Antibiotic-Resistant *Escherichia Coli* and Sequence Type 131 in Fecal Colonization in Dogs in Taiwan

Jenn-Wei Chen1,†, Han Hsiang Huang2,†, Szu-Min Chang3, Joy Scaria4, Yu-Lung Chiu5, Chih-Ming Chen6, Wen-Chien Ko7, Jiun-Ling Wang8,*

1 Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; jc923@mail.ncku.edu.tw
2 Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan; hhuang@mail.ncyu.edu.tw
3 Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; s5nau3@gmail.com
4 Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA; joy.scaria@sdstate.edu
5 Department of Veterinary Medicine, National Chung Hsing University; Department of Veterinary Medicine, National Chiayi University, Chiayi City 605, Taiwan; handel737@yahoo.com.tw
6 Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan; Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, 435 Taichung, Taiwan; chioming2002@yahoo.com.tw
7 Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; jiumlingwang@gmail.com
8 Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; jiumlingwang@gmail.com
† These authors contributed equally to this work
* Correspondence: jiumlingwang@gmail.com; +886-6-2353535

Abstract: Background: Most drug-resistant *Escherichia coli* isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant *E. coli* and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods: Rectal swabs were used for *E. coli* isolation from 299 dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of *E. coli* for major STs were performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing *E. coli* in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (*P* < 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and H22. Conclusion: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant *E. coli* isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.

Keywords: dog; ST131; ESBL; fecal colonization; *Escherichia coli*

1. Introduction

The close bond between humans and their dogs provides opportunities for the exchange of multidrug-resistant organisms. Moreover, the clinical infection of extended spectrum beta-lactamase (ESBL)-producing *Escherichia coli* in companion animals has been reported [1,2]. ESBL-producing *E.
coli have been reported since the late 1990s in companion animals in south-European countries and have now become widespread, with many nosocomial outbreaks in dogs in recent years [1,3]. Surveillance for antimicrobial resistance among bacteria isolated from dogs is useful for guiding antibiotic use when treating canine infections [2,4-6]. The urinary tract disease guidelines for dogs suggest that veterinarians should be aware of the pathogen and antimicrobial resistance trends among urinary pathogens isolated from patients in their clinic [7].

The prevalence of ESBL-producing E. coli was shown to be about 3% in clinical samples from companion animals in the US [8,9], ESBL urinary tract infections (UTIs) in dogs have been reported in China and Switzerland in about 5% of samples [10,11]. In some laboratories (e.g., UK and China), there is an increasing percentage of extended-spectrum cephalosporin-resistant E. coli found in clinical isolates from companion animals [12,13].

Thus, beyond human isolates, the global emergence and spread of extraintestinal pathogenic E. coli O25-ST131 strains in ESBL isolates has also been found in companion animals [14,15]. According to the literature, ST131 can be found in clinical isolates from dogs in many countries, including the UK [12], the US [8,16], Canada [17], Japan [18,19], China [13], Germany [20,21], Australia [5,22], France [23], and Portugal [24-26]. Human–dog co-carcriage was also demonstrated in several households [16,22,27]. Two large studies screening for ST131 in clinical samples in dogs determined about a 10% prevalence of ESBL-producing isolates [20] and 7% for fluoroquinolone-resistant E. coli [28]. In a study from Japan [19], ST131 constituted 36% of all clinical isolates of ESBL-producing E. coli infection among dogs and cats, and all subclones were FimH30. In comparison to FimH30, fimH41 (clade A) and fimH22 (clade B) are usually antibiotic-susceptible alleles and are thought to be precursor subclones of FimH30 [29,30].

Few studies systematically collect rectal swabs or fecal carriage information for drug-resistant E. coli or ST131 in asymptomatic dogs. Moreover, the distribution of fimH type and other antibiotic-resistant genes in ST131 dog feces in Taiwan remains unclear. In this study, we investigate the prevalence of fluoroquinolone-resistant and beta-lactam-resistant E. coli in healthy dogs in Taiwan and determine if any risk factors, such as feeding habits or prior antibiotic use, are related to antibiotic-resistant E. coli. We also sought to study the subtypes and other antibiotic-resistant genes of the epidemic strain ST131 in asymptomatic dogs in Taiwan.

2. Materials and Methods

Rectal swabs from 299 dogs more than 6 months old were performed when the dogs visited the hospital for vaccinations and health exams. We collected information about sex, age, antibiotic use, and dietary habits from the owner. Dogs less than 6 months old or adopted less than 1 month prior to the study were excluded.

We used a BD transport tube for anal/rectal swabbing. E. coli was isolated by a conventional method, and antibiotic resistance was determined by the disk diffusion method, including resistance of cefazolin, ciprofloxacin, ceftiraxone, gentamicin, and trimethoprim/sulfamethoxazole (TMP/SMZ). ESBL confirmation followed the recommendations of the Clinical and Laboratory Standards Institute (CLSI) by using a combined-disk test for ESBL production in Enterobacteriaceae. This test consists of measuring the growth-inhibitory zones around both the cefotaxime (CTX) and ceftazidime (CAZ) disks with or without clavulanate (CA) [31].

DNA was extracted with a MasterPure™ Complete DNA and RNA Purification Kit (Lucigen Corp.). Seven phylogroups were recognized (A, B1, B2, C, D, E, F) by multiplex PCR [32]. All PCR reactions were performed under the following conditions: 5 min at 95 °C for denaturation; 25 cycles of 30 s at 95 °C and 30 s at 55 °C (Quadruplex), 57 °C (Group C), or 55 °C (Group E); and 5 mins at 72 °C for extension. The PCR product was measured with 2% agarose (Cyrusbioscience, Inc.). The nine main Escherichia coli phylogroup B2 lineages involved in extra-intestinal infections were identified by the allele-specific PCR method [33]. All PCR reactions were performed under the following conditions: 4 min at 94 °C for denaturation and 25 cycles of 5 s at 94 °C, 20 s at 63 °C, and 5 mins at 72 °C for extension. The PCR product was measured with 2% agarose (Cyrusbioscience, Inc.).
Besides *E. coli* colonization, we also screened for ST131 in some *E. coli* isolates from diseased dogs. If ST131 was found by the previous multiplex PCR, whole genome sequencing was performed. A genomic library was constructed using a Nextera XT DNA library preparation kit (Illumina, San Diego, CA, USA). We performed sequencing using an Illumina MiSeq platform with paired-end chemistry. All contigs were submitted to the CGE Finder Series (Centre for Genomic Epidemiology, Technical University of Denmark (DTU), https://cge.cbs.dtu.dk/services/).

The presence of resistance genes in the whole genome sequences and subtypes of the ST131 *E. coli* isolates was investigated by ResFinder and CHtyper [34].

3. Results

Among the 299 dogs, 26 dogs provided 2 isolates at collection. Fourteen dogs had no *E. coli* isolated when we performed the anal swab. We found 311 isolates for further antibiotic susceptibility tests and PCR studies, including a phylogenetic group and genotype study. In the antibiotic susceptibility test, there were 43.1% cefazolin-resistant and 22.1% fluoroquinolone-resistant *E. coli* colonies. Moreover, ESBL-producing *E. coli* fecal colonies were found in 9.4% of dogs.

In the phylogenetic study, 279 isolates were able to be grouped by PCR. The percentage of phylogenetic groups is shown in Figure 1. B2 was the predominant group (n=84, 30.1%), followed by B1 (n=73, 26.2%) and A (N=44, 15.8%).

![Figure 1. Phylogenetic group distribution of *E. coli* in the anal swabs of dogs.](image)

Among the 84 isolates of the B2 group, further clonal complexes could be found by multiplex PCR in 71 isolates. The distributions of common ST complexes are shown in Figure 2. The three most predominant ST complexes were STc372, followed by STc127 and STc131.
In the analysis of the risk factors for ESBL-producing *E. coli*, the food habits of the animals were not different. However, the ESBL-producing group had more antibiotic exposure in the last 14 days prior to the study (39.3% vs. 13.7%, *P* < 0.05) (Table 1). The cefazolin-resistant *E. coli* group also had higher antibiotic exposure than cefazolin-susceptible *E. coli* (26.4% vs. 8.0%, *P* < 0.05) (Table 1). In the comparison between fluoroquinolone-resistant *E. coli* and fluoroquinolone-susceptible *E. coli*, the trend of antibiotic exposure in the last 14 days was similar (40.9% vs. 9.0%, *P* < 0.05). The dietary habits were similar between the fluoroquinolone-resistant and fluoroquinolone-susceptible groups (Table 1). Different antibiotic exposure histories were not found in the phylogenetic B2 and non-B2 groups (Table 2).

Table 1. Risk factors of antimicrobial-resistant *E. coli* in the fecal carriage of dogs.

<table>
<thead>
<tr>
<th></th>
<th>ESBL-producing E. coli</th>
<th>Non-ESBL-producing E. coli</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>28</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>8.5(4.7)</td>
<td>9.1(4.7)</td>
<td>0.562</td>
</tr>
<tr>
<td>Sex</td>
<td>14.0(50.0)</td>
<td>140(51.7)</td>
<td>0.867</td>
</tr>
<tr>
<td>Commercial pet food</td>
<td>9(32.1)</td>
<td>66(24.4)</td>
<td>0.365</td>
</tr>
<tr>
<td>Human food use</td>
<td>17(60.7)</td>
<td>178(65.7)</td>
<td>0.599</td>
</tr>
<tr>
<td>Recent use of antimicrobial agents</td>
<td>11(39.3)</td>
<td>37(13.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cefazolin-resistant</th>
<th>Cefazolin-susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>129</td>
<td>170</td>
</tr>
<tr>
<td>Age</td>
<td>9.1(4.8)</td>
<td>9.0(4.7)</td>
</tr>
</tbody>
</table>
Table 2. Risk factors of E. coli fecal carriage of phylogenetic B2.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Phylogenetic B2 carrier</th>
<th>Non-phylogenetic B2 carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>79</td>
<td>220</td>
</tr>
<tr>
<td>Age</td>
<td>10.1(4.9)</td>
<td>8.6(4.6)</td>
</tr>
<tr>
<td>Sex</td>
<td>41(51.9)</td>
<td>113(51.4)</td>
</tr>
<tr>
<td>Commercial pet food</td>
<td>20(25.3)</td>
<td>55(25.0)</td>
</tr>
<tr>
<td>Human food use</td>
<td>55(69.6)</td>
<td>140(63.6)</td>
</tr>
<tr>
<td>Recent use of antimicrobial agents</td>
<td>13(16.5)</td>
<td>35(15.9)</td>
</tr>
</tbody>
</table>

Note: Some dogs had two E. coli isolates in their fecal specimen, and some did not provide any E. coli; ESBL extended-spectrum β-lactamases.

A further whole genome analysis was performed on 10 ST131 isolates, including seven isolates of fecal colonization and three isolates of clinical infection. The FimH types and antibiotic-resistant genes found by Res finder and the antibiotic resistance phenotypes found via the disk diffusion method are shown in Table 3.

Table 3. The antibiotic resistance profiles (genes and phenotypes) of 7 fecal carriages of ST131 isolates and 3 clinical isolates from diseased dogs.

<table>
<thead>
<tr>
<th>FimH type</th>
<th>Aminoglycoside R gene and phenotype</th>
<th>TMP/SMZ R gene and phenotype</th>
<th>Cephalosporin R gene and phenotype (cefazolin, ceftriaxone, ESBL)</th>
<th>Quinolone R gene and phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal carriage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>aac(3)-IId-like, aadA12-like</td>
<td>R sul2-like, sul3 dfrA12</td>
<td>R blaCTX-M-45, blatem-1B-like R, R, + QnrS1-like R</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>nd</td>
<td>S nd</td>
<td>S nd</td>
<td>S, S, - nd S</td>
</tr>
<tr>
<td>41*</td>
<td>aac(3)-IId-like</td>
<td>R sul2, dfrA14-like</td>
<td>R blaCMY-2, blCTX-M-55 R R, R, + QnrS1 S</td>
<td></td>
</tr>
</tbody>
</table>
Our study illustrates the challenge, the risk factors of underlying disease condition. The rate of ST127, CTXn.

In Israel, ST127 was frequently recovered from UTI samples and showed a predominant role of ST372 pathogens in companion animals. In Pakistan, the percentage of ESBL-producing E. coli isolates in dog feces was shown to be as high as 80% [36], while data from the US showed a prevalence of less than 10% in dogs [37]. Our study illustrates the challenges of emerging drug-resistant pathogens in companion animals.

The predominant B2 phylogenetic clonal complexes in our cohort were STc372 and STc127. The predominant role of ST372 in this study was similar to that of the clinical isolates from dogs in the US [38] and France [39]. In Israel, ST127 was found in ESBL E. coli from a petting zoo [40] and in infected cats from Australia [41]. In another human study in the US [42], ST127 was significantly more frequently recovered from UTI samples and was the second most common ST type in young women with UTIs in Canada [43].

Similar to previous studies, the risk factors of underlying disease conditions and the use of prior antimicrobial agents were the primary risks associated with a UTI presenting MDR E. coli in dogs [5]. In a study on the ESBL genotype in diseased cats and dogs in China, CTX-M-65 and CTX-M-15 were the most predominant CTX-M enzyme types among E. coli isolates [13]. Further, in the UK and Japan, CTX-M-15, CTX-M-14, and CTX-M-55 were also found to be prevalent in clinical isolates from companion animals [12,18]. ST131 CTX-M-15-producing E. coli strains are common in the clinical isolates of companion animals [20]. Besides clinical isolates from infected animals, CTX-M15 was also found in the asymptomatic fecal carriers of ST131 in our cohort. CTX-M-15, which spreads pandemically among humans, was only detected in 15% of companion animals [44]. Other CTX-M types (CTX-M 55 and 65) were also found in our fecal colonized isolates.

Similar to the findings for humans, the fecal E. coli colonization of ST131 in our dog cohort demonstrated that subtype FimH22 and FimH41 strains have the ability to colonize the gut. Moreover, the H30 strains displayed traits that allow extra-intestinal infection [45]. A recent study

<table>
<thead>
<tr>
<th>#</th>
<th>resistance type</th>
<th>susceptibility</th>
<th>ESBL phenotype</th>
<th>FimH</th>
<th>R, +</th>
<th>nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>sul2-like</td>
<td>S</td>
<td>nd</td>
<td>S, S, -</td>
<td>nd</td>
<td>R</td>
</tr>
<tr>
<td>41</td>
<td>sul2-like</td>
<td>S</td>
<td>blTEM-1B</td>
<td>S, S, -</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>sul1, dfrA17</td>
<td>R</td>
<td>blCTX-M-15</td>
<td>R, R, +</td>
<td>aac(6')Ib-cr</td>
<td>R</td>
</tr>
<tr>
<td>41</td>
<td>sul1, sul2-like, dfrA17</td>
<td>R</td>
<td>blTEM-1B-like</td>
<td>S, S, -</td>
<td>nd</td>
<td>R</td>
</tr>
</tbody>
</table>

Clinical isolates from diseased dogs

<table>
<thead>
<tr>
<th>#</th>
<th>resistance type</th>
<th>susceptibility</th>
<th>ESBL phenotype</th>
<th>FimH</th>
<th>R, +</th>
<th>nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>sul2-like</td>
<td>S</td>
<td>nd</td>
<td>S, blCTX-M-15</td>
<td>R, R, +</td>
<td>aac(6')Ib-cr</td>
</tr>
<tr>
<td>30</td>
<td>sul2-like</td>
<td>S</td>
<td>nd</td>
<td>S, blCTX-M-15</td>
<td>R, R, +</td>
<td>aac(6')Ib-cr</td>
</tr>
<tr>
<td>30</td>
<td>nd</td>
<td>S</td>
<td>nd</td>
<td>S, R, -</td>
<td>nd</td>
<td>R</td>
</tr>
</tbody>
</table>

R: resistant; S: susceptible; #: ESBL phenotype positive; -: ESBL phenotype negative; nd: not detected.

#: Recent antimicrobial agent use history, including cefalexin and amoxicillin/clavulante.

Among the seven isolates of ST131 in the fecal colonies, the most predominant subtypes were FimH41 (42.8%, n=3) and FimH22 (42.8%, n=3). Moreover, FimH30 was found in only 1 (14.3%) of the fecal isolates but in 100% of the three clinical isolates from dogs with infections. ESBL enzymes in the fecal colonies included CTX-M15 (n=1), CTX-M55 (n=1), and CTX-M65 (n=1). All of the infection isolates were caused by CTX-M15-producing E. coli isolates.

4. Discussion

This is the first study on E. coli fecal colonization with a risk factor analysis in Taiwan. We found that recent antibiotic exposure was associated with cefazolin-resistant, fluoroquinolone-resistant, and ESBL-producing E. coli. Nearly half of the E. coli isolates were resistant to cefazolin, about 20% were resistant to fluoroquinolone, and about 10% were ESBL producing. Among healthy dogs in France and Spain, the rate of third generation cephalosporin resistance and fluoroquinolone resistance was about 18% according to the anal swab [35]. In Pakistan, the percentage of ESBL-producing E. coli isolates in dog feces was shown to be as high as 80% [36], while data from the US showed a prevalence of less than 10% in dogs [37]. Our study illustrates the challenges of emerging drug-resistant pathogens in companion animals.
showed that H22 accounts for nearly all ST131 meat isolates and for about 10% of ST131 clinical isolates [46]. In a healthy human fecal colonization study, O16-ST131 with FimH41 isolates was found to be dominant [47]. In our three isolates of Fim41, two (66%) were serotype O16 (data not shown).

5. Conclusions
In our E. coli fecal carriage study, the common STs circulating among humans were also found in dog isolates. The risk factor analysis similarly showed that antibiotic use leads to multidrug-resistant E. coli colonization. Ultimately, three important subclones of the epidemic clones ST131 (Fim30, Fim22, and Fim41) were found in canine fecal carriage in Taiwan.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Ministry of Science and Technology, Taiwan (106-2314-B-006-081-MY2).

Acknowledgments:

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).