0B

When x— 0, y—>1 and X— 00, y— 00
R = k1)) gel=tye 0( k)h( DK f (1- )k()lﬁ—l) yk-1 (In y)( )(k—l)dy

e

- k)h( DX Zk Ozk@ﬁ 1)( 1)m flooym+k—1 (lny)(l_%)(k_l)dy

1 gk 1/1k ﬁZk 1 o
= /.1y &h=0
= )

—Z

Let Iny = —z y=e dy = —e ?dz
When y -1, z—>0 when y — oo, Z—>

_Lw > —( ©n(-1) k(Aﬁ ) m (® ,—z(m+k-1) (1_%)("_1) -z
R = 1-k g(k_1)<1_%) h=0 Zk 02 ( 1) fO e Z e ?4dz

(B-1)
k-14k p2k-
- 1 o1 le 12( k)h( 24 z Z (- 1)mf e~ # (k=D z(l_%)(k_l)dz
1-k 0(k—1)(1—ﬁ) &
_ g _ 9
Let z((m+k—-2) =g Zmik-2) % z(m+k-2) dz
When z->0, g-0 When z—o> o, g
1 geak ﬁZk S D! < ! ” =)o
LIS S [ v
gk 1) 1—— (m+k-— 2)( )(k Y
1 gk-1pk p2k-1 (—R)p(-Dk k(/‘lﬁ 1) Mg
R= LI g QO g SIOA-D(_ gy
1-k (k 1)<1'B) 0 0 (m+k— 2)< )(k Y

S. Bonferoni and Lorenz Curves
In 1905, Max O. Lorenz represented a model for inequality of wealth distribution
and C.E. Bonferroni in 1930 proposed a measure of income inequality.

Both are used in financial mathematics to check equal distribution of wealth.
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Bonferroni and Lorenz curves are defined as follows:

q

E(p) = — [ xreax
P = ou

0
and

L()-lfq 0d
p —#Oxfx b

respectively, where p,q € (0,1).
1[4 -1 —h-1 —2-1
E(p) = —f x(1—E™ —1) ) (=1+e) " ™ on 2P Ldx
pUJg

Let (1—ef*)2 =y (1—eb%7)-2-106xF ) Boxh-1dx = dy,
y

1

1 _INB
x=—x|1—-y 2
~(1-v7)
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g &
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Expanding (1 — e?)~4*+D~1 by using binomial expansion
p g y g p

1M ow @,cw D™ A(n+1)-1y (068 = _
E(p) = 120 meo——( (D=1 [ zhe™ etdz
0

—1)m _ g1
E(p) _1Mye @yyo (nlll) (A(n+n1) 1) foeq =71 4

1Z4n=0 _, m=0
PMH/; n


https://doi.org/10.20944/preprints202009.0428.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2020

1 M oo n 1 0qP Z+k
E(p)=——§ (a) Z ( m (/'l(n+1) 1)Zk 0o (n—l)kf @’ 5tk 4,

PH B m! 0
1 A (a) ( D™ A 1) 1 (GO Z%Jrkﬂ .
— = MWy n n+ k
E®) =t 80 Bino oy ( )Ty (= D)
1
Lo B ( Hm ( Dk 0 BF+R+1
E(p) — E_Ezn 0(‘711)'n2 — ()l(n+1) 1) Zk 0 — (n- 1)k( q+)k+1
6B
E( )_ L by 9k+12 (a)nz ( 1™ (/‘l(n+1)—1) Zoo (_1)k( _ 1)k q1+%+%
p pu B n=0 pn m! n k=0 W %+k+1
and
1 k+1 v (@n v (1)m )l(n+1) 1 (-Dk kq“‘1*+%
L(p) = | MO Z o o ( ) Tio o (= D —
B

6. Characterization
In order to develop a stochastic function for a certain problem, it is necessary to know
whether function fulfils the theory of specific underlying probability distribution, it is
required to study characterizations of specific probability distribution. Different
characterization techniques have developed. Glanzel (1987, 1988 and 1990), Hamedani .
(1993, 2002, 2011 and 2015), Ahsanullah and Hamedani (2007, 2012), Ahsanullah et al.
(2013), Shakil et al. (2014), and Merovci et al. (2016) have worked on characterization.

6.1 Characterization based on Hazard function
Definition: Let x be a continuous random variable with pdf f (x) if and only if the

hazard function h(x)of a twice differentiable function F, satisfies equation
R'(x)

linf @] =52~ h(@)

For random variable X having LDW distribution with hazard rate function we obtain the

following equation

) = (1 + (e - 1)_'1)—5—1 — hGO)(L + (=1 + ")) B-1(_1 4 e0xF)-2-1,0xP g p2,f-1 —
= [(1 + ( oxF _ 1)_1)_3_1 (-1 + e9%F)2-1¢0xF g 2281
% [h(x)(—l + (e - 1)_1)‘”1] = %(1 + (e - 1)_1)_13_1 (—1+ 8 ) 4103 g g2 xB—1

_\B-1
<1+(e9x’3—1)> (~1+e0%F)=2-10xF g g2, -1

h(x) = -
(1+(ef%"-1) A)—ﬁ
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After manipulation, integrating and simplifying, we obtain as

F(x) = (1+ (eHXﬁ — 1)_1)

This is the cdf of LDW distribution.
6.2 Characterization based on reversed hazard Function:
@'(x)

d
Ix [Inf(x)] = o000 p(x)

For random variable X having LDW distribution with hazard rate function we obtain the

following equation

-B-1

o' (xX)(1+ (eexﬁ - 1)_1)‘5‘1+ o(x) (1 + (ee"B - 1)_/1> (-1 + e0xF)=2-1g0xF g g2, -1 = % [(1 +

—\B-1
(eHxB _ 1) ) (_1 + eexﬁ)—1—1eexﬁ9/wzxﬁ—1]

% [ o0 (1+ (o - 1)_1)_3_1] il (e - 1)_1)_13_1 (=1 + 0y 41607 g2yt

[<1 + (eexﬁ _ 1)—1)‘5‘1 (_1 N eexﬁ)—1_1egxl30/1ﬁ2xﬁ_1]

(1 + (e9xﬁ - 1)_1)_[3_1

After manipulation, integrating and simplifying, we obtain as

F(x) = (1 + (egxﬁ — 1)_/1)_[3_1

6.3 Characterization through Ratio of Truncated Moments

p(x) =

In this section, we characterize WD distribution using Theorem 1 (Glanzel; 1987) on the basis of simple
relationship between two functions of X. Theorem 1 is given in appendix A.
Preposition

Suppose that random variable X:Q— (0, o) is continuous. Let

ZeBXﬁ

hy (x) = $(1 + (e - 1)_1)13+1 (e - 1)“1and hy (x) =

<1+(eexﬂ_1)‘l)_ﬁ_1(eexﬂ_l)‘l‘l

x>0
The pdf of X is (9) if and only if p(x)has the form p(x) = e %" x >0
Proof:

For random variable X having LDW distribution with pdf (9) and cdf (8), we proceeds as
(1= FOO)E(h (x)/X = x) = e
(1-fX))E(hy(x)/X = x) = o204
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p(x) = e and p'(x) = e‘é"‘ﬁeﬁxﬁ‘1

'(f) = P Oh® 505 p-1 — 208
s'(6) TR 26Bx and s(t) 20x

Therefore in the light of Theorem 1, X has pdf (9)

7. Maximum Likelihood Estimation
Several approaches for parameter estimation have been proposed in the literature but the
maximum likelihood method is the most commonly employed.

LetX; X, .. ,X, bearandom sample of size n of the LDW distribution then the total

log-likelihood (LL) function is given
1\ B-1
L(%,0,8) = B2 [T, (1 + (e —1) ) an

(14 eexﬁ)—,l—19n | e+ i=1 7 )
n n
L(4,6,B) = 2nLog[B] + nLog[6] + nLog[A] + 6 Z xf+(p-1) Z Log[x,]
=1 =1

—(A+ 1)Zn Log[e*"® — 1] +A(8 + 1)Zn Log(1+ (ex"® — 1)),
I=1 I=

The First derivatives of the log-likelihood function are given as follow

6L(1,6,8) 2 _ _ n _
Tﬁ = 7” +0p Y P+ T Logly]l - (A+1) X 6px T 424 ) pxfle,
SL(L6.B) _ n

n n
n_ %o _ xP0 _
5 N E I=1Log[e ! 11+ A+ 1) E . Log(1 + (e ! 1)),

SL(LO.B) _ m

n n "
56 §+21=1xlﬁ -(1+1) 21=1xlﬁ +A(B+1) ZI:lxIﬁ’

Equating equations to zero and solving them numerically, one can obtain the estimates of the
unknown parameters.
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8 Simulation Study

This section deals the simulation study. In proposed model we generated random variables
by using CDF of LDWD with four different value of parameters for n=25,50,100,200.
Parameters are estimated with method of MLE by using each generated random variable.

In statistical study, bias states to the tendency of a measurement process to over or under
estimate the value of population parameters. Bias of MLEs can be fundamental. Squared
error is a function which obtained from square values of bias. MSE is always constructive.
Bias shows the contrasts between estimated values of parameter variation from true value of
parameter.

By using the estimated parameters, we calculated Bias and MSE of LDWD and also calculate
their average mean which are shown in different graphs. The resulting Behaviour of these
Bias and MSE of these estimated parameters are also shown below with the help of graphs.
All simulations were done on computational software "Mathematica 8.0.

The analysis computes the coming values:

e Average bias of the simulated estimates:
1000

1
— 0" -0
100021':1 ( )

e Average mean square error (MSE) of the simulated estimates:

1 1000 ,
— 0" -0
1000 Zizl ( )

The results are reported in Tables 1 and 2 .

[Table 2 about here.]
[Table 3 about here.]

9. Evaluation Measures and Practical Data Examples
We illustrate the usefulness of the Log Dagum Weibull distribution and compare the results
with the WD GD LD EED and NEED distributions by means of four real data sets. , one of
which is data of leukaemia-free survival times of 50 patients with Autologous transplant

obtained from [11] and the second data set contains Lifetime of 50 devices [13], Third data set
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consists of 100 uncensored data on breaking stress of carbon fibres (in Gba) [32], fourth data
consist times to failure of eighteen electronic devices [33]

In this section we illustrate the usefulness of the Log Dagum Weibull distribution .We estimate
the unknown parameters of LDWD using MLE method and compare the log likelihood with
some other distributions including EED, WD,GD,NEED and LD. We will check goodness of
fit of our model with some test statistics like AD test, CVM test, K-S test and p-value. All
calculations are executed on computational software MATHEMATICA 11.0

Numerical measures

In order to demonstrate the proposed methodology, we consider four different practical data
sets described below with their analysis. They represent different level of skewness ranging
from negative skewness to positive skewness along with various demonstration of failure rate
pattern, like increasing, decreasing, and bathtub shape. Moreover, perfection of competing
models is also tested via the Kolmogrov-Simnorov (K S),the Anderson Darling (4*) and the
Cramer-von Misses (W™) statistics. The mathematical expressions for the statistics are given

by

i i—1
KS = max{——zi,zi — }.
m m

2.25 0.75 1w
A= (-2 ) - EZ(zl' — DIn(z(zm-+1))}

m2

and

m . 2
*_z( 21—1) N 1
W= 4 L 12m'

where m denotes the number of classes, zi = FX(xi), the xi's being the ordered

observations respectively.

Data set 1. The first data set obtained from [12] of leukemia-free survival times of 50 patients
with Autologous transplant.Data sets are presented in the following tables : 0.030 , 0.493,
0.855,1.184,1.283, 1.480, 1.776, 2.138,2.500 ,2.763,2.993 ,3.224 ,3.421,4.178, 4.441, 5.691,
5.855,6.941, 6.941,7.993, 8.882 ,8.882, 9.145, 11.480, 11.513, 12.105 ,12.796 ,12.993
,13.849, 16.612,17.138, 20.066 ,20.329 ,22.368 ,26.776 ,28.717, 28.717 ,32.928 ,33.783,
34.211,34.770, 39.539 ,41.118, 45.033, 46.053, 46.941, 48.289,57.401, 58.322 ,60.625.
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The measures of goodness of fit including the Akaike information criterion (AIC), consistent
Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn
information criterion (HQIC), Anderson-Darling (4*), Cram er—von Mises (W ™) and
Kolmogrov-Smirnov (K-S) statistics are computed to compare the fitted models. The
statistics A* and W™ are described in details in [8]. In general, the smaller values of these
statistics, better fit to the data. The required computations are carried out in the Mathematica

11.0.

[Table 4 about here]

[Table 5 about here]
Analysis:
Table 4 and 5 represents the results of test statistics and information criterion respectively for
data set 1. Minimum test statistics and information criterion shows the goodness of fit of our
designed model.
Data set 2: Second data set Lifetime of 50 devices are obtained from [14].
0.1,02,1,1,1,1,1,2,3,6,7,11,12,18, 18,18 ,18, 18, 21 ,32, 36 ,40, 45 ,46, 47, 50, 55
,60, 63, 63, 67, 67,67 ,67,72,75,79 ,82, 82, 83, 84, 84 ,84, 85, 85, 85 ,85, 85, 86 ,86.
We fit the LDW model and other competitive models such as the Exponentiated exponential
distribution (EED) [10], Weibull distribution (WD) [11], Gamma distribution (GD)
[10],NEED Nadarajah Exponentiated exponential distribution and Lomax distribution (LD)

to data sets.

[Table 6 about here.]
[Table 7 about here]

Analysis:
Tables 6 represents the results of test statistics for data set 2.Minimum test statistics shows the
goodness of fit of our designed model. It can be easily seen that our model has better fitness

than other five models

Data set 3: This data set consists of 100 uncensored data on breaking stress of carbon fibres
(in Gba), [32].
.0.39,0.81,0.85,0.98,1.08,1.12,1.17,1.18,1.22,1.25,1.36,1.41,1.47,1.57,1.57,1.59,1.59,1.61,1.6

1,1.69,1.69,1.71,1.73,1.8,1.84,1.84,1.87,1.89,1.92,2,2.03,2.03,2.05,2.12,2.17,2.17,2.17,2.35,2
.38,2.41,2.43,2.48,2.48,2.5,2.53,2.55,2.55,2.56,2.59,2.67,2.73,2.74,2.76,2.77,2.79,2.81,2.81,2
.82,2.83,2.85,2.87,2.88,2.93,2.95,2.96,2.97,2.97,3.09,3.11,3.11,3.15,3.15,3.19,3.19,3.22,3.22,
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3.27,3.28,3.31,3.31,3.33,3.39,3.39,3.51,3.56,3.6,3.65,3.68,3.68,3.68,3.7,3.75,4.2,4.38,4.42 4.
7,4.9,4.91,5.08,5.56.

[Table 8 about here.]

[Table 9 about here.]
Analysis:
Table 8 and 9 represents the results of test statistics and information criterion respectively for
data set 3. Minimum test statistics and information criterion shows the goodness of fit of our

designed model

Data set3: This data consist times to failure of eighteen electronic devices [33] used to show
how the proposed distribution can be applied in practice.

5,11,21,31,46,75,98,122,145,165,196,224,245,293,321,330,350,420

[Table 10 about here.]
[Table 11 about here.]

Concluding Remarks:

There has been an increased interest in defining new generated classes of univariate continuous
distributions. The extended distributions have attracted several statisticians to develop new
models. In this paper we propose the new log Dagum-X family of distributions. We study some
of its mathematical properties. The maximum likelihood method is employed for estimating
the model parameters. One special model, the distribution Weibull is considered and its
properties are studied. It is fitted to two real data sets. The proposed special model consistently
better fit than other competing models. We hope that the new family and its generated models
will attract wider application in several areas such as engineering, survival and lifetime data,

hydrology, economy.
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Appendix:

Theorem 1:
Suppose that probability space ( €, F, P) and interval [g; g, ] with g1 < g,(g1, = —0, g, =
o)are given. Let continuous random variable X: Q — [g4, g, ] has distribution function F. Let

real functions giand g, be continuous on (91, 921 such that

E(g1(x)/X2x)

(g, (0)/Xo0) = p(x) is real function in simple form. Assume that g;, g, € c([g1, g]),p(x) €

c%([g1,92]) and F is two times continuously differentiable and strictly monotone function on

[g1, g2] : As a final point, assume that the equation g,p(x) = g;has no real solution in [g4, g, ].

then F(x)=/ ¥k 40

Ink mexp(—st) dt is obtained from the function g4, g, p(t) and

p (g2 (t)

92 (0-9.0 and k is constant, picked to

s(t).where S(t) is obtained from equation s (t) =

make f;lz df =1
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a) CDF Plot for LDWD b) CDF Plot for LDWD
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Figure 1: Cumulative Distribution plot of LDWD
a) PDF Plot for LDWD b) PDF Plot for LDWD
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Figure 2: Density plots of LDWD
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Figure 3: Survival plot of LDWD
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Figure 4:Hazard plot of LDWD

Figure 5: Shape of Hazard function

Table 2: Average mean of Bias and MSE values for estimators 6, f and 1 0f data 1
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n Bias(8) | Bias(f) Bias(1) MSE(6) | MSE(f) |MSEM)

25 0.65234 —0.08837 0.56572 0.56572 0.40559 0.86286

50 0.35310 0.23613 0.17950 0.29754 0.52918 0.15562
100 0.27740 0.46278 —0.01169 0.11882 0.72056 0.04713
250° 0.44889 —0.03051 0.07439 0.24297 0.20479 0.03035

Table 3: Average mean of Bias and MSE values for estimators 6, f and 1 of data 2

n Bias () | Bias(f) Bias(1) MSE(®) |MSE() | MSE()
25 1.00745 —0.44500 —0.34131 1.26654 0.25397 0.21862
50 0.57483 —0.23206 | —0.39724 0.39676 0.09400 0.19138
100 0.43445 0.41399 —0.68022 0.28879 0.63077 0.50529
Table 4: AD, CVM, The K-S statistics and p-values for the data set 1
Distributions A* w* K-S p-value
LDWD 0.403996 0.0651719 0.076948 0.943568
EED 0.362828 0.0483839 0.084435 0.868171
WD 0.411538 0.0562415 0.0868536 0.845013
GD 0.369975 0.0496265 0.0847622 0.86513
LD 2.504843 0.3799524 0.19666206 0.04182
NEED 0.666096 0.0962511 0.0906376 0.805953

Table 5: Information Criteria of Different Distributions for Data 1
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Distributions AIC AICC BIC HQIC CAIC
LDWD 394.682 395.140 398.235 396.37 395.140
EED 394.954 395.209 398.778 396.41 395.209
WD 395.433 395.689 399.257 396.89 395.689
GD 395.057 395.312 398.881 396.51 395.312
LD 394.783 395.304 400.5187 396.97 395.304
NEED 396.045 396.301 399.869 397.50 396.301

Table:6 The K-S statistics and p-values for the data sets 2

Distributions A" w K-S p-value
LDWD 0.41395 0.06328 0.07134 0.9135
EED 0.36282 0.04838 0.08444 0.8682
WD 0.41153 0.05624 0.08685 0.8450

GD 0.36997 0.04962 0.08476 0.8651
LD 8.09533 1.66869 0.3377 0.00002
NEED 8.11488 1.67229 0.322722 0.00006

Table 7: Information Criteria of Different Distributions for Data 2

Model AIC AICC BIC CAIC

LDWD 455.064 455.586 460.800 455.586
EED 483.99 484.246 487.814 484.246
WD 486.004 486.259 489.828 486.259
GD 484.38 484.636 488.204 484.636

NEED 516.033 519.857 516.289 516.857
LD 474.0873 474.3427 4779114 474.3427

Table 8: Information Criteria of Different Distributions for Data 3
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Model AIC BIC AICC HQIC CAIC
LDWD 288.62 296.43 288.8685 | 296.4883 | 296.4883
GD 290.4673 | 295.6775 | 290.5909 | 292.576 | 290.5909
WD 289.06 296.87 289.3086 | 292.2217 | 289.3086
EED 296.36460 | 301.574 | 296.4883 | 298.4733 | 296.4883
NEED 393.8472 | 399.0575 | 393.9709 | 395.9559 | 393.9709
LD 474.0873 | 4779114 | 474.3427 | 475.54356 | 474.3427
Table 9: The K-S statistics and p-values for the data sets 3
Distributions A* w K-S p-value
LDWD 0.39666 0.06508 0.0618 0.8395
EED 1.2341 0.2303 0.1077 0.19618
WD 18.9521 3.7772 0.3341 4.02837
x 10710
GD 200.5016 32.9885 0.9996 2.22044
x 10716
LD 79.3018 17.3623 0.8210 —2.22044
x 10716
NEED 16.9307 3.35163 0.3170 3.73137
x 107°

Table 10: The K-S statistics and p-values for the data sets 4
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Distributions A* w K-S p-value
LDWD 0.1725 0.02361 0.0840 0.9996
EED 0.4456 0.07077 0.12138 0.9535
WD 0.4609 0.0644 0.1132 0.9752

GD 0.4487 0.06986 0.1206 0.956104
LD 28.2328 5.0981 0.9157 1.5487

x 10713

NEED 2.46950 0.4826 0.28141 0.115548

Table 11: Information Criteria of Different Distributions for Data 4

Model AIC BIC HQIC AICC CAIC
LDWD 208.2915 210.9626 208.6598 | 210.0058 | 210.0057
GD 226.1 227.9 226.9 229.9 229.9
WD 395.433 397.214 395.6789 396.233 396.233
EED 225.2528 227.0335 225.4983 | 226.05277 | 226.0527
NEED 237.8595 239.6403 238.10512 | 238.6596 | 238.65956
LD 341.4154 343.1962 341.6609 | 342.2154 | 342.2154
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