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13 Abstract: Establishing an accuratemathematical model is the foundation of simulating the motion
14 of marine vehicles and structures, and it is the basis of modeling-based control design. System
15 identification from observed input-output data is a practical and powerful method. However, for
16 modeling objects with different characteristics and known information, a single modeling
17 framework can hardly meet the requirements of model establishment. Moreover, there are some
18 challenges in system identification, such as parameter drift and overfitting. In this work, three
19 robust methods are proposed for generating ocean hydrodynamic models based on Bayesian
20 regression. Two Bayesian techniques, semi-conjugate linear regression and noisy input Gaussian
21 process regression, are used for parametric and nonparametric gray-box modeling and black-box
22 modeling. The experimental free-running tests of the KVLCC2 ship model and a multi-freedom
23 wave energy converter (WEC) are used to validate the proposed Bayesian models. The results
24 demonstrate that the proposed schemes for system identification of the ship and WEC have good
25 generalization ability and robustness. Finally, the developed modeling methods are evaluated
26 considering the aspects required conditions, operating characteristics and prediction accuracy.

27 Keywords: System identification; Hydrodynamic model; Ship maneuvering; Wave energy
28 converter; Bayesian regression

29

30 1.Introduction

31 A mathematical model is an approximate description of a physical system, and they are the
32  foundation of designing, simulation and control. Establishing an accurate and practical
33  hydrodynamicmodel has always been aresearch hotspot in the field of ocean engineering. For ships,
34 the high precision of ship maneuvering systems plays a crucial role in ship controller design and
35  operation [1]. A wave energy converter (WEC) needs an active control strategy to maximize its
36  efficiency in a wide range of operating conditions [2]. Various methods have been proposed to
37  construct thehydrodynamic model in naval architecture.

38 Depending on whether prior knowledge and physicallaws areused in modeling, the modeling
39  methods can be categorized as white-box modeling, gray-box modeling and black-box modeling
40  methods [3]. White-box modeling is the case in which a model is perfectly known. It needs to
41  predefine the mathematical structure entirely from prior knowledge and physicalinsight. However,
42 due to the strong nonlinearity of water resistance and the randomness of turbulence [4], it is
43  extremely difficult to establish an accurate white-box model of a marine vehicle or structure. The
44 practical way is tofirst select the model through certain criteria, and then estimate the parameters in
45  theselected model from observation data with system identification. This modeling method is called
46  gray-boxmodeling. Specific to marineequipment, the most commonly used approach is to establish
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47  the equation according to Newton’s second law and then substitute the fitted regression
48  hydrodynamicforcein it.

49 The traditional way tofit thehydrodynamicforcein gray-box model is to expand it into a linear
50  function of velocity. For ship modeling, different parametric model structures, such as Abkow tiz
51 model [5,6], MMG model [7] and Nomoto model [8], have been proposed and validated over the
52 years. The hydrodynamic parameters can be obtained by a captive model test with planar motion
53  mechanism (PMM), computational fluid dynamics (CFD) and free-running tests with system
54 identification [9]. Among the aboveapproaches, the system identification with free-running test has
55  been proven to be a powerful and practical method with lower experiment cost [10]. System
56  identification is a general term for estimating parameters from observed input and output data,
57  which provides areliablemathematical surrogate model in multipleengineering areas[11]. The least
58 square (LS) [12], extended Kalman filter (EKF) [13] and maximum likelihood (ML) [14] algorithms
59  areintroduced to identify the hydrodynamicderivatives and proved the effectiveness. Over the last
60  decade, some new methods, with stronger generalization ability and robustness, based on machine
61 learning have also been applied to the estimation of hydrodynamic parameters. Minimizing the
62  Hausdorff metric with the geneticalgorithm (GA) can alleviate theimpact of noise-induced problems
63 [10]. Mei et al. [15] introduced model reference and random forest (RM-RF) to model ship dynamic
64  model and validated the proposed scheme with free-running test data. Wanget al.[16] presented nu-
65  Support Vector Machine (v-SVM) to improve the robustness of the algorithm.

66 In the gray-box modeling of waveenergy community, Cummin’s equation [17] is used to define
67  the hydrodynamic model. Generally, there are two ways to determine the equation. Typically, the
68  hydrodynamicmodel is predefined as the linear model and solved by the potential flow theory [18],
69  whereby the problem issimplified and linearized through assumptions of small amplitude
70  oscillations. However, the simplified linearizing assumptions areinvalid when the WECs havelarge
71 amplitude motions resulting from energetic waves or sustained wave resonance[19]. An alternative
72 method is to use system identification. The training data can be obtained from CFD simulation [2] or
73 scale experiments in a towing tank [20,21]. A popular method is to estimate the real hydrodynamic
74 force using an EKF observer, which assumes that the excitation force can be represented as the sum
75 of a finite set of harmonic components [22,23].

76 The gray-box modeling methods mentioned above are all parameterized. Recently, a
77  nonparametricgray-box model has been put forward in some studies, and encouraging results have
78  been obtained. The model still follows the framew ork of Newton’s law, and the force element, which
79  isdifficult to determine, is directly replaced by a machinelearningmodel of related variables. Wang
80 et al. [24] used SVM to replace the Taylor expansion in Abkowtiz model, and they compared the
81  accuracy and computation speed with parametric gray-box and black-box modeling. Xu and Guedes
82  Soares [25] proposed a nonlinear implicit model with nonlinear kernel-based Least Square SVM for
83 a maneuvering simulation of a container ship in shallow water. The forces and moments in [25] are
84  obtained by a PMM test and then trained as outputs for an SVM model related to speed and water
85  depth. In the study of WEC [26],an observer-based unknown input estimator is used to estimate the
86 waveexcitation force, then a Gaussian Process (GP) is adopted to forecast the waveexcitation force.
87  Ontheone hand, the nonparametric gray-box model directly substitutes the information of the object
88 itself. On the other hand, compared with linear expansion, it can better fit the hydrodynamic force.
89  Therefore, this method is worth studyingand comparing with the experimental data of more devices.
90 Recently, Bayesian regression has been successful applied in multiple fields for parameter
91  estimation andblack-box modeling. Bayesian methods havesignificant advantages in modeling with
92 good statistical properties, predictions for missing data and forecasting [35-37]. Moreover, Bayes’ rule
93  offers a reasonable way to update beliefs in light of training data, and the hyperparameters in the
94  Bayesian scheme have an intuitive meaning [38]. Bayesian regression models can work well in
95  dynamic system modeling with a relatively small number of training data points and noisy output
96  [39]. With regards to parametric gray-box modeling, ship dynamic models based on conjugate and
97  semi-conjugate Bayesian regression (ScBR) are adopted to estimate the hydrodynamic parameters
98  [40].For the black-box modeling, Ariza Ramirez et al. [32] used multioutput GPs to identify the ship
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99  dynamicsystem,and showed that the GP scheme has better generalization than RNN. Astfalck et al.
100  [41] used a series of Bayesian methods to quantify the extremal responses of a floating production
101  storage and offloading (FPSO) vessel. GP introduces a complexity penalty and it has an automatic
102  regularization built into it through its foundation in Bayesian probability theory. The advantage of
103  the complexity penalty is that, unlike other methods such as neural networks, Gaussian process
104  regression has a far smaller risk of overfitting. However, the Bayesian approaches for gray-boxand
105  black-box modeling of marinedynamic model has not been investigated and compared considering
106  the aspects of prerequisite conditions, accuracy and robustness under experimental data.

107 This article contributes to the use of Bayesian regression toidentify thenonlinear dynamic model
108  of a container ship and an oscillating buoy WEC with gray-box modeling and black-box modeling.
109  First, theBayesian regression algorithms, including semi-conjugateregression (ScBR) and noisy input
110  Gaussian process (NIGP), are introduced. Then, the parametric, nonparametric gray-box modeling
111  and black-box modeling schemes based on Bayesian algorithms are proposed for the ship and WEC
112 respectively.These proposed schemes are validated and compared using experimental data. Finally,
113 the capabilities and challenges of the proposed models are further discussed.

114 This paper is organized as follows. Section 2 describes the marine dynamic model. The
115  algorithms of ScBR and NIGP are depicted in Section 3. In Sections 4 and 5, theidentification schemes
116  of the ship and WEC and experimental examples are presented to demonstrate the distinction and
117  effectiveness of the proposed two methods. Section 6 presents the main conclusions and a further
118  discussion.

119 2.Kinematic model

120 The classical kinematic model in naval architecture is motivated by Newton’s second law, and
121  therigid-body kinemics equations can be expressed in vector form as [42]

MRBV =Tgpp — CRB(V) (1)
TR = Th T Tenv + Teontrol

122 where Mgy istherigid-body inertia matrix; Crz (V) isamatrix ofrigid-body Coriolis and centripetal

123 terms; 1z is a vector of generalized forces containing hydrodynamic waver resistance, 7,

124 environmental forces, T,,,, and control forces, T.oneror- V denotes the generalized velocity in 6

125 (degree of freedom) DOF, the notation of motion variables is shown in Table 1.

126 Table 1. Notation of motion variables
DOF Motions Forces Linear velocity Positions
1 Surge I u x
2 Sway F, v y
3 Heave F; w

Rotations =~ Moments Angular velocity Rotation angles

4 Roll M, p @
5 Pitch M, q 0
6 Yaw M, r Y
127 The marine dynamic model is essentially a nonlinear autoregressive model with an exogenous

128  input (NARX) system, and the predictions are based on the previous measurements of the input
129  signalsand output signals [39]. Fig. 1 shows theNARX configuration for dynamicsystem, where c;
130  denotes the command signals such as propeller speed and rudder angle of the ship (Ariza Ramirez
131  etal, 2018); y, is the original output; ¥, is polluted by noise, €; z stands for the z-transformation;
132 and subscript k denotes time step.
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134 Figure 1. NARX model
135  3.Bayesian regression framework
136  3.1. Simi-conjugate Bayesian regression
137 The object of linear regression is to estimate thehydrodynamic parameters  in damping matrix
138 1, the form of multiplelinear regression as
Ve =X +e @)

139 where t=1,...n denotes time; y, is the observed response; x, is a 1 X ¢ row vector of the observed
140  values of ¢ predictors; § is a ¢ X1 column vector of regression parameters corresponding to the
141  variables that consistofthe columnsof x,and ¢, is therandom disturbancethat has a mean of zero
142 and common varianceof 2.

143 Bayes theorem treats f and o2 asrandom variables belonging to some probability distributions.
144  Generally, the Bayesian analysis process updates the probability density function (PDF) of the
145  parameters by incorporating information about the parameters from the training data. Bayes’
146  theorem gives the posterior PDF as

P(data |para)P (para)

= 3
P(parameters|data) P(data) 3)

147 According to the central limit theorem, most of the measured value distributions can be
148  approximated by a normal distribution or a Gaussian distribution. A popular choice is the normal-
149  inverse-gamma conjugate model [43], in which § obeys the multivariate normal distribution (V)
150 and o? is the inversegamma (IG) distribution. Equation (3) can be abbreviated as follows:

n(B,a%ly,x) o< N (BIN (0 )[1i=19(Ve; x:B,0%) (4)

151 where ¢(y,;x.B,0%) isthe Gaussian probability density with mean x.f and variance 62 on y,.The
152  regression model is divided into conjugate and semi-conjugate Bayesian regression depending on
153  whether the parameters and disturbance areindependent.

154 In practical engineering applications, parameters and noise are often not independent of each
155 other [44]. The prior distributionsof f and o2 are asfollows when  and 0% aredependent:

B lo?~N.(uV)
02~IG(4,B) ©®)

156  where u is the mean value (¢ X 1 vector), V is the ¢ x ¢ diagonal matrix in which each element
157  equals the prior variance factor of B;, and IG(A, B) denotes the inverse gamma distribution with
158  shape A4 and scale B.

159  The conditional posterior distributionof f and ¢? can be obtained:

Blo2,y, x~N (V"1 + 02X ) o 2" X) B+ V 2u], V1 + XTX)™1) (6)

1B, xI6 + 5.5+ 3SR )
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160  where X isan n X ¢ matrix of trainingdataand SSR(B) is given by

n
SSR(B) = ) (v = BTx)* = (y = XB)T (y = XB) ®)
i=1

161  Since § and ¢? are mutually influential, their posterior distributions are not analytically tractable.
162  Some numerical integration techniques based on the Markov chain Monte Carlo method have been
163  proposed tosolve this problem.In the present work, the Gibbs sampler [45] is applied to approximate
164  the posterior of f and 2. The Gibbs sampler is an iterative algorithm that constructs a dependent
165  sequence of parameter values whose distribution converges to the targetjoint posterior distribution.
166  The values of parameters arethe mean of the posterior of f.
167 In multivariate linear regression, introducing the L,-norm into the algorithm to overcome the
168  problems of multicollinearity and overfitting is a general accepted and effective method, such as
169  ridge regression. ScBR naturally introduces the norm through prior parameters. These type of
170  parametersin the algorithm frameworkare called hyperparameters in machinelearning. Compared
171  toother algorithms, thehyperparameters of the prior distribution, such as the mean and variance, in
172  theBayesian approachhavea clear and intuitive meaning: The value of the prior mean p represents
173 the parameter to be identified, which we subjectively set before the regression is performed. When
174 thereis no other prior information about the parameter tobe estimated, the mean p is usually set to
175  zero. The prior variance is obtained by Bayesian optimization algorithm (BOA). BOA is a powerful
176  global optimization algorithm, which is usually used in thehyperparameter optimization of machine
177  learningin cases with fewer hy perparameters and slower operations of the objective model [46]. More
178 details about the ScBR with BOA can be found in our previous work [40].

179  3.2. Noisy input Gaussian process

180 GP can be viewed as a collection of random variables with ajoint Gaussian distribution for any
181 finite subject. GP can be conveniently specified by a mean function, m(x), and a covariance function,

182  k(x,x), as

mx) = E[f(x)] ©)
kGe,x") = E[(f &) — m@x)(f(x) — m(x))] (10)

183  where E denotes the expectation operator.
184 GP regression approximates an unknown function, f(x), whichmapsa D-dimensional input to

185  ascalaroutput value, f. A number of training points n, which include c-dimensional inputs, {x}}-;
186  and noisy observations {y,}\_, are given. These collections of variables are denoted as the n X ¢
187  input, X, and the n x 1 output vector, y. The regular Gaussian process (RGP) assumes that the
188  trainingoutputsarecorrupted by noise,

y=710) +e, (11)

189  wheree,
190  defines a GP prior on the function values,

is Gaussian white noise with zero mean and variance o,?. The regular GP regression

p(f1X) = MmO, k(X, X)) (12)

191  With these modeling assumptions in place, the likelihood function can be obtained,
pOIf0 = [%(is fi0,2) (13)
t=1

192  Then, combiningthe prior Equation (12) and thelikelihood function Equation (13), we can obtain the
193  posterior probability distribution and predict the function values, f*, ata wholeset of test points X*.

[f*]~N ([ m(X*)]’ [ K(X*, X" K(X*,X))
y

mex) KXY K+0,1 (14)
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194  whichleads to the RGP regression predictive equations,
p(F*IX*,X,y) = N(m, s) (15)
m=mX")+ KX X[KX,X) + 0,211 (y — m(X)) (16)
8=k X) - KX, O[KX,X) + 0,2 ] ' KX, X") 17)
195 The traditional formulation of GP regression only considers output noise ¢,2, while the input

196  dataareassumed to benoise-free. However, the noise in the output will be passed to theinput in the
197  NARX models, as shown in Fig. 1. McHutchon and Rasmussen proposed the NIGP method which
198  does takeintoaccount the input noise and posterior data [47]. NIGP further assumes that theinputs
199  arealsonoisy, and the actual inputs and outputsare labeled ¥ and ¥, respectively.

x=%X+¢€, (18)

200  where €, is Gaussian whitenoise with zeromean and variance . The prerequisites for this model
201  are that each input dimension is independently corrupted by noise, so ¥, is diagonal. Similar to
202  Equation (11), the output function can be written as:

y=fF+e)+e, (19)

We can use a first order Taylor series expansion of the GP latent function, f, to write an
approximation to Equation (19) as,
ZACI

ox Y
203  Note that the expansion can be expanded to higher terms. However, these higher term calculations
204  are computationally costly and provideno significant improvement. For notational convenience, the

y=f0) +¢€l (20)

205 derivative of one GP mean function in Equation (20) will be denoted as df, a c-dimensional vector.
206  Af, an n X c matrix, denotes the value of thederivativefor the n functions.

207  Given that the GP prior is the sameas that of the RGP, p(f|X) = NM(0,K (X, X)), where K(X,X) isthe
208 n xn trainingdata covariancematrix, we can obtain the predictive posterior mean and varianceas

Elf1X,y, X1 = K&, X) [K(X, X) + 0,21 + diag{Ap ¥, AP}y 1)

VIF1x,y, X1 = k(x*, X°) - KX, O [KX,X) + 0,21 + diag{Ap 3, AFNTIK(X, X)) (22)

209  wherethe notation “diag” resultsin a diagonal matrix.

210 In this way, the input is treated as deterministic and a correction term, diag {Af o AJT;}, is added
211  to the output noise. More specifically, the influence of the input noise depends on the slope of the
212  function weareapproximating. Our model is essentially sameas an RGP if the posterior mean is fully
213  flat. The next problem is how to approximate the posterior distribution based on its derivative.

214 Compared to the RGP, the NIGP introduces extra hyperparameters €, per input dimension. A
215  major advantageof thismodel is that these hyperparameters can betrained alongside any others by
216 ML. The marginallikelihood function of the NIGP is,

1 1 N
—log puicr V1X,0) = Elog|Kn| + E(m(X) -8B +> log2m (23)
217 where,
K, = K&X,X) + diag{Af 3, AF} +0,20 (24)
B =K, '(mX) —y) (25)
218 The solution toestimating the hyperparameters is a two-step approach. First, weevaluate a regular

219  GP without any input noise. Then, we calculate the derivatives and use them to approximate the
220  posterior distribution. The marginal likelihood of the GP with corrected varianceis then computed.
221  We can cycle this process until the convergence; this step involves chaining the derivatives of the
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222  marginallikelihood back through the slope calculation. Moreover, the gradient descent algorithm is
223  employed to tune the hyperparameters. A complete explanation can be found in [48] and some
224 supplementary notes arein Bijl’s study [49].

225  The proposed model adopts the commonly used squared exponential (SE) covariance function
226  expressed as

1
k(xox;) = opPexp(= 5 (xi = 1) NG = X)) (26)

227  where g; denotes the amplitude and A is a diagonal matrix of the squared length-scale
228  hyperparameters.

229  4.1dentification of marine craft

Yo 0,

Xo ™

v(sway) v_\q(pitch)

Yo \\}

p(roll)

Xo
u(surge)
230

231 Figure 2. Reference frames for ships

232 4.1. Parametric gray-box modeling

233 The essence of the parametric gray-box modeling is to construct a simplified parameterized
234 equation to replace Equation (1). The nondimensional rigid-body kinetics using the Prime system of
235  surface ship3 DOF maneuveringmotion is given as follows:

m' - X, 0 0 o (B
0 m =Y, m'x;-Y!||ly|=|E (27)
0 mxp-nN, I, -nN |1 Mg

236  where m denotes the ship mass; x is the longitudinal coordinate of the ship’s center of gravity in
237 the body-fixed coordinate frame; I, denotes the moments of inertia of the ship about the z, axes;
238 X,,Y,, Y., N, and N, are acceleration derivatives which can be determined using potential
239  theory;and F, F, and M; are forces and moment disturbing quantity at x,-axis, y,-axis and z,-
240  axis respectively. Note that the superscript “ ' ”
241  normalized using the Prime-system.

242 The selection of a mathematical model for identification is a trade-off between model complexity

indicates that the corresponding variable is

243  and model capacity. The most widely used model is the Abkowitz model, a Taylor-series expansion
244 model. The Abkowits model has good generalization performance, but it includes a large number of
245  coefficients and some of the coefficients have no physical meaning. A simplified Abkowitz 3-DOF
246  model [50] is employed to construct the white-box model because it contains fewer hydrodynamic
247  parameters while ensuring high accuracy, which can suppress parameter drift caused by too many
248  variables[51]. Thenonlinear forces and moment are defined as:
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FII = thdro - AGD)
E "= Yhydro B (@) (28)
My = Npyaro * c@

249  wherethe hydrodynamicderivatives and speed state variables in Equation (28) areas follows:
250 thdro = [Xl’l. ’ Xllm ) X;“r ’ Xés ’ Xi’)‘r‘ ’ X:;s 'X;ﬂ&' X(’) ) ] 1x8

— r ! ! r ! r ! ! r ! r ! ! !
251 Yhyd'fo = [V Y5 YB'levl’ lerl‘ YIrlr'levl’YJSJ' Yw&’ YVSS' YT&S’YNS’ Yru&’ Yolix1a

—_ r r ! ! ! ! r ! ! ’ r r r r
252 Nhydro - [NV'NT' N6' Nvlvl' Nvlrl' N|r|r'Nr|v| 'NS&S' vaa' Nv&S' Nr65' Nrré' Nrw?' N0]1><14

253 AW = [u,@,v"?@,r*@, .., ")) 1] Ty

254  B®@ =[v'@),r"*@,8' @), v' D)W @D .., D)V @) (@) 1] x1a

255 W) =@, @D, (D), v O D], e, OV )W) 1] x1s

256  where the relative speed u, = u — u,,,. As seen, thereis a total of 36 hydrodynamic parameters in
257  the simplified Abkowitz model. Euler’s stepping method is utilized to discretize the equation of
258  motions. The constructor of samples for hydrodynamic parameter estimation can be obtained as
259  follows:

260  Input variables: [AW),B®@),Cc{]

261  Output response:

u/ G+ 1D —u,/ @

(m' - X,’l.)L VDAt
(' — 1) v+ 1D -v'@) (' — 1) ri+1D-r'@
m -V, Lw+ mxg—7Y; LW (29)
' , vi+D-v@® G+ 1) - @)
|t = Nl = o+ e = Nl =

262  where U = Vu?+ v? is the resultant speed in the horizontal planeand At is thetime sample.

263 The procedure of the parametric gray-box modeling and motion prediction using ScBR is briefly
264  depicted in Fig. 3. A Bayesian optimization algorithm (BOA) is employed to tune the value of prior
265  variance, V, in semi-conjugate regression. For more details regarding the use of semi-conjugate
266  regression with BOA to identify the parameters, pleaserefer to our previous work [40].

i 1 [ il |
| u I Tu(k-1)! Q=5
| Esurge ! thdra : : | u(k) :
Iy : \v(k-1), Newton ! |
! | Semi-conjugate I I (k) 1
Iy Esway h Yhydro X r(k-1)) model ! |
: ; Linear regression | 1 : rik) |
| ¢ I I p(k-1) 'J" '
1 Fyaw 1 Nhya‘.ro | |
K I 5 (k-1)\ ()
" Trainingdata Estimated Prediction
267 parameters
268 Figure 3. Process of parametric gray-box modeling using ScBR
269  4.2. Black-box modeling
270 A continuous-timeblack-box model directly describes therelationship between theinput variables

271  and out response without any constrains. The principal parameters and the mathematical model are
272  not required in the black-box modeling. The structure of the training data follow s the form
273 Input variables: [u(i — 1,v(i — 1,7 — 1,50 — 1)]

Output response: [u(D),v(@D,r (D] (30)
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274  Fig. 4 shows theprocess of black-box modeling and motion prediction using NIGP. The SVM is also
275  used with thesame trainingdata for comparison with Bayesian regression. The RBF kernel function
276  in Equation (31), with an automatic kernel scale agy,,, is used to train the SVM.

i =
k() = exp(- 1) 61

Osvm

277  BOA is employed to tune the hyperparameters in SVM using the ‘Bayesopt’ MATLAB function. In
278  theory, this scheme can overcome the drawbacks of parametric gray-box models, such as a failure to

279  represent the actual behavior of the system due to unmodeled components.

foo-mmmmo - | e -
|_IEPEt Qutput ! |u'ﬂ‘ U: :u(k)'
1 1 7
:: u(i-l): i F')_' | :v(k-j): 1 1
u(i I . lv(k)
:: v(i-1) : : : | NIGP Gaussian :r(k-l): Learned NIGP | (& |
o lvgi) g ! regression process ! | rik) !
IIT(I_J)I 1 | 1 |¢(k_1) I_l_l
1 | pri | 1
ol r(i) | v 1
::_5_(_1_?__' - _l_-_—_‘ _: mg, Vy, 0y, 0y, :6(k—1)h—‘<7| bk
Training data Learned time Prediction
280 series model
281 Figure 4. Process of black-box modeling using NIGP
282  4.3. A case study of alarge container ship
283 The ship used in the experimental tests is a scale model of large tankers, KVLCC2, one of the

284  benchmark ships for verification and validation of ship maneuvering simulation methods
285  recommended by Simulation Workshop for Ship Maneuvering (SIMMAN) [52]. Maneuvering and
286  coursemaintaining tests withthe KVLCC2 models havebeen performed at the Hamburg Ship Model
287  Basin (HSVA). The dimensions of the vessel and the scale model are detailed in Table 2.

288 Table 2. Particulars of KVLCC2
Elements Full-scale model
L, (m) 320.0 70
B (m) 58.0 1.1688
D (m) 30.0 0.6563
Displacement (m?) 312622 3.2724
Draught (m) 20.8 0.4550
Beam coefficient 0.8098 0.8098
Nominal speed (m/s) 7.97 1.18
Rudder speed (8) 2.3 deg/s 15.8 deg/s
Nondim mass (m") 1908 x 107>
Nondim x coordinate of CG(x';) 3486x 107°
Nondim inertiain yaw (I',) 119x 107°

289 Here, 35°/5° zigzag maneuver data with a cumulative time of 180 s is used for training the

290  parametric gray-box model using ScBR, and the sample time is 0.5 s. The hyperparameters of ScBR,
291  prior variance V, are tuned by BOA. The posterior hydrodynamic parameters estimated by ScBR are
292  listed in Table 3. The added mass, including X}, and Y}, is calculated by slender-body instead of SI
293  [53].For comparison of the ScBR, Luo and Li’s results of SVM under the same parameterization gray-
294  boxmodeling arealsolisted in thetable.It should benoted that the mainstreamalgorithms for marine
295  equipment identification are offline algorithms, whichis usually trained after the data are obtained
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296  and then deployed in the controller or simulation system [10]. Therefore, the time spent on tuning
297  thehyperparameterswill not bementioned in thearticle.

298 Table 3. The nondimensional hydrodynamic parameters for ScBRand SVM (1 x 107°)

X-Coef. ScBR SVM Y-Coef. ScBR SVM N-Coef. ScBR SVM

b -1401  -128 Y, 3504 -94 N,  -448 -549
X, 1526 175 v, 19360 2066 N,  -1255 -829
X, 1800 -118 Y, 5683 486 N,  -1809 -1468
X} s 1252 -116 Y}, 687 63 ol 54 54
X5, -3282  -303 Je 1285 67 33 26
X 2452 196 Y, 9326 737 N, -485 -3038
X' 5842 -455 Y., 308 177 ‘v -143 55
X; -1440 -85 Vi 2163 58  Njgs  -652  -529
Y., 987 29  N.. 96 -80
Yis 410 17 Nl 16 -63

Yss 3065 50 N/, 96 6.1

Y, .s 314.2 99 N/ s 124 129
Y. .s 3504  -40 N/ s -448 21
Yo 1936.0 -56 Ng -1255 14
Added mass X, —95.4 Y, —1283 N, 0
not identified Y/ 0 N, -107
299 Here, 35°/5° and 20/5° zigzag maneuvers every 5 s are used for trainingtheblack-box modeling

300  driven by NIGP and SVM. It is of no application value to predict the trainingmovement of ship by
301  using the model obtained from the training data. To verify the generalization ability of the models
302  identified by gray-box modeling and black-box modeling driven by SVM and Bayesian regression,
303  the30°/5° and 15°/5° zigzag tests are predicted. Fig. 5 and Fig. 6 show the prediction results of each
304  method, and theroot mean square error (RMSE) is adopted to analyze the prediction performance of
305 these methods, which is shown in Table 4. In addition, the computation time of each step of these
306  methods for predictionisalso listed in the table. From the validation results, it can be concluded that
307  the trends of all the predictions before 70 s are basically consistent with the experiment. After 70 s,
308 thedifference between the predictions results of various methods gradually increased. On the whole,
309  the parametric gray-box and black-box modeling based on Bayesian regression results are in
310  acceptableagreement with the validation samples and show a stronger ability topredict than SVM.
311  From the perspective of the modeling framew ork, the prediction results of gray-box modeling are
312 better than those of black-box modeling in 30°/5° zigzag maneuvers, but worsein 15°/5° zigzag tests.
313  The mainreasonisthat thetraining data of gray-box modeling only contains 35°/5° movement, w hich
314 s closer to the30°/5° zigzag validation test. For the prediction time, parametric gray-box modeling is
315  significantly faster than black-box modeling because the calculation process of parametric gray-box
316  modeling is entirely linear. Because it considers the input noise and variance in the calculation
317  process, NIGP spends more time on the prediction than SVM. Note that the black-box modeling
318  usually requires more training data to enhance generalization ability than parametric gray-box
319  modeling, because the specified framew ork of the parametric gray-box model already contains some
320  information about thesystem.In a similar study [24], four groups of ship maneuver datasets areused
321  for trainingblack-box models while one group dataset is used for parameter estimation.
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323 Figure 5. Comparisons of results of the ship predicted motion; the 30°/5° zigzag test
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325 Figure 6. Comparisons of results of the ship predicted motion; the 15°/5° zigzag test

326
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327 Table 4. Estimation of fore cast accuracy by RMSE and computation time for the validation test
Parametric gray-box model Black-box model
SVM ScBR SVM NIGP
30°/5° u 0.053 0.040 0.115 0.094
v 0.182 0.092 0.186 0.121
r 2.530 1.226 2213 1.834
15°/5°  u 0.155 0.240 0.262 0.021
v 0.126 0.163 0.238 0.062
r 0.605 1.294 2.140 0.443
time (s/step) 0.0009 0.004 0.014
328  5.1dentification of WEC
329  5.1. Nonparmametric gray-box modeling
330 Similar to the ship model in Equation (27), the time domain 3 DOF model of the WEC buoy is
331 givenas,
m—X; 0 0 u Fi
0 m'—Z;, m'yg —Z;[|W|=|F (32)
mzg —mxg 1, q M,
332 Different from the parametric model in Equation (28), the force and moment on the right side of

333  theequation arenot fitted by themethod of multiplying the hydrodynamic coefficient and the speed.
334  In this case, NIGP is adopted to perform nonlinear regression between forces, speed and other
335  variables. The training sample that couples hydrodynamic forces and moment nonlinear regression
336  for training NIGP is

337 Input variables: [u(@,w@,q@, ()]

338  Output response:

[ (m_X')u(i+1)—u(i) ]
| wi +1) —w() qG +1 - q() |
| (m—ZW)T+(myG—Z.)— | (33)
{ uG +1 - u(i) wG+D—w@+1qQ+D—MN
sz——me 2z

At At

339  The process of nonparametric gray-box modeling and motion prediction using NIGP is depicted in

340  Fig.7.
"""""" 1
R — _
:I_hl Ut Output ! - R k)|
"u(.r,'-}): :-}-—I : '“(k UlLE‘alllEd : g, | Newton : (k)'
1 . 3 ¢t ]
:IW(I 1)| X : X NIGP Gaussian W(,\ l). NIGP : | model 2 |
| I Fo | regression process LMy : qek) 1
”qﬁv Lo .q&u- S -
) M, hk
Wh(i-1) " 72 0 me, Vs, Gy, O wave h(k)
) ZIIi 2% AU
Training data Learned forces Prediction
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341
342 Figure 7. Process of nonparametric gray-box modeling of the WEC using NIGP

343 5.2. Black -box modeling
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344 In the same way as the black-box modeling of the ship, only the time series of motion state
345  variablesand waveheight areused to train the NIGP model. The structure of the training data follows
346  theform

347  Input variables: [u(i —1),w(i —1),qG — 1, h(i— 1)]

Output response: [u@),w(@,q@@)] (34)
348  The detailed process of the black-box modeling of the WEC using NIGP is shown in Fig. 8.

1
 oput - Output | s V()|
ugi-1)) Foo- Lu(k-1) L
[N 1 Iu(l) H | . 1 | r > IW(k)I
' w(i-1), AR NIGP | Gaussian| g 1) Learned NIGP N
TP \w(i)! |  regression process [ K qb)!
e o
YR 1 g Vv, | wave
ih-D ) L2 | k- AN
Training data Learned time Prediction

349 series model

350 Figure 8. Process of black-box modeling of the WEC using NIGP

351  5.3. A case study of a multi-freedom buoy WEC

352 The experiment was carried out in the wave tank of Shandong Provincial Key Laboratory of

353  Ocean Engineering [54], shown in Fig. 9. The model had 3 DOFs: surge, heave and pitch. Every DOF
354  wasindependent and could be fixed. The buoy's motion was measured by an NDI Optotrak Certus
355 3D investigator. The sliding frame of surge was 58 kg. A spring was used in surge to provide the
356  restoringforce. The added mass can be calculated as

me = Alw) + = f "R sinot) de
@£ (35)
K@ =2 f B(w) cos(wt) dt
TJy

357  where w isthe wavefrequency and B(w) is theradiation damping matrix. Thevaluesof A(w) and
358 B(w) are calculated by the ANSYS AQWA software package (AQWA-LINE suite), which
359  implementsa boundary element method algorithm.

E-Sm—

360
361 Figure 9. Physicalmodelexperiment
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362 Table 5. Particulars and test conditions of the WEC

Elements Value

Water depth (m) 1.0

Wave heihgt (m) 0.2

Radius (m) 0.4

Draft (m) 04

Height (m) 0.12

Spring stiffness coefficient 85 N/m

Mass (kg) 58

Inertiain yaw (I,,) 22
363 The wave period of theexperimental datais 1.6 s. The first 30 s of theexperimental data areused

364  totraineach model, and the last 15 seconds of the data are used as the test set to verify the accuracy
365  of the identified models. The sampling interval of training data for nonparametric gray-box modeling
366 s 0.05 s, while the black-box modeling is 0.1 s. It can be seen from Fig. 10 that, except for the
367  nonparametric gray-box model driven by SVM, the predicted results of the other three methods are
368  almostthe same as the experimental values. The rest motion data with a wave period of 1.8 s is used
369  to further verify the identified models and is presented in Fig. 11. It should be noted that the WEC
370  buoy hasdifferent added mass in a different wave frequency, so werecalculated theadded mass with
371  thewaveperiod 1.8 s and substituted it in Equation (31) for gray-box modeling prediction. From Fig.
372 11,it can be seen that the trend of the experimental and Bayesian gray-box and black-box modeling
373  prediction fit well in the motion of surge and heave. However, it can be observed that there is some
374  discrepancy between the prediction and the experiment in pitch. This may be mainly due to fact that
375  the frequency of wave in the training data is higher than that of the test, and the motion is very
376  regular, which means that the training data does not fully reflect the dynamic characteristics of the
377  device. In the 1.8 s waveperiod, the prediction of the gray-box modeling based on SVM failed, and
378  its motion state was significantly slower than the experiment. The RMSE of u, w and g and
379  computation time of the models are listed in Table 6. Table 6 demonstrates that theblack-box model
380  based on NIGP is the most accurateidentification method for WEC buoy.
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385 Table 6. Estimation of forecast accuracy by RMSE and computation time for the WEC motion with
386 the wave period1.6sand 1.8 s
Nonparametric gray-box model Black-box model
SVM NIGP SVM NIGP
T=1.6s u / 0.866 1.883 2.184
w / 0.580 0.610 1.143
q / 0.151 0.346 0.404
T=1.8s u / 1.503 3.872 1.142
w / 0.979 1.935 0.620
q / 0.396 0.664 0.211
time (s/step) 0.0012 0.086 0.0013 0.025
387  6.Discussions and Conclusions
388 In this work, three different identification frameworks, parametric gray-box modeling,

389  nonparametric gray-box modeling and black-box modeling based on Bayesian regression, have been
390  developed. The main objectiveis to proposea robust and widely used identification methodology for
391 hydrodynamic models of marine vehicles and equipment using experimental data. The Bayesian
392  regressionapproach was compared with SVMon a KVLCC2 and WEC buoy model and showed good
393  generalization ability. Therelativestrengths and weakness of each method are summarized in Table
394  7.For different modeling objects and characteristics, the corresponding modeling method should be
395  selected according to their capabilities. For conversional ship, choosing traditional parametric
396  modeling can produce good results under thelimited data conditions. For new types of vehicles such
397  as USV and ROV, as well as other irregularly shaped marine structures, nonparametric modeling
398  could be a better choice. However, when very low amounts of training data exist, the parametric
399  gray-boxmodeling method can provide a useful model with thehelp of prior knowledge such as the
400  added mass of themarine equipment. The obtained experimental data is usually the velocity obtained
401 by MRU (motion reference unit) or displacement data measured with a camera. If the force of the
402  device can be obtained by CFD simulation, or directly measured by a PMM test, the nonparametric
403  gray-boxmodeling withnonlinear fluid dynamics would be a very effective method. In terms of the
404  practicality of the algorithm, compared with SVM and ANN, Bayesian regression introduces a prior
405  into the loss function, which has stronger generalization ability . Moreover, NIGP shows stronger
406  predictive ability because of its additional processing of input noise. However, it needs to be
407  acknowledged that it costs longer execution time due to the complicated calculations in
408  nonparametricmodeling.

409 Table 7. Capabilities and challenges of Bayesian gray-box modeling and black-box modeling

Property Parametric gray-box | Nonparametric gray-box | Black-box model
model driven by ScBR driven by NIGP driven by NIGP

Modeling Newton's second law | Newton's second law | High-dimensional

framework equation with Taylor | equation with | mapping of time
expansion forces nonparametric forces series

Required prior | weak fair strong

knowledge

Nonlinearities fair strong strong

Training with | strong fair weak

limited data

Noise weak fair strong

robustness

Execution time | strong weak fair
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410 Although the preliminary application of the proposed Bayesian methods seems encouraging
411  thusfar, the workneeds further extension and investigations. (1) For a model calculation to be used
412  inthepractical application of control design, the training dataset should bericher and obtained from
413 more abundant excitation signal, to make the identification model more accurate. The experimental
414  dataused in thisarticlearenot from the experiments specially designed for system identification, so
415  the excitation signal of the training data is not enough. Especially for the wave energy device,
416  compared with regular waves, the motion data under irregular waves (such as Jonswap spectral
417  waves) can better reflect the dynamic characteristics of the device. (2) The experiments of ship and
418  WEC in thisarticleare all carried out in water tank, but the equipment in the ocean will be affected
419 by various factors such as wind, water depth and current. Further study s required to introduce these
420  factors as inputs into nonparametric modeling. (3) Model predictive control (MPC) based on GP
421  allows the direct assessment of residual model uncertainly to enable cautious control. It is very
422  interestingtointegrate NIGP-based nonlinear nonparametric modeling into MPC for marine systems.
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