

1 Article

2

Gray- and Black-Box Modeling of Ships and Wave 3 Energy Converters Based on Bayesian Regression

4 Yanjun Liu ^{1,2,3}, Yifan Xue ^{2,3,*}, Shuting Huang ^{2,3,*}, Qianfeng Jing ⁴ and Gang Xue ^{2,3}5 ¹ School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture,
6 Shandong University, Jinan 250061, China; lyj111ky@163.com7 ² Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
8 xuegangzb@163.com9 ³ Laboratory for Marine Geology Qingdao National Laboratory for Marine Science and Technology;
10 Qingdao 266200, China11 ⁴ Navigation College, Dalian Maritime University, Dalian 116026, China; jdf@dlmu.edu.cn

12 * Correspondence: xueyifan@mail.sdu.edu.cn; (Y.X.); hst@sdu.edu.cn; (H.S.)

13 **Abstract:** Establishing an accurate mathematical model is the foundation of simulating the motion
14 of marine vehicles and structures, and it is the basis of modeling-based control design. System
15 identification from observed input-output data is a practical and powerful method. However, for
16 modeling objects with different characteristics and known information, a single modeling
17 framework can hardly meet the requirements of model establishment. Moreover, there are some
18 challenges in system identification, such as parameter drift and overfitting. In this work, three
19 robust methods are proposed for generating ocean hydrodynamic models based on Bayesian
20 regression. Two Bayesian techniques, semi-conjugate linear regression and noisy input Gaussian
21 process regression, are used for parametric and nonparametric gray-box modeling and black-box
22 modeling. The experimental free-running tests of the KVLCC2 ship model and a multi-freedom
23 wave energy converter (WEC) are used to validate the proposed Bayesian models. The results
24 demonstrate that the proposed schemes for system identification of the ship and WEC have good
25 generalization ability and robustness. Finally, the developed modeling methods are evaluated
26 considering the aspects required conditions, operating characteristics and prediction accuracy.

27 **Keywords:** System identification; Hydrodynamic model; Ship maneuvering; Wave energy
28 converter; Bayesian regression

30

1. Introduction

31 A mathematical model is an approximate description of a physical system, and they are the
32 foundation of designing, simulation and control. Establishing an accurate and practical
33 hydrodynamic model has always been a research hotspot in the field of ocean engineering. For ships,
34 the high precision of ship maneuvering systems plays a crucial role in ship controller design and
35 operation [1]. A wave energy converter (WEC) needs an active control strategy to maximize its
36 efficiency in a wide range of operating conditions [2]. Various methods have been proposed to
37 construct the hydrodynamic model in naval architecture.

38 Depending on whether prior knowledge and physical laws are used in modeling, the modeling
39 methods can be categorized as white-box modeling, gray-box modeling and black-box modeling
40 methods [3]. White-box modeling is the case in which a model is perfectly known. It needs to
41 predefine the mathematical structure entirely from prior knowledge and physical insight. However,
42 due to the strong nonlinearity of water resistance and the randomness of turbulence [4], it is
43 extremely difficult to establish an accurate white-box model of a marine vehicle or structure. The
44 practical way is to first select the model through certain criteria, and then estimate the parameters in
45 the selected model from observation data with system identification. This modeling method is called
46 gray-box modeling. Specific to marine equipment, the most commonly used approach is to establish

47 the equation according to Newton's second law and then substitute the fitted regression
48 hydrodynamic force in it.

49 The traditional way to fit the hydrodynamic force in gray-box model is to expand it into a linear
50 function of velocity. For ship modeling, different parametric model structures, such as Abkowitz
51 model [5,6], MMG model [7] and Nomoto model [8], have been proposed and validated over the
52 years. The hydrodynamic parameters can be obtained by a captive model test with planar motion
53 mechanism (PMM), computational fluid dynamics (CFD) and free-running tests with system
54 identification [9]. Among the above approaches, the system identification with free-running test has
55 been proven to be a powerful and practical method with lower experiment cost [10]. System
56 identification is a general term for estimating parameters from observed input and output data,
57 which provides a reliable mathematical surrogate model in multiple engineering areas [11]. The least
58 square (LS) [12], extended Kalman filter (EKF) [13] and maximum likelihood (ML) [14] algorithms
59 are introduced to identify the hydrodynamic derivatives and proved the effectiveness. Over the last
60 decade, some new methods, with stronger generalization ability and robustness, based on machine
61 learning have also been applied to the estimation of hydrodynamic parameters. Minimizing the
62 Hausdorff metric with the genetic algorithm (GA) can alleviate the impact of noise-induced problems
63 [10]. Mei et al. [15] introduced model reference and random forest (RM-RF) to model ship dynamic
64 model and validated the proposed scheme with free-running test data. Wang et al. [16] presented nu-
65 Support Vector Machine (v-SVM) to improve the robustness of the algorithm.

66 In the gray-box modeling of wave energy community, Cummin's equation [17] is used to define
67 the hydrodynamic model. Generally, there are two ways to determine the equation. Typically, the
68 hydrodynamic model is predefined as the linear model and solved by the potential flow theory [18],
69 whereby the problem is simplified and linearized through assumptions of small amplitude
70 oscillations. However, the simplified linearizing assumptions are invalid when the WECs have large
71 amplitude motions resulting from energetic waves or sustained wave resonance [19]. An alternative
72 method is to use system identification. The training data can be obtained from CFD simulation [2] or
73 scale experiments in a towing tank [20,21]. A popular method is to estimate the real hydrodynamic
74 force using an EKF observer, which assumes that the excitation force can be represented as the sum
75 of a finite set of harmonic components [22,23].

76 The gray-box modeling methods mentioned above are all parameterized. Recently, a
77 nonparametric gray-box model has been put forward in some studies, and encouraging results have
78 been obtained. The model still follows the framework of Newton's law, and the force element, which
79 is difficult to determine, is directly replaced by a machine learning model of related variables. Wang
80 et al. [24] used SVM to replace the Taylor expansion in Abkowitz model, and they compared the
81 accuracy and computation speed with parametric gray-box and black-box modeling. Xu and Guedes
82 Soares [25] proposed a nonlinear implicit model with nonlinear kernel-based Least Square SVM for
83 a maneuvering simulation of a container ship in shallow water. The forces and moments in [25] are
84 obtained by a PMM test and then trained as outputs for an SVM model related to speed and water
85 depth. In the study of WEC [26], an observer-based unknown input estimator is used to estimate the
86 wave excitation force, then a Gaussian Process (GP) is adopted to forecast the wave excitation force.
87 On the one hand, the nonparametric gray-box model directly substitutes the information of the object
88 itself. On the other hand, compared with linear expansion, it can better fit the hydrodynamic force.
89 Therefore, this method is worth studying and comparing with the experimental data of more devices.

90 Recently, Bayesian regression has been successful applied in multiple fields for parameter
91 estimation and black-box modeling. Bayesian methods have significant advantages in modeling with
92 good statistical properties, predictions for missing data and forecasting [35-37]. Moreover, Bayes' rule
93 offers a reasonable way to update beliefs in light of training data, and the hyperparameters in the
94 Bayesian scheme have an intuitive meaning [38]. Bayesian regression models can work well in
95 dynamic system modeling with a relatively small number of training data points and noisy output
96 [39]. With regards to parametric gray-box modeling, ship dynamic models based on conjugate and
97 semi-conjugate Bayesian regression (ScBR) are adopted to estimate the hydrodynamic parameters
98 [40]. For the black-box modeling, Ariza Ramirez et al. [32] used multioutput GPs to identify the ship

99 dynamic system, and showed that the GP scheme has better generalization than RNN. Astfalck et al.
 100 [41] used a series of Bayesian methods to quantify the extremal responses of a floating production
 101 storage and offloading (FPSO) vessel. GP introduces a complexity penalty and it has an automatic
 102 regularization built into it through its foundation in Bayesian probability theory. The advantage of
 103 the complexity penalty is that, unlike other methods such as neural networks, Gaussian process
 104 regression has a far smaller risk of overfitting. However, the Bayesian approaches for gray-box and
 105 black-box modeling of marine dynamic model has not been investigated and compared considering
 106 the aspects of prerequisite conditions, accuracy and robustness under experimental data.

107 This article contributes to the use of Bayesian regression to identify the nonlinear dynamic model
 108 of a container ship and an oscillating buoy WEC with gray-box modeling and black-box modeling.
 109 First, the Bayesian regression algorithms, including semi-conjugate regression (ScBR) and noisy input
 110 Gaussian process (NIGP), are introduced. Then, the parametric, nonparametric gray-box modeling
 111 and black-box modeling schemes based on Bayesian algorithms are proposed for the ship and WEC
 112 respectively. These proposed schemes are validated and compared using experimental data. Finally,
 113 the capabilities and challenges of the proposed models are further discussed.

114 This paper is organized as follows. Section 2 describes the marine dynamic model. The
 115 algorithms of ScBR and NIGP are depicted in Section 3. In Sections 4 and 5, the identification schemes
 116 of the ship and WEC and experimental examples are presented to demonstrate the distinction and
 117 effectiveness of the proposed two methods. Section 6 presents the main conclusions and a further
 118 discussion.

119 2. Kinematic model

120 The classical kinematic model in naval architecture is motivated by Newton's second law, and
 121 the rigid-body kinematics equations can be expressed in vector form as [42]

$$122 \quad \mathbf{M}_{RB} \dot{\mathbf{V}} = \boldsymbol{\tau}_{RB} - \mathcal{C}_{RB}(\mathbf{V}) \quad (1)$$

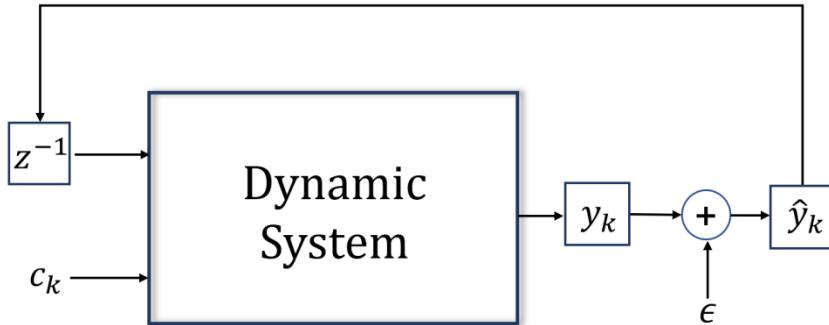
$$\boldsymbol{\tau}_{RB} = \boldsymbol{\tau}_h + \boldsymbol{\tau}_{env} + \boldsymbol{\tau}_{control}$$

122 where \mathbf{M}_{RB} is the rigid-body inertia matrix; $\mathcal{C}_{RB}(\mathbf{V})$ is a matrix of rigid-body Coriolis and centripetal
 123 terms; $\boldsymbol{\tau}_{RB}$ is a vector of generalized forces containing hydrodynamic waver resistance, $\boldsymbol{\tau}_h$,
 124 environmental forces, $\boldsymbol{\tau}_{env}$, and control forces, $\boldsymbol{\tau}_{control}$. \mathbf{V} denotes the generalized velocity in 6
 125 (degree of freedom) DOF, the notation of motion variables is shown in Table 1.

126 **Table 1.** Notation of motion variables

DOF	Motions	Forces	Linear velocity	Positions
1	Surge	F_1	u	x
2	Sway	F_2	v	y
3	Heave	F_3	w	z
	Rotations	Moments	Angular velocity	Rotation angles
4	Roll	M_1	p	φ
5	Pitch	M_2	q	θ
6	Yaw	M_3	r	ψ

127 The marine dynamic model is essentially a nonlinear autoregressive model with an exogenous
 128 input (NARX) system, and the predictions are based on the previous measurements of the input
 129 signals and output signals [39]. Fig. 1 shows the NARX configuration for dynamic system, where c_k
 130 denotes the command signals such as propeller speed and rudder angle of the ship (Ariza Ramirez
 131 et al., 2018); y_k is the original output; \hat{y}_k is polluted by noise, ϵ ; z stands for the z-transformation;
 132 and subscript k denotes time step.



133

134

Figure 1. NARX model135 **3. Bayesian regression framework**136 *3.1. Semi-conjugate Bayesian regression*137 The object of linear regression is to estimate the hydrodynamic parameters β in damping matrix
138 τ_h , the form of multiple linear regression as

$$y_t = x_t \beta + \epsilon_t \quad (2)$$

139 where $t=1, \dots, n$ denotes time; y_t is the observed response; x_t is a $1 \times c$ row vector of the observed
140 values of c predictors; β is a $c \times 1$ column vector of regression parameters corresponding to the
141 variables that consist of the columns of x_t ; and ϵ_t is the random disturbance that has a mean of zero
142 and common variance of σ^2 .143 Bayes theorem treats β and σ^2 as random variables belonging to some probability distributions.
144 Generally, the Bayesian analysis process updates the probability density function (PDF) of the
145 parameters by incorporating information about the parameters from the training data. Bayes'
146 theorem gives the posterior PDF as

$$P(\text{parameters} | \text{data}) = \frac{P(\text{data} | \text{para})P(\text{para})}{P(\text{data})} \quad (3)$$

147 According to the central limit theorem, most of the measured value distributions can be
148 approximated by a normal distribution or a Gaussian distribution. A popular choice is the normal-
149 inverse-gamma conjugate model [43], in which β obeys the multivariate normal distribution (\mathcal{N})
150 and σ^2 is the inverse gamma (IG) distribution. Equation (3) can be abbreviated as follows:

$$\pi(\beta, \sigma^2 | y, x) \propto \mathcal{N}(\beta) \mathcal{N}(\sigma^2) \prod_{t=1}^n \phi(y_t; x_t \beta, \sigma^2) \quad (4)$$

151 where $\phi(y_t; x_t \beta, \sigma^2)$ is the Gaussian probability density with mean $x_t \beta$ and variance σ^2 on y_t . The
152 regression model is divided into conjugate and semi-conjugate Bayesian regression depending on
153 whether the parameters and disturbance are independent.154 In practical engineering applications, parameters and noise are often not independent of each
155 other [44]. The prior distributions of β and σ^2 are as follows when β and σ^2 are dependent:

$$\begin{aligned} \beta & | \sigma^2 \sim N_c(\mu, V) \\ \sigma^2 & \sim IG(A, B) \end{aligned} \quad (5)$$

156 where μ is the mean value ($c \times 1$ vector), V is the $c \times c$ diagonal matrix in which each element
157 equals the prior variance factor of β_j , and $IG(A, B)$ denotes the inverse gamma distribution with
158 shape A and scale B .159 The conditional posterior distribution of β and σ^2 can be obtained:

$$\beta | \sigma^2, y, x \sim N_c((V^{-1} + \sigma^{-2} X^T X)^{-1} [\sigma^{-2} (X^T X) \beta + V^{-1} \mu], (V^{-1} + X^T X)^{-1}) \quad (6)$$

$$\sigma^2 | \beta, y, x \sim IG(A + \frac{n}{2}, (B^{-1} + \frac{1}{2} SSR(\beta))^{-1}) \quad (7)$$

160 where X is an $n \times c$ matrix of training data and $SSR(\beta)$ is given by

$$SSR(\beta) = \sum_{i=1}^n (y_i - \beta^T x_i)^2 = (y - X\beta)^T (y - X\beta) \quad (8)$$

161 Since β and σ^2 are mutually influential, their posterior distributions are not analytically tractable.
 162 Some numerical integration techniques based on the Markov chain Monte Carlo method have been
 163 proposed to solve this problem. In the present work, the Gibbs sampler [45] is applied to approximate
 164 the posterior of β and σ^2 . The Gibbs sampler is an iterative algorithm that constructs a dependent
 165 sequence of parameter values whose distribution converges to the target joint posterior distribution.
 166 The values of parameters are the mean of the posterior of β .

167 In multivariate linear regression, introducing the L_2 -norm into the algorithm to overcome the
 168 problems of multicollinearity and overfitting is a general accepted and effective method, such as
 169 ridge regression. ScBR naturally introduces the norm through prior parameters. These type of
 170 parameters in the algorithm framework are called hyperparameters in machine learning. Compared
 171 to other algorithms, the hyperparameters of the prior distribution, such as the mean and variance, in
 172 the Bayesian approach have a clear and intuitive meaning: The value of the prior mean μ represents
 173 the parameter to be identified, which we subjectively set before the regression is performed. When
 174 there is no other prior information about the parameter to be estimated, the mean μ is usually set to
 175 zero. The prior variance is obtained by Bayesian optimization algorithm (BOA). BOA is a powerful
 176 global optimization algorithm, which is usually used in the hyperparameter optimization of machine
 177 learning in cases with fewer hyperparameters and slower operations of the objective model [46]. More
 178 details about the ScBR with BOA can be found in our previous work [40].

179 *3.2. Noisy input Gaussian process*

180 GP can be viewed as a collection of random variables with a joint Gaussian distribution for any
 181 finite subject. GP can be conveniently specified by a mean function, $m(x)$, and a covariance function,
 182 $k(x, x')$, as

$$m(x) = E[f(x)] \quad (9)$$

$$k(x, x') = E[(f(x) - m(x))(f(x') - m(x'))] \quad (10)$$

183 where E denotes the expectation operator.

184 GP regression approximates an unknown function, $f(x)$, which maps a D -dimensional input to
 185 a scalar output value, f . A number of training points n , which include c -dimensional inputs, $\{x_t\}_{t=1}^n$
 186 and noisy observations $\{y_t\}_{t=1}^n$ are given. These collections of variables are denoted as the $n \times c$
 187 input, X , and the $n \times 1$ output vector, y . The regular Gaussian process (RGP) assumes that the
 188 training outputs are corrupted by noise,

$$y = f(x) + \epsilon_y \quad (11)$$

189 where ϵ_y is Gaussian white noise with zero mean and variance σ_y^2 . The regular GP regression
 190 defines a GP prior on the function values,

$$p(f|X) = \mathcal{N}(m(X), k(X, X)) \quad (12)$$

191 With these modeling assumptions in place, the likelihood function can be obtained,

$$p(y|f, X) = \prod_{t=1}^n \mathcal{N}(y_t; f_t, \sigma_y^2) \quad (13)$$

192 Then, combining the prior Equation (12) and the likelihood function Equation (13), we can obtain the
 193 posterior probability distribution and predict the function values, f^* , at a whole set of test points X^* .

$$\begin{bmatrix} f^* \\ y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X^*) \\ m(X) \end{bmatrix}, \begin{bmatrix} K(X^*, X^*) & K(X^*, X) \\ K(X, X^*) & K + \sigma_y^2 I \end{bmatrix} \right) \quad (14)$$

194 which leads to the RGP regression predictive equations,

$$p(f^*|X^*, X, y) = \mathcal{N}(m, s) \quad (15)$$

$$m = m(X^*) + K(X^*, X)[K(X, X) + \sigma_y^2 I]^{-1}(y - m(X)) \quad (16)$$

$$s = k(X^*, X^*) - K(X^*, X)[K(X, X) + \sigma_y^2 I]^{-1}K(X, X^*) \quad (17)$$

195 The traditional formulation of GP regression only considers output noise σ_y^2 , while the input
 196 data are assumed to be noise-free. However, the noise in the output will be passed to the input in the
 197 NARX models, as shown in Fig. 1. McHutchon and Rasmussen proposed the NIGP method which
 198 does take into account the input noise and posterior data [47]. NIGP further assumes that the inputs
 199 are also noisy, and the actual inputs and outputs are labeled \tilde{x} and \tilde{y} , respectively.

$$x = \tilde{x} + \epsilon_x \quad (18)$$

200 where ϵ_x is Gaussian white noise with zero mean and variance Σ_x . The prerequisites for this model
 201 are that each input dimension is independently corrupted by noise, so Σ_x is diagonal. Similar to
 202 Equation (11), the output function can be written as:

$$y = f(\tilde{x} + \epsilon_x) + \epsilon_y \quad (19)$$

We can use a first order Taylor series expansion of the GP latent function, f , to write an approximation to Equation (19) as,

$$y = f(x) + \epsilon_x^T \frac{\partial f(\tilde{x})}{\partial \tilde{x}} + \epsilon_y \quad (20)$$

203 Note that the expansion can be expanded to higher terms. However, these higher term calculations
 204 are computationally costly and provide no significant improvement. For notational convenience, the
 205 derivative of one GP mean function in Equation (20) will be denoted as $\partial_{\tilde{f}}$, a c -dimensional vector.
 206 $\Delta_{\tilde{f}}$, an $n \times c$ matrix, denotes the value of the derivative for the n functions.
 207 Given that the GP prior is the same as that of the RGP, $p(f|X) = \mathcal{N}(0, K(X, X))$, where $K(X, X)$ is the
 208 $n \times n$ training data covariance matrix, we can obtain the predictive posterior mean and variance as

$$\mathbb{E}[f^*|X, y, X^*] = K(X^*, X)[K(X, X) + \sigma_y^2 I + \text{diag}\{\Delta_{\tilde{f}} \Sigma_x \Delta_{\tilde{f}}^T\}]^{-1}y \quad (21)$$

$$\mathbb{V}[f^*|X, y, X^*] = k(X^*, X^*) - K(X^*, X)[K(X, X) + \sigma_y^2 I + \text{diag}\{\Delta_{\tilde{f}} \Sigma_x \Delta_{\tilde{f}}^T\}]^{-1}K(X, X^*) \quad (22)$$

209 where the notation “*diag*” results in a diagonal matrix.

210 In this way, the input is treated as deterministic and a correction term, $\text{diag}\{\Delta_{\tilde{f}} \Sigma_x \Delta_{\tilde{f}}^T\}$, is added
 211 to the output noise. More specifically, the influence of the input noise depends on the slope of the
 212 function we are approximating. Our model is essentially same as an RGP if the posterior mean is fully
 213 flat. The next problem is how to approximate the posterior distribution based on its derivative.

214 Compared to the RGP, the NIGP introduces extra hyperparameters ϵ_x per input dimension. A
 215 major advantage of this model is that these hyperparameters can be trained alongside any others by
 216 ML. The marginal likelihood function of the NIGP is,

$$-\log p_{NIGP}(y|X, \theta) = \frac{1}{2} \log |K_n| + \frac{1}{2}(m(X) - y)^T \mathcal{B} + \frac{N}{2} \log 2\pi \quad (23)$$

217 where,

$$K_n = K(X, X) + \text{diag}\{\Delta_{\tilde{f}} \Sigma_x \Delta_{\tilde{f}}^T\} + \sigma_y^2 I \quad (24)$$

$$\mathcal{B} = K_n^{-1}(m(X) - y) \quad (25)$$

218 The solution to estimating the hyperparameters is a two-step approach. First, we evaluate a regular
 219 GP without any input noise. Then, we calculate the derivatives and use them to approximate the
 220 posterior distribution. The marginal likelihood of the GP with corrected variance is then computed.
 221 We can cycle this process until the convergence; this step involves chaining the derivatives of the

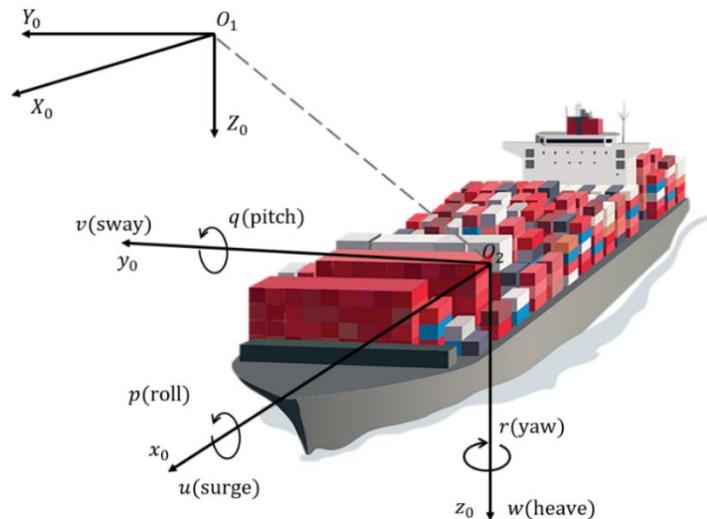
222 marginal likelihood back through the slope calculation. Moreover, the gradient descent algorithm is
 223 employed to tune the hyperparameters. A complete explanation can be found in [48] and some
 224 supplementary notes are in Bijl's study [49].

225 The proposed model adopts the commonly used squared exponential (SE) covariance function
 226 expressed as

$$k(x_i, x_j) = \sigma_f^2 \exp\left(-\frac{1}{2}(x_i - x_j)^T \Lambda (x_i - x_j)\right) \quad (26)$$

227 where σ_f denotes the amplitude and Λ is a diagonal matrix of the squared length-scale
 228 hyperparameters.

229 **4. Identification of marine craft**



230

231 **Figure 2.** Reference frames for ships

232 *4.1. Parametric gray-box modeling*

233 The essence of the parametric gray-box modeling is to construct a simplified parameterized
 234 equation to replace Equation (1). The nondimensional rigid-body kinetics using the Prime system of
 235 surface ship 3 DOF maneuvering motion is given as follows:

$$\begin{bmatrix} m' - X'_u & 0 & 0 \\ 0 & m' - Y'_v & m' x'_G - Y'_r \\ 0 & m' x'_G - N'_v & I'_{zz} - N'_r \end{bmatrix} \begin{bmatrix} \dot{u}' \\ \dot{v}' \\ \dot{r}' \end{bmatrix} = \begin{bmatrix} F'_1 \\ F'_2 \\ M'_3 \end{bmatrix} \quad (27)$$

236 where m denotes the ship mass; x_G is the longitudinal coordinate of the ship's center of gravity in
 237 the body-fixed coordinate frame; I_z denotes the moments of inertia of the ship about the z_0 axes;
 238 X_u , Y_v , Y_r , N_v and N_r are acceleration derivatives which can be determined using potential
 239 theory; and F_1 , F_2 and M_3 are forces and moment disturbing quantity at x_0 -axis, y_0 -axis and z_0 -
 240 axis respectively. Note that the superscript " ' " indicates that the corresponding variable is
 241 normalized using the Prime-system.

242 The selection of a mathematical model for identification is a trade-off between model complexity
 243 and model capacity. The most widely used model is the Abkowitz model, a Taylor-series expansion
 244 model. The Abkowitz model has good generalization performance, but it includes a large number of
 245 coefficients and some of the coefficients have no physical meaning. A simplified Abkowitz 3-DOF
 246 model [50] is employed to construct the white-box model because it contains fewer hydrodynamic
 247 parameters while ensuring high accuracy, which can suppress parameter drift caused by too many
 248 variables [51]. The nonlinear forces and moment are defined as:

$$\begin{aligned}
 F_1' &= X_{hydro} \cdot A(i) \\
 F_2' &= Y_{hydro} \cdot B(i) \\
 M_3' &= N_{hydro} \cdot C(i)
 \end{aligned} \tag{28}$$

249 where the hydrodynamic derivatives and speed state variables in Equation (28) are as follows:

$$250 X_{hydro} = [X'_u, X'_{vv}, X'_{rr}, X'_{\delta\delta}, X'_{vr}, X'_{v\delta}, X'_{r\delta}, X'_0]_{1 \times 8}$$

$$251 Y_{hydro} = [Y'_v, Y'_r, Y'_\delta, Y'_{v|v|}, Y'_{v|r|}, Y'_{r|r|}, Y'_{r|v|}, Y'_{\delta\delta\delta}, Y'_{vv\delta}, Y'_{v\delta\delta}, Y'_{r\delta\delta}, Y'_{rr\delta}, Y'_{rv\delta}, Y'_0]_{1 \times 14}$$

$$252 N_{hydro} = [N'_v, N'_r, N'_\delta, N'_{v|v|}, N'_{v|r|}, N'_{r|r|}, N'_{r|v|}, N'_{\delta\delta\delta}, N'_{vv\delta}, N'_{v\delta\delta}, N'_{r\delta\delta}, N'_{rr\delta}, N'_{rv\delta}, N'_0]_{1 \times 14}$$

$$253 A(i) = [u'_a(i), v'^2(i), r'^2(i), \dots, r'(i)\delta'(i), 1]_{1 \times 8}^T$$

$$254 B(i) = [v'(i), r'^2(i), \delta'(i), v'(i)|v'(i)|, \dots, r'(i)v'(i)\delta'(i), 1]_{1 \times 14}^T$$

$$255 C(i) = [v'(i), r'^2(i), \delta'(i), v'(i)|v'(i)|, \dots, r'(i)v'(i)\delta'(i), 1]_{1 \times 14}^T$$

256 where the relative speed $u_a = u - u_{nom}$. As seen, there is a total of 36 hydrodynamic parameters in
257 the simplified Abkowitz model. Euler's stepping method is utilized to discretize the equation of
258 motions. The constructor of samples for hydrodynamic parameter estimation can be obtained as
259 follows:

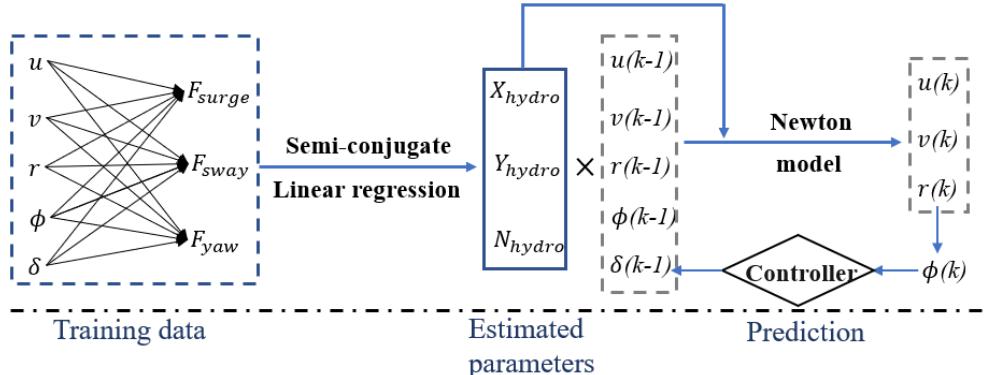
260 *Input variables:* $[A(i), B(i), C(i)]$

261 *Output response:*

$$\begin{bmatrix}
 (m' - X'_u)L \frac{u'_a(i+1) - u'_a(i)}{U(i) \Delta t} \\
 (m' - Y'_v)L \frac{v'(i+1) - v'(i)}{U(i) \Delta t} + (m' x'_G - Y'_r)L \frac{r'(i+1) - r'(i)}{U(i) \Delta t} \\
 (m' x'_G - N'_v)L \frac{v'(i+1) - v'(i)}{U(i) \Delta t} + (I'_{zz} - N'_r)L \frac{r'(i+1) - r'(i)}{U(i) \Delta t}
 \end{bmatrix} \tag{29}$$

262 where $U = \sqrt{u^2 + v^2}$ is the resultant speed in the horizontal plane and Δt is the time sample.

263 The procedure of the parametric gray-box modeling and motion prediction using ScBR is briefly
264 depicted in Fig. 3. A Bayesian optimization algorithm (BOA) is employed to tune the value of prior
265 variance, V , in semi-conjugate regression. For more details regarding the use of semi-conjugate
266 regression with BOA to identify the parameters, please refer to our previous work [40].



267

268 **Figure 3.** Process of parametric gray-box modeling using ScBR

269 *4.2. Black-box modeling*

270 A continuous-time black-box model directly describes the relationship between the input variables
271 and out response without any constrains. The principal parameters and the mathematical model are
272 not required in the black-box modeling. The structure of the training data follows the form

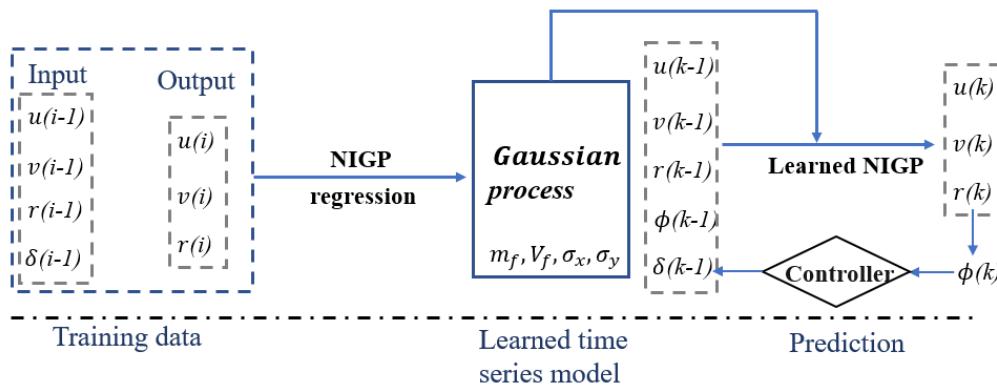
273 *Input variables:* $[u(i-1), v(i-1), r(i-1), \delta(i-1)]$

274 *Output response:* $[u(i), v(i), r(i)]$ (30)

274 Fig. 4 shows the process of black-box modeling and motion prediction using NIGP. The SVM is also
 275 used with the same training data for comparison with Bayesian regression. The RBF kernel function
 276 in Equation (31), with an automatic kernel scale σ_{SVM} , is used to train the SVM.

$$k(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma_{SVM}^2}\right) \quad (31)$$

277 BOA is employed to tune the hyperparameters in SVM using the 'Bayesopt' MATLAB function. In
 278 theory, this scheme can overcome the drawbacks of parametric gray-box models, such as a failure to
 279 represent the actual behavior of the system due to unmodeled components.



280

281

Figure 4. Process of black-box modeling using NIGP

282 *4.3. A case study of a large container ship*

283 The ship used in the experimental tests is a scale model of large tankers, KVLCC2, one of the
 284 benchmark ships for verification and validation of ship maneuvering simulation methods
 285 recommended by Simulation Workshop for Ship Maneuvering (SIMMAN) [52]. Maneuvering and
 286 course maintaining tests with the KVLCC2 models have been performed at the Hamburg Ship Model
 287 Basin (HSVA). The dimensions of the vessel and the scale model are detailed in Table 2.

288

Table 2. Particulars of KVLCC2

Elements	Full-scale	model
L_{pp} (m)	320.0	7.0
B (m)	58.0	1.1688
D (m)	30.0	0.6563
Displacement (m^3)	312622	3.2724
Draught (m)	20.8	0.4550
Beam coefficient	0.8098	0.8098
Nominal speed (m/s)	7.97	1.18
Rudder speed (δ)	2.3 deg/s	15.8 deg/s
Nondim mass (m')	1908×10^{-5}	
Nondim x coordinate of CG (x'_G)	3486×10^{-5}	
Nondim inertia in yaw (I'_z)	119×10^{-5}	

289

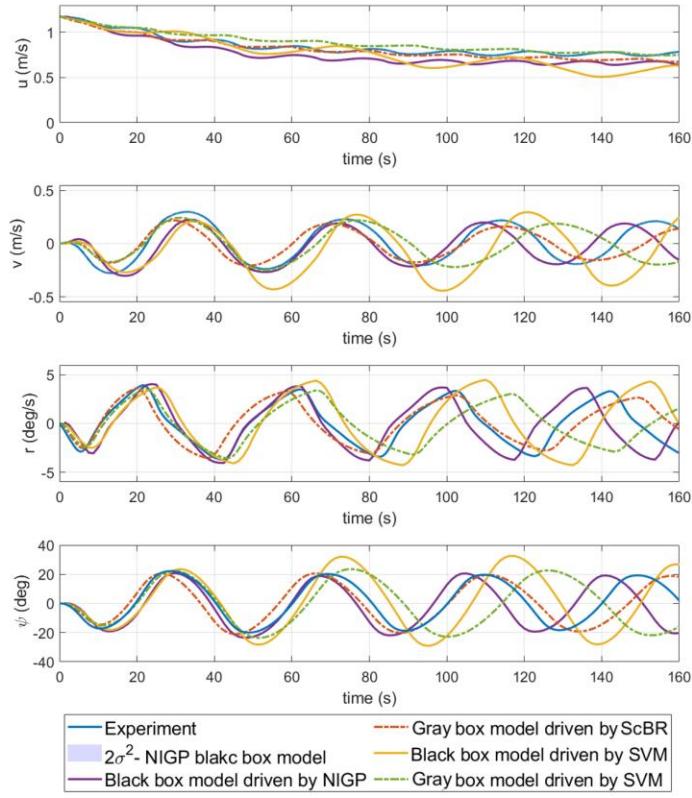
290 Here, $35^\circ/5^\circ$ zigzag maneuver data with a cumulative time of 180 s is used for training the
 291 parametric gray-box model using ScBR, and the sample time is 0.5 s. The hyperparameters of ScBR,
 292 prior variance V , are tuned by BOA. The posterior hydrodynamic parameters estimated by ScBR are
 293 listed in Table 3. The added mass, including X'_u and Y'_v is calculated by slender-body instead of SI
 294 [53]. For comparison of the ScBR, Luo and Li's results of SVM under the same parameterization gray-
 295 box modeling are also listed in the table. It should be noted that the mainstream algorithms for marine
 equipment identification are offline algorithms, which is usually trained after the data are obtained

296 and then deployed in the controller or simulation system [10]. Therefore, the time spent on tuning
 297 the hyperparameters will not be mentioned in the article.

298 **Table 3.** The nondimensional hydrodynamic parameters for ScBR and SVM (1×10^{-5})

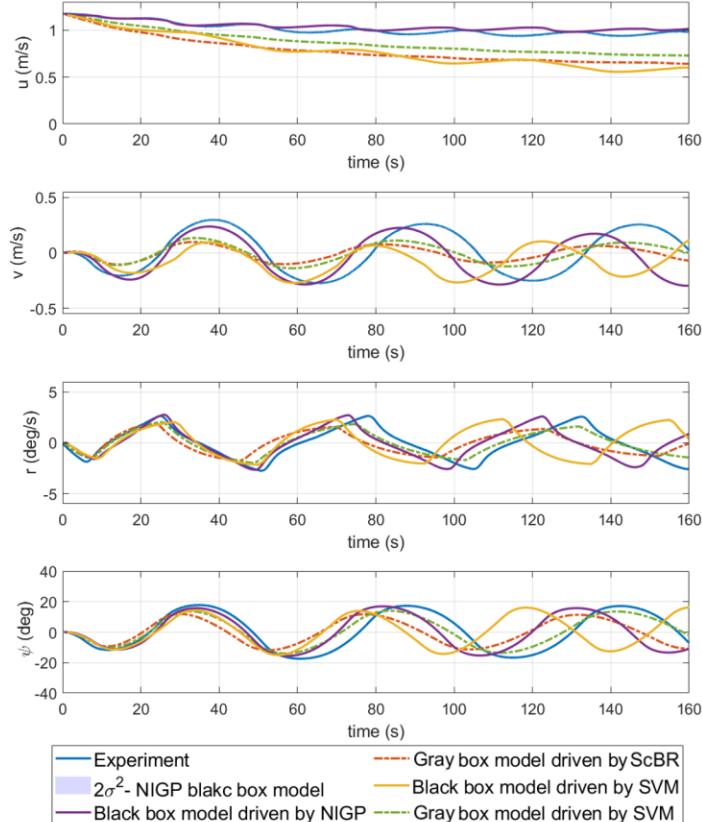
X-Coef.	ScBR	SVM	Y-Coef.	ScBR	SVM	N-Coef.	ScBR	SVM
X'_u	-140.1	-128	Y'_v	350.4	-94	N'_v	-44.8	-54.9
X'_{vv}	152.6	175	Y'_r	1936.0	2066	N'_r	-125.5	-82.9
X'_{rr}	-180.0	-118	Y'_δ	568.3	486	N'_δ	-180.9	-146.8
$X'_{\delta\delta}$	125.2	-116	$Y'_{v v }$	68.7	63	$N'_{v v }$	5.4	-5.4
X'_{vr}	-3282	-303	$Y'_{v r }$	128.5	67	$N'_{v r }$	-3.3	2.6
$X'_{v\delta}$	245.2	196	$Y'_{ r r}$	932.6	737	$N'_{ r r}$	-48.5	-30.8
$X'_{r\delta}$	-5842	-455	$Y'_{r v }$	30.8	177	$N'_{r v }$	-14.3	-5.5
X'_0	-144.0	-85	$Y'_{\delta\delta\delta}$	216.3	-58	$N'_{\delta\delta\delta}$	-65.2	-52.9
			$Y'_{vv\delta}$	98.7	29	$N'_{vv\delta}$	-9.6	-8.0
			$Y'_{v\delta\delta}$	41.0	17	$N'_{v\delta\delta}$	1.6	-6.3
			$Y'_{r\delta\delta}$	306.5	-50	$N'_{r\delta\delta}$	9.6	6.1
			$Y'_{rr\delta}$	314.2	99	$N'_{rr\delta}$	12.4	12.9
			$Y'_{rv\delta}$	350.4	-40	$N'_{rv\delta}$	-44.8	2.1
			Y'_0	1936.0	-56	N'_0	-125.5	1.4
Added mass	X'_u	-95.4	Y'_v	-1283		N'_v	0	
not identified			Y'_r	0		N'_r	-107	

299 Here, $35^\circ/5^\circ$ and $20^\circ/5^\circ$ zigzag maneuvers every 5 s are used for training the black-box modeling
 300 driven by NIGP and SVM. It is of no application value to predict the training movement of ship by
 301 using the model obtained from the training data. To verify the generalization ability of the models
 302 identified by gray-box modeling and black-box modeling driven by SVM and Bayesian regression,
 303 the $30^\circ/5^\circ$ and $15^\circ/5^\circ$ zigzag tests are predicted. Fig. 5 and Fig. 6 show the prediction results of each
 304 method, and the root mean square error (RMSE) is adopted to analyze the prediction performance of
 305 these methods, which is shown in Table 4. In addition, the computation time of each step of these
 306 methods for prediction is also listed in the table. From the validation results, it can be concluded that
 307 the trends of all the predictions before 70 s are basically consistent with the experiment. After 70 s,
 308 the difference between the predictions results of various methods gradually increased. On the whole,
 309 the parametric gray-box and black-box modeling based on Bayesian regression results are in
 310 acceptable agreement with the validation samples and show a stronger ability to predict than SVM.
 311 From the perspective of the modeling framework, the prediction results of gray-box modeling are
 312 better than those of black-box modeling in $30^\circ/5^\circ$ zigzag maneuvers, but worse in $15^\circ/5^\circ$ zigzag tests.
 313 The main reason is that the training data of gray-box modeling only contains $35^\circ/5^\circ$ movement, which
 314 is closer to the $30^\circ/5^\circ$ zigzag validation test. For the prediction time, parametric gray-box modeling is
 315 significantly faster than black-box modeling because the calculation process of parametric gray-box
 316 modeling is entirely linear. Because it considers the input noise and variance in the calculation
 317 process, NIGP spends more time on the prediction than SVM. Note that the black-box modeling
 318 usually requires more training data to enhance generalization ability than parametric gray-box
 319 modeling, because the specified framework of the parametric gray-box model already contains some
 320 information about the system. In a similar study [24], four groups of ship maneuver datasets are used
 321 for training black-box models while one group dataset is used for parameter estimation.



322

323

Figure 5. Comparisons of results of the ship predicted motion; the 30°/5° zigzag test

324

325

Figure 6. Comparisons of results of the ship predicted motion; the 15°/5° zigzag test

326

327

Table 4. Estimation of forecast accuracy by RMSE and computation time for the validation test

		Parametric gray-box model		Black-box model	
		SVM	ScBR	SVM	NIGP
30°/5°	<i>u</i>	0.053	0.040	0.115	0.094
	<i>v</i>	0.182	0.092	0.186	0.121
	<i>r</i>	2.530	1.226	2.213	1.834
15°/5°	<i>u</i>	0.155	0.240	0.262	0.021
	<i>v</i>	0.126	0.163	0.238	0.062
	<i>r</i>	0.605	1.294	2.140	0.443
time (s/step)		0.0009		0.004	0.014

328 **5. Identification of WEC**329 **5.1. Nonparametric gray-box modeling**

330 Similar to the ship model in Equation (27), the time domain 3 DOF model of the WEC buoy is
 331 given as,

$$\begin{bmatrix} m - X'_u & 0 & 0 \\ 0 & m' - Z'_w & m'y'_G - Z'_q \\ mz_G & -mx_G & I_{zz} \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} F'_1 \\ F'_3 \\ M'_2 \end{bmatrix} \quad (32)$$

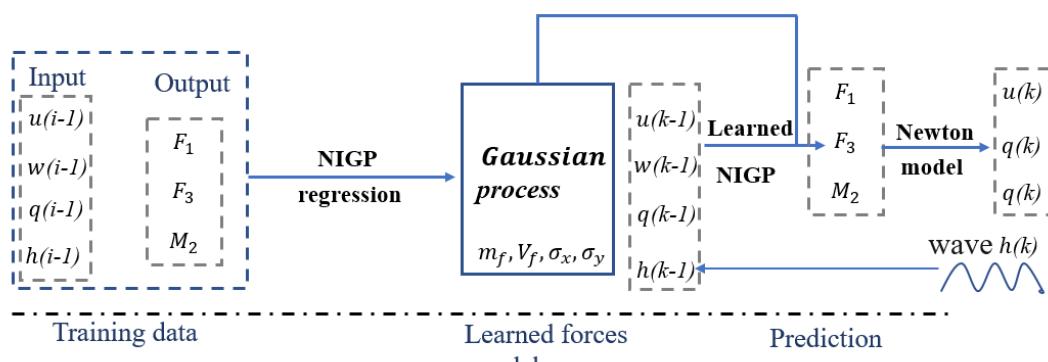
332 Different from the parametric model in Equation (28), the force and moment on the right side of
 333 the equation are not fitted by the method of multiplying the hydrodynamic coefficient and the speed.
 334 In this case, NIGP is adopted to perform nonlinear regression between forces, speed and other
 335 variables. The training sample that couples hydrodynamic forces and moment nonlinear regression
 336 for training NIGP is

337 *Input variables:* $[u(i), w(i), q(i), h(i)]$

338 *Output response:*

$$\begin{bmatrix} (m - X'_u) \frac{u(i+1) - u(i)}{\Delta t} \\ (m - Z'_w) \frac{w(i+1) - w(i)}{\Delta t} + (my_G - Z'_q) \frac{q(i+1) - q(i)}{\Delta t} \\ mz_G \frac{u(i+1) - u(i)}{\Delta t} - mx_G \frac{w(i+1) - w(i)}{\Delta t} + I_{zz} \frac{q(i+1) - q(i)}{\Delta t} \end{bmatrix} \quad (33)$$

339 The process of nonparametric gray-box modeling and motion prediction using NIGP is depicted in
 340 Fig. 7.



341

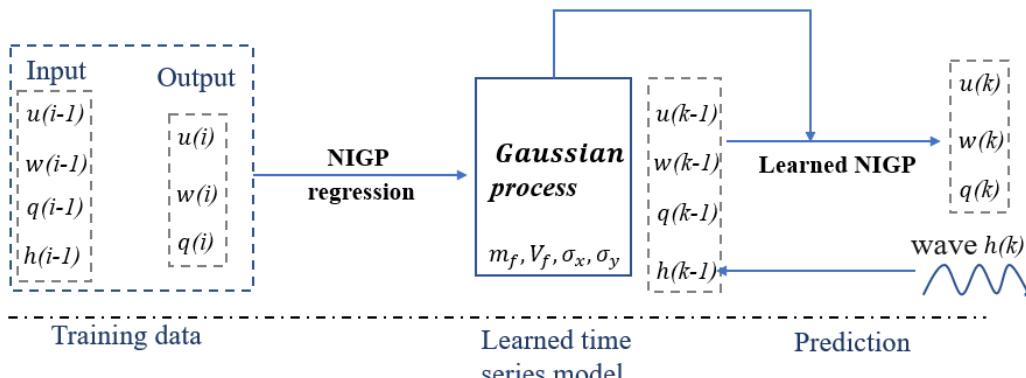
Figure 7. Process of nonparametric gray-box modeling of the WEC using NIGP343 **5.2. Black-box modeling**

344 In the same way as the black-box modeling of the ship, only the time series of motion state
 345 variables and wave height are used to train the NIGP model. The structure of the training data follows
 346 the form

347 *Input variables:* $[u(i-1), w(i-1), q(i-1), h(i-1)]$

348 *Output response:* $[u(i), w(i), q(i)]$ (34)

348 The detailed process of the black-box modeling of the WEC using NIGP is shown in Fig. 8.



349

350 **Figure 8.** Process of black-box modeling of the WEC using NIGP

351 *5.3. A case study of a multi-freedom buoy WEC*

352 The experiment was carried out in the wave tank of Shandong Provincial Key Laboratory of
 353 Ocean Engineering [54], shown in Fig. 9. The model had 3 DOFs: surge, heave and pitch. Every DOF
 354 was independent and could be fixed. The buoy's motion was measured by an NDI Optotak Certus
 355 3D investigator. The sliding frame of surge was 58 kg. A spring was used in surge to provide the
 356 restoring force. The added mass can be calculated as

$$m_\infty = A(\omega) + \frac{1}{\omega} \int_0^\infty K(t) \sin(\omega t) dt \quad (35)$$

$$K(t) = \frac{2}{\pi} \int_0^\infty B(\omega) \cos(\omega t) dt$$

357 where ω is the wave frequency and $B(\omega)$ is the radiation damping matrix. The values of $A(\omega)$ and
 358 $B(\omega)$ are calculated by the ANSYS AQWA software package (AQWA-LINE suite), which
 359 implements a boundary element method algorithm.

360

361

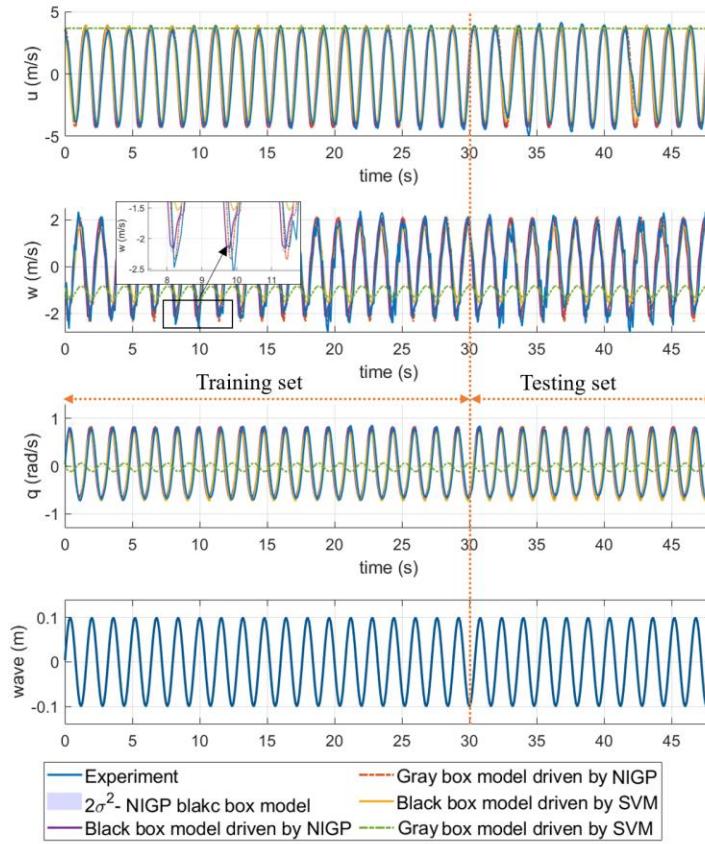
Figure 9. Physical model experiment

362

Table 5. Particulars and test conditions of the WEC

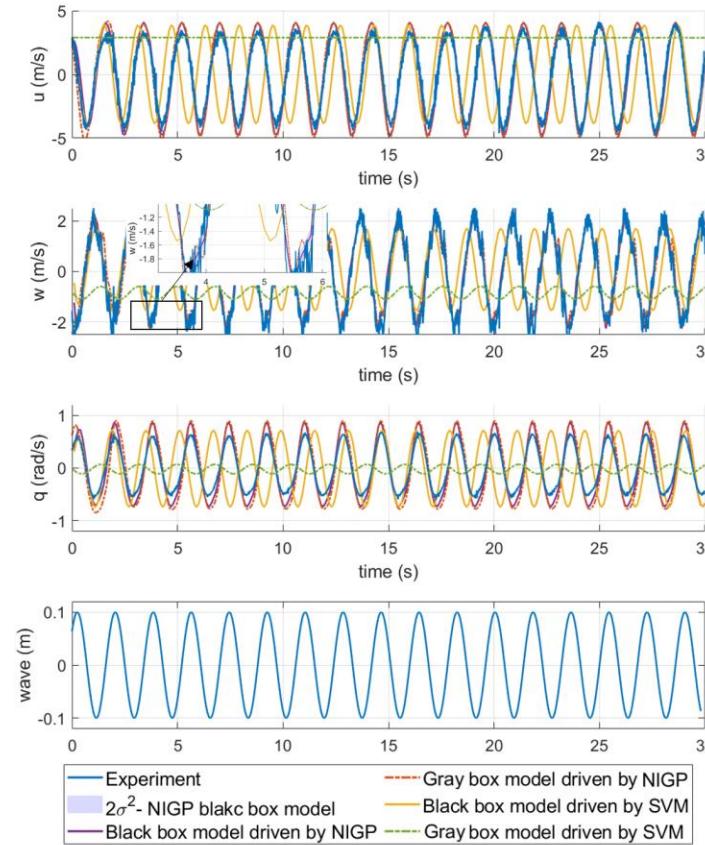
Elements	Value
Water depth (m)	1.0
Wave height (m)	0.2
Radius (m)	0.4
Draft (m)	0.4
Height (m)	0.12
Spring stiffness coefficient	85 N/m
Mass (kg)	58
Inertia in yaw (I_{zz})	2.2

363 The wave period of the experimental data is 1.6 s. The first 30 s of the experimental data are used
 364 to train each model, and the last 15 seconds of the data are used as the test set to verify the accuracy
 365 of the identified models. The sampling interval of training data for nonparametric gray-box modeling
 366 is 0.05 s, while the black-box modeling is 0.1 s. It can be seen from Fig. 10 that, except for the
 367 nonparametric gray-box model driven by SVM, the predicted results of the other three methods are
 368 almost the same as the experimental values. The rest motion data with a wave period of 1.8 s is used
 369 to further verify the identified models and is presented in Fig. 11. It should be noted that the WEC
 370 buoy has different added mass in a different wave frequency, so we recalculated the added mass with
 371 the wave period 1.8 s and substituted it in Equation (31) for gray-box modeling prediction. From Fig.
 372 11, it can be seen that the trend of the experimental and Bayesian gray-box and black-box modeling
 373 prediction fit well in the motion of surge and heave. However, it can be observed that there is some
 374 discrepancy between the prediction and the experiment in pitch. This may be mainly due to fact that
 375 the frequency of wave in the training data is higher than that of the test, and the motion is very
 376 regular, which means that the training data does not fully reflect the dynamic characteristics of the
 377 device. In the 1.8 s wave period, the prediction of the gray-box modeling based on SVM failed, and
 378 its motion state was significantly slower than the experiment. The RMSE of u , w and q and
 379 computation time of the models are listed in Table 6. Table 6 demonstrates that the black-box model
 380 based on NIGP is the most accurate identification method for WEC buoy.



381

382

Figure 10. Comparisons of results of the WEC predicted motion; $T=1.6$ s

383

384

Figure 11. Comparisons of results of the WEC predicted motion; $T=1.8$ s

385
386**Table 6.** Estimation of forecast accuracy by RMSE and computation time for the WEC motion with the wave period 1.6 s and 1.8 s

		Nonparametric gray-box model		Black-box model	
		SVM	NIGP	SVM	NIGP
T=1.6 s	<i>u</i>	/	0.866	1.883	2.184
	<i>w</i>	/	0.580	0.610	1.143
	<i>q</i>	/	0.151	0.346	0.404
T=1.8 s	<i>u</i>	/	1.503	3.872	1.142
	<i>w</i>	/	0.979	1.935	0.620
	<i>q</i>	/	0.396	0.664	0.211
time (s/step)		0.0012	0.086	0.0013	0.025

387 **6. Discussions and Conclusions**

388 In this work, three different identification frameworks, parametric gray-box modeling,
 389 nonparametric gray-box modeling and black-box modeling based on Bayesian regression, have been
 390 developed. The main objective is to propose a robust and widely used identification methodology for
 391 hydrodynamic models of marine vehicles and equipment using experimental data. The Bayesian
 392 regression approach was compared with SVM on a KVLCC2 and WEC buoy model and showed good
 393 generalization ability. The relative strengths and weakness of each method are summarized in Table
 394 7. For different modeling objects and characteristics, the corresponding modeling method should be
 395 selected according to their capabilities. For conventional ship, choosing traditional parametric
 396 modeling can produce good results under the limited data conditions. For new types of vehicles such
 397 as USV and ROV, as well as other irregularly shaped marine structures, nonparametric modeling
 398 could be a better choice. However, when very low amounts of training data exist, the parametric
 399 gray-box modeling method can provide a useful model with the help of prior knowledge such as the
 400 added mass of the marine equipment. The obtained experimental data is usually the velocity obtained
 401 by MRU (motion reference unit) or displacement data measured with a camera. If the force of the
 402 device can be obtained by CFD simulation, or directly measured by a PMM test, the nonparametric
 403 gray-box modeling with nonlinear fluid dynamics would be a very effective method. In terms of the
 404 practicality of the algorithm, compared with SVM and ANN, Bayesian regression introduces a prior
 405 into the loss function, which has stronger generalization ability. Moreover, NIGP shows stronger
 406 predictive ability because of its additional processing of input noise. However, it needs to be
 407 acknowledged that it costs longer execution time due to the complicated calculations in
 408 nonparametric modeling.

409 **Table 7.** Capabilities and challenges of Bayesian gray-box modeling and black-box modeling

Property	Parametric gray-box model driven by ScBR	Nonparametric gray-box driven by NIGP	Black-box model driven by NIGP
Modeling framework	Newton's second law equation with Taylor expansion forces	Newton's second law equation with nonparametric forces	High-dimensional mapping of time series
Required prior knowledge	weak	fair	strong
Nonlinearities	fair	strong	strong
Training with limited data	strong	fair	weak
Noise robustness	weak	fair	strong
Execution time	strong	weak	fair

410 Although the preliminary application of the proposed Bayesian methods seems encouraging
411 thus far, the work needs further extension and investigations. (1) For a model calculation to be used
412 in the practical application of control design, the training dataset should be richer and obtained from
413 more abundant excitation signal, to make the identification model more accurate. The experimental
414 data used in this article are not from the experiments specially designed for system identification, so
415 the excitation signal of the training data is not enough. Especially for the wave energy device,
416 compared with regular waves, the motion data under irregular waves (such as Jonswarp spectral
417 waves) can better reflect the dynamic characteristics of the device. (2) The experiments of ship and
418 WEC in this article are all carried out in water tank, but the equipment in the ocean will be affected
419 by various factors such as wind, water depth and current. Further study is required to introduce these
420 factors as inputs into nonparametric modeling. (3) Model predictive control (MPC) based on GP
421 allows the direct assessment of residual model uncertainty to enable cautious control. It is very
422 interesting to integrate NIGP-based nonlinear nonparametric modeling into MPC for marine systems.
423

424 **Author Contributions:** Conceptualization, Y.L. and Y.X.; methodology, Y.X and G.X.; software, Y.X. and S.H.;
425 validation, Y.X., S.H. and Q.J.; resources, Y.L.; data curation, S.H. and Q.J.; writing and editing, Y.X. and G.X. All
426 authors have read and agreed to the published version of the manuscript.

427 **Funding:** This research was funded by National Key R&D Program of China, grant number 2019YFB2005303;
428 Shandong Provincial Key Research and Development Program Major Scientific and Technological Innovation
429 Project under Grant 2019JZZY010802; the Laboratory for Marine Geology, Qingdao National Laboratory for
430 Marine Science and Technology, grant number MGQNL201806.

431 **Acknowledgments:** The authors would like to thank the Qingdao Postdoctoral Applied Research Project
432 (Hydrodynamic characteristic and power performance of multi-freedom buoy wave energy converter); the
433 Hamburg Ship Model Basin (HVSA) and SIMMAN for sharing the KVLCC2 experimental data, and the Ocean
434 University of China for their technical support for the experiment of the WEC.

435 **Conflicts of Interest:** The authors declare no conflict of interest.

436 References

1. IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS) Report of the Working Group. In Proceedings of MSC 99th Session, London, Aug.
2. Pena-Sanchez, Y.; Windt, C.; Davidson, J.; Ringwood, J.V. A Critical Comparison of Excitation Force Estimators for Wave-Energy Devices. *IEEE Transactions on Control Systems Technology* 2019, 10.1109/tcst.2019.2939092, 1-13, doi:10.1109/tcst.2019.2939092.
3. Ljung, L. Black-box models from input-output measurements. In Proceedings of IEEE Instrumentation & Measurement Technology Conference.
4. Drazin, P.G.; Reid, W.H. *Hydrodynamic stability*; Cambridge university press: 2004.
5. Norrbin, N.H. *Theory and observations on the use of a mathematical model for ship manoeuvring in deep and confined waters*; Swedish State Shipbuilding Experimental Tank Goteborg: 1971.
6. Abkowitz, M. Lectures on ship hydrodynamics. *Hydro-Og Aerodynamisk Laboratorium, Report Hy-5* 1964.
7. Kobayashi, E.; Kagemoto, H.; Furukawa, Y. Research on ship manoeuvrability and its application to ship design. Chapter 2: mathematical models of manoeuvring motions. In Proceedings of The 12th Marine Dynamic Symposium; pp. 23-90.
8. Astrom, K. Design of fixed gain and adaptive autopilots based on the Nomoto model. In Proceedings of Proceedings, Symposium on Ship Steering Automatic Control.
9. Furukawa, Y.; De le forttrie, G.; Duffy, J.; Guille rm, P.; Kim, S.; Mauro, S.; Otzen, J.; Simonsen, C.; Steinwand, M.; Tannuri, E. Final Report and recommendations of the Manoeuvring Committee. In Proceedings of The 28th International Towing Tank Conference (ITTC); pp. 131-212.
10. Sutulo, S.; Guedes Soares, C. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. *Ocean Engineering* 2014, 79, 10-25, doi:10.1016/j.oceaneng.2014.01.007.
11. Pintelon, R.; Schoukens, J. *System Identification: A Frequency Domain Approach*, Second Edition; IEEE Press: 2012.

460 12. Nagumo, J.; Noda, A. A learning method for system identification. *Journal of the Society of Instrument*
461 *Control Engineers* 1967, 12, 282-287.

462 13. Fossen, T.I.; Sagatun, S.I.; Sørensen, A.J. Identification of Dynamically Positioned Ships. *Ifac Proceedings*
463 *Volumes* 1995, 28, 362-369.

464 14. Åström, K.J.; Källström, C.G. Identification of Ship Steering Dynamics. *Journal of Ningbo University* 1989.

465 15. Mei, B.; Sun, L.; Shi, G. White-Black-Box Hybrid Model Identification Based on RM-RF for Ship
466 Maneuvering. *IEEE Access* 2019, 7, 57691-57705, doi:10.1109/access.2019.2914120.

467 16. Wang, Z.; Zou, Z.; Guedes Soares, C. Identification of ship maneuvering motion based on nu-support
468 vector machine. *Ocean Engineering* 2019, 183, 270-281, doi:10.1016/j.oceaneng.2019.04.085.

469 17. Cummins, W. The impulse response function and ship motions; David Taylor Model Basin Washington
470 DC: 1962.

471 18. Li, Y.; Yu, Y.-H. A synthesis of numerical methods for modeling wave energy converter-point absorbers.
472 *Renewable and Sustainable Energy Reviews* 2012, 16, 4352-4364.

473 19. Davidson, J.; Giorgi, S.; Ringwood, J.V. Identification of Wave Energy Device Models From Numerical
474 Wave Tank Data—Part 1: Numerical Wave Tank Identification Tests. *IEEE Transactions on Sustainable*
475 *Energy* 2016, 7, 1012-1019, doi:10.1109/tste.2016.2515512.

476 20. Nguyen, H.N.; Tona, P. Wave Excitation Force Estimation for Wave Energy Converters of the Point-
477 Absorber Type. *IEEE Transactions on Control Systems Technology* 2017, PP, 1-9.

478 21. Davis, A.F.; Fabien, B.C. Systematic identification of drag coefficients for a heaving wave follower. *Ocean*
479 *Engineering* 2018, 168, 1-11, doi:10.1016/j.oceaneng.2018.08.054.

480 22. Perez, T.; Fossen, T.I. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships
481 and Offshore Structures. *Modeling, Identification and Control: A Norwegian Research Bulletin* 2009, 30, 1-
482 15, doi:10.4173/mic.2009.1.1.

483 23. Garcia-Abril, M.; Paparella, F.; Ringwood, J.V. Excitation force estimation and forecasting for wave energy
484 applications. *IFAC-PapersOnLine* 2017, 50, 14692-14697.

485 24. Wang, X.-g.; Zou, Z.-j.; Yu, L.; Cai, W. System identification modeling of ship maneuvering motion in 4
486 degrees of freedom based on support vector machines. *China Ocean Engineering* 2015, 29, 519-534,
487 doi:10.1007/s13344-015-0036-9.

488 25. Xu, H.; Guedes Soares, C. Maneuvering modelling of a containership in shallow water based on optimal
489 truncated nonlinear kernel-based least square support vector machine and quantum-inspired evolutionary
490 algorithm. *Ocean Engineering* 2020, 195, doi:10.1016/j.oceaneng.2019.106676.

491 26. Shi, S.; Abdelrahman, M.; Patton, R.J.; Ieee. Wave Excitation Force Estimation and Forecasting for WEC
492 Power Conversion Maximisation. In 2019 Ieee/Asme International Conference on Advanced Intelligent
493 Mechatronics, Ieee: New York, 2019; pp. 526-531.

494 27. Rajesh, G.; Bhattacharyya, S.K. System identification for nonlinear maneuvering of large tankers using
495 artificial neural network. *Applied Ocean Research* 2008, 30, 256-263, doi:10.1016/j.apor.2008.10.003.

496 28. Wang, N.; Er, M.J.; Han, M. Large Tanker Motion Model Identification Using Generalized Ellipsoidal Basis
497 Function-Based Fuzzy Neural Networks. *IEEE Trans Cybern* 2015, 45, 2732-2743,
498 doi:10.1109/TCYB.2014.2382679.

499 29. Nagulan, S.; Selvaraj, J.; Arunachalam, A.; Sivanandam, K. Performance of artificial neural network in
500 prediction of heave displacement for non-buoyant type wave energy converter. *IET Renewable Power*
501 *Generation* 2017, 11, 81-84, doi:10.1049/iet-rpg.2015.0416.

502 30. Desouky, M.A.A.; Abdelkhalik, O. Wave prediction using wave rider position measurements and NARX
503 network in wave energy conversion. *Applied Ocean Research* 2019, 82, 10-21,
504 doi:10.1016/j.apor.2018.10.016.

505 31. Vapnik, V.N. *The Nature of Statistical Learning Theory*; Springer: 2000.

506 32. Ariza Ramirez, W.; Leong, Z.Q.; Nguyen, H.; Jayasinghe, S.G. Non-parametric dynamic system
507 identification of ships using multi-output Gaussian Processes. *Ocean Engineering* 2018, 166, 26-36,
508 doi:10.1016/j.oceaneng.2018.07.056.

509 33. Bai, W.; Ren, J.; Li, T. Modified genetic optimization-based locally weighted learning identification
510 modeling of ship maneuvering with full scale trial. *Future Generation Computer Systems* 2019, 93, 1036-
511 1045, doi:10.1016/j.future.2018.04.021.

512 34. Moreno-Salinas, D.; Moreno, R.; Pereira, A.; Aranda, J.; de la Cruz, J.M. Modelling of a surface marine
513 vehicle with kernel ridge regression confidence machine. *Applied Soft Computing* 2019, 76, 237-250,
514 doi:10.1016/j.asoc.2018.12.002.

515 35. Petra, N.; Petra, C.G.; Zhang, Z.; Constantinescu, E.M.; Anitescu, M. A Bayesian Approach for Parameter
516 Estimation With Uncertainty for Dynamic Power Systems. *IEEE Transactions on Power Systems* 2017, 32,
517 2735-2743, doi:10.1109/tpwrs.2016.2625277.

518 36. Mattos, C.L.C.; Barreto, G.A. A stochastic variational framework for Recurrent Gaussian Processes models.
519 *Neural Netw* 2019, 112, 54-72, doi:10.1016/j.neunet.2019.01.005.

520 37. Bin-Karim, S.; Bafandeh, A.; Baheri, A.; Vermillion, C. Spatiotemporal Optimization Through Gaussian
521 Process-Based Model Predictive Control: A Case Study in Airborne Wind Energy. *IEEE Transactions on*
522 *Control Systems Technology* 2019, 27, 798-805, doi:10.1109/tcst.2017.2779428.

523 38. Kruschke, J.K. Doing Bayesian Data Analysis. *Wiley Interdisciplinary Reviews Cognitive Science* 2010, 1,
524 658-676.

525 39. Kocijan, J. Modelling and control of dynamic systems using Gaussian process models; Springer: 2016.

526 40. Xue, Y.; Liu, Y.; Ji, C.; Xue, G. Hydrodynamic parameter identification for ship manoeuvring mathematical
527 models using a Bayesian approach. *Ocean Engineering* 2020, 195, doi:10.1016/j.oceaneng.2019.106612.

528 41. Astfalck, L.C.; Cripps, E.J.; Hodkiewicz, M.R.; Milne, I.A. A Bayesian approach to the quantification of
529 extremal responses in simulated dynamic structures. *Ocean Engineering* 2019, 182, 594-607,
530 doi:10.1016/j.oceaneng.2019.04.035.

531 42. Fossen, T.I. *Handbook of Marine Craft Hydrodynamics and Motion Control*; 2011.

532 43. Robert, Christian. *Machine learning, a probabilistic perspective*; Taylor & Francis: 2014.

533 44. Murphy, K.P. *Machine learning: a probabilistic perspective*; MIT press: 2012.

534 45. Gelfand, A.E.; Smith, A.F. Sampling-based approaches to calculating marginal densities. *Journal of the*
535 *American statistical association* 1990, 85, 398-409.

536 46. Bull, A.D. Convergence rates of efficient global optimization algorithms. *Journal of Machine Learning*
537 *Research* 2011, 12, 2879-2904.

538 47. McHutchon, A.; Rasmussen, C.E. Gaussian Process Training with Input Noise. In *Proceedings of neural*
539 *information processing systems*; pp. 1341-1349.

540 48. McHutchon, A.J. Nonlinear modelling and control using Gaussian processes. University of Cambridge,
541 2015.

542 49. Bijl, H. LQG and Gaussian process techniques: For fixed-structure wind turbine control. Delft University
543 of Technology, 2018.

544 50. Luo, W.; Guedes Soares, C.; Zou, Z. Parameter Identification of Ship Maneuvering Model Based on Support
545 Vector Machines and Particle Swarm Optimization. *Journal of Offshore Mechanics and Arctic Engineering*
546 2016, 138, doi:10.1115/1.4032892.

547 51. Wang, Z.-H.; Zou, Z.-J. Quantifying Multicollinearity in Ship Manoeuvring Modeling by Variance Inflation
548 Factor. In *Proceedings of ASME 2018 37th International Conference on Ocean, Offshore and Arctic*
549 *Engineering*.

550 52. Simonsen, C.; Stern, F. SIMMAN 2014 workshop on verification and validation of ship maneuvering
551 simulation methods. In *Proceedings of Draft Workshop Proceedings*.

552 53. Luo, W.; Li, X. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system
553 identification. *Applied Ocean Research* 2017, 67, 9-20, doi:10.1016/j.apor.2017.06.008.

554 54. Huang, S.-t.; Shi, H.-d.; Dong, X.-c. Capture Performance of A Multi-Freedom Wave Energy Converter with
555 Different Power Take-off Systems. *China Ocean Engineering* 2019, 33, 288-296, doi:10.1007/s13344-019-
556 0028-2.

© 2020 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license
(<http://creativecommons.org/licenses/by/4.0/>).