

1 **Foodborne Transmission of Sars-CoV-2 Is More Evident Than It Has Been Before**

2 Hamada A. Aboubakr^{1,2,3}; Sagar M. Goyal¹

3

4 ¹Department of Veterinary Population Medicine and ²Department of Bioproducts and

5 Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA

6 ³Department of Food Science and Technology, Faculty of Agriculture, Alexandria University,

7 Alexandria, Egypt

8

9 Correspondence: HAA, email: aboub006@umn.edu; SMG, email: goyal001@umn.edu

10

11

12

13

14 **Abstract**15 Background:

16 Although highly strict social distancing and viral spread protection guidelines are in force, the
17 reported numbers of COVID-19 cases across the world are still increasing. This indicates that we
18 are still unable to completely understand the transmission routes of SARS-CoV-2. One of the
19 possible routes that can play a significant role is the fecal-oral transmission since SARS-CoV-2
20 can replicate in the intestines as demonstrated by isolation of infectious virus from fecal samples
21 of COVID-19 cases.

22

23 Scope and approach:

24 In this review, we compare the characteristics of SARS-CoV-2 with the distinctive
25 characteristics of enteric foodborne viruses. We also discuss and respond to the arguments given
26 in some reports that downplay the importance of foodborne transmission route of SARS-CoV-2.

27

28 Key findings and conclusions:

29 Enteric viruses such as human noroviruses (HuNoVs) and hepatitis A virus (HAV) are known to
30 transmit through foods such as fresh produce and berries, leading to frequent multistate
31 foodborne disease outbreaks all over the world. SARS-CoV-2 was found to share four distinctive
32 characteristics of foodborne viruses that allow them to transmit through foods. This similarity in
33 characteristics, recent report of detecting SARS-CoV-2 particles from frozen food packages in
34 China, and recent suspected foodborne COVID-19 case in New Zealand, indicate that foodborne
35 transmission of SARS-CoV-2 is more evident than previously thought possible. To support or

36 deny this route of transmission, urgent research needs to be undertaken to answer two primary
37 questions and many secondary ones as described in this review.

38

39 **Keywords:**

40 SARS-CoV-2; COVID-19; foodborne viruses; enteric viruses; fecal-oral transmission; fresh
41 produce; berries; fruits; hepatitis A virus; Norovirus; ready-to-eat foods.

42

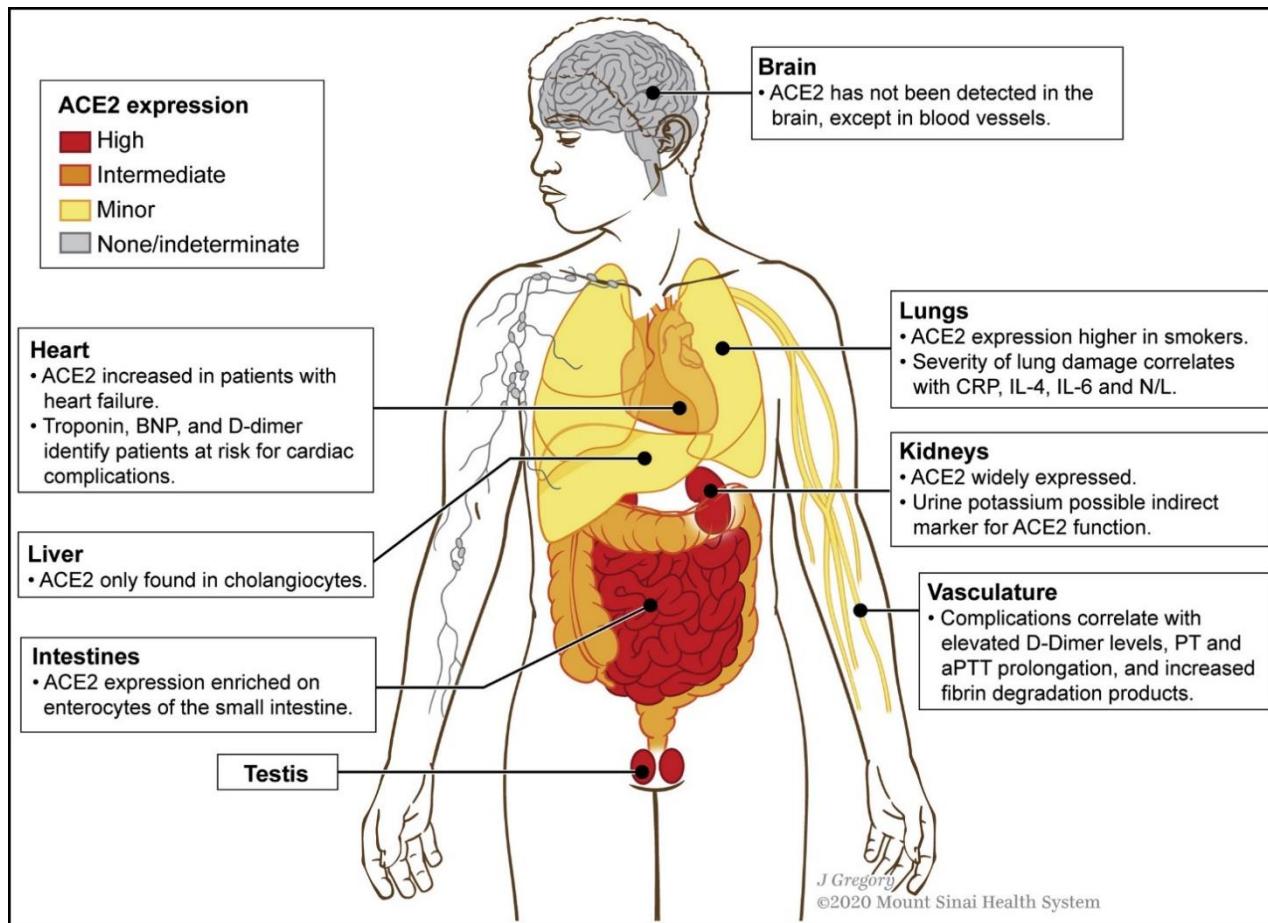
43 **Introduction**

44 A reported familial cluster of pneumonia associated with COVID-19 in hospital and family
45 settings confirmed the direct person-to-person transmission of SARS-CoV-2 through close
46 contact and droplets (Chan et al., 2020 b; Liu et al., 2020). However, indirect transmission routes
47 are also postulated such as via air and contact with contaminated surfaces and fomites (Aboubakr
48 et al., 2020 b). Because of the absence of any confirmed COVID-19 cases associated with food
49 or food-contact surfaces, WHO and CDC have declared that “currently” there is no evidence that
50 people can catch COVID-19 from food or food packaging (WHO, 2020; CDC, 2020). The
51 downplaying of foodborne transmission of SARS-CoV-2 contradicts the earlier classification of
52 similar human coronaviruses (i.e. SARS-CoV-1 and MERS-CoV) among the viruses that have
53 the potential to be transmitted by food (Greening and Cannon, 2016). In addition, it contradicts
54 the conclusion of a detailed risk assessment study by the UK-Food Standards that transmission of
55 SARS-CoV-2 through food and food-contact surfaces cannot be completely excluded (Oakenfull
56 & Wilson, 2020). Furthermore, after 102 days with no local COVID-19 transmission reported,
57 New Zealand recently (first week of August 2020) reported the first COVID-19 cluster in a
58 family in Auckland (Menon, 2020). Investigation of these cases led to a suspicion that virus
59 transmission was through frozen food as the first reported case of this cluster is a cool store
60 worker who handled a frozen food freight imported from Americold Inc., Australia. On August
61 11, 2020, a Chinese news reported the first detection of SARS-CoV-2 on imported frozen
62 seafood packaging, imported from Ecuador, in the Chinese port city of Yantai (Ho and Chik,
63 2020). Two days after (August 13, 2020), SARS-CoV-2 was detected in frozen chicken wings,
64 imported from Brazil, in the southern Chinese city of Shenzhen (Gan, 2020). These reports
65 indicate that a thorough review of safety of foods and food packaging should be undertaken.

66

67 **Coronaviruses have all required characteristics to be foodborne:**

68 Foodborne viruses are mostly enteric viruses which replicate in the human gastrointestinal tract
69 (GIT), excreted in human feces, and transmitted by the fecal-oral route (Greening & Cannon,
70 2016). Viruses such as human Noroviruses (HuNoVs) and hepatitis A virus (HAV) can be
71 transmitted through food from infected person to the food consumer (Goyal and Aboubakr,
72 2016). Foodborne viruses cannot replicate in foods (outside their host cells) but foods can act as
73 vehicles that transfer infectious viral particles from an infected person to another person through
74 at least one of two possible scenarios. First, consumption of contaminated food that has been
75 handled by an infected person in poor hygienic conditions. Second, consumption of foods
76 contaminated by virus-containing human excrements such as sewage-contaminated irrigation
77 water or soil, or a contaminated food processing surface (Goyal and Aboubakr, 2016; Hedberg,
78 2016; Aboubakr and Goyal, 2019). The most implicated foods in foodborne virus outbreaks are
79 those which are consumed fresh, such as fresh produce and berries, or minimally processed foods
80 without thermal cooking such as frozen foods (Aboubakr et al., 2020 a). The main characteristics
81 of the foodborne viruses are: (i) they are mostly enteric in nature and hence can replicate in the
82 gastrointestinal tract (Greening & Cannon, 2016); (ii) can retain their infectivity for a substantial
83 period of time in a wide variety of environmental conditions (Sánchez and Bosch, 2016), (iii) are
84 highly contagious and have a low minimum infective dose (MID); and (iv) can tolerate the
85 hostile environment of the human GIT, namely, low pH and presence of proteolytic enzymes and
86 bile juice (Morrison and Fields, 1991; Holmes, 2001). In fact, coronaviruses share all these
87 attributes, as described below, which indicates that they have the potential to be foodborne.


88 1- ***Enteric replication of SARS-CoV-2***

89 Several studies have reported the association of gastroenteritis and infection with SARS-CoV-1
90 and MERS-CoV (Chan et al., 2015; Cheng et al., 2004); up to 10.6% and 30% of patients
91 infected with SARS-CoV-1 and MERS-CoV, respectively, had diarrhea (Fan et al., 2019; Chan
92 et al., 2020). Likewise, diarrhea and gastroenteritis symptoms have also been reported in some
93 cases of SARS-CoV-2 infection (Chan et al., 2020; Song et al., 2020). This phenomenon is
94 attributed to the high expression of the receptor of these viruses, angiotensin-converting enzyme
95 2 (ACE2), in epithelia of small intestine as seen in Fig. 1 (Hamming et al., 2004; Christian et al.,
96 2004; Vabret et al., 2020). The spike (S) protein of SARS-CoV-2 binds to ACE2 in a way similar
97 to that of SARS-CoV-1. Strikingly, SARS-CoV-2 is more pathogenic, partially because it has
98 higher (10-20% more) binding affinity to ACE2 (Hoffmann et al., 2020; Wrapp et al., 2020).
99 This binding leads to the entry of the virus into the host cell in concert with S-protein priming by
100 the cell protease TMPRSS2 (Bourgonje et al., 2020). Consistent with this explanation, RNA of
101 SARS-CoV-2 was detected in anal swabs and urine samples collected from COVID-19 patients
102 by two independent laboratories in China (Chen et al., 2020; Zhang et al., 2020). Also, the RNA
103 of SARS-CoV-2 was detected in 41 of 74 (55%) fecal samples collected from COVID-19
104 patients and the fecal shedding continued for approximately 28 days after the onset of symptoms
105 (Wu et al., 2020 b).

106 In addition, RNA of SARS-CoV-2 has been detected in sewage and wastewaters
107 collected from several cities across the world during the current COVID-19 pandemic (Ahmed et
108 al., 2020; Peccia et al., 2020; Randazzo et al., 2020; Wu et al., 2020 a; Wang, et al., 2020).
109 Furthermore, infectious SARS-CoV-2 virus was isolated recently from the feces of a COVID-19
110 patient in China, which indicates the potential for fecal-oral route of transmission (Xiao et al.,
111 2020). To date, no data are available on the survival of SARS-CoV-2 in human excrements.

112 However, its prolonged persistence in human feces is manifested from the prolonged
 113 survivability of various animal and human coronaviruses (more than 35 days in some cases) in
 114 human excrements such as stool, urine, sputum, and sewage (Aboubakr et al., 2020 b).

115

116

117 **Fig. 1:**

118 ACE2 Expression in Organs and Systems Most Frequently Implicated in COVID-19

119 Complications. **Source:** Vabret et al. (2020)

120

121 One of the reports that downplayed the foodborne transmission of SARS-CoV-2 has used
 122 the argument that CoVs mainly spread through the respiratory tract and not through GIT (Li et

123 al., 2020 a). However, the facts we provided above show that SARS-CoV-2 is both enteric and
124 respiratory in nature and has the potential for fecal-oral mode of transmission like the foodborne
125 viruses. Thus, this route of transmission should not be ignored (Ding and Liang, 2020; Han et al.,
126 2020 b).

127

128 **2- *Long stability of SARS-CoV-2 in environmental conditions***

129 Outside their hosts, viruses are inert particles. Hence, the chance of transmission from host to
130 host is determined mainly by the degree of robustness of these viral particles in the environment.
131 The degree of infectivity retained during the extreme conditions encountered in environmental
132 matrices such as foods determines if the virus can be transmitted by the indirect route or not
133 (Sánchez and Bosch, 2016). Numerous physical, chemical, and biological factors influence virus
134 persistence in the environment such as temperature, pH, relative humidity, exposure to sunlight,
135 salinity, and desiccation, etc. (Sánchez and Bosch, 2016). Thus, foodborne viruses, such as
136 HuNoV and HAV, can survive for several days on different environmental matrices (e.g., soil,
137 water, wastewater, various fomites, food contact surfaces, and human hands) (Arthur and
138 Gibson, 2016; Elmahdi et al., 2018; Fallahi and Mattison, 2011; Kotwal and Cannon, 2014;
139 Samandoulgou et al., 2015).

140 Until now, there is no available study on the stability of SARS-CoV-2 or other human
141 infectious coronaviruses on foods. However, long persistence (for days to several weeks) of
142 MERS-CoV, SARS-CoV-1, and SARS-CoV-2 on a wide verities of fomites, surfaces, and
143 environmental matrices has been reported (Chin et al., 2020; van Doremalen et al., 2013; van
144 Doremalen et al., 2020). We comprehensively reviewed almost all available data on the stability
145 of coronaviruses in the environment and described factors influencing their persistence

146 (Aboubakr et al., 2020 b). In light of the available data, we found no difference between the
147 stability of SARS-CoV-2 in the environment and on fomite surfaces than that of other foodborne
148 viruses, which suggests that the stability of SARS-CoV-2 on foods is similar to that of foodborne
149 viruses. In addition, the long persistence of SARS-CoV-2 on surfaces of materials similar to
150 those used in food packaging, food processing, and utensils (e.g. plastics, paper, cardboard,
151 ceramic, and stainless steel) indicates that SARS-CoV-2 may follow transmission routes similar
152 to those of foodborne viruses (van Doremalen et al., 2020; Chin et al., (2020). The long
153 persistence of SARS-CoV-2 on surfaces at low temperatures is worth noticing here as
154 demonstrated by the recent cluster of COVID-19 cases in New Zealand, which is suspected to be
155 transmitted through handling of imported frozen food freight.

156 **3- *Low infective dose of SARS-CoV-2***

157 It is thought that the number of viral particles which a shedding individual might leave on food,
158 food-processing surface, or food packaging is too low to initiate an infection (Oakenfull &
159 Wilson, 2020; Mole, 2020). However, to accurately assess this type of risk, we should look at the
160 number of viral particles contaminating food commodities in view of the very low infective dose
161 of coronaviruses; which can inform us if these low numbers are enough to initiate an infection.

162 The minimum infective dose (MID) of a viral pathogen is defined as the minimum dose
163 of virus particles that can initiate infection in the tested population. The lower the MID of a
164 virus, the more the contagiousness and ease of transmission. Most human MIDs have been
165 expressed as HID₅₀, which indicates viral concentration required to infect 50% of the tested
166 population and hence this value is always greater than the MID (Ward et al., 1984). One of the
167 important characteristics of enteric viruses that makes them easily transmitted through food is
168 that they have low infective doses and are shed by the infected person in high numbers. For

169 instance, HuNoV, the leading cause of foodborne outbreaks, is highly contagious to humans
170 since the HID₅₀ of HuNoV GI.1 strain in humans is estimated to be as low as 18 particles (Teunis
171 et al., 2008). However, this estimation was followed by another study with an enhanced model
172 that estimated the HID₅₀ of HuNoV to be approximately 1,320 genomic equivalents (Atmar et
173 al., 2013).

174 Similar to enteric foodborne viruses, respiratory viruses are shed in high numbers by the
175 infected individuals even when the infection is asymptomatic (Yizli and Otter al., 2011). Until
176 now, the infective dose of SARS-CoV-2 is unknown. However, the use of animal models
177 indicate that the estimated ID₅₀ of SARS-CoV-1 is 280 viral particles (Schröder, 2020; Watanabe
178 et al., 2020). As indicated above, SARS-CoV-2 was found to have 10-20% more binding affinity
179 to the host cells than SARS-CoV-1 (Hoffmann et al., 2020; Wrapp et al., 2020), which indicates
180 that, theoretically, it has a lower infective dose as compared to that of SARS-CoV-1. In the best
181 scenario, we can assume that the infective dose of SARS-CoV-2 is the same as that of SARS-
182 CoV-1 (280 viral particles). Thus, SARS-CoV-2 appears to have higher infectivity and
183 contagiousness than HuNoV, a leading cause of foodborne outbreaks. These arguments indicate
184 the possible role that contaminated food, food-processing surfaces, or food packaging can play in
185 spreading SARS-CoV-2 infection.

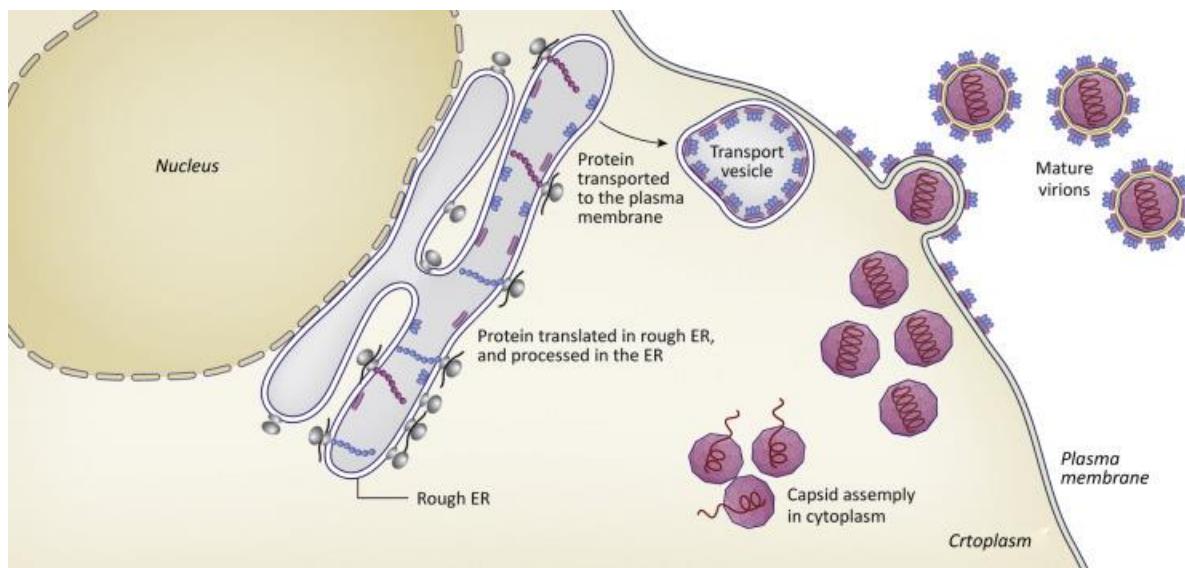
186 **4- Stability of SARS-CoV-2 in the extreme environment of the human GIT**

187 Foodborne viruses spread through the fecal-oral transmission route. To be able to infect, they
188 have to survive the harsh environment of the human GIT, where they are exposed to proteolytic
189 enzymes, bile juice, and extreme pH (Morrison and Fields, 1991; Holmes, 2001). Therefore,
190 foodborne viruses such as HuNoV and HAV are stable in high the high acidity and alkalinity (Li
191 et al., 2013; Scholz, 1989; Mormann et al, 2010). In addition, many studies have reported the

192 stability of foodborne viruses in bile juice *in vivo* (Ross et al., 1991; Gust, 2018). The resistance
193 to bile salts is attributed to the absence of a lipid bilayer envelope in these viruses (Goswami and
194 Kulka, 2006). The stomach and intestinal proteases, low pH, and/or a combination of these
195 processes leads to the cleavage of viral capsid protein of a foodborne virus such as HAV, which
196 is essential for the enhancement of viral infectivity and antigenicity (Lemon et al., 1991; Bishop,
197 1999). A similar effect of stomach proteases and acidity was found on HuNoV-like particles by
198 exposing the receptor binding sites in the viral capsid proteins thereby enhancing infectivity and
199 pathogenicity (Hardy et al., 1995). Without these important features, viral particle might be
200 easily destroyed and lose its infectivity in the human GIT.

201 Recently, several studies found that SARS-CoV-2 has the potential to resist the extreme
202 conditions of human GIT due to the heavy glycosylation of S protein, which provides substantial
203 resistance to low pH and digestive enzymes (Burrell et al., 2017; Ding and Liang, 2020). For
204 instance, SARS-CoV-2 retained its infectivity to cell cultures after exposure to high acidity and
205 high alkalinity (pH 3 to 10) for one hour (Chin et al., 2020) indicating that SARS-CoV-2 can
206 tolerate the pH range encountered in human GIT (pH 1 to 3.5 in stomach and pH 6 to 9 in small
207 intestine) (Fallingborg, 1999). Two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4,
208 were found important for SARS-CoV-2 binding with its receptor protein, to facilitate fusogenic
209 activity of its spike and to promote virus entry into host cells (Hoffmann et al., 2020; Zang et al.,
210 2020). This also indicates that SARS-CoV-2 can resist the action of proteolytic digestive
211 enzymes.

212 Resistance of coronaviruses to bile juice was reported despite having a lipid bilayer
213 envelope (Holmes, 2001; Quinn et al., 2011). For instance, MERS-CoV infectivity survived fed-
214 state simulated intestinal fluid containing a high concentration of bile salts (Zhou et al., 2017).


215 Therefore, bile juice resistance of SARS-CoV-2 is hypothetical as a coronavirus and because of
216 the high similarity with MERS-CoV. The detection of high load of SARS-CoV-2 RNA in bile
217 juice from COVID-19 patient also supports this hypothetical resistance to bile juice (Han et al.,
218 2020 a). The resistance of coronaviruses to bile juice was also attributed to the heavy
219 glycosylation of S protein and/or the distinct composition of the lipid bilayer envelope of
220 coronaviruses (Burrell et al., 2017; van Genderen et al., 1995). Most of the enveloped viruses
221 form their envelopes by budding from the plasma membrane (Fig. 2). On the contrary, the
222 envelopes of coronaviruses are acquired by budding of the nucleocapsid at membranes of pre-
223 Golgi complex called the budding compartment where viral glycoproteins S, M, E, and HE are
224 incorporated into the viral envelope (Fig. 3; Bos et al., 1997). The lipid composition of
225 coronavirus envelope is different from that of the plasma membrane of the same cell since it
226 reflects the composition of the membrane of the budding compartment (van Genderen et al.,
227 1995). This distinct lipid composition of coronavirus envelope may play a role in making them
228 more resistant to degradation by bile than envelopes of unrelated viruses that bud from the
229 plasma membrane (Holmes, 2001). Considering the above discussion, we believe that SARS-
230 CoV-2 can be transmitted through contaminated foods and food packaging. Although no
231 COVID-19 case has so far been linked directly to contaminated food or food packaging, the
232 reality may be totally different because no efforts have been devoted to screen foods for SARS-
233 CoV-2 contamination or for performing trace-back investigations on the cases to know the real
234 infection point.

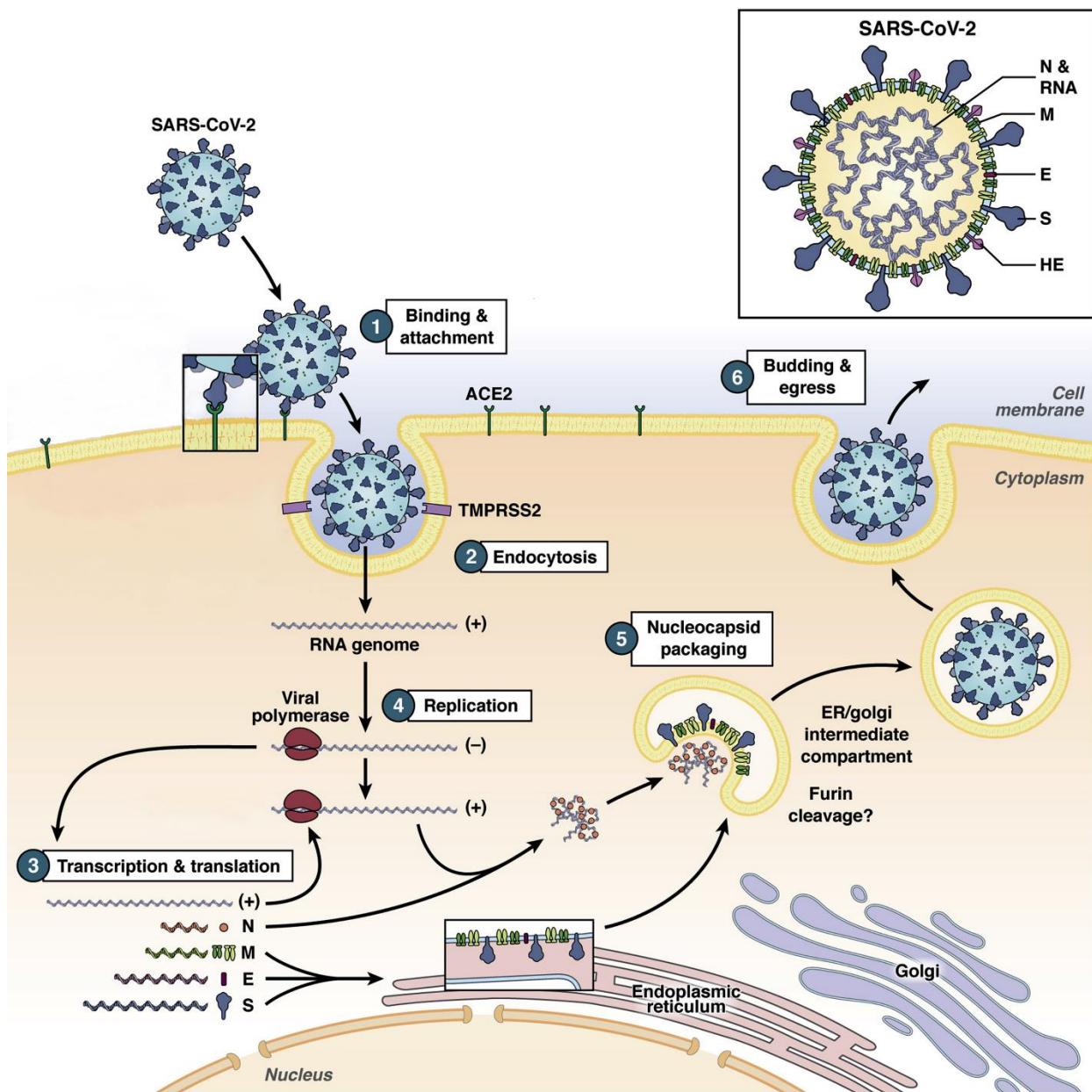
235

236

237

238

239


240 **Fig. 2.**241 Illustration showing the process of assembly and budding of an enveloped virus particle from the
242 plasma membrane. **Source:** Payne (2017)

243

244 **Long incubation period of SARS-CoV-2 infection and its implication on trace-back**
245 **investigations**

246 Incubation period of SARS-CoV-2 infection was thought to extend to 14 days from exposure to
247 onset of symptoms, with a median time of 4-5 days (Guan et al., 2020; Li et al., 2020 b). Another
248 study has estimated that 97.5% of SARS-CoV-2 infected persons will show COVID-19
249 symptoms after 11.5 days (Lauer et al., 2020). This is a very long incubation period as compared
250 to the incubation period of enteric foodborne viral pathogens such as HuNoV for which the
251 incubation period was estimated to be 1.2 and 1.7 days for genogroup I and genogroup II,
252 respectively (Lee et al., 2013). The long incubation period before the symptoms of COVID-19
253 become observable could be one of the reasons for making it very difficult to perform a trace-
254 back investigation in order to link a specific case with a specific food.

255

256

257 **Fig. 3.**

258 Illustration showing SARS-CoV-2 replication cycle including virus assembly and budding from
 259 membranes of pre-Golgi complex. (1) Interaction between viral S protein and host ACE2
 260 mediates virus binding to the host cell. (2) S protein is cleaved by host serine proteases, such as
 261 TMPRSS2, allowing the fusion of viral membrane with the host membrane and single-stranded
 262 RNA (ssRNA) (+) genome release into the cytoplasm. (3) Transcription and translation of viral
 263 proteins from genomic and subgenomic RNAs. (4) Replication occurs within the replicative
 264 membranous compartment, where new ssRNA(+) are synthesized. (5) Virus assembly at the
 265 endoplasmic reticulum (ER), the intermediate compartments, and/or the pre-Golgi complex. (6)
 266 Release of new virions by exocytosis. E, envelope protein; HE, hemagglutinin-esterase
 267 glycoprotein; M, membrane protein; N, nucleocapsid protein. **Source:** Ding and Liang (2020)
 268

269 **Candidate foods that might be implicated in foodborne transmission of SARS-CoV-2**

270 Green produce and fruits (such as berries) were found to be the most implicated foods in
271 foodborne viral outbreaks (Hall et al., 2012; Marsh et al., 2018). This is because they are
272 consumed mostly without any heat treatment or cooking. Therefore, the chance of thermal
273 destruction of viral contamination is not possible if the food is consumed fresh or minimally
274 processed. Although washing thoroughly with water might reduce the number of viral particles,
275 it is still not enough to ensure significant removal of the viral load even with adding acetic acid
276 or other chemical disinfectants to the washing water (Baert et al., 2009). The physical effect of
277 washing cannot remove the viral particles that might be located in the stomata, surface cracks,
278 irregularities, or grooves on the surface of green leaves or berries (Berger et al., 2010; Wei et al.,
279 2010; DiCaprio et al., 2015).

280 The fresh produce and berries grow on the surface of the planting soil with very close
281 contact. So, there is a possibility for these foods to be contaminated by viral pathogens directly
282 from the contaminated soil fertilized by untreated sewage fertilizers from sewage-contaminated
283 irrigation water (Goyal and Aboubakr, 2016; Aboubakr and Goyal, 2019; Mans et al., 2016).
284 These viral contamination incidences are common in developing countries, which use sewage-
285 contaminated irrigation water or partially treated wastewaters for irrigation and land fertilization.

286 Given that SARS-CoV-2 replicates in human intestine and was detected in human feces
287 and in wastewater, the contamination scenarios explained above become very realistic and do not
288 only occur in the developing countries but may also occur in developed countries such as the US
289 and EU. The developed countries usually import these foods in large amounts from developing
290 countries and frequently these imported foods have been implicated in foodborne viral outbreaks.
291 For instance, an increasing number of foodborne viral disease outbreaks caused by imported

292 foods was reported in the US between 1996 and 2014 (Gould et al., 2017). In 2016, a multistate
293 HAV outbreak in the US was attributed to consumption of fruit smoothie that was prepared from
294 imported frozen strawberries (CDC, 2016). Produce imported into Canada between 2001 and
295 2009 caused at least eight produce-associated outbreaks (Kozak et al., 2013). Tavoschi et al.
296 (2015) and Aboubakr and Goyal. (2019) have reported many foodborne viral outbreaks that are
297 caused by foods imported into the EU from developing countries. In addition, fresh produce and
298 berries can be contaminated at the service point indirectly from asymptomatic infected handlers,
299 who shed the virus (Hardstaff et al., 2018; Thornley et al., 2013). In fact, this particular scenario
300 can occur not only in developing countries but also in the developed nations.

301 The recent report of Li et al. (2020 a) downplayed the role of food commodities in
302 SARS-CoV-2 transmission. Although they provided proof of similarities between the
303 characteristics of SARS-CoV-2 and HuNoVs, they stated that the former seems to be less
304 persistent than HuNoVs towards common disinfection practices with alcohols, chlorine and
305 ultraviolet (UV). Hence, they used this as an argument that there was no clear evidence showing
306 CoVs can follow fecal-oral routes like HuNoVs and other foodborne viruses. In this context, we
307 believe that this argument might apply on the outside of the packaged foods that the customers
308 can easily disinfect the package prior to opening it using chemical disinfectants. However, foods
309 like fresh produce are sold mostly as unpackaged items. So, the customers cannot disinfect them
310 using chemical disinfectants; they can only wash them thoroughly under running water, which is
311 not very effective in removal of viral particles that contaminate these foods (Baert et al., 2009).

312 Berries are usually sold in a primary plastic package. However, the customer also cannot
313 disinfect the package by chemical disinfectants since these packages are usually perforated in
314 order to allow gas exchange and to avoid the accumulation of water vapor and moisture inside

315 the package to discourage microbiological decay (Danish Technological Institute of Packaging
316 and Transport, 2008; Koyuncu, 2004). More importantly, the risk of viral contamination of fresh
317 produce and berries fruits is related to their direct contamination, as described above, but not the
318 packaging. These facts show the invalidity of the argument of Li and his colleagues, particularly
319 in the case of fresh produce and berries fruits.

320 **Gap in knowledge and future research opportunities**

321 The information given herein about the possible role that foods can play in spreading SARS-
322 CoV-2 will stay hypothetical unless two things are done. First, an effort to detect and/or isolate
323 SARS-CoV-2 from vulnerable food samples, and second to confirm (or reject) the notion that
324 consumption of SARS-CoV-2-contaminated food can lead to infections. To meet the first
325 objective, we suggest performing a surveillance study to detect the presence of SARS-CoV-2 on
326 fresh produce and berries that are imported from developing countries or grown in areas with
327 high rate of SARS-CoV-2 infections. To meet the second objective, we suggest conducting an
328 animal study using a non-human primates model such as *Rhesus macaques* (Shan et al., 2020;
329 Munster et al., 2020) to determine if this model can be infected by eating SARS-CoV-2
330 contaminated food. These two suggested research areas should be supported by trace-back
331 epidemiological studies with an attempt to confirm (or deny) association of COVID-19 cases
332 with consumption of food or of handling food packaging. In reality, this type of research will be
333 difficult because of the long incubation period of SARS-CoV-2. To make it easier, we suggest
334 that a short questionnaire be administered to all suspected cases of SARS-CoV-2. The question
335 to be asked is, “do you have any suspicion that you were infected from eating a food?” If the
336 answer is “yes”, then what type of food was eaten and where. This approach may serve as a
337 primary initiation point of effective trace-back investigations.

338 If the two suggested areas of research mentioned above provide strong conclusion that
339 the virus can be transmitted through foods, we think that other studies should be conducted. For
340 instance, there are a few studies on the stability of SARS-CoV-2 on fomites including plastic,
341 paper, and cardboards (Chin et al., 2020; van Doremalen et al., 2020). These materials are
342 similar to those used in food packaging. However, until today we have no idea about the
343 survivability of SARS-CoV-2 on foods such as fresh produce and berries. We also have no idea
344 about the virus removal efficiency of the minimal food processing operations such as washing,
345 cooling, and freezing. The food decontamination efficacy against SARS-CoV-2 of different non-
346 thermal technologies such as UV irradiation, cold gaseous plasma, pulsed electric field, and high
347 hydrostatic pressure is not known. Tackling these research ideas will be very helpful in
348 mitigating this route of transmission if it is confirmed.

349 **Conclusions**

350 With a deep look at the characteristics of enteric foodborne viral pathogens such as HuNoV and
351 HAV, we found that there are four main characteristics that give them the capability to transmit
352 through specific types of foods. These four features are **(i)** they are enteric and can replicate in
353 the GIT; **(ii)** their infectivity is stable for a long period of time in a wide variety of environmental
354 conditions **(iii)** they are highly contagious because of their low infective dose ; and **(iv)** they can
355 tolerate the hostile environment of the human GIT. We found that SARS-CoV-2 shares these
356 four features. Along with the recent news of detecting SARS-CoV-2 from food packaging in
357 China and a suspected foodborne COVID-19 case in New Zealand, the possible foodborne
358 transmission of SARS-CoV-2 becomes more evident than thought of earlier. Fresh produce and
359 berries grown in or imported from developing countries can play a role in the transmission of
360 SARS-CoV-2 as is true for their role in transmission of foodborne viruses such as HuNoVs and

361 HAV. Even with this strong evidence, the possible role of foods in spreading SARS-CoV-2 will
362 stay hypothetical unless two essential studies are conducted, e.g., **(i)** performing a surveillance
363 study to detect the presence of SARS-CoV-2 on fresh produce and berries imported from
364 developing countries or grown in areas with high infection rate and **(ii)** conducting an animal
365 study using non-human primate models to know whether or not they will be infected after eating
366 SARS-CoV-2-contaminated foods. Other questions that are urgently in need of research are how
367 survivable SARS-CoV-2 is on foods such as fresh produce and berries, and how efficient food
368 processing operations are in removing SARS-CoV-2 particles from the surface of fresh produce
369 and berries.

370 **Acknowledgments:**

371 None

372 **Funding:**

373 None

374

375 **References**

376 Aboubakr, H., & Goyal, S. (2019). Involvement of Egyptian Foods in Foodborne Viral Illnesses:
377 The Burden on Public Health and Related Environmental Risk Factors: An Overview. *Food
378 and Environmental Virology*, 11, 315–339.

379

380 Aboubakr, H. A., Parra, F. S., Collins, J., Bruggeman, P., & Goyal, S. M. (2020 a). *In situ*
381 inactivation of human norovirus GII. 4 by cold plasma: Ethidium monoazide (EMA)-coupled
382 RT-qPCR underestimates virus reduction and fecal material suppresses inactivation. *Food
383 Microbiology*, 85, 103307.

384

385 Aboubakr, H. A., Sharafeldin, T. A., & Goyal, S. M. (2020 b). Stability of SARS-CoV-2 and
386 other coronaviruses in the environment and on common touch surfaces and the influence of
387 climatic conditions: A review. *Transboundary and Emerging Diseases*, 2020;00:1–17
388 <https://doi.org/10.1111/tbed.13707>

389

390 Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O'Brien, J. W., ... & Tscharke, B.
391 (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A

392 proof of concept for the wastewater surveillance of COVID-19 in the community. *Science of*
393 *the Total Environment*, 138764.

394

395 Arthur, S. E., & Gibson, K. E. (2016). Environmental persistence of Tulane virus—A surrogate
396 for human norovirus. *Canadian Journal of Microbiology*, 62(5), 449-454.

397

398 Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., ... &
399 Graham, D. Y. (2014). Determination of the 50% human infectious dose for Norwalk
400 virus. *The Journal of Infectious Diseases*, 209(7), 1016-1022.

401

402 Baert, L., Vandekinderen, I., Devlieghere, F., Van Coillie, E., Debevere, J., & Uyttendaele, M.
403 (2009). Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1,
404 *Listeria monocytogenes*, and *Escherichia coli* O157: H7 on shredded iceberg lettuce
405 and in residual wash water. *Journal of Food Protection*, 72(5), 1047-1054.

406

407 Berger, C. N., Sodha, S. V., Shaw, R. K., Griffin, P. M., Pink, D., Hand, P., & Frankel, G.
408 (2010). Fresh fruit and vegetables as vehicles for the transmission of human
409 pathogens. *Environmental Microbiology*, 12(9), 2385-2397.

410

411 Bishop, N. E. (1999). Effect of low pH on the hepatitis A virus maturation cleavage. *Acta*
412 *Virologica*, 43(5), 291-296.

413

414 Bos, E. C., Luytjes, W., & Spaan, W. J. (1997). The function of the spike protein of mouse
415 hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for
416 infectivity. *Journal of Virology*, 71(12), 9427-9433.

417

418 Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., ...
419 & van der Voort, P. H. (2020). Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and
420 pathophysiology of coronavirus disease 2019 (COVID-19). *The Journal of Pathology*, 251,
421 228-248

422

423 Burrell, C. J., Howard, C. R., & Murphy, F. A. (2017). Coronaviruses. In: Fenner and White's
424 Medical Virology, pp. 437-446. Academic press.

425

426 CDC (2016). 2016—Multistate outbreak of hepatitis A linked to frozen strawberries (final
427 update). Retrieved September 09, 2020 from
428 <https://www.cdc.gov/hepatitis/outbreaks/2016/hav-strawberries.htm>.

429

430 CDC (2020). Food and Coronavirus Disease 2019 (COVID-19).
431 <https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/food-and-COVID-19.html#:~:text=Everyday%20handling%20of%20packaged%20food,food%20packaging%20or%20shopping%20bags.>

432

433

434

435 Chan, J. F., Lau, S. K., To, K. K., Cheng, V. C., Woo, P. C., & Yuen, K. Y. (2015). Middle East
436 respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like
437 disease. *Clinical Microbiology Reviews*, 28(2), 465-522.

438
439 Chan, J.-W., Yuan, S., Kok, K.-H., To, K.-W., Chu, H., Yang, J., ... Yuen, K. Y. (2020). A
440 familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-
441 to-person transmission: A study of a family cluster. *The Lancet*, 395(10223), 514–523.
442 [https://doi.org/10.1016/S0140-6736\(20\)30154-9](https://doi.org/10.1016/S0140-6736(20)30154-9)

443
444 Chen, C., Gao, G., Xu, Y., Pu, L., Wang, Q. I., Wang, L., ... Zhang, F. (2020). SARS-CoV-2-
445 positive sputum and feces after conversion of pharyngeal samples in patients with COVID-
446 19. *Annals of Internal Medicine*, 172(12), 832–834. <https://doi.org/10.7326/M20-0991>

447
448 Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., ...
449 Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. *The
450 Lancet Microbe*, [https://doi.org/10.1016/S2666-5247\(20\)30003-3](https://doi.org/10.1016/S2666-5247(20)30003-3)

451
452 Cheng, V. C. C., Hung, I. F. N., Tang, B. S. F., Chu, C. M., Wong, M. M. L., Chan, K. H., ... &
453 Peiris, J. S. M. (2004). Viral replication in the nasopharynx is associated with diarrhea in
454 patients with severe acute respiratory syndrome. *Clinical Infectious Diseases*, 38(4), 467-475.

455
456 Christian, M. D., Poutanen, S. M., Loutfy, M. R., Muller, M. P., & Low, D. E. (2004). Severe
457 acute respiratory syndrome. *Clinical Infectious Diseases*, 38(10), 1420-1427.

458
459 Danish Technological Institute Packaging and Transport (2008). Guide Packaging Fresh Fruit
460 and Vegetables. Available online at:
461 [https://www.modifiedatmospherepackaging.com/~/media/Modifiedatmospherepackaging/Pic-
tures/Guide%20%20%20Packaging%20of%20Fresh%20Fruit%20and%20Vegetables%20%
%20%20PDF%20file.ashx#:~:text=Perforation%20of%20the%20packaging%20is,ge%20out%
%20of%20the%20packaging.](https://www.modifiedatmospherepackaging.com/~/media/Modifiedatmospherepackaging/Pic-
462-tures/Guide%20%20%20Packaging%20of%20Fresh%20Fruit%20and%20Vegetables%20%
463 %20%20PDF%20file.ashx#:~:text=Perforation%20of%20the%20packaging%20is,ge%20out%
464 %20of%20the%20packaging.)

465
466 DiCaprio, E., Purgianto, A., Ma, Y., Hughes, J., Dai, X., & Li, J. (2015). Attachment and
467 localization of human norovirus and animal caliciviruses in fresh produce. *International
468 Journal of Food Microbiology*, 211, 101-108.

469
470 Ding, S., & Liang, T. J. (2020). Is SARS-CoV-2 also an enteric pathogen with potential Fecal-
471 Oral transmission: a COVID-19 virological and clinical review. *Gastroenterology*, 159, 53–
472 61

473
474 Elmahdy, M. E. I., Magri, M. E., Garcia, L. A., Fongaro, G., & Barardi, C. R. M. (2018).
475 Microcosm environment models for studying the stability of adenovirus and murine
476 norovirus in water and sediment. *International Journal of Hygiene and Environmental
477 Health*, 221(4), 734-741.

478
479 Fallahi, S., & Mattison, K. (2011). Evaluation of murine norovirus persistence in environments
480 relevant to food production and processing. *Journal of Food Protection*, 74(11), 1847-1851.

481
482 Fallingborg, J. (1999). Intraluminal pH of the human gastrointestinal tract. *Danish Medical
483 Bulletin*, 46(3), 183.

484
485 Fan, Y., Zhao, K., Shi, Z. L., & Zhou, P. (2019). Bat coronaviruses in China. *Viruses*, 11(3), 210.

486
487 Gan, N (2020). Chicken wings test positive for Covid-19 in China, but there's no evidence of
488 food transmission, experts say. CNN. <https://www.cnn.com/2020/08/13/asia/china-coronavirus-chicken-wings-intl-hnk/index.html>

489
490
491 Goswami, B. B., & Kulka, M. (2006). Pathogenic mechanisms of foodborne viral disease. *Food
492 Consumption and Disease Risk*, 343.

493
494 Gould, L. H., Kline, J., Monahan, C., & Vierk, K. (2017). Outbreaks of disease associated with
495 food imported into the United States, 1996–2014. *Emerging Infectious Diseases*, 23(3), 525.

496
497 Goyal, S. M., & Aboubakr, H. A. (2016). Methods for virus recovery from foods. In: *Viruses in
498 Foods* (pp. 231-276). Springer.

499
500 Greening, G. E., & Cannon, J. L. (2016). Human and animal viruses in food (including
501 taxonomy of enteric viruses). In *Viruses in foods* (pp. 5-57). Springer.

502
503 Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., ... & Du, B. (2020). Clinical
504 characteristics of coronavirus disease 2019 in China. *New England Journal of
505 Medicine*, 382(18), 1708-1720.

506
507 Gust, I. D. (2018). *Hepatitis A*. CRC Press.

508
509 Hall, A. J., Eisenbart, V. G., Etingüe, A. L., Gould, L. H., Lopman, B. A., & Parashar, U. D.
510 (2012). Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008.
511 *Emerging Infectious Diseases*, 18(10), 1566.

512
513 Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., & van Goor, H. (2004).
514 Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first
515 step in understanding SARS pathogenesis. *The Journal of Pathology: A Journal of the
516 Pathological Society of Great Britain and Ireland*, 203(2), 631-637.

517
518 Han, D., Fang, Q., & Wang, X. (2020 a). SARS-CoV-2 was found in the bile juice from a patient
519 with severe COVID-19. *Journal of medical virology*. <https://doi.org/10.1002/jmv.26169>

520
521 Han, Q., Lin, Q., Ni, Z., & You, L. (2020 b). Uncertainties about the transmission routes of 2019
522 novel coronavirus. *Influenza and Other Respiratory Viruses*.

523
524 Hardstaff, J. L., Clough, H. E., Lutje, V., McIntyre, K. M., Harris, J. P., Garner, P., & O'Brien, S.
525 J. (2018). Foodborne and food-handler norovirus outbreaks: a systematic review. *Foodborne
526 pathogens and disease*, 15(10), 589-597.

527
528 Hardy, M. E., White, L. J., Ball, J. M., & Estes, M. K. (1995). Specific proteolytic cleavage of
529 recombinant Norwalk virus capsid protein. *Journal of Virology*, 69(3), 1693-1698.

530
531 Hedberg, C. (2016). Epidemiology of viral foodborne outbreaks: Role of food handlers,
532 irrigation water, and surfaces. In *Viruses in Foods* (pp. 147-163). Springer, Cham.
533
534 Ho, M. and Chik, H. (2020). Coronavirus found on frozen seafood packaging in Chinese port
535 city. *South China Morning Post*. August 11, 2020.
536 <https://www.scmp.com/news/china/society/article/3096934/coronavirus-found-frozen-seafood-packaging-chinese-port-city>
537
538
539 Holmes, K. V. (2001). Enteric infections with coronaviruses and toroviruses. In *Novartis*
540 Foundation Symposium (pp. 258-275). Chichester; New York; John Wiley; 1999.
541
542 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., ... &
543 Müller, M. A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is
544 blocked by a clinically proven protease inhibitor. *Cell*, 52(5), 731-733
545
546 Kotwal, G., & Cannon, J. L. (2014). Environmental persistence and transfer of enteric
547 viruses. *Current opinion in virology*, 4, 37-43.
548
549 Koyuncu, M. A. (2004). Quality changes of three strawberry cultivars during the cold storage.
550 *European Journal of Horticultural Science*, 69, 193-200.
551
552 Kozak, G. K., MacDonald, D., Landry, L., & Farber, J. M. (2013). Foodborne outbreaks in
553 Canada linked to produce: 2001 through 2009. *Journal of food protection*, 76(1), 173-183.
554
555 Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., ... & Lessler, J.
556 (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly
557 reported confirmed cases: estimation and application. *Annals of internal medicine*, 172(9),
558 577-582.
559
560 Lee, R. M., Lessler, J., Lee, R. A., Rudolph, K. E., Reich, N. G., Perl, T. M., & Cummings, D. A.
561 (2013). Incubation periods of viral gastroenteritis: a systematic review. *BMC infectious*
562 *diseases*, 13(1), 446.
563
564 Lemon, S. M., Amphlett, E., & Sangar, D. (1991). Protease digestion of hepatitis A virus:
565 disparate effects on capsid proteins, antigenicity, and infectivity. *Journal of virology*, 65(10),
566 5636-5640.
567
568 Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., ... & Zhang, Z. (2020). Community
569 transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020.
570 *Emerging Infectious Diseases* 26(6): 1320-1323
571
572 Li, D., Zhao, M. Y., & Tan, T. H. M. (2020 a). What makes a foodborne virus: comparing
573 coronaviruses with human noroviruses. *Current Opinion in Food Science*, 42, 1.
574

575 Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Xing, X. (2020 b). Early
576 transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New
577 England Journal of Medicine.

578

579 Li, X., Ye, M., Neetoo, H., Golovan, S., & Chen, H. (2013). Pressure inactivation of Tulane
580 virus, a candidate surrogate for human norovirus and its potential application in food
581 industry. International journal of food microbiology, 162(1), 37-42.

582

583 Mans, J., Armah, G. E., Steele, A. D., & Taylor, M. B. (2016). Norovirus epidemiology in
584 Africa: a review. PLoS One, 11(4), e0146280.

585

586 Marsh, Z., Shah, M. P., Wikswo, M. E., Barclay, L., Kisselburgh, H., Kambhampati, A., ... &
587 Hall, A. J. (2018). Epidemiology of foodborne norovirus outbreaks—United States, 2009–
588 2015. Food Safety, 6(2), 58-66.

589

590 Menon, P. (2020). New Zealand considers freight as possible source of new coronavirus cluster.
591 Reuters news network.
<https://www.reuters.com/article/us-health-coronavirus-newzealand/new-zealand-considersfreight-as-possible-source-of-new-coronavirus-cluster-idUSKCN25801P>

592

593

594

595 Mole, B. (2020). New Zealand baffled by new COVID-19 cases, eyes frozen-food packaging.
596 ARS Technica; experts says frozen goods unlikely source as health officials race to
597 investigate. <https://arstechnica.com/science/2020/08/new-zealand-baffled-by-new-covid-19-cases-eyes-frozen-food-packaging/>

596

597

598

599

600 Mormann, S., Dabisch, M., & Becker, B. (2010). Effects of technological processes on the
601 tenacity and inactivation of norovirus genogroup II in experimentally contaminated
602 foods. Applied and environmental microbiology, 76(2), 536-545.

603

604 Morrison, L. A., & Fields, B. N. (1991). Parallel mechanisms in neuropathogenesis of enteric
605 virus infections. Journal of virology, 65(6), 2767.

606

607 Munster, V. J., Feldmann, F., Williamson, B. N., van Doremalen, N., Pérez-Pérez, L., Schulz, J.,
608 ... & Avanzato, V. A. (2020). Respiratory disease in rhesus macaques inoculated with SARS-
609 CoV-2. Nature, 1-5.

610

611 Oakenfull, R. J., & Wilson, A. J. (2020). Qualitative Risk Assessment: What is the risk of food
612 or food contact materials being a source or transmission route of SARS-CoV-2 for UK
613 consumers?. UK: Food Standards Agency. Retrieved from
<https://www.food.gov.uk/sites/default/files/media/document/web-version-qualitative-risk-assessment-risk-of-food-or-food-contact-materials-as-transmission-route-of-sars-cov-2-002.pdf>

614

615

616

617

618 Payne, S. (2017). Virus Interactions With the Cell. Viruses, 23. Academic Press.

619

620 Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A.,
621 ... & Weinberger, D. M. (2020). SARS-CoV-2 RNA concentrations in primary municipal
622 sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv.
623

624 Quinn, P. J., Markey, B. K., Leonard, F. C., Hartigan, P., Fanning, S., & Fitzpatrick, E. (2011).
625 Veterinary microbiology and microbial disease. John Wiley & Sons.
626

627 Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G.
628 (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low
629 prevalence area. *Water Research*, 115942.
630

631 Ross, B. C., Anderson, D. A., & Gus, I. D. (1991). Hepatitis A virus and hepatitis A infection.
632 In *Advances in virus research* (Vol. 39, pp. 209-253). Academic Press.
633

634 Samandoulgou, I., Hammami, R., Rayas, R. M., Fliss, I., & Jean, J. (2015). Stability of
635 secondary and tertiary structures of virus-like particles representing noroviruses: effects of
636 pH, ionic strength, and temperature and implications for adhesion to surfaces. *Applied and*
637 *environmental microbiology*, 81(22), 7680-7686.
638

639 Sánchez, G., & Bosch, A. (2016). Survival of enteric viruses in the environment and food.
640 In *Viruses in foods* (pp. 367-392). Springer, Cham.
641

642 Scholz, E., Heinrich, U., & Flehmig, B. (1989). Acid stability of hepatitis A virus. *Journal of*
643 *General Virology*, 70(9), 2481-2485.
644

645 Schröder, I. (2020). COVID-19: A Risk Assessment Perspective. *ACS Chemical Health &*
646 *Safety*.
647

648 Shan, C., Yao, Y. F., Yang, X. L., Zhou, Y. W., Gao, G., Peng, Y., ... & Zhang, H. J. (2020).
649 Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques.
650 *Cell Research*, 30(8), 670-677.
651

652 Song, Y., Liu, P., Shi, X. L., Chu, Y. L., Zhang, J., Xia, J., ... & Wang, M. Y. (2020). SARS-
653 CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. *Gut*, 69(6), 1143-
654 1144.
655

656 Tavoschi, L., Severi, E., Niskanen, T., Boelaert, F., Rizzi, V., Liebana, E., ... & Coulombier, D.
657 (2015). Food-borne diseases associated with frozen berries consumption: a historical
658 perspective, European Union, 1983 to 2013. *Eurosurveillance*, 20(29), 21193.
659

660 Teunis, P. F., Moe, C. L., Liu, P., E. Miller, S., Lindesmith, L., Baric, R. S., ... & Calderon, R. L.
661 (2008). Norwalk virus: how infectious is it?. *Journal of medical virology*, 80(8), 1468-1476.
662

663 Thornley, C. N., Hewitt, J., Perumal, L., Van Gessel, S. M., Wong, J., David, S. A., ... &
664 Greening, G. E. (2013). Multiple outbreaks of a novel norovirus GII. 4 linked to an infected
665 post-symptomatic food handler. *Epidemiology & Infection*, 141(8), 1585-1597.

666
667 Vabret, N., Britton, G. J., Gruber, C., Hegde, S., Kim, J., Kuksin, M., ... & Pia, L. (2020).
668 Immunology of COVID-19: current state of the science. *Immunity*, 52 (6), 910-941.

669
670 Van Genderen, I. L., Godeke, G. J., Rottier, P. J. M., & Van Meer, G. (1995). The phospholipid
671 composition of enveloped viruses depends on the intracellular membrane through which they
672 bud.

673
674 van Doremalen, N., Bushmaker, T., Morris, D., Holbrook, M., Gamble, A., Williamson, B., ...
675 Lloyd-Smith, J. (2020). Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared
676 to SARS-CoV-1. *The New England Journal of Medicine*, 382, 1564–1567.
677 <https://doi.org/10.1056/NEJMc2004973>

678
679 Van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle East
680 respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions.
681 *Eurosurveillance*, 18(38), 20590. <https://doi.org/10.2807/1560-7917.ES2013.18.38.20590>

682
683 Wang, L., Li, X., Chen, H., Yan, S., Li, Y., Li, D., & Gong, Z. (2020). SARS-CoV-2 infection
684 does not significantly cause acute renal injury: an analysis of 116 hospitalized patients with
685 COVID-19 in a single hospital, Wuhan, China. Wuhan, China (2/17/2020).

686
687 Ward, R. L., Akin, E. W., & D'Alessio, D. J. (1984a). Minimum infective dose of animal
688 viruses. *CRC Critical Reviews in Environmental Control*, 14, 297–310.

689
690 Watanabe, T., Bartrand, T. A., Weir, M. H., Omura, T., & Haas, C. N. (2010). Development of a
691 dose-response model for SARS coronavirus. *Risk Analysis: An International Journal*, 30(7),
692 1129-1138.

693
694 Wei, J., Jin, Y., Sims, T., & Kniel, K. E. (2010). Manure-and biosolids-resident murine norovirus
695 1 attachment to and internalization by Romaine lettuce. *Applied and environmental
696 microbiology*, 76(2), 578-583.

697
698 World Health Organization (2020). COVID-19 and food safety: guidance for food
699 businesses. Interim Guidance.
700 https://apps.who.int/iris/bitstream/handle/10665/331705/WHO-2019-nCoV-Food_Safety-2020.1-eng.pdf

702
703 Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., ... & McLellan,
704 J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion
705 conformation. *Science*, 367(6483), 1260-1263.

706
707 Wu, F., Xiao, A., Zhang, J., Gu, X., Lee, W. L., Kauffman, K., ... & Duvallet, C. (2020 a).
708 SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed
709 cases. *medRxiv*.

710

711 Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., ... & Kuang, L. (2020 b). Prolonged
712 presence of SARS-CoV-2 viral RNA in faecal samples. *The lancet Gastroenterology &*
713 *hepatology*, 5(5), 434-435.

714

715 Xiao, F., Sun, J., Xu, Y., Li, F., Huang, X., Li, H., ... & Zhao, J. (2020). Infectious SARS-CoV-2
716 in feces of patient with severe COVID-19. *Emerging infectious diseases*, 26(8), 1920.

717

718 Yezli, S., & Otter, J. A. (2011). Minimum infective dose of the major human respiratory and
719 enteric viruses transmitted through food and the environment. *Food and Environmental*
720 *Virology*, 3(1), 1-30.

721

722 Zang, R., Castro, M. F. G., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., ... &
723 Diamond, M. S. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of
724 human small intestinal enterocytes. *Science immunology*, 5(47). eabc3582
725 DOI: 10.1126/sciimmunol.abc3582

726

727 Zhang, W., Du, R.-H., Li, B., Zheng, X.-S., Yang, X.-L., Hu, B., ... Zhou, P. (2020). Molecular
728 and serological investigation of 2019- nCoV infected patients: Implication of multiple
729 shedding routes. *Emerging Microbes and Infections*, 9(1), 386–389.
730 <https://doi.org/10.1080/22221751.2020.1729071>

731

732 Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H. H. N., ... & Chiu, M. C. (2017). Human
733 intestinal tract serves as an alternative infection route for Middle East respiratory syndrome
734 coronavirus. *Science advances*, 3(11), eaao4966.

735