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Abstract: Establishing an accurate mathematical model is the foundation of simulating the motion 13 
of marine vehicles and structures, and it is the basis of modeling-based control design. System 14 
identification from observed input-output data is a practical and powerful method. However, for 15 
modeling objects with different characteristics and known information, a single modeling 16 
framework can hardly meet the requirements of model establishment. Moreover, there are some 17 
challenges in system identification, such as parameter drift and overfitting. In this work, three 18 
robust methods are proposed for generating ocean hydrodynamic models based on Bayesian 19 
regression. Two Bayesian techniques, semi-conjugate linear regression and noisy input Gaussian 20 
process regression, are used for parametric and nonparametric gray-box modeling and black-box 21 
modeling. The experimental free-running tests of the KVLCC2 ship model and a multi-freedom 22 
wave energy converter (WEC) are used to validate the proposed Bayesian models. The results 23 
demonstrate that the proposed schemes for system identification of the ship and WEC have good 24 
generalization ability and robustness. Finally, the developed modeling methods are evaluated 25 
considering the aspects required conditions, operating characteristics and prediction accuracy. 26 

Keywords: System identification; Hydrodynamic model; Ship maneuvering; Wave energy 27 
converter; Bayesian regression 28 

 29 

1. Introduction 30 

A mathematical model is an approximate description of a physical system, and they are the 31 
foundation of designing, simulation and control. Establishing an accurate and practical 32 
hydrodynamic model has always been a research hotspot in the field of ocean engineering. For ships, 33 
the high precision of ship maneuvering systems plays a crucial role in ship controller design and 34 
operation [1]. A wave energy converter (WEC) needs an active control strategy to maximize its 35 
efficiency in a wide range of operating conditions [2]. Various methods have been proposed to 36 
construct the hydrodynamic model in naval architecture. 37 

Depending on whether prior knowledge and physical laws are used in modeling, the modeling 38 
methods can be categorized as white-box modeling, gray-box modeling and black-box modeling 39 
methods [3]. White-box modeling is the case in which a model is perfectly known. It needs to 40 
predefine the mathematical structure entirely from prior knowledge and physical insight. However, 41 
due to the strong nonlinearity of water resistance and the randomness of turbulence [4], it is 42 
extremely difficult to establish an accurate white-box model of a marine vehicle or structure. The 43 
practical way is to first select the model through certain criteria, and then estimate the parameters in 44 
the selected model from observation data with system identification. This modeling method is called 45 
gray-box modeling. Specific to marine equipment, the most commonly used approach is to establish 46 
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the equation according to Newton’s second law and then substitute the fitted regression 47 
hydrodynamic force in it. 48 

The traditional way to fit the hydrodynamic force in gray-box model is to expand it into a linear 49 
function of velocity. For ship modeling, different parametric model structures, such as Abkowtiz 50 
model [5,6], MMG model [7] and Nomoto model [8], have been proposed and validated over the 51 
years. The hydrodynamic parameters can be obtained by a captive model test with planar motion 52 
mechanism (PMM), computational fluid dynamics (CFD) and free-running tests with system 53 
identification [9]. Among the above approaches, the system identification with free-running test has 54 
been proven to be a powerful and practical method with lower experiment cost [10]. System 55 
identification is a general term for estimating parameters from observed input and output data, 56 
which provides a reliable mathematical surrogate model in multiple engineering areas [11]. The least 57 
square (LS) [12], extended Kalman filter (EKF) [13] and maximum likelihood (ML) [14] algorithms 58 
are introduced to identify the hydrodynamic derivatives and proved the effectiveness. Over the last 59 
decade, some new methods, with stronger generalization ability and robustness, based on machine 60 
learning have also been applied to the estimation of hydrodynamic parameters. Minimizing the 61 
Hausdorff metric with the genetic algorithm (GA) can alleviate the impact of noise-induced problems 62 
[10]. Mei et al. [15] introduced model reference and random forest (RM-RF) to model ship dynamic 63 
model and validated the proposed scheme with free-running test data. Wang et al. [16] presented nu-64 
Support Vector Machine (v-SVM) to improve the robustness of the algorithm. 65 

In the gray-box modeling of wave energy community, Cummin’s equation [17] is used to define 66 
the hydrodynamic model. Generally, there are two ways to determine the equation. Typically, the 67 
hydrodynamic model is predefined as the linear model and solved by the potential flow theory [18], 68 
whereby the problem is simplified and linearized through assumptions of small amplitude 69 
oscillations. However, the simplified linearizing assumptions are invalid when the WECs have large 70 
amplitude motions resulting from energetic waves or sustained wave resonance [19]. An alternative 71 
method is to use system identification. The training data can be obtained from CFD simulation [2] or 72 
scale experiments in a towing tank [20,21]. A popular method is to estimate t he real hydrodynamic 73 
force using an EKF observer, which assumes that the excitation force can be represented as the sum 74 
of a finite set of harmonic components [22,23]. 75 

The gray-box modeling methods mentioned above are all parameterized. Recently, a 76 
nonparametric gray-box model has been put forward in some studies, and encouraging results have 77 
been obtained. The model still follows the framework of Newton’s law, and the force element, which 78 
is difficult to determine, is directly replaced by a machine learning model of related variables. Wang 79 
et al. [24] used SVM to replace the Taylor expansion in Abkowtiz model, and they compared the 80 
accuracy and computation speed with parametric gray-box and black-box modeling. Xu and Guedes 81 
Soares [25] proposed a nonlinear implicit model with nonlinear kernel-based Least Square SVM for 82 
a maneuvering simulation of a container ship in shallow water. The forces and moments in [25] are 83 
obtained by a PMM test and then trained as outputs for an SVM model related to speed and water  84 
depth. In the study of WEC [26], an observer-based unknown input estimator is used to estimate the 85 
wave excitation force, then a Gaussian Process (GP) is adopted to forecast the wave excitation force. 86 
On the one hand, the nonparametric gray-box model directly substitutes the information of the object 87 
itself. On the other hand, compared with linear expansion, it can better fit the hydrodynamic force. 88 
Therefore, this method is worth studying and comparing with the experimental data of more devices.  89 

Recently, Bayesian regression has been successful applied in multiple fields for parameter 90 
estimation and black-box modeling. Bayesian methods have significant advantages in modeling with 91 
good statistical properties, predictions for missing data and forecasting [35-37]. Moreover, Bayes’ rule 92 
offers a reasonable way to update beliefs in light of training data, and the hyperparameters in  the 93 
Bayesian scheme have an intuitive meaning [38]. Bayesian regression models can work well in 94 
dynamic system modeling with a relat ively small number of training data points and noisy output 95 
[39]. With regards to parametric gray-box modeling, ship dynamic models based on conjugate and 96 
semi-conjugate Bayesian regression (ScBR) are adopted to estimate the hydrodynamic parameters 97 
[40]. For the black-box modeling, Ariza Ramirez et al. [32] used multioutput GPs to identify the ship 98 
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dynamic system, and showed that the GP scheme has better generalization than RNN. Astfalck et al. 99 
[41] used a series of Bayesian methods to quantify the extremal responses of a floating production 100 
storage and offloading (FPSO) vessel. GP introduces a complexity penalty and it has an automatic 101 
regularization built into it through its foundation in Bayesian probability theory. The advantage of 102 
the complexity penalty is that, unlike other methods such as neural networks, Gaussian process 103 
regression has a far smaller risk of overfitting. However, the Bayesian approaches for gray-box and 104 
black-box modeling of marine dynamic model has not been investigated and compared considering 105 
the aspects of prerequisite conditions, accuracy and robustness under experimental data.  106 

This article contributes to the use of Bayesian regression to identify the nonlinear dynamic model 107 
of a container ship and an oscillating buoy WEC with gray-box modeling and black-box modeling. 108 
First, the Bayesian regression algorithms, including semi-conjugate regression (ScBR) and noisy input 109 
Gaussian process (NIGP), are introduced. Then, the parametric, nonparametric gray-box modeling 110 
and black-box modeling schemes based on Bayesian algorithms are proposed for the ship and WEC 111 
respectively. These proposed schemes are validated and compared using experimental data. Finally, 112 
the capabilities and challenges of the proposed models are further discussed. 113 

This paper is organized as follows. Section 2 describes the marine dynamic model. The 114 
algorithms of ScBR and NIGP are depicted in Section 3. In Sections 4 and 5, the identification schemes 115 
of the ship and WEC and experimental examples are presented to demonstrate the distinction and 116 
effectiveness of the proposed two methods. Section 6 presents the main conclusions and a further 117 
discussion. 118 

2. Kinematic model  119 

The classical kinematic model in naval architecture is motivated by Newton’s second law, and 120 
the rigid-body kinemics equations can be expressed in vector form as [42]  121 

M𝑅𝐵𝒱̇ = 𝜏𝑅𝐵 − 𝐶𝑅𝐵
(𝒱)

𝜏𝑅𝐵 = 𝜏ℎ + 𝜏𝑒𝑛𝑣 + 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 (1) 

where M𝑅𝐵 is the rigid-body inertia matrix; 𝐶𝑅𝐵
(𝒱) is a matrix of rigid-body Coriolis and centripetal 122 

terms; 𝜏𝑅𝐵  is a vector of generalized forces containing hydrodynamic waver resistance, 𝜏ℎ , 123 
environmental forces, 𝜏𝑒𝑛𝑣 , and control forces, 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 . 𝒱  denotes the generalized velocity in 6 124 
(degree of freedom) DOF, the notation of motion variables is shown in Table 1. 125 

Table 1. Notation of motion variables 126 

DOF Motions Forces Linear velocity Positions 

1 Surge 𝐹1  𝑢 𝑥  

2 Sway 𝐹2  𝑣 𝑦 

3 Heave 𝐹3  𝑤 𝑧 

     

 Rotations Moments Angular velocity Rotation angles 

4 Roll 𝑀1 𝑝 𝜑 

5 Pitch 𝑀2  𝑞  𝜃 

6 Yaw 𝑀3  𝑟 𝜓 

The marine dynamic model is essentially a nonlinear autoregressive model with  an exogenous 127 
input (NARX) system, and the predictions are based on the previous measurements of the input 128 
signals and output signals [39]. Fig. 1 shows the NARX configuration for dynamic system, where 𝑐𝑘 129 
denotes the command signals such as propeller speed and rudder angle of the ship (Ariza Ramirez 130 
et al., 2018); 𝑦𝑘  is the original output; 𝑦𝑘  is polluted by noise, 𝜖 ; 𝑧 stands for the z-transformation; 131 
and subscript 𝑘 denotes time step. 132 
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 133 

Figure 1. NARX model 134 

3. Bayesian regression framework 135 

3.1. Simi-conjugate Bayesian regression 136 

The object of linear regression is to estimate the hydrodynamic parameters 𝛽 in damping matrix 137 
𝜏ℎ , the form of multiple linear regression as 138 

 𝑦𝑡 = 𝑥𝑡𝛽 + 𝜀𝑡  (2) 

where 𝑡=1,…n denotes time; 𝑦𝑡  is the observed response; 𝑥𝑡 is a 1 × 𝒸 row vector of the observed 139 
values of 𝒸 predictors; 𝛽 is a 𝒸 ×1 column vector of regression parameters corresponding to the 140 
variables that consist of the columns of 𝑥𝑡; and 𝜀𝑡  is the random disturbance that has a mean of zero 141 
and common variance of 𝜎2. 142 

Bayes theorem treats 𝛽 and 𝜎2 as random variables belonging to some probability distributions. 143 
Generally, the Bayesian analysis process updates the probability density function (PDF) of the 144 
parameters by incorporating information about the parameters from the training data. Bayes’ 145 
theorem gives the posterior PDF as 146 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎 |𝑝𝑎𝑟𝑎)𝑃(𝑝𝑎𝑟𝑎)

𝑃(𝑑𝑎𝑡𝑎)
 (3) 

According to the central limit theorem, most of the measured value distributions can be 147 
approximated by a normal distribution or a Gaussian distribution. A popular choice is the normal-148 
inverse-gamma conjugate model [43], in which 𝛽 obeys the multivariate normal distribution (𝒩) 149 
and 𝜎2 is the inverse gamma (𝐼𝐺) distribution. Equation (3) can be abbreviated as follows: 150 

𝜋(𝛽, 𝜎2|𝑦, 𝑥) ∝ 𝒩(𝛽)𝒩(𝜎2)∏𝑡=1
𝑛 𝜙(𝑦𝑡 ; 𝑥𝑡𝛽,𝜎2) (4) 

where 𝜙(𝑦𝑡 ; 𝑥𝑡𝛽, 𝜎2) is the Gaussian probability density with mean 𝑥𝑡𝛽 and variance 𝜎2 on 𝑦𝑡 . The 151 
regression model is divided into conjugate and semi-conjugate Bayesian regression depending on 152 
whether the parameters and disturbance are independent. 153 

In practical engineering applications, parameters and noise are often not independent of each 154 
other [44]. The prior distributions of 𝛽 and 𝜎2 are as follows when 𝛽 and 𝜎2 are dependent: 155 

𝛽 |𝜎2~𝑁𝑐(𝜇, 𝑉)

𝜎2~𝐼𝐺(𝐴, 𝐵)
 (5) 

where 𝜇 is the mean value (𝒸 × 1 vector), 𝑉 is the 𝒸 × 𝒸 diagonal matrix in which each element 156 
equals the prior variance factor of 𝛽𝑗, and 𝐼𝐺(𝐴, 𝐵) denotes the inverse gamma distribution with 157 
shape 𝐴 and scale 𝐵. 158 
The conditional posterior distribution of 𝛽 and 𝜎2 can be obtained: 159 

𝛽|𝜎2, 𝑦, 𝑥~𝑁𝑐((𝑉
−1 + 𝜎−2𝑋𝑇𝑋)−1[𝜎−2(𝑋𝑇𝑋)𝛽̂ + 𝑉−1𝜇], (𝑉−1 + 𝑋𝑇𝑋)−1) (6) 

𝜎2|𝛽, 𝑦, 𝑥~𝐼𝐺(𝐴 +
𝑛

2
, (𝐵−1 +

1

2
𝑆𝑆𝑅(𝛽))−1) (7) 
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where 𝑋 is an 𝑛 × 𝑐  matrix of training data and 𝑆𝑆𝑅(𝛽)  is given by 160 

  𝑆𝑆𝑅(𝛽) = ∑(𝑦𝑖 − 𝛽𝑇𝑥𝑖)
2 = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽)

𝑛

𝑖 =1

 (8) 

Since 𝛽 and 𝜎2 are mutually influential, their posterior distributions are not analytically tractable. 161 
Some numerical integration techniques based on the Markov chain Monte Carlo method have been 162 
proposed to solve this problem. In the present work, the Gibbs sampler [45] is applied to approximate 163 
the posterior of 𝛽 and 𝜎2. The Gibbs sampler is an iterative algorithm that constructs a dependent 164 
sequence of parameter values whose distribution converges to the target joint posterior  distribution. 165 
The values of parameters are the mean of the posterior of 𝛽.  166 

In multivariate linear regression, introducing the L2-norm into the algorithm to overcome the 167 
problems of multicollinearity and overfitting is a general accepted and effective method, such as 168 
ridge regression. ScBR naturally introduces the norm through prior parameters. These type of 169 
parameters in the algorithm framework are called hyperparameters in machine learning. Compared 170 
to other algorithms, the hyperparameters of the prior distribution, such as the mean and variance, in 171 
the Bayesian approach have a clear and intuitive meaning: The value of the prior mean 𝜇 represents 172 
the parameter to be identified, which we subjectively set before the regression is performed. When 173 
there is no other prior information about the parameter to be estimated, the mean 𝜇 is usually set to 174 
zero. The prior variance is obtained by Bayesian optimization algorithm (BOA). BOA is a powerful 175 
global optimization algorithm, which is usually used in the hyperparameter optimization of machine 176 
learning in cases with fewer hyperparameters and slower operations of the objective model  [46]. More 177 
details about the ScBR with BOA can be found in our  previous work [40]. 178 

3.2. Noisy input Gaussian process 179 

GP can be viewed as a collection of random variables with a joint Gaussian distribution for any 180 
finite subject. GP can be conveniently specified by a mean function, 𝑚(𝑥), and a covariance function, 181 
𝑘(𝑥, 𝑥′), as 182 

𝑚(𝑥) = 𝐸[𝑓(𝑥)] (9) 

𝑘(𝑥, 𝑥 ′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥 ′) − 𝑚(𝑥′))] (10) 

where 𝐸 denotes the expectation operator. 183 
GP regression approximates an unknown function, 𝑓(𝑥), which maps a D-dimensional input to 184 

a scalar output value, 𝑓. A number of training points 𝑛, which include c-dimensional inputs, {𝑥𝑡
}
𝑡=1
𝑛  185 

and noisy observations {𝑦𝑡
}
𝑡=1
𝑁  are given. These collections of variables are denoted as the 𝑛 × 𝑐 186 

input, 𝑋 , and the 𝑛 × 1 output vector, 𝑦 . The regular Gaussian process (RGP) assumes that the 187 
training outputs are corrupted by noise, 188 

𝑦 = 𝑓(𝑥) + 𝜖𝑦  (11) 

where 𝜖𝑦  is Gaussian white noise with zero mean and variance σ𝑦
2 . The regular GP regression 189 

defines a GP prior on the function values,  190 

𝑝(𝑓|𝑋) = 𝒩(𝑚(𝑋) ,𝑘(𝑋, 𝑋)) (12) 

With these modeling assumptions in place, the likelihood function can be obtained, 191 

𝑝(𝑦|𝑓, 𝑋) = ∏ 𝒩(𝑦𝑡 ; 𝑓𝑡 , 𝜎𝑦
2)

𝑛

𝑡=1

 (13) 

Then, combining the prior Equation (12) and the likelihood function Equation (13), we can obtain the 192 
posterior probability distribution and predict the function values, 𝑓∗, at a whole set of test points 𝑋∗. 193 

[
𝑓∗

𝑦
]~𝒩 ([

 𝑚(𝑋 ∗)

𝑚(𝑋)
] , [

 𝐾(𝑋∗ ,𝑋 ∗) 𝐾(𝑋∗, 𝑋)

𝐾(𝑋, 𝑋∗) 𝐾 + 𝜎𝑦
2𝐼

]) (14) 
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which leads to the RGP regression predictive equations, 194 

𝑝(𝑓 ∗|𝑋∗ ,𝑋, 𝑦) = 𝒩(𝓂, 𝓈) (15) 

𝓂 = 𝑚(𝑋 ∗) + 𝐾(𝑋 ∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑦
2𝐼]−1(𝑦 − 𝑚(𝑋)) (16) 

𝓈 = 𝑘(𝑋 ∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑦
2𝐼]−1𝐾(𝑋, 𝑋∗ ) (17) 

The traditional formulation of GP regression only considers output noise 𝜎𝑦
2, while the input 195 

data are assumed to be noise-free. However, the noise in the output will be passed to the input in the 196 
NARX models, as shown in Fig. 1. McHutchon and Rasmussen proposed the NIGP method which 197 

does take into account the input noise and posterior data [47]. NIGP further assumes that the inputs 198 
are also noisy, and the actual inputs and outputs are labeled 𝑥  and 𝑦, respectively. 199 

𝑥 = 𝑥 + 𝜖𝑥  (18) 

where 𝜖𝑥  is Gaussian white noise with zero mean and variance ∑𝑥. The prerequisites for this model 200 
are that each input dimension is independently corrupted by noise, so ∑𝑥 is diagonal. Similar to 201 
Equation (11), the output function can be written as: 202 

𝑦 = 𝑓(𝑥 + 𝜖𝑥
) + 𝜖𝑦  (19) 

We can use a first order Taylor series expansion of the GP latent function , 𝑓 , to write an 

approximation to Equation (19) as, 
 

𝑦 = 𝑓(𝑥) + 𝜖𝑥
𝑇
𝜕𝑓(𝑥)

𝜕𝑥
+ 𝜖𝑦  (20) 

Note that the expansion can be expanded to higher terms. However, these higher term calculations 203 
are computationally costly and provide no significant improvement. For notational convenience, the 204 
derivative of one GP mean function in Equation (20) will be denoted as ∂𝑓̅, a c-dimensional vector. 205 

△𝑓̅ , an 𝑛 × 𝑐  matrix, denotes the value of the derivative for the 𝑛 functions.  206 

Given that the GP prior is the same as that of the RGP, 𝑝(𝑓|𝑋) = 𝒩(0, 𝐾(𝑋, 𝑋)), where 𝐾(𝑋, 𝑋) is the 207 
𝑛 × 𝑛 training data covariance matrix, we can obtain the predictive posterior mean and variance as  208 

𝔼[𝑓∗|𝑋, 𝑦, 𝑋∗] = 𝐾(𝑋∗ ,𝑋) [𝐾(𝑋 , 𝑋) + 𝜎𝑦
2𝐼 + 𝑑𝑖𝑎𝑔{△𝑓̅ ∑𝑥 △𝑓̅

𝑇}]−1𝑦 (21) 

𝕍[𝑓∗|𝑋,𝑦, 𝑋∗] = 𝑘(𝑋∗, 𝑋∗ ) − 𝐾(𝑋∗ ,𝑋) [𝐾(𝑋 ,𝑋) + 𝜎𝑦
2𝐼 + 𝑑𝑖𝑎𝑔{△𝑓̅ ∑𝑥 △𝑓̅

𝑇}]−1𝐾(𝑋, 𝑋∗) (22) 

where the notation “𝑑𝑖𝑎𝑔” results in a diagonal matrix.  209 
In this way, the input is treated as deterministic and a correction term, 𝑑𝑖𝑎𝑔{△𝑓̅ ∑𝑥 △𝑓̅

𝑇}, is added 210 

to the output noise. More specifically, the influence of the input noise depends on the slope of the 211 
function we are approximating. Our model is essentially same as  an RGP if the posterior mean is fully 212 
flat. The next problem is how to approximate the posterior distribution based on its derivative.  213 

Compared to the RGP, the NIGP introduces extra hyperparameters 𝜖𝑥  per input dimension. A 214 
major advantage of this model is that these hyperparameters can be trained alongside any others by 215 
ML. The marginal likelihood function of the NIGP is, 216 

−𝑙𝑜𝑔 𝑝𝑁𝐼𝐺𝑃
(𝑦|𝑋, 𝜃) =

1

2
log|𝐾𝑛

| +
1

2
(𝑚(𝑋) − 𝑦)𝑇ℬ +

𝑁

2
𝑙𝑜𝑔2𝜋  (23) 

where, 217 

𝐾𝑛 = 𝐾(𝑋, 𝑋) + 𝑑𝑖𝑎𝑔{△𝑓̅ ∑𝑥 △𝑓̅
𝑇} + 𝜎𝑦

2𝐼 (24) 

ℬ = 𝐾𝑛
−1(𝑚(𝑋) − 𝑦) (25) 

The solution to estimating the hyperparameters is a two-step approach. First, we evaluate a regular 218 
GP without any input noise. Then, we calculate the derivatives and use them to approximate the 219 
posterior distribution. The marginal likelihood of the GP wit h corrected variance is then computed. 220 
We can cycle this process until the convergence; this step involves chaining the derivatives of the 221 
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marginal likelihood back through the slope calculation. Moreover, the gradient descent algorithm is 222 
employed to tune the hyperparameters. A complete explanation can be found in [48] and some 223 
supplementary notes are in Bijl’s study [49]. 224 
The proposed model adopts the commonly used squared exponential (SE) covariance function 225 
expressed as 226 

𝑘(𝑥 𝑖 ,𝑥𝑗)= 𝜎𝑓
2exp (−

1

2
(𝑥 𝑖 − 𝑥𝑗)

𝑇⋀(𝑥𝑖 − 𝑥𝑗) (26) 

where 𝜎𝑓  denotes the amplitude and ⋀ is a diagonal matrix of the squared length-scale 227 

hyperparameters.  228 

4. Identification of marine craft 229 

 230 

Figure 2. Reference frames for ships 231 

4.1. Parametric gray-box modeling 232 

The essence of the parametric gray-box modeling is to construct a simplified parameterized 233 
equation to replace Equation (1). The nondimensional rigid-body kinetics using the Prime system of 234 
surface ship 3 DOF maneuvering motion is given as follows: 235 

[

𝑚′ − 𝑋𝑢̇
′ 0 0

0 𝑚′ − 𝑌𝑣̇
′ 𝑚′𝑥′𝐺 − 𝑌𝑟̇

′

0 𝑚′𝑥𝐺
′ − 𝑁𝑣̇

′ 𝐼′𝑧𝑧 − 𝑁𝑟̇
′

] [
𝑢′̇

𝑣̇ ′
𝑟̇′

] = [
𝐹1

′

𝐹2
′

𝑀3
′

] (27) 

where 𝑚 denotes the ship mass; 𝑥𝐺 is the longitudinal coordinate of the ship’s center of gravity in 236 
the body-fixed coordinate frame; 𝐼𝑧 denotes the moments of inertia of the ship about the z0 axes; 237 
𝑋𝑢̇

 , 𝑌𝑣̇
 , 𝑌𝑟̇

 , 𝑁𝑣̇
  and 𝑁𝑟̇

  are acceleration derivatives which can be determined using potential 238 
theory; and 𝐹1  𝐹2  and 𝑀3  are forces and moment disturbing quantity at x0 -axis, y0-axis and z0-239 
axis respectively. Note that the superscript “  ′  ” indicates that the corresponding variable is 240 
normalized using the Prime-system.  241 

The selection of a mathematical model for identification is a trade-off between model complexity 242 
and model capacity. The most widely used model is the Abkowitz model, a Taylor-series expansion 243 
model. The Abkowits model has good generalization performance, but it includes a large number of 244 
coefficients and some of the coefficients have no physical meaning. A simplified Abkowitz 3-DOF 245 
model [50] is employed to construct the white-box model because it contains fewer hydrodynamic 246 
parameters while ensuring high accuracy, which can suppress parameter drift caused by too many 247 
variables [51]. The nonlinear forces and moment are defined as:  248 
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𝐹1
′ = 𝑋ℎ𝑦𝑑𝑟𝑜 ∙ 𝐴(𝑖)

𝐹2
′ = 𝑌ℎ𝑦𝑑𝑟𝑜 ∙ 𝐵(𝑖)

𝑀3
′ = 𝑁ℎ𝑦𝑑𝑟𝑜 ∙ 𝐶(𝑖)

 (28) 

where the hydrodynamic derivatives and speed state variables in Equation (28) are as follows: 249 
𝑋ℎ𝑦𝑑𝑟𝑜 = [𝑋𝑢

′ , 𝑋𝑣𝑣
′ , 𝑋𝑟𝑟

′ , 𝑋𝛿𝛿
′ , 𝑋𝑣𝑟

′ , 𝑋𝑣𝛿
′ ,𝑋𝑟𝛿

′ , 𝑋0
′ , ]1×8 250 

𝑌ℎ𝑦𝑑𝑟𝑜 =  [𝑌𝑣
′,𝑌𝑟

′ , 𝑌𝛿
′,𝑌𝑣|𝑣|

′ , 𝑌𝑣|𝑟|
′ , 𝑌|𝑟|𝑟

′ ,𝑌𝑟|𝑣|
′ ,𝑌𝛿𝛿𝛿

′ , 𝑌𝑣𝑣𝛿
′ , 𝑌𝑣𝛿𝛿

′ , 𝑌𝑟𝛿𝛿
′ ,𝑌𝑟𝑟𝛿

′ , 𝑌𝑟𝑣𝛿
′ , 𝑌0

′]1×14 251 
𝑁ℎ𝑦𝑑𝑟𝑜 = [𝑁𝑣

′,𝑁𝑟
′ , 𝑁𝛿

′, 𝑁𝑣|𝑣|
′ , 𝑁𝑣|𝑟|

′ , 𝑁|𝑟|𝑟
′ ,𝑁𝑟|𝑣|

′ ,𝑁𝛿𝛿𝛿
′ , 𝑁𝑣𝑣𝛿

′ , 𝑁𝑣𝛿𝛿
′ , 𝑁𝑟𝛿𝛿

′ , 𝑁𝑟𝑟𝛿
′ , 𝑁𝑟𝑣𝛿

′ , 𝑁0
′]1×14 252 

𝐴(𝑖) = [𝑢𝑎
′ (𝑖), 𝑣′2(𝑖) , 𝑟′2(𝑖), … , 𝑟′(𝑖)𝛿′(𝑖) ,1 ] 1×8

𝑇  253 
𝐵(𝑖) = [𝑣′(𝑖), 𝑟′2(𝑖) , 𝛿 ′(𝑖), 𝑣′(𝑖)|𝑣′(𝑖) |, … , 𝑟′(𝑖)𝑣′(𝑖)𝛿′(𝑖) ,1]1×14

𝑇  254 
𝐶(𝑖) = [𝑣′(𝑖), 𝑟′2(𝑖), 𝛿 ′(𝑖), 𝑣′(𝑖)|𝑣′(𝑖)|, … , 𝑟′(𝑖)𝑣′(𝑖)𝛿′(𝑖) ,1]1×14

𝑇  255 
where the relative speed 𝑢 𝑎 = 𝑢 − 𝑢 𝑛𝑜𝑚 . As seen, there is a total of 36 hydrodynamic parameters in 256 
the simplified Abkowitz model. Euler’s stepping method is utilized to discretize the equation of 257 
motions. The constructor of samples for hydrodynamic parameter estimation can be obtained as 258 
follows: 259 
Input variables: [𝐴(𝑖) , 𝐵(𝑖) , 𝐶(𝑖) ]                                                  260 
Output response: 261 

[
 
 
 
 
 
 (𝑚′ − 𝑋𝑢̇

′ )𝐿
𝑢 𝑎

′(𝑖 + 1) − 𝑢 𝑎
′(𝑖)

𝑈(𝑖) △ 𝑡

(𝑚′ − 𝑌𝑣̇
′)𝐿

𝑣 ′(𝑖 + 1) − 𝑣 ′(𝑖)

𝑈(𝑖) △ 𝑡
+ (𝑚′𝑥𝐺

′ − 𝑌𝑟̇
′)𝐿

𝑟′(𝑖 + 1) − 𝑟′(𝑖)

𝑈(𝑖) △ 𝑡

(𝑚′𝑥𝐺
′ − 𝑁𝑣̇

)𝐿
𝑣 ′(𝑖 + 1) − 𝑣 ′(𝑖)

𝑈(𝑖) △ 𝑡
+ (𝐼𝑧𝑧

′ − 𝑁𝑟̇)𝐿
𝑟′(𝑖 + 1) − 𝑟′(𝑖)

𝑈(𝑖) △ 𝑡 ]
 
 
 
 
 
 

 (29) 

where 𝑈 = √𝑢 2 + 𝑣2  is the resultant speed in the horizontal plane and △ 𝑡 is the time sample. 262 
The procedure of the parametric gray-box modeling and motion prediction using ScBR is briefly 263 

depicted in Fig. 3. A Bayesian optimization algorithm (BOA) is employed to tune the value of prior 264 
variance, 𝑉 , in semi-conjugate regression. For more details regarding the use of semi-conjugate 265 
regression with BOA to identify the parameters, please refer to our previous work [40]. 266 

 267 

Figure 3. Process of parametric gray-box modeling using ScBR 268 

4.2. Black-box modeling 269 

A continuous-time black-box model directly describes the relationship between the input variables 270 
and out response without any constrains. The principal parameters  and the mathematical model are 271 
not required in the black-box modeling. The structure of the training data follows the form 272 
Input variables:  [𝑢(𝑖 − 1), 𝑣(𝑖 − 1), 𝑟(𝑖 − 1), 𝛿(𝑖 − 1)]                                273 

Output response: [𝑢(𝑖) , 𝑣(𝑖), 𝑟(𝑖) ] (30) 
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Fig. 4 shows the process of black-box modeling and motion prediction using NIGP. The SVM is also 274 
used with the same training data for comparison with Bayesian regression. The RBF kernel function 275 
in Equation (31), with an automatic kernel scale 𝜎𝑆𝑉𝑀 , is used to train the SVM. 276 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
|𝑥 𝑖 − 𝑥𝑗|

2

2𝜎𝑆𝑉𝑀

) (31) 

BOA is employed to tune the hyperparameters in SVM using the ‘Bayesopt’ MATLAB function. In 277 
theory, this scheme can overcome the drawbacks of parametric gray-box models, such as a failure to 278 
represent the actual behavior of the system due to unmodeled components. 279 

 280 

Figure 4. Process of black-box modeling using NIGP 281 

4.3. A case study of a large container ship 282 

The ship used in the experimental tests is a scale model of large tankers , KVLCC2, one of the 283 
benchmark ships for verification and validation of ship maneuvering simulation methods 284 
recommended by Simulation Workshop for Ship Maneuvering (SIMMAN) [52]. Maneuvering and 285 
course maintaining tests with the KVLCC2 models have been performed at the Hamburg Ship Model 286 
Basin (HSVA). The dimensions of the vessel and the scale model are detailed in Table 2. 287 

Table 2. Particulars of KVLCC2 288 

Elements Full-scale model 

𝐿𝑝𝑝 (m) 320.0  7.0 

𝐵  (m) 58.0 1.1688 

𝐷  (m) 30.0 0.6563 

Displacement (m3) 312622 3.2724 

Draught (m) 20.8 0.4550 

Beam coefficient 0.8098 0.8098 

Nominal speed (m/s) 7.97  1.18 

Rudder speed (𝛿̇) 2.3 deg/s 15.8 deg/s 

Nondim mass (𝑚′) 1908 × 10−5 

Nondim x coordinate of CG(𝑥′𝐺) 3486× 10−5 

Nondim inertia in yaw (𝐼′𝑧) 119× 10−5 

Here, 35°/5° zigzag maneuver data with a cumulative time of 180 s is used for training the 289 
parametric gray-box model using ScBR, and the sample time is 0.5 s. The hyperparameters of ScBR, 290 
prior variance 𝑉, are tuned by BOA. The posterior hydrodynamic parameters estimated by ScBR are 291 
listed in Table 3. The added mass, including 𝑋𝑢̇

′  and 𝑌𝑣̇
′, is calculated by slender-body instead of SI 292 

[53]. For comparison of the ScBR, Luo and Li’s results of SVM under the same parameterization gray-293 
box modeling are also listed in the table. It should be noted that the mainstream algorithms for marine 294 
equipment identification are offline algorithms, which is usually trained aft er the data are obtained 295 
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and then deployed in the controller or simulation system [10]. Therefore, the time spent on tuning 296 
the hyperparameters will not be mentioned in the article. 297 

Table 3. The nondimensional hydrodynamic parameters for ScBR and SVM (1 × 10−5) 298 

X-Coef. ScBR SVM Y-Coef. ScBR SVM N-Coef. ScBR SVM 

𝑋𝑢
′  -140.1  -128 𝑌𝑣

′ 350.4  -94 𝑁𝑣
′ -44.8  -54.9  

𝑋𝑣𝑣
′  152.6  175 𝑌𝑟

′ 1936.0  2066 𝑁𝑟
′ -125.5  -82.9  

𝑋𝑟𝑟
′  -180.0  -118 𝑌𝛿

′ 568.3  486 𝑁𝛿
′ -180.9  -146.8  

𝑋𝛿𝛿
′  125.2  -116 𝑌𝑣|𝑣|

′  68.7  63 𝑁𝑣|𝑣|
′  5.4  -5.4  

𝑋𝑣𝑟
′  -328.2  -303 𝑌𝑣|𝑟|

′  128.5  67 𝑁𝑣|𝑟|
′  -3.3  2.6  

𝑋𝑣𝛿
′  245.2  196 𝑌|𝑟|𝑟

′  932.6  737 𝑁|𝑟|𝑟
′  -48.5  -30.8  

𝑋𝑟𝛿
′  -584.2  -455 𝑌𝑟|𝑣|

′  30.8  177 𝑁𝑟|𝑣|
′  -14.3  -5.5  

𝑋0
′  -144.0  -85 𝑌𝛿𝛿𝛿

′  216.3  -58 𝑁𝛿𝛿𝛿
′  -65.2  -52.9  

    𝑌𝑣𝑣𝛿
′  98.7  29 𝑁𝑣𝑣𝛿

′  -9.6  -8.0  

     𝑌𝑣𝛿𝛿
′  41.0  17 𝑁𝑣𝛿𝛿

′  1.6  -6.3  

     𝑌𝑟𝛿𝛿
′  306.5  -50 𝑁𝑟𝛿𝛿

′  9.6  6.1  

   𝑌𝑟𝑟𝛿
′  314.2  99 𝑁𝑟𝑟𝛿

′  12.4  12.9  

   𝑌𝑟𝑣𝛿
′  350.4  -40 𝑁𝑟𝑣𝛿

′  -44.8  2.1  

   𝑌0
′ 1936.0  -56 𝑁0

′ -125.5  1.4  

Added mass 

not identified 

𝑋𝑢̇
′  −95.4 𝑌𝑣̇

′ −1283  𝑁𝑣̇
′ 0 

  𝑌𝑟̇
′ 0 𝑁𝑟̇

′ -107 

Here, 35°/5° and 20/5° zigzag maneuvers every 5 s are used for training the black-box modeling 299 
driven by NIGP and SVM. It is of no application value to predict the training movement of ship by 300 
using the model obtained from the training data. To verify the generalization ability of the models 301 
identified by gray-box modeling and black-box modeling driven by SVM and Bayesian regression, 302 
the 30°/5° and 15°/5° zigzag tests are predicted. Fig. 5 and Fig. 6 show the prediction results of each 303 
method, and the root mean square error (RMSE) is adopted to analyze the prediction performance of 304 
these methods, which is shown in Table 4. In addition, the computation time of each step of these 305 
methods for prediction is also listed in the table. From the validation results, it can be concluded that 306 
the trends of all the predictions before 70 s are basically consistent with the experiment. After 70 s, 307 
the difference between the predictions results of various methods gradually increased. On the whole, 308 
the parametric gray-box and black-box modeling based on Bayesian regression results are in 309 
acceptable agreement with the validation samples and show a stronger ability to predict than SVM. 310 
From the perspective of the modeling framework, the prediction results of gray-box modeling are 311 
better than those of black-box modeling in 30°/5° zigzag maneuvers, but worse in 15°/5° zigzag tests. 312 
The main reason is that the training data of gray-box modeling only contains 35°/5° movement, which 313 
is closer to the 30°/5° zigzag validation test. For the prediction time, parametric gray-box modeling is 314 
significantly faster than black-box modeling because the calculation process of parametric gray-box 315 
modeling is entirely linear. Because it considers the input noise and variance in the calculation 316 
process, NIGP spends more time on the prediction than SVM. Note that the black-box modeling 317 
usually requires more training data to enhance generalization ability than parametric gray-box 318 
modeling, because the specified framework of the parametric gray-box model already contains some 319 
information about the system. In a similar study [24], four groups of ship maneuver datasets a re used 320 
for training black-box models while one group dataset is used for parameter estimation.  321 
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 322 

Figure 5. Comparisons of results of the ship predicted motion; the 30°/5° zigzag test 323 

 324 

Figure 6. Comparisons of results of the ship predicted motion; the 15°/5° zigzag test 325 

 326 
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Table 4. Estimation of forecast accuracy by RMSE and computation time for the validation test  327 

 Parametric gray-box model Black-box model 

 SVM ScBR SVM NIGP 

30°/5°    u 0.053 0.040 0.115 0.094 

v 0.182 0.092 0.186 0.121 

r 2.530 1.226 2.213 1.834 

15°/5°    u 0.155 0.240 0.262 0.021 

v 0.126 0.163 0.238 0.062 

r 0.605 1.294 2.140 0.443 

time (s/step) 0.0009 0.004 0.014 

5. Identification of WEC 328 

5.1. Nonparametric gray-box modeling 329 

Similar to the ship model in Equation (27), the time domain 3 DOF model of the WEC buoy is 330 
given as, 331 

[

𝑚 − 𝑋𝑢̇
′ 0 0

0 𝑚′ − 𝑍𝑤̇
′ 𝑚′𝑦𝐺

′ − 𝑍𝑞̇
′

𝑚𝑧𝐺 −𝑚𝑥𝐺 𝐼𝑧𝑧

] [
𝑢̇
𝑤̇
𝑞̇
] = [

𝐹1
′

𝐹3
′

𝑀2
′

] (32) 

Different from the parametric model in Equation (28), the force and moment on the right side of 332 
the equation are not fitted by the method of multiplying the hydrodynamic coefficient and the speed. 333 
In this case, NIGP is adopted to perform nonlinear regression between forces, speed and other 334 
variables. The training sample that couples hydrodynamic forces and moment nonlinear regression 335 
for training NIGP is 336 
Input variables:  [𝑢(𝑖) , 𝑤(𝑖) ,𝑞(𝑖) , ℎ(𝑖)]  337 
Output response: 338 

[
 
 
 
 
 (𝑚 − 𝑋𝑢̇

 )
𝑢(𝑖 + 1) − 𝑢(𝑖)

△ 𝑡

(𝑚 − 𝑍𝑤̇
 )

𝑤(𝑖 + 1) − 𝑤(𝑖)

△ 𝑡
+ (𝑚𝑦𝐺 − 𝑍𝑞̇

 )
𝑞(𝑖 + 1) − 𝑞(𝑖)

△ 𝑡

𝑚𝑧𝐺

𝑢(𝑖 + 1) − 𝑢(𝑖)

△ 𝑡
− 𝑚𝑥𝐺

𝑤(𝑖 + 1) − 𝑤(𝑖)

△ 𝑡
+ 𝐼𝑧𝑧

𝑞(𝑖 + 1) − 𝑞(𝑖)

△ 𝑡 ]
 
 
 
 
 

 (33) 

The process of nonparametric gray-box modeling and motion prediction using NIGP is depicted in 339 
Fig. 7.  340 

 341 

Figure 7. Process of nonparametric gray-box modeling of the WEC using NIGP 342 

5.2. Black -box modeling 343 
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In the same way as the black-box modeling of the ship, only the time series of motion state 344 
variables and wave height are used to train the NIGP model. The structure of the training data follows 345 
the form 346 
Input variables:  [𝑢(𝑖 − 1), 𝑤(𝑖 − 1), 𝑞(𝑖 − 1), ℎ(𝑖 − 1)]                                347 

Output response: [𝑢(𝑖) , 𝑤(𝑖) , 𝑞(𝑖)] (34) 

The detailed process of the black-box modeling of the WEC using NIGP is shown in Fig. 8.  348 

 349 

Figure 8. Process of black-box modeling of the WEC using NIGP 350 

5.3. A case study of a multi-freedom buoy WEC 351 

The experiment was carried out in the wave tank of Shandong Provincial Key Laboratory of 352 
Ocean Engineering [54], shown in Fig. 9. The model had 3 DOFs: surge, heave and pitch. Every DOF 353 
was independent and could be fixed. The buoy's motion was measured by an NDI Optotrak Certus 354 
3D investigator. The sliding frame of surge was 58 kg. A spring was used in surge to provide the 355 
restoring force. The added mass can be calculated as 356 

𝑚∞ = 𝐴(𝜔) +
1

𝜔
∫ 𝐾(𝑡) 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝑡

∞

0

𝐾(𝑡) =
2

𝜋
∫ 𝐵(𝜔)

∞

0

𝑐𝑜𝑠(𝜔𝑡) 𝑑𝑡

 (35) 

where 𝜔 is the wave frequency and 𝑩(𝜔) is the radiation damping matrix. The values of 𝑨(𝜔) and 357 
𝑩(𝜔)  are calculated by the ANSYS AQWA software package (AQWA-LINE suite), which 358 
implements a boundary element method algorithm. 359 

 360 

Figure 9. Physical model experiment 361 
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Table 5.  Particulars and test conditions of the WEC 362 

Elements Value 

Water depth  (m) 1.0  

Wave heihgt (m) 0.2 

Radius  (m) 0.4 

Draft (m) 0.4 

Height (m) 0.12 

Spring stiffness coefficient 85 N/m 

Mass (kg) 58  

Inertia in yaw (𝐼𝑧𝑧) 2.2 

The wave period of the experimental data is 1.6 s. The first 30 s of the experimental data are used 363 
to train each model, and the last 15 seconds of the data are used as the test set to verify the accuracy 364 
of the identified models. The sampling interval of training data for nonparametric gray-box modeling 365 
is 0.05 s, while the black-box modeling is 0.1 s. It can be seen from Fig. 10 that, except for the 366 
nonparametric gray-box model driven by SVM, the predicted results of the other three methods are 367 
almost the same as the experimental values. The rest motion data with a wave period of 1.8  s is used 368 
to further verify the identified models and is presented in Fig. 11. It should be noted that the WEC 369 
buoy has different added mass in a different wave frequency, so we recalculated the added mass with 370 
the wave period 1.8 s and substituted it in Equation (31) for gray-box modeling prediction. From Fig. 371 
11, it can be seen that the trend of the experimental and Bayesian gray-box and black-box modeling 372 
prediction fit well in the motion of surge and heave. However, it can be observed that there is some 373 
discrepancy between the prediction and the experiment in pitch. This may be mainly due to fact that 374 
the frequency of wave in the training data is higher than that of the test, and the motion is very 375 
regular, which means that the training data does not fully reflect the dynamic characteristics of the 376 
device. In the 1.8 s wave period, the prediction of the gray-box modeling based on SVM failed, and 377 
its motion state was significantly slower than the experiment. The RMSE of u, w and q and 378 
computation time of the models are listed in Table 6. Table 6 demonstrates that the black-box model 379 
based on NIGP is the most accurate identification method for WEC buoy. 380 
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 381 

Figure 10. Comparisons of results of the WEC predicted motion; T=1.6 s 382 

 383 

Figure 11. Comparisons of results of the WEC predicted motion; T=1.8 s 384 
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Table 6.  Estimation of forecast accuracy by RMSE and computation time for the WEC motion with 385 
the wave period 1.6 s and 1.8 s  386 

 Nonparametric gray-box model Black-box model 

 SVM NIGP SVM NIGP 

T=1.6 s   u / 0.866 1.883 2.184 

w / 0.580 0.610 1.143 

q / 0.151 0.346 0.404 

T=1.8 s   u / 1.503 3.872 1.142 

w / 0.979 1.935 0.620 

q / 0.396 0.664 0.211 

time (s/step) 0.0012        0.086 0.0013 0.025 

6. Discussions and Conclusions 387 

In this work, three different identification frameworks, parametric gray-box modeling, 388 
nonparametric gray-box modeling and black-box modeling based on Bayesian regression, have been 389 
developed. The main objective is to propose a robust and widely used identification methodology for 390 
hydrodynamic models of marine vehicles and equipment using experimental data. The Bayesian 391 
regression approach was compared with SVM on a KVLCC2 and WEC buoy model and showed good 392 
generalization ability. The relative strengths and weakness of each method are summarized in Table 393 
7. For different modeling objects and characteristics, the corresponding modeling method should be 394 
selected according to their capabilities. For conversional ship, choosing traditional parametric 395 
modeling can produce good results under the limited data conditions. For new types of vehicles such 396 
as USV and ROV, as well as other irregularly shaped marine structures, nonparametric modeling 397 
could be a better choice. However, when very low amounts of training data exist, the parametric 398 
gray-box modeling method can provide a useful model with the help of prior knowledge such as the 399 
added mass of the marine equipment. The obtained experimental data is usually the velocity obtained 400 
by MRU (motion reference unit) or displacement data measured with a camera. If the force of the 401 
device can be obtained by CFD simulation, or directly measured by  a PMM test, the nonparametric 402 
gray-box modeling with nonlinear fluid dynamics would be a very effective method. In terms of the 403 
practicality of the algorithm, compared with SVM and ANN, Bayesian regression introduces a prior 404 
into the loss function, which has stronger generalization ability . Moreover, NIGP shows stronger 405 
predictive ability because of its additional processing of input noise. However, it needs to be 406 
acknowledged that it costs longer execution time due to the complicated calculations in 407 
nonparametric modeling. 408 

Table 7.  Capabilities and challenges of Bayesian gray-box modeling and black-box modeling 409 

Property Parametric gray-box 

model driven by ScBR 

Nonparametric gray-box 

driven by NIGP 

Black-box model  

driven by NIGP 

Modeling 

framework 

Newton's second law 

equation with Taylor 

expansion forces 

Newton's second law 

equation with 

nonparametric forces  

High-dimensional 

mapping of time 

series 

Required prior 

knowledge 

weak fair strong 

Nonlinearities fair strong strong 

Training with 

limited data 

strong fair weak 

Noise 

robustness 

weak fair strong 

Execution time strong weak fair 
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Although the preliminary application of the proposed Bayesian methods seems encouraging 410 
thus far, the work needs further extension and investigations. (1) For a model calculation to be used 411 
in the practical application of control design, the training dataset should be richer and obtained from 412 
more abundant excitation signal, to make the identification model more accurate. The experimental 413 
data used in this article are not from the experiments specially designed for system identification, so 414 
the excitation signal of the training data is not enough. Especially for the wave energy device, 415 
compared with regular waves, the motion data under irregular waves (such as Jonswap spectral 416 
waves) can better reflect the dynamic characteristics of the device. (2) The experiments of ship and 417 
WEC in this article are all carried out in water tank, but the equipment in the ocean will be affected 418 
by various factors such as wind, water depth and current. Further study is required to introduce these 419 
factors as inputs into nonparametric modeling. (3) Model predictive control (MPC) based on GP 420 
allows the direct assessment of residual model uncertainly to enable cautious control. It is very 421 
interesting to integrate NIGP-based nonlinear nonparametric modeling into MPC for marine systems. 422 
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