

1 *Article*

2 **8 Weeks of 2s-Hesperidin Supplementation Improves Power Output**
3 **at Estimated Functional Threshold Power and Maximum Power in**
4 **Amateur Cyclist**

5 **Full names of the authors and institutional/corporate affiliations**

6 **Francisco Javier Martínez Noguera ^{*}1, Cristian Marín Pagán ¹, Jorge Carlos Vivas**
7 **², Pedro E. Alcaraz ¹.**

8 ¹ Research Center for High Performance Sport. Catholic University of Murcia, campus de
9 los Jerónimos N^o 135 (UCAM, 30107, Murcia, Spain).

10 ² Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport
11 Sciences, University of Extremadura. Avda. de Elvas, s/n. (06006, Badajoz, Spain),

12

13 **Contact details for the corresponding author**

14 * Francisco Javier Martínez Noguera: Research Center for High Performance Sport.
15 Catholic University of Murcia, campus de los Jerónimos N^o 135 (UCAM, 30107, Murcia,
16 Spain); fjmartinez3@ucam.edu.; Tel.: +34 968 278 566 (F.J.M.N.)

17

18 **Email addresses**

19 FJMN: fjmartinez3@ucam.edu.

20 CMP: cmarin@ucam.edu.

21 JCV: jorge.carlosvivas@gmail.com.

22 PEA: palcaraz@ucam.edu.

23

24

25

26

27

28

29 **ABSTRACT**

30 2S-hesperidin is a flavanone (flavonoid) found in high concentrations in citrus
31 fruits. It has an antioxidant and anti-inflammatory effect, improving performance
32 in animals. This study investigated the effects of chronic intake of an orange extract
33 (2S-hesperidin) or placebo on aerobic-anaerobic and metabolic performance
34 markers in amateur cyclists. A double-blind, randomized, placebo-controlled trial
35 was carried out between late September and December 2018. Forty amateur
36 cyclists were randomized into two groups: one taking 500mg/day 2S-hesperidin
37 and other taking 500 mg/day placebo (microcellulose) for 8 weeks. All participants
38 completed the study. Performance and metabolic aerobic-anaerobic markers were
39 measured using incremental and rectangular tests by indirect calorimetry. The
40 anaerobic power was determined using Wingate tests. After 8 weeks
41 supplementation, there was a significant increase in the incremental test in
42 estimated functional threshold power (FTP) (3.23%; $p \leq 0.05$) and maximum power
43 (2.68%; $p \leq 0.05$) with 2S-Hesperidin compared to placebo. In the rectangular test,
44 there was a significant decrease in VO_2 (-8.26%; $p \leq 0.01$) and VO_2R (-8.88%; $p \leq 0.01$)
45 at VT2 in placebo; however, there were no significant differences between groups.
46 In the Wingate test, there was a significant increase ($p \leq 0.05$) in peak and relative
47 power in both groups, but without significant differences between groups.
48 Supplementation with an orange extract (2S-hesperidin) 500mg/day improves
49 estimated FTP and maximum power performance in amateur cyclists.

51 **Keywords:** flavonoid; polyphenols; orange extract; performance; endurance;

52 aerobic; anaerobic; nutrigenomic; sport nutrition

53

54 **1. INTRODUCTION**

55 Hesperidin is a flavonoid found mainly in citrus fruits [1], reaching high
56 concentration in sweet orange (*Citrus sinensis*) [2]. Due to its chemical structure,
57 including a chiral carbon (C-2), Hesperidin can be present as S or R isomer (**Figure**
58 **1**). 2S-hesperidin is the predominant natural form in citrus fruits [3], but industrial
59 processing leads to the transformation of the natural S isomer into the R isomer
60 (**Figure 1**) [4]. The bioavailability of the two isomers is different, for instance a 5.2-
61 fold higher efficiency in the glucuronidation has been observed for S-hesperetin
62 compared to R-hesperetin *in vitro*, without any significant change in the
63 sulfonation kinetics [5]. Clinical trials have demonstrated the therapeutic effects of
64 hesperidin and its metabolites in various diseases (e.g., neurological and
65 psychiatric disorders, cardiovascular diseases, etc.) due to its anti-inflammatory
66 properties, antioxidants, lipid reducers and insulin sensitizers [6-9]. In view of its
67 effects, the pharmaceutical and nutritional industries have extensively marketed
68 hesperidin. However, little attention has been paid to the effects of hesperidin on
69 physical performance.

70 ****Insert figure 1****

71

72 Regarding performance, only one study has investigated the acute effect of 2S-
73 hesperidin in humans. Martínez *et al.* [10] showed that after ingesting one single
74 500 mg dose of either 2S-hesperidin or placebo (cross-over study) 5 hours before

75 the test, trained cyclists significantly improved average power (2.3%), maximum
76 speed (3.2%) and total energy (Σ 4 sprint test) (2.6%) with Cardiose®
77 supplementation in the best sprint of the four repeated sprint test (30 s duration).

78 No significant changes were observed in any of these variables with placebo.

79

80 In humans, chronic supplementation of hesperidin has also been studied. Pittaluga
81 *et al.* [11] investigated the effect of 250 ml of red-orange juice (ROJ), which has a
82 high content of hesperidin, on exercise performance (incremental test) in healthy,
83 trained older women. Following 4 weeks of consumption of ROJ (3 per day), these
84 older women significantly increased their work capacity by 9.0% compared to
85 placebo (-1.5%). Another chronic study evaluated the effect of a 4-week
86 supplementation of 2S-hesperidin (500 mg/day) in trained cyclists and observed
87 significant increases in average power output (14.9 W = 5.0%) in a 10 min time-trial
88 test on a cycle ergometer, whereas those that consumed placebo had a non-
89 significant increase in average power output (3.8 W = 1.3%) [12].

90

91 The effect of long-term intake of hesperidin has also been investigated in animal
92 studies. Biesemann *et al.* [13] observed that 6-weeks of hesperetin supplementation
93 (main metabolite of hesperidin) (50 mg·kg⁻¹·d⁻¹) improved running performance
94 (exercise time) in aged mice. De Oliveira *et al.* [14] found that four weeks of
95 hesperidin consumption (100 mg/kg body mass) enhanced the antioxidant
96 capacity in the continuous swimming group (183%) and decreased the lipid

97 peroxidation (TBARS) in the interval swimming group (-45%) in rats. This study
98 also found an improvement in endogenous antioxidant enzymes, such as reduced
99 glutathione (GSH), oxidized glutathione (GSSG) and GSH:GSSG ratio. In the same
100 line, a recent study in trained animals reported that intake of hesperidin for 4
101 weeks improved performance and prevented immune alterations induced by
102 exhausting exercise [15]. Recently, one parallel-group study has shown
103 improvements in the time until exhaustion (58%) on maximal exercise test at 3
104 weeks of a 5-week chronic supplementation of 2S-hesperidin (200 mg/kg), but not
105 in placebo group [16]. In the same study, it was observed an enhancement of the
106 antioxidant state (superoxide dismutase (SOD), glutathione peroxidase (GPx)) in
107 the lymphoid and hepatic tissue after the test until exhaustion in the rats that
108 consumed 2S-hesperidin.

109

110 Another flavonoid, quercetin, has also demonstrated to improve the 5 km running
111 performance time (-11.3% quercetin group; -3.9% control group) after its 14 day
112 supplementation (250 mg/d) by trained triathletes [17]. A systematic review that
113 included 13 randomized controlled trials found that cocoa-derived flavonoid
114 (epicatechin and catechin, and oligomeric procyandin) supplementation did not
115 affect performance [18]. Thus, there may be some specificity regarding the type of
116 flavonoid that affects physical performance.

117

118 The mechanisms by which chronic intake of hesperidin may improve performance

119 are associated with increased activation of AMP-activated protein kinase (AMPK)
120 [19,20] and nuclear respiratory factor 2 (NRF2) [6], leading to improved
121 mitochondrial biogenesis and antioxidant status, respectively [21,22]. In addition,
122 hesperidin has the ability to improve nitric oxide synthesis (NO) [23], which may
123 improve glucose utilization in exercise and increase blood flow to the muscles,
124 promoting an increase in nutrient and oxygen delivery to the muscle [24]. More
125 detailed human studies are needed to determine precisely what molecular
126 mechanisms explain the effects of hesperidin.

127

128 It has been hypothesized that some molecules with anti-inflammatory and
129 antioxidant activity may interfere with exercise-generated adaptations causing a
130 decline in performance when ingested chronically [25]. However, there is
131 controversy on this issue, since supplementation of polyphenols, such as
132 quercetin, have been shown to improve performance [26]. To solve this question,
133 future studies on polyphenols (specifically flavonoids) are needed to clarify which
134 pathways or receptors are activated to help explain the possible or lack of
135 improvements in performance.

136

137 Based on the understanding behind the mechanism of hesperidin in vitro, as well
138 as the scientific evidence presented above, hesperidin is a good candidate for
139 improving performance. Hesperidin strongly increases intracellular ATP
140 compared to the AMPK activator 5-Aminoimidazole-4-carboxamide

141 ribonucleotide (AICAR), even when AICAR concentration has been increased by
142 10-fold (100 μ M) [13]. In addition, hesperetin (10 μ M) has been shown to increase
143 intracellular ATP by 33% and mitochondrial spare capacity by 25%, as well as
144 establish an antioxidant state.

145

146 Much of the aforementioned investigations have used maximal exercise intensities
147 and acute intake protocols, and little is known about how supplementation of 2S-
148 hesperidin affects submaximal and maximal exercise intensities with long-term
149 consumption. We hypothesised that chronic intake of 2S-hesperidin would
150 improve performance at submaximal and maximal exercise intensities. Therefore,
151 the aim of this study was to examine the chronic effects of 2S-hesperidin (500 mg,
152 Cardiose®) supplementation on performance (generated power) in an incremental
153 test (high aerobic component) at FatMax, ventilatory threshold 1 and 2 (VT1 and
154 VT2) and at power maximum, and in a Wingate test (high anaerobic component).
155 The secondary objective was to evaluate whether hesperidin supplementation
156 modified metabolic (O_2 and CO_2) and energy substrate (carbohydrates and fats)
157 markers during a rectangular test that could explain a possible enhancement in
158 performance.

159

160

161 2. METHODOLOGY

162

163 **2.1 Participants**

164 Forty healthy, male amateur cyclists participated and completed the study (**Table**
 165 **1**). All the participants had to meet the following inclusion criteria: 18-55 years,
 166 BMI of 19-25.5 kg·m⁻², at least 3 years of cycling experience and training for 6-12
 167 h·wk⁻¹. Volunteers were excluded if they: a) were smokers or regular alcohol
 168 drinkers, b) had a metabolic, cardiorespiratory or digestive pathology or anomaly,
 169 c) had an injury in the prior 6 months, d) were supplementing or medicating in the
 170 prior 2 weeks and/or e) had non-normal values in the blood analysis parameters.
 171 First, participants were informed about the procedures, and a signed informed
 172 consent was obtained. The study was conducted according to the guidelines of the
 173 Helsinki Declaration for Human Research [27] and was approved by the
 174 University's Ethics Committee.

Table 1. Baseline general characteristics and training variables of participants.

	2S-Hesperidin	Placebo	p-value
Age (years)	35.0 (9.20)	32.6 (8.90)	0.407
Body mass (kg)	71.0 (6.98)	70.4 (6.06)	0.773
Height (cm)	175.3 (6.20)	176.5 (6.10)	0.541
BMI (kg·m ⁻²)	23.1 (1.53)	22.6 (1.43)	0.292
BF (%)	8.9 (1.63)	9.0 (1.64)	0.803
VO₂MAX (L·min ⁻¹)	3.99 (0.36)	3.98 (0.63)	0.971
VO₂MAX (mL·kg ⁻¹ ·min ⁻¹)	57.5 (6.97)	57.9 (9.53)	0.880
HR_{MAX} (bpm)	184.9 (11.11)	183.2 (8.68)	0.593
VT1 (%)	50.9 (5.63)	50.0 (4.78)	0.610
VT2 (%)	84.9 (5.85)	84.1 (5.70)	0.644
Training variables	2S-Hesperidin	Placebo	p-value
Total distance (km)	1121.12 (534.99)	1082.43 (810.46)	0.868

HR_{AVG} (bpm)	144.76 (8.88)	137.48 (13.11)	0.067
W_{AVG} (W)	174.86 (15.79)	163.47 (32.49)	0.435
RPE	6.34 (0.82)	6.33 (1.16)	0.975

Values are expressed as mean (SD). BMI = body mass index; BF = body fat; VO₂_{max} = maximum oxygen volume; VT1 = ventilatory threshold 1 (aerobic); VT2 = ventilatory threshold 2 (anaerobic); Total distance = of all the training sessions carried out during the study period; HRavg = average heart rate of all the training sessions carried out during the study period; Wavg = average power output of all training sessions during the study period.

175

176

177 **2.2 Study design**

178 A double-blind, parallel and randomized experimental design was performed.

179 Participants were divided into two groups: experimental (2S-hesperidin; n=20)

180 and control (Placebo; n=20). Total distance of usual training was balanced to make

181 it similar between groups (**Table 1**). Participants consumed two capsules at the

182 same time of either 2S-hesperidin (500 mg) (Cardiose®, produced by HTBA

183 (HealthTech BioActives – Murcia, Spain)) or placebo (microcellulose) for 8 weeks.

184 Specifically, Cardiose® is a natural orange extract that, due to its unique

185 manufacturing process, maintains most of the natural hesperidin isomeric form

186 (NLT 85% 2S-Hesperidin). Cyclists were instructed to take the supplement along

187 with breakfast and to continue their usual diet and training schedule. Subjects in

188 both groups were instructed not to consume foods high in citrus flavonoids

189 (grapefruit, lemons or oranges) for 5 days prior to and during the study, this was

190 verified by diet recalls records.

191 **2.3 Procedures**

192 Participants visited the laboratory on seven occasions. Visit 1 consisted of a
 193 medical examination and blood extraction to determine health status. When urine
 194 samples were collected on visit 2 in the fasted state, both groups consumed the
 195 supplements under the supervision of an investigator, which was followed by a
 196 standardized breakfast. On visits 2 and 5, a 24-hr diet recall and a Wingate test
 197 were performed. On visits 3 and 6, another 24-hour diet recall was conducted,
 198 followed by an incremental test until exhaustion on a cycle ergometer. On visits 4
 199 and 7, the 24-hour diet recall was repeated, and participants performed a
 200 rectangular test on the cycle ergometer (**Figure 2** and **Tables 2**). Prior to each
 201 testing session (visits 2, 3, 4, 5, 6 and 7), a standardized breakfast composed of 95.16
 202 g of carbohydrates (68%), 18.86 g of protein (14%) and 11.30 g of lipids (18%) was
 203 prescribed by the sport nutritionist.

204 ***Insert figure 2***

Table 2. Between-group comparisons in dietary intake of cyclists.

	Pre-intervention			Post-intervention		
	2S-Hesperidin	Placebo	p-value	2S-Hesperidin	Placebo	p-value
Kilocalories	2163.60 (519.02)	2100.18 (515.77)	0.708	1974.09 (377.97)	2133.51 (437.98)	0.237
Carbohydrates (g)	245.72 (73.46)	221.93 (69.68)	0.312	216.58 (63.47)	248.26 (58.15)	0.117
Protein (g)	113.50 (25.21)	115.20 (25.37)	0.837	108.97 (23.05)	101.52 (23.67)	0.332
Lipids (g)	80.75 (27.24)	83.52 (23.65)	0.739	71.48 (17.61)	71.59 (18.89)	0.985

Values are expressed as mean (SD). The mean values correspond to the average of all 24-hour diet recall data collected at pre-intervention (visits 2, 3 and 4) and post-intervention (visits 5, 6 and 7). * indicates significant differences ($p \leq 0.05$).

205

206 **2.3 Testing**207 **2.3.1 Medical exam**

208 A medical examination, performed by the research centre's medical doctor and
209 including health history, resting electrocardiogram and examination
210 (auscultation, blood pressure, etc.), was used to confirm that the volunteer was
211 healthy enough to be enrolled in the study.

212 **2.3.2 Maximal test**

213 Incremental step with final ramp test was performed on a cycle ergometer using a
214 metabolic cart (Metalyzer 3B. Leipzig, Germany) to determine maximal fat
215 oxidation zone (FatMax), VT1 and VT2 and maximal oxygen consumption
216 ($VO_{2\max}$). Participants began cycling at 35W for 2 min, increasing then by 35W
217 every 2 min until $RER > 1.05$, initialising then the final ramp ($+35W \cdot min^{-1}$) until
218 exhaustion. To ensure $VO_{2\max}$, at least 2 of the following criteria had to be achieved:
219 plateau in the final VO_2 values (increase $\leq 2.0 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ in the 2 last loads),
220 reaching maximal theoretical HR ($220 - \text{age} \cdot 0.95$), $RER \geq 1.15$ and $\text{lactate} \geq 8.0$
221 $\text{mmol} \cdot \text{l}^{-1}$. VT1 was determined using the criteria of an increase in $VE \cdot VO_2^{-1}$ ($VE =$
222 pulmonary ventilation) without further increase in $VE \cdot VCO_2^{-1}$ and departure from
223 the linearity of VE , whereas VT2 corresponded to an increase in both $VE \cdot VO_2^{-1}$ and
224 $VE \cdot VCO_2^{-1}$ [28,29]. All VT1 and VT2 assessments were made by visual inspection of
225 graphs in which were time-plotted against each relevant respiratory variable
226 measured during testing. Ventilatory thresholds were obtained using the

227 ventilatory equivalents method described by Wasserman [30]. FTP was defined as
228 the highest average power output (PO) that can be maintained for 1 hour [31]. The
229 estimated functional threshold power (FTP) was calculated using the following
230 equation [32]:

231
$$\text{FTP (W)} = \text{Pmax (W)} \times 0.865 - 56.484$$

232 **2.3.3 Rectangular test**

233 Rectangular test was performed on a cycle ergometer using the power output
234 values resulting from the maximal test (FatMax, VT1 and VT2). Participants
235 exercised continuously from FatMax to VT1 and to VT2 for 10 min without rest.
236 Cardiorespiratory variables (VO₂, VO₂R, carbohydrate oxidation (CHO), fat
237 oxidation (FAT) and cycling economy) were determined for each metabolic zones.

238 **2.3.4 Wingate test**

239 Wingate test (WAnT) consisted of an all-out, 30-s sprint on a cycloergometer
240 (Monark Ergomedic 894E Peak Bike, Vansbro, Sweden). Breaking resistance was
241 held constant at 7.5% of each individual's body mass [33]. All participants were
242 verbally encouraged to pedal as fast as possible during the entire sprint. Absolute
243 and relative (i.e., to body mass) peak power and anaerobic capacity were
244 calculated.

245 **2.3.5 Blood samples**

246 For blood analytics, two samples were taken; one in 3-mL tube with
247 ethylenediaminetetraacetic acid (EDTA) and another in 3.5-mL tube with
248 polyethene terephthalate (PET). Red blood cell count was carried out in an
249 automated Cell-Dyn 3700 analyser (Abbott Diagnostics, Chicago, IL, USA) using
250 internal (Cell-Dyn 22) and external (Program of Excellence for Medical
251 Laboratories-PEML) controls. Values of erythrocytes, haemoglobin, haematocrit
252 and haematometry indexes were determined. These data were used to verify the
253 health status of the subjects and were not included in the study.

254

255 **2.3.6 Urine samples**

256 Main hesperidin metabolites were analysed in participants' urine. Urine samples,
257 corresponding to the collection of urine 24 h before (V2) and after (V7) the
258 supplementation in both groups for each participant, were frozen in liquid
259 nitrogen after collection and thawed for its analysis. For analysis, 50 μ L of urine
260 were mixed with 100 μ L of water with 1% formic acid containing the internal
261 standard. Then, the mixture was injected into LC-MS/MS (UHPLC 1290 Infinity II
262 Series coupled to a QqQ/MS 6490 Series Agilent Technologies, Sta. Clara, CA,
263 USA). Metabolites were quantified by external standard calibration, using rac-
264 Hesperetin-d3 as the internal standard (Supplementary material).

265

266 **2.4 Statistical analysis**

267 Statistical analysis was carried out using IBM Social Sciences software (SPSS,
268 v.21.0, Chicago, IL, USA). Data are presented as mean \pm SD. Levene and Shapiro-
269 Wilks tests were performed in order to check for homogeneity and normality of
270 the data, respectively. Depending on the normality and homogeneity outcomes
271 obtained, paired T-test or Wilcoxon signed-rank test were carried out to examine
272 within-group pre-post differences. Likewise, between-group comparison was
273 calculated using ANCOVA test or Mann-Whitney U test, using pre-test values as
274 covariates (to eliminate any possible bias possibility caused by the initial level of
275 each group in the different dependent variables). Furthermore, the rectangular test
276 data analysis was done using repeated measures T-test to obtain within-group
277 differences when comparing the different time points. Relationships between
278 levels of excreted hesperidin metabolites in urine and other evaluated parameters
279 were analysed using Pearson correlation analysis (r). Significance level was set at
280 $p \leq 0.05$.

281

282 **3. RESULTS**

283 **3.1 Hesperidin metabolites urine**

284 Different hesperidin metabolites, mainly hesperetin glucuronides and sulfates,
285 were analysed in the urine of the participants after Cardiose® intake. The main
286 metabolite detected was hesperetin-3-glucuronide, representing $78.9 \pm 5.0\%$ ($n=20$)
287 of the total, while hesperetin-7-glucuronide and hesperetin-7-sulfate made up

288 6.9±2.9% (n=20) and 14.7±4.1% (n=20) of the excreted metabolites. Despite the
289 similarities in the excreted metabolites profile, a large interindividual variability
290 was observed in the excreted amount, with hesperidin metabolites ranging from
291 2.3 to 37.5 µmol. These differences between subjects indicate differences in the
292 absorption and excretion of hesperidin, which have been previously reported [34].

293 **3.2 Maximal test on a cycle ergometer**

294 **Figure 3** shows the pre- and post-intervention values and changes in VT1 and VT2
295 power, estimated FTP and maximum power achieved during the maximal test.

296 At VT1 there was no significant differences in pre-post power neither in 2S-
297 hesperidin group (-3.72% = -6.00 W; p=0.437) nor in Placebo group (3.42% = 5.25
298 W; p=0.453), without significant differences in VT1 power changes between
299 groups (p=0.423). At VT2, there was a non-significant pre-post decrease in power
300 output in Placebo (-3.11% = -8.90 W; p=0.264), and no significant changes were
301 observed in 2S-hesperidin group (1.04% = 2.90 W; p=0.642). Comparison between
302 groups showed no significant changes (p=0.299).

303 Interestingly, 2S-hesperidin group significantly increased pre-post maximum
304 power (1.93% = 7.40 W; p=0.049) and estimated FTP (2.33% = 6.40 W; p=0.049). In
305 contrast, Placebo group showed no significant changes in estimated FTP (-0.90 %
306 = -2.51 W; p=0.387) and maximum power (-0.75% = -2.90 W; p=0.388) during the
307 intervention. When comparing changes between groups, there was a significant

308 increase in estimated FTP (3.23% = 8.91 W; p=0.042) and maximum power (2.68%
309 = 10.32 W; p=0.042) in 2S-hesperidin group versus placebo.

310 Additionally, there was a positive significant correlation between the levels of
311 excreted hesperidin metabolites in urine and the difference in maximum power
312 (r=0.701; p<0.001) and estimated FTP (r=0.725; p<0.001) in the supplemented
313 group.

314

315 *****Insert figure 3*****

316

317 **3.3 Rectangular test on a cycle ergometer**

318 At FatMax, there was a significant pre-post decrease in fat oxidation (FAT)
319 (p=0.007) and efficiency (p=0.010) in Placebo group, whereas the 2S-hesperidin
320 supplemented group showed no changes in evaluated parameters (**Table 3**). No
321 significant differences were found for between-group comparisons.

322 At VT1, there was a significant increase pre-post in carbohydrate oxidation (CHO)
323 (p=0.020) and a significant decrease pre-post in fat oxidation (p=0.003) in Placebo
324 group, but no changes were observed in 2S-hesperidin (**Table 3**). No significant
325 changes were found between groups.

326 After the supplementation period, there was a significant decrease in VO₂ (-8.26%);
327 p=0.002) and VO₂R (-8.88%; p=0.002) at VT2 in Placebo group, in contrast to 2S-

328 hesperidin, which showed no significant changes (**Table 3**). Between-group
 329 comparison showed a trend to a decrease ($p=0.074$) in VO_2R for placebo versus 2S-
 330 hesperidin group.

Table 3. Changes in metabolism, energy substrate, energy and energy efficiency in FatMax, ventilatory threshold 1 (VT1) and ventilatory threshold 2 (VT2) during the rectangular test.

	2S-Hesperidin		p-value	Placebo		p-value
	Pre-intervention	Post-intervention		Pre-intervention	Post-intervention	
	FatMax			VT1		
VO₂ (L·min ⁻¹)	2.23 (0.50)	2.02 (0.37)	0.063	2.27 (0.48)	2.10 (0.57)	0.151
VO_{2R} (ml·kg ⁻¹ ·min ⁻¹)	31.45 (6.17)	28.54 (5.43)	0.060	32.40 (6.82)	29.51 (6.99)	0.100
CHO (g·min ⁻¹)	2.20 (0.58)	2.01 (0.37)	0.169	2.20 (0.50)	2.27 (0.56)	0.521
FAT (g·min ⁻¹)	0.29 (0.90)	0.26 (0.14)	0.247	0.32 (0.14)	0.21 (0.14)	0.007
Efficiency (%)	26.68 (2.95)	26.05 (3.90)	0.411	26.94 (2.79)	24.62 (2.27)	0.010
VT2						
VO₂ (L·min ⁻¹)	3.49 (0.43)	3.36 (0.41)	0.135	3.63 (0.52)	3.33 (0.54)	0.002
VO_{2R} (ml·kg ⁻¹ ·min ⁻¹)	49.48 (6.83)	48.25 (6.84)	0.211	51.90 (8.17)	47.29 (7.76)	0.002
CHO (g·min ⁻¹)	5.11 (1.18)	5.42 (1.37)	0.349	5.53 (1.45)	5.25 (1.13)	0.369
FAT (g·min ⁻¹)	0.04 (0.08)	0.04 (0.09)	1.000	0.02 (0.06)	0.01 (0.03)	0.334
Efficiency (%)	20.58 (3.09)	19.65 (3.37)	0.272	20.15 (2.25)	20.20 (4.30)	0.965

Values are mean (SE). VO₂ = volume of oxygen uptake; VO_{2R} = body mass oxygen consumption; FatMax = intensity at which maximum fat oxidation is given; VT1 = ventilatory threshold 1 (aerobic); VT2 = ventilatory threshold 2 (anaerobic); CHO = carbohydrate oxidation; FAT = fat oxidation; efficiency = percentage.

332

333 3.4 Wingate test

334 **Table 4** shows the results of the parameters evaluated during the Wingate test
335 prior and after supplementation, which are also summarized in **Figure 4**.

336 In the 2S-hesperidin group, there were significant increases in absolute (4.9% =
337 35.48 W; p=0.001) and relative (4.3% = 0.44 W·kg⁻¹; p=0.004) initial power (first five
338 seconds of the test), as well as in absolute (6.1% = 49.78 W; p<0.001) and relative
339 (5.6% = 0.64 W·kg⁻¹; p=0.001) peak power. Also, there was a trend to an increased
340 power at maximum speed (4.4% = 33.99 W; p=0.051) and a descending trend in
341 time at peak power (-18.1% = -641.2 ms; p=0.052) after the supplementation with
342 2S-hesperidin. Non-significant changes were observed in time at maximum speed.

343 Placebo group showed a significant increase in absolute (6.1% = 47.18 W; p=0.016)
344 and relative peak power (5.6% = 0.64 W·kg⁻¹; p=0.014), and a significant decrease
345 in time at maximum speed (-13.2% = -929.2 ms; p=0.001). Non-significant changes
346 were observed in absolute and relative initial power, power at maximum speed
347 and time at peak power for placebo.

348 Between-group comparison only reported a trend to decrease in time at maximum
349 speed (-12.5% = -878.35 ms; p=0.059) in Placebo compared with 2S-hesperidin.

350

Table 4. Changes in performance parameters in the Wingate test.

	2S-Hesperidin			Placebo		
	Pre-intervention	Post-intervention	p-value	Pre-intervention	Post-intervention	p-value
Initial power absolute (W)	718.78 (143.05)	754.26 (143.09)	0.001*	712.50 (103.46)	742.96 (101.78)	0.084
Initial power relative (W)	10.16 (1.82)	10.59 (1.78)	0.004*	10.13 (1.38)	10.56 (1.29)	0.078
Absolute peak power (W)	810.83 (160.26)	860.61 (170.37)	>0.001*	792.04 (100.96)	840.23 (118.93)	0.016*
Relative peak power (W)	11.46 (2.04)	12.10 (2.27)	0.001*	11.29 (1.37)	11.93 (1.49)	0.014*
Power at maximum speed (W)	759.95 (156.45)	793.53 (132.23)	0.051 \triangle	746.29 (110.30)	754.34 (96.14)	0.709
Time at peak power (ms)	3541.40 (1722.52)	2900.20 (923.99)	0.052 \triangle	3193.40 (1218.48)	2816.90 (1013.54)	0.138
Time at maximum speed (ms)	7208.65 (1098.24)	7157.85 (2005.11)	0.888	7024.35 (1347.65)	6095.20 (957.33)	0.001*

Values are mean (SE). *Within-group significant changes ($p \leq 0.05$) \triangle Within-group trend to significant changes ($p=0.05-0.010$)

351

****Insert Figure 4****

352

353 **4. DISCUSSION**

354 The main objective of this study was to evaluate the effects of chronic intake of 2S-
 355 hesperidin on aerobic and anaerobic performance in amateur cyclists. For this
 356 purpose, participants were supplemented for 8-weeks with 500 mg Cardiose®, a
 357 natural extract of sweet orange (*Citrus sinensis*) which contains hesperidin in its
 358 natural 2S form (NLT 85% 2S-Hesperidin). Following the 8-week intervention, 2S-

359 hesperidin supplementation led to significant improvements in submaximal and
360 maximal intensity exercise performance in the incremental tests versus placebo.

361 There was a significant decrease in VO₂R at VT2 in placebo, but not in 2S-
362 hesperidin, in the rectangular test. In addition, a decrease in time to peak power
363 and an increase in power at maximum speed in the Wingate test were observed in
364 2S-hesperidin. Thus, Cardiose® does have a positive impact in the performance of
365 amateur cyclists.

366 The bioavailability of hesperidin is a factor that must be taken into account when
367 examining its effectiveness, since the average maximum peak blood plasma
368 concentration occurs after 5-7 hours of its ingestion and is almost eliminated post-
369 24h [35]. However, the excreted metabolites in urine has been shown to reach at
370 maximum levels at post-24 h with continued remnants after 48 h [35]. It is
371 interesting to mention that the area under the curve was more than doubled (0.5L
372 orange juice; 4.19 µmol h/l vs 1l orange juice; 9.28 µmol h/l) at 24 h when high doses
373 of hesperidin were consumed (1l orange juice = 444 mg hesperidin) [35]. This
374 indicates that high doses increase exposure to the body of 2S-hesperidin
375 metabolites than low doses (222 mg/l). The dose that the cyclists in our study
376 consumed was equivalent to more than one liter of orange juice, with the high
377 carbohydrate load that it entails. The metabolites of hesperidin that appear mainly
378 in the blood are glucuronides (87%) and sulfoglucuronides (13%) [35]. These results
379 are very similar to those found in this study.

380 Another key factor in the metabolism and absorption of 2S-hesperidin is the
381 intestinal microbiota. In particular, Amaretti et al. [36] established that the species
382 *Bifidobacterium catenulatum* and *Bifidobacterium pseudocatenulatum* had the ability to
383 hydrolyze hesperidin, because in their genome they have the gene encoding for
384 the enzyme α -L-rhamnose (limiting enzyme), which contributes to the release of
385 aglycone from certain routine-conjugated polyphenols, such as hesperidin. A
386 recent study suggests that the contradictory finding regarding the intake of
387 hesperidin in humans may be due, in part, to the interindividual variability in its
388 bioavailability, which highly depends on the α -rhamnosidase activity and the
389 composition of the gut microbiota [37]. On the other hand, hesperidin has shown
390 to have a probiotic effect by promoting the growth of some beneficial bacterial
391 species in the colon, the key role being the production of short-chain fatty acids
392 (SCFA) (*Bifidobacterium spp.*, *Lactobacillus spp.*, or *Akkermansia muciniphila*) [37].
393 SCFA are absorbed with healthy effects on the permeability of the intestinal barrier
394 and the distal organs and tissues. In addition, hesperidin has the ability to inhibit
395 the growth of harmful bacteria, such as *Escherichia coli*, *Pseudomonas aeruginosa*,
396 *Prevotella spp.*, *Porphyromonas gingivalis* and *Fusobacterium nucleatum*, among others
397 [37]. SCFA are key mediators of mitochondria energy metabolism and act as
398 ligands for free fatty acid receptors 2 and 3 (FFAR2, FFAR3) that regulate glucose
399 and fatty acid metabolism, sirtuin 1(SIRT1), which plays a role in mitochondrial
400 biogenesis via PGC-1 α deacetylation [38]. Therefore, the intake of 2S-hesperidin
401 could improve performance through a prebiotic effect modulating intestinal

402 microbiota by modulating the production of SCFA that interacts with transcription
403 factors and genes.

404 It is well known that having high $\text{VO}_{2\text{max}}$ ($74 \text{ ml}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$) is a key factor for high-
405 level mountain and road cyclists [39]. Another important factor in cyclists'
406 performance is their ability to produce high levels of power. Hawley *et al.* [40]
407 reported high correlations between maximum power output (PPO)- $\text{VO}_{2\text{max}}$ ($r=0.97$,
408 $p<0.0001$) and PPO and 20-km (TT) cycle time ($r=-0.91$, $p<0.001$) in trained cyclists.

409 Similar correlations were found between $\text{VO}_{2\text{max}}$ and FTP when testing untrained
410 recreational cyclists and moderately trained cyclists [32]. Therefore, the
411 improvement of $\text{VO}_{2\text{max}}$ and FTP would indicate an increase in performance.

412 Regarding flavonoid supplementation, a previous study reported a 5% increase in
413 absolute power output in a 10-min time trial (TT) after 4 weeks of 2S-hesperidin

414 intake (500 mg) in cyclists [12]. These findings are in line with our results where we
415 found performance improvements in eFTP and maximum power after 2S-
416 hesperidin intake, with positive correlations with the excretion of metabolites in

417 urine. Therefore, an increase in power production at high intensity is a key factor
418 in cycling performance. In fact, some authors have indicated that the main factor

419 that differentiates high-level cyclists from the rest of the cyclists is their power
420 production capacity versus their $\text{VO}_{2\text{max}}$ [41]. From our findings, an improvement
421 in FTP and peak power output after chronic intake of 2S-hesperidin would
422 improve the performance of endurance athletes for competition. Our hypothesis

423 is that chronic intake of 2S-hesperidin could help generate or maintain adaptations
424 at the mitochondrial level and of the endogenous antioxidant system in a period
425 where the volume and intensity of training is decreasing, as in the study we
426 conducted (late September-mid December). Therefore, the placebo group would
427 have decreased their performance in maximum power and FTP due to the loss of
428 adaptations achieved during the cycling post-season.

429 In addition, performance improvements have also been seen in animals following
430 chronic intake of hesperidin and hesperetin (hesperidin metabolite) [13,15,16].
431 Biesemann et al. [13] found that old mice taking hesperetin for 8 weeks (50
432 mg/kg/d) maintained performance is a test until exhaustion, but mice taking
433 placebo declined by about 100 s from baseline. This indicates an anti-aging effect,
434 supported by improved muscle fiber. Biesemann et al. [13] prior to the study
435 presented above, performed a screening of possible molecules that significantly
436 increased oxygen consumption and ATP levels in myotubes, finding that one of
437 the most potent compounds (screening of 7949 molecules) was the flavanone
438 hesperetin, increased intracellular ATP by 33% and mitochondrial spare capacity
439 by 25%. This increase in ATP at the cellular level was justified by an increase in
440 gene expression of the peroxisome proliferator-activated receptor-gamma
441 coactivator 1- α (PGC-1 α) and NRF2, also, it increased the level of proteins of PGC-
442 1 α and of complexes I, III and IV of the electron transport chain in the
443 mitochondria, in muscle cells (in vitro) [13]. In this experiment, hesperetin

444 specifically increased spare capacity which is considered an indicator of
445 mitochondrial fitness/flexibility [42,43]. In addition, hesperetin has shown
446 increased activation of AMPK in liver cells [20] and fibroblasts [19]. AMPK is a
447 sensor of cellular energy status that plays a central role in skeletal muscle
448 metabolism, regulating muscle exercise capacity, mitochondrial function and
449 contraction-stimulated glucose uptake [44].

450 Considering that PGC-1 α and AMPK are an important transcriptional masters
451 regulators of mitochondrial biogénésis (\uparrow biogenesis mitochondrial and oxidative
452 capacity) [44,45] y NRF2 which is an essential regulator in the control of cellular
453 redox homeostasis y controls glutathione synthesis (reactive oxygen species (ROS)
454 scavenging) [46]. This indicates that the prevention of performance loss in old rats
455 after intake of hesperetin is due to improved mitochondrial biogenesis and
456 endogenous antioxidant status [13]. These findings are similar to those found in
457 our study in the rectangular test, whereas there was a significant decrease in VO₂R
458 in placebo, however, was maintained in the 2S-hesperidin group, with decreased
459 in the oxidation of fats at FatMax and VT1 and in the CHO oxidation at VT1 was
460 observed in placebo. This effect could be due to the loss of oxidative capacity
461 mediated by reduced activation de PGC-1 α (\downarrow mitochondrial content) [13]. A
462 decrease in oxygen consumption values in the ventilatory thresholds and in
463 maximum exercise has been associated with a decrease in power outputs in
464 professional cyclists after 3-weeks of cycling competition [47]. These results suggest

465 that the chronic intake of 2S-hesperidin can prevent the decline in VO₂R, which is
466 related with a decrease in the ability to produce power in cyclists.

467 It should be noted that the hypothesis of improved performance after ingesting
468 2S-hesperidin in our study is based on findings discovered by in vitro and animal
469 studies. Therefore, it is necessary to carry out more mechanistic studies to
470 determine of the action of hesperidin or hesperetin in human muscle.

471 In addition, in vitro experiments with hesperetin have shown an increase in
472 GSH/GSSG due to increased GSH and decreased GSSG, since hesperetin
473 upregulates glutamate-cysteine ligase modifier subunit (Gclm9), which is the rate-
474 limiting enzyme of glutathione synthesis [13]. In this study, SOD and catalase
475 expression was not changed. However, in a rat model with pleurisy, the
476 antioxidant activity of hesperidin reduced the production of ROS in the liver and
477 increased the liver activities of CAT and SOD [48]. It should be noted that
478 scavenging activity hesperidin neutralizes reactive oxygen species, such as
479 superoxide anion, generated during conditions of oxidative stress, like intense
480 physical exercise [49].

481 Estruel-Amades et al. [16] observed that five weeks of supplementation with 2S-
482 hesperidin (200 mg/kg three days per week) prevented an increase in ROS and
483 decline in SOD and CAT activity after a test until exhaustion in the thymus and
484 spleen of mice with an intensive training plan. This study also showed an
485 improvement in performance (distance covered) of 58% after 3 weeks of

486 supplementation in a test intervention until exhaustion. Sin embargo, Recently,
487 Ruiz-Iglesias et al. [15] found that intake of 2S-hesperidin (200 mg/kg three days
488 per week) for 5 weeks improved performance and prevented exercise-induced
489 immune system alterations after testing to exhaustion in a trained rat model.
490 Citrus flavanone (hesperidin and hesperetin) has the ability to modulate cellular
491 antioxidant defenses through the Nrf2-ARE pathway, which regulates gene
492 expression of antioxidant enzymes, such as SOD, CAT, HO-1 and GPx, decreasing
493 intracellular pro-oxidants [50].

494 It is well known that ROS production during exercise may be related to decreased
495 performance, since it may cause oxidative damage to the mitochondria and muscle
496 contractile proteins and may interfere with the excitation-contraction coupling
497 process [51]. The balance between oxidant production and antioxidant removal is
498 vital to the regulation of cellular functions [52]. But if the antioxidant response is
499 insufficient or the production of ROS is chronically increased, the body will not be
500 able to restore the level of redox homeostasis by increasing ROS concentration,
501 which would lead to altered gene patterns and an inability to adapt to increased
502 oxidative stress [25]. Therefore, antioxidant substances (flavonoids → 2S-
503 hesperidin) may help neutralize free radicals and thereby prolong skeletal muscle
504 integrity and prevent a decline in performance [53]. Based on the scientific evidence
505 found between the relationship of 2S-hesperidin supplementation and the
506 improvement of endogenous antioxidant status and sports performance, there

507 does not appear to be a clear pattern of antioxidant enzyme enhancement, since
508 different effects have been found and most studies were conducted in animals or
509 *in vitro* and few in humans. However, there are indications that hesperidin intake
510 improves endogenous antioxidant status. This may be due to the type of sample
511 (animal or human, sedentary or athletic, male or female, etc.), the type and amount
512 of molecule used, differences in intestinal microbiota, pharmacodynamics and
513 pharmacokinetics, the duration of the study and the type of test used. Future
514 studies are needed to decipher what mechanisms regulate 2S-hesperidin in the
515 complicated and interconnected endogenous antioxidant system in humans. Our
516 hypothesis is that 2S-hesperidin could improve performance in amateur cyclists
517 by modulating gene components, such as AMPK and PGC-1 α , that enhance
518 energy production combined with a 2-way antioxidant effect: a direct pathway
519 where 2S-hesperidin removes ROS directly and by enhancing the expression of
520 NRF2 that controls endogenous antioxidant capacity.

521 Other factors that are important for success for endurance athletes are high power
522 levels and anaerobic capacity that are essential physiological requirements for
523 mountain cyclists [54,55]. Besides, one study has identified that anaerobic power is
524 a key performance factor for mountain cyclists [56]. Martínez *et al.* [10] observed
525 improvements in average power (2.3%) and maximum speed (3.2%) during a
526 repeated 30-s sprint test in amateur cyclists following an acute intake of 2S-
527 hesperidin. Although there are no previous studies that have evaluated the effect

528 of chronic hesperidin intake on maximum anaerobic capacity, Gelabert-Rebato *et*
529 *al.* [57] found improvements in average power (5.0%) during a Wingate test after
530 intake of polyphenols (mangiferin and luteolin). The results of these two studies
531 are in line with the results obtained in our research after performing the Wingate
532 test (high anaerobic component) with 2S-hesperidin in post-intervention, since
533 several performance markers (initial power, absolute and relative peak power,
534 power at maximum speed and time at peak power) were improved in this test.
535 Therefore, taking into account described Wingate test results, as well as previous
536 findings reported by other studies about the importance of anaerobic capacity in
537 cyclists' performance, it is evident that the chronic intake of 2S-hesperidin could
538 contribute to improving the competitions results of these athletes.

539 At the molecular level, an in vitro study has demonstrated a great inhibitory effect
540 of the enzyme xanthine oxidase (XO) (81.3%) with the exposure of 200 μ M of
541 hesperitin, showing a dose-dependent inhibition of xanthine oxidase with an IC₅₀
542 value of 16.48 μ M comparable to that 2.07 μ M of the positive control allopurinol
543 (a drug clinically prescribed for gout treatment). Xanthine oxidoreductase has the
544 ability to reduce molecular oxygen to superoxide, but at low oxygen and pH
545 stresses, as seen during prolonged sprints [58,59], repeated sprints [60], and post-
546 exercise ischemia [61]. Therefore, a possible decrease in ROS production under
547 high anaerobic conditions (Wingate test = sprint 30s) by XO inhibition through the
548 action of hesperitin could decrease muscle damage and function, avoiding a loss

549 in performance. This mechanism would work in parallel with the direct
550 neutralizing action of ROS by hesperidin and the improvement of the endogenous
551 antioxidant system by the activation of NRF2 [13,49,50].

552 On the other hand, it is known that performance is not limited by the delivery of
553 oxygen to the muscles during a single sprint exercise under normal conditions at
554 sea level [62]. The most probable explanation for why 2S-hesperidin
555 supplementation may have improved performance is the enhancement of
556 mitochondrial bioenergy, which could be negatively affected by high levels of ROS
557 produced [13] during repeated sprint exercise [63].

558 In addition, several authors have described a stimulating effect of nitric oxide
559 production after hesperidin supplementation. Rizza *et al.* [23] observed an increase
560 in endothelial activity NO synthase to produce NO after exposure of bovine aortic
561 endothelial cells to hesperetin, which promoted an increase in flow-mediated
562 dilation in individuals with metabolic syndrome. In addition, Liu *et al.* [64] showed
563 an increase in gene expression of endothelium nitric oxide synthase improving NO
564 synthesis by exposure to hesperetin in endothelial cells. NO can relax human
565 vascular cells (vasodilatación) [65], which leads to improved blood flow during rest
566 and exercise [66]. Vasodilation is a physiological mechanism used not only for the
567 supply of oxygenated blood, but also for the delivery of glucose, lipids and other
568 nutrients to a variety of tissues [67]. Theoretically, increased blood flow would
569 increase the delivery of O₂ and nutrients (e.g. amino acids and glucose) to

570 exercising skeletal muscle, thus aiding exercise performance during high intensity
571 (conditions of hypoxia) [68].

572 At the metabolic-molecular level, we hypothesize that improvements in
573 performance at the submaximal and maximal levels after 2S-hesperidin
574 supplementation may be related with 2S-hesperidin ability to activate key
575 metabolic factors, such as AMPK [23] and NRF2 [50]. In general, an increase in PGC-
576 1 α activity, via an increase in activation of the intracellular signaling pathways
577 AMPK [69], promotes the activation of NRF2 [70], modifying the transcription of
578 key genes involved in mitochondrial biogenesis, antioxidant status and
579 metabolism. Modifications in these transcription factors have shown performance
580 improvements in endurance athletes [21]. Therefore, 2S-hesperidin has the ability
581 to promote muscle-level adaptations of endurance athletes, which could improve
582 their performance in competitions. In contrast, the improvement in the Wingate
583 test could be due to an improvement in the synthesis of NO and the endogenous
584 antioxidant state and the direct action of 2S-hesperidin by neutralizing ROS. One
585 limitation of our study is the lack of having muscle biopsies to examine the
586 possible mechanisms that could explain these improvements due to financial
587 restrictions. They could have provided valuable.

588

589 **PRACTICAL APPLICATIONS**

590 The data found in this research shows how chronic intake of 2S-hesperidin
591 enhances performance in FTP and maximum power. Advances in these areas of
592 intensity are crucial for improving results in cycling competitions. Furthermore,
593 as observed in the rectangular test, 2S-hesperidin has the ability to maintain
594 oxygen consumption and fatty acid oxidation levels in VT2, in periods with a
595 decrease in training exercise volume and intensity (i.e., this study was conducted
596 in the off-season). It also showed a positive effect on high-intensity 5s exercise,
597 which could help improve performance in short duration sports where strength-
598 power involvement is high. Given the effects reported by 2S-hesperidin, sports
599 nutritionists would have other ergogenic aids available to improve the
600 performance of their athletes. In this period, cyclists had decreased the volume
601 and intensity of training with respect to other periods of the year. This is an
602 important aspect to consider when comparing our results with other studies, as
603 the outcomes could be different due to the volume and intensity of usual training
604 during the testing time period.

605

606

607 5. CONCLUSIONS

608 Supplementation with 2S-hesperidin (Cardiose®) during eight weeks promotes
609 improvement in estimated FTP and maximum power in amateur cyclists during
610 an incremental test. Furthermore, the supplementation with 2S-hesperidin may

611 prevent a possible power loss in VT2 (rectangular test) in training periods with
612 less volume and load. These findings support the use of 2S-hesperidin as a natural
613 new ergogenic aid, which can help cyclists improve both their anaerobic and
614 aerobic performance.

615

616 **Acknowledgements**

617 This study was supported by the Research Center for High Performance Sport of
618 the Catholic University of Murcia and HTBA (Murcia, Spain). We would like to
619 acknowledge Linda H. Chung for her help in this project.

620 We also thank Iris Samarra, Antoni del Pino and Nuria Canela, from the
621 Metabolomics facility of the Centre for Omic Sciences (COS) Joint Unit of the
622 Universitat Rovira i Virgili-Eurecat, for their contribution to the urine analysis.

623 The results of the current study do not constitute endorsement of the product by
624 the authors or the journal.

625

626 **Authors' contributions**

627 Conceptualization, F.J.M.N., C.M.-P. and P.E.A.; methodology, F.J.M.N., C.M.P.
628 and

629 P.E.A.; formal analysis, F.J.M.N., C.M.P. and J.C.V.; investigation, F.J.M.N., C.M.P.
630 and J.C.V.; resources, F.J.M.N., C.M.P. and J.C.V.; data curation, F.J.M.N., C.M.P.
631 and J.C.V.; writing—original draft preparation, F.J.M.N.; writing—review and
632 editing, F.J.M.N., C.M.P. and J.C.V.; visualization, C.M.P.; supervision, C.M.P. and
633 P.E.A.; project administration, C.M.P. and P.E.A.; funding acquisition, P.E.A. All
634 authors read and approved the final manuscript.

635

636 **Funding**

637 The authors declare that this study has been financed by HTBA (Murcia, Spain),
638 who kindly provided the product Cardiose®, but they did not participate in the
639 experimental design, data collection, data analysis, interpretation of the data,
640 writing of the manuscript, or in the decision to publish the results.

641 **Conflicts of Interest**

642 The authors declare no conflict of interest.

643

644

645 REFERENCES

646 1. Tomás-Barberán, F.A.; Clifford, M.N. Flavanones, chalcones and
647 dihydrochalcones—nature, occurrence and dietary burden. *J. Sci Food Agric.* **2000**,
648 *80*, 1073-1080.

649 2. Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.;
650 Knox, C.; Eisner, R.; Cruz, J.; Wishart, D., et al. Phenol-Explorer: an online
651 comprehensive database on polyphenol contents in foods. *Database* **2010**, *2010*,
652 bap024, doi:10.1093/database/bap024.

653 3. Yanez, J.A.; Andrews, P.K.; Davies, N.M. Methods of analysis and separation of
654 chiral flavonoids. *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.* **2007**, *848*, 159-
655 181.

656 4. Aturki, Z.; Brandi, V.; Sinibaldi, M. Separation of Flavanone-7-O-glycoside
657 Diastereomers and Analysis in Citrus Juices by Multidimensional Liquid
658 Chromatography Coupled with Mass Spectrometry. *J. Agric Food Chem.* **2004**, *52*,
659 5303-5308, doi:10.1021/jf0400967.

660 5. Brand, W.; Shao, J.; Hoek-van den Hil, E.F.; van Elk, K.N.; Spenkelink, B.; de
661 Haan, L.H.J.; Rein, M.J.; Dionisi, F.; Williamson, G.; van Bladeren, P.J., et al.
662 Stereoselective Conjugation, Transport and Bioactivity of S- and R-Hesperetin
663 Enantiomers in Vitro. *J. Agric. Food Chem.* **2010**, *58*, 6119-6125,
664 doi:10.1021/jf1008617.

665 6. Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and
666 anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin:
667 an updated review of their molecular mechanisms and experimental models.
668 *Phytother Res* **2015**, *29*, 323-331, doi:10.1002/ptr.5256.

669 7. Li, R.; Li, J.; Cai, L.; Hu, C.M.; Zhang, L. Suppression of adjuvant arthritis by
670 hesperidin in rats and its mechanisms. *J Pharm Pharmacol* **2008**, *60*, 221-228,
671 doi:10.1211/jpp.60.2.0011.

672 8. Jain, M.; Parmar, H.S. Evaluation of antioxidative and anti-inflammatory
673 potential of hesperidin and naringin on the rat air pouch model of inflammation.
674 *Inflamm Res.* **2011**, *60*, 483-491.

675 9. Ramelet, A.A. Clinical benefits of Daflon 500 mg in the most severe stages of
676 chronic venous insufficiency. *Angiology* **2001**, *52*, S49-S56.

677 10. Martinez-Noguera, F.J.; Marin-Pagan, C.; Carlos-Vivas, J.; Rubio-Arias, J.A.;
678 Alcaraz, P.E. Acute Effects of Hesperidin in Oxidant/Antioxidant State Markers
679 and Performance in Amateur Cyclists. *Nutrients* **2019**, *11*,
680 doi:10.3390/nu11081898.

681 11. Pittaluga, M.; Sgadari, A.; Tavazzi, B.; Fantini, C.; Sabatini, S.; Ceci, R.; Amorini,
682 A.M.; Parisi, P.; Caporossi, D. Exercise-induced oxidative stress in elderly
683 subjects: the effect of red orange supplementation on the biochemical and cellular
684 response to a single bout of intense physical activity. *Free Radic Res* **2013**, *47*, 202-
685 211, doi:10.3109/10715762.2012.761696.

686 12. Overdevest, E.; Wouters, J.A.; Wolfs, K.H.M.; van Leeuwen, J.J.M.; Possemiers, S.
687 Citrus Flavonoid Supplementation Improves Exercise Performance in Trained
688 Athletes. *J Sports Sci Med.* **2018**, *17*, 24-30.

689 13. Biesemann, N.; Ried, J.S.; Ding-Pfennigdorff, D.; Dietrich, A.; Rudolph, C.; Hahn,
690 S.; Hennerici, W.; Asbrand, C.; Leeuw, T.; Strübing, C. High throughput

691 screening of mitochondrial bioenergetics in human differentiated myotubes
692 identifies novel enhancers of muscle performance in aged mice. *Sci Rep.* **2018**, *8*,
693 9408-9408, doi:10.1038/s41598-018-27614-8.

694 14. de Oliveira, D.M.; Dourado, G.K.; Cesar, T.B. Hesperidin associated with
695 continuous and interval swimming improved biochemical and oxidative
696 biomarkers in rats. *J Int Soc Sports Nutr* **2013**, *10*, 27, doi:10.1186/1550-2783-10-27.

697 15. Ruiz-Iglesias, P.; Estruel-Amades, S.; Camps-Bossacoma, M.; Massot-Cladera, M.;
698 Franch, A.; Perez-Cano, F.J.; Castell, M. Influence of Hesperidin on Systemic
699 Immunity of Rats Following an Intensive Training and Exhausting Exercise.
700 *Nutrients* **2020**, *12*, doi:10.3390/nu12051291.

701 16. Estruel-Amades, S.; Massot-Cladera, M.; Garcia-Cerdà, P.; Pérez-Cano, F.J.;
702 Franch, À.; Castell, M.; Camps-Bossacoma, M. Protective Effect of Hesperidin on
703 the Oxidative Stress Induced by an Exhausting Exercise in Intensively Trained
704 Rats. *Nutrients* **2019**, *11*, 783, doi:10.3390/nu11040783.

705 17. Askari, G.; Ghiasvand, R.; Paknahad, Z.; Karimian, J.; Rabiee, K.; Sharifirad, G.;
706 Feizi, A. The effects of quercetin supplementation on body composition, exercise
707 performance and muscle damage indices in athletes. *Int J Prev Med* **2013**, *4*, 21-26.

708 18. Decroix, L.; Soares, D.D.; Meeusen, R.; Heyman, E.; Tonoli, C. Cocoa Flavanol
709 Supplementation and Exercise: A Systematic Review. *Sports Med* **2018**, *48*, 867-
710 892, doi:10.1007/s40279-017-0849-1.

711 19. Wu, H.; Liu, Y.; Chen, X.; Zhu, D.; Ma, J.; Yan, Y.; Si, M.; Li, X.; Sun, C.; Yang, B.,
712 et al. Neohesperidin Exerts Lipid-Regulating Effects in vitro and in vivo via
713 Fibroblast Growth Factor 21 and AMP-Activated Protein Kinase/Sirtuin Type
714 1/Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 α Signaling
715 Axis. *Pharmacology* **2017**, *100*, 115-126, doi:10.1159/000452492.

716 20. Shokri Afra, H.; Zangooei, M.; Meshkani, R.; Ghahremani, M.H.; Ilbeigi, D.;
717 Khedri, A.; Shahmohamadnejad, S.; Khaghani, S.; Nourbakhsh, M. Hesperetin is
718 a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2
719 cells. *J Physiol Biochem* **2019**, *75*, 125-133, doi:10.1007/s13105-019-00678-4.

720 21. Eynon, N.; Alves, A.J.; Sagiv, M.; Yamin, C.; Sagiv, M.; Meckel, Y. Interaction
721 between SNPs in the NRF2 gene and elite endurance performance. *Physiol
722 Genomics* **2010**, *41*, 78-81, doi:10.1152/physiolgenomics.00199.2009.

723 22. Lamprecht, M. Antioxidants in Sport Nutrition. © 2015 by Taylor & Francis
724 Group. LLC: 2015.

725 23. Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.-a.; Chen, H.; Pullikotil, P.; Senese,
726 N.; Tesauro, M.; Lauro, D.; Cardillo, C., et al. Citrus Polyphenol Hesperidin
727 Stimulates Production of Nitric Oxide in Endothelial Cells while Improving
728 Endothelial Function and Reducing Inflammatory Markers in Patients with
729 Metabolic Syndrome. *J Clin Endocrinol Metab* **2011**, *96*, E782-E792,
730 doi:10.1210/jc.2010-2879.

731 24. Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary Nitrate and
732 Physical Performance. *Annu. Rev. Nutr.* **2018**, *38*, 303-328, doi:10.1146/annurev-
733 nutr-082117-051622.

734 25. Bentley, D.J.; Ackerman, J.; Clifford, T.; Slattery, K.S. Acute and chronic effects of
735 antioxidant supplementation on exercise performance. *Antioxidants in sport
736 nutrition* **2014**, *141*.

737 26. Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett,
738 N.T.; Austin, M.D.; Henson, D.A. Quercetin's influence on exercise performance
739 and muscle mitochondrial biogenesis. *Med Sci Sports Exerc* **2010**, *42*, 338-345,
740 doi:10.1249/MSS.0b013e3181b18fa3.

741 27. World Medical Association Declaration of Helsinki: ethical principles for medical
742 research involving human subjects. *JAMA* **2013**, *310*, 2191-2194,
743 doi:10.1001/jama.2013.281053.

744 28. Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.;
745 Schmid, J.P. Methodological approach to the first and second lactate threshold in
746 incremental cardiopulmonary exercise testing. *Eur J Cardiovasc Prev Rehabil* **2008**,
747 *15*, 726-734, doi:10.1097/HJR.0b013e328304fed4.

748 29. Davis, J.A. Anaerobic threshold: review of the concept and directions for future
749 research. *Med Sci Sports Exerc* **1985**, *17*, 6-21.

750 30. Wasserman, K.; Beaver, W.L.; Whipp, B.J. Gas exchange theory and the lactic
751 acidosis (anaerobic) threshold. *Circulation* **1990**, *81*, Ii14-30.

752 31. Gavin, T.P.; Van Meter, J.B.; Brophy, P.M.; Dubis, G.S.; Potts, K.N.; Hickner, R.C.
753 Comparison of a Field-Based Test to Estimate Functional Threshold Power and
754 Power Output at Lactate Threshold. *J Strength Cond Res* **2012**, *26*, 416-421,
755 doi:10.1519/JSC.0b013e318220b4eb.

756 32. Denham, J.; Scott-Hamilton, J.; Hagstrom, A.D.; Gray, A.J. Cycling Power
757 Outputs Predict Functional Threshold Power And Maximum Oxygen Uptake. *J*
758 *Strength Cond Res* **2017**, 10.1519/jsc.0000000000002253,
759 doi:10.1519/jsc.0000000000002253.

760 33. Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability
761 and validity. *Sports Med* **1987**, *4*, 381-394, doi:10.2165/00007256-198704060-00001.

762 34. Tomas-Navarro, M.; Vallejo, F.; Sentandreu, E.; Navarro, J.L.; Tomas-Barberan,
763 F.A. Volunteer stratification is more relevant than technological treatment in
764 orange juice flavanone bioavailability. *Journal of agricultural and food chemistry*
765 **2014**, *62*, 24-27, doi:10.1021/jf4048989.

766 35. Manach, C.; Morand, C.; Gil-Izquierdo, A.; Bouteloup-Demange, C.; Rémesy, C.
767 Bioavailability in humans of the flavanones hesperidin and narirutin after the
768 ingestion of two doses of orange juice. *Eur J Clin Nutr* **2003**, *57*, 235-242,
769 doi:10.1038/sj.ejcn.1601547.

770 36. Amaretti, A.; Raimondi, S.; Leonardi, A.; Quartieri, A.; Rossi, M. Hydrolysis of
771 the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota
772 and bifidobacteria. *Nutrients* **2015**, *7*, 2788-2800, doi:10.3390/nu7042788.

773 37. Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.;
774 Escoté, X.; Crescenti, A. Effect of Hesperidin on Cardiovascular Disease Risk
775 Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. In
776 *Nutrients*., 2020; Vol. 12.

777 38. Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria
778 during Exercise. *Front Physiol* **2017**, *8*, 319, doi:10.3389/fphys.2017.00319.

779 39. Lee, H.; Martin, D.T.; Anson, J.M.; Grundy, D.; Hahn, A.G. Physiological
780 characteristics of successful mountain bikers and professional road cyclists. *J*
781 *Sports Sci* **2002**, *20*, 1001-1008.

782 40. Hawley, J.A.; Noakes, T.D. Peak power output predicts maximal oxygen uptake
783 and performance time in trained cyclists. *Eur J Appl Physiol Occup Physiol* **1992**,
784 65, 79-83, doi:10.1007/bf01466278.

785 41. Coyle, E.F.; Feltner, M.E.; Kautz, S.A.; Hamilton, M.T.; Montain, S.J.; Baylor,
786 A.M.; Abraham, L.D.; Petrek, G.W. Physiological and biomechanical factors
787 associated with elite endurance cycling performance. *Med Sci Sports Exerc* **1991**,
788 23, 93-107.

789 42. Desler, C.; Hansen, T.L.; Frederiksen, J.B.; Marcker, M.L.; Singh, K.K.; Juel
790 Rasmussen, L. Is There a Link between Mitochondrial Reserve Respiratory
791 Capacity and Aging? *J Aging Res* **2012**, 2012, 192503, doi:10.1155/2012/192503.

792 43. Hill, B.G.; Dranka, B.P.; Zou, L.; Chatham, J.C.; Darley-Usmar, V.M. Importance
793 of the bioenergetic reserve capacity in response to cardiomyocyte stress induced
794 by 4-hydroxynonenal. *Biochem J* **2009**, 424, 99-107, doi:10.1042/bj20090934.

795 44. Lantier, L.; Fentz, J.; Mounier, R.; Leclerc, J.; Treebak, J.T.; Pehmøller, C.; Sanz,
796 N.; Sakakibara, I.; Saint-Amand, E.; Rimbaud, S., et al. AMPK controls exercise
797 endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. *The
798 FASEB Journal* **2014**, 28, 3211-3224, doi:10.1096/fj.14-250449.

799 45. Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.;
800 Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C., et al. Mechanisms controlling
801 mitochondrial biogenesis and respiration through the thermogenic coactivator
802 PGC-1. *Cell* **1999**, 98, 115-124, doi:10.1016/s0092-8674(00)80611-x.

803 46. Dinkova-Kostova, A.T.; Abramov, A.Y. The emerging role of Nrf2 in
804 mitochondrial function. *Free Radic Biol Med* **2015**, 88, 179-188,
805 doi:10.1016/j.freeradbiomed.2015.04.036.

806 47. Rodriguez-Marroyo, J.A.; Villa, J.G.; Pernia, R.; Foster, C. Decrement in
807 Professional Cyclists' Performance After a Grand Tour. *Int J Sports Physiol Perform*
808 **2017**, 12, 1348-1355, doi:10.1123/ijsp.2016-0294.

809 48. Adefegha, S.A.; Rosa Leal, D.B.; Olabiyi, A.A.; Oboh, G.; Castilhos, L.G.
810 Hesperidin attenuates inflammation and oxidative damage in pleural exudates
811 and liver of rat model of pleurisy. *Redox Rep* **2017**, 22, 563-571,
812 doi:10.1080/13510002.2017.1344013.

813 49. Hirata, A.; Murakami, Y.; Shoji, M.; Kadoma, Y.; Fujisawa, S. Kinetics of radical-
814 scavenging activity of hesperetin and hesperidin and their inhibitory activity on
815 COX-2 expression. *Anticancer Res* **2005**, 25, 3367-3374.

816 50. Elavarasan, J.; Velusamy, P.; Ganeshan, T.; Ramakrishnan, S.K.; Rajasekaran, D.;
817 Periandavan, K. Hesperidin-mediated expression of Nrf2 and upregulation of
818 antioxidant status in senescent rat heart. *J Pharm Pharmacol* **2012**, 64, 1472-1482,
819 doi:10.1111/j.2042-7158.2012.01512.x.

820 51. Peternelj, T.T.; Coombes, J.S. Antioxidant supplementation during exercise
821 training: beneficial or detrimental? *Sports Med* **2011**, 41, 1043-1069,
822 doi:10.2165/11594400-00000000-00000.

823 52. Banerjee, A.K.; Mandal, A.; Chanda, D.; Chakraborti, S. Oxidant, antioxidant and
824 physical exercise. *Mol Cell Biochem* **2003**, 253, 307-312,
825 doi:10.1023/a:1026032404105.

826 53. Oh, J.K.; Shin, Y.O.; Yoon, J.H.; Kim, S.H.; Shin, H.C.; Hwang, H.J. Effect of
827 supplementation with Ecklonia cava polyphenol on endurance performance of

828 college students. *Int J Sport Nutr Exerc Metab* **2010**, *20*, 72-79,
829 doi:10.1123/ijsnem.20.1.72.

830 54. Baron, R. Aerobic and anaerobic power characteristics of off-road cyclists. *Med
831 Sci Sports Exerc* **2001**, *33*, 1387-1393, doi:10.1097/00005768-200108000-00022.

832 55. Impellizzeri, F.M.; Marcora, S.M. The physiology of mountain biking. *Sports Med*
833 **2007**, *37*, 59-71, doi:10.2165/00007256-200737010-00005.

834 56. Inoue, A.; Sa Filho, A.S.; Mello, F.C.; Santos, T.M. Relationship between
835 anaerobic cycling tests and mountain bike cross-country performance. *J Strength
836 Cond Res* **2012**, *26*, 1589-1593, doi:10.1519/JSC.0b013e318234eb89.

837 57. Gelabert-Rebato, M.; Wiebe, J.C.; Martin-Rincon, M.; Galvan-Alvarez, V.;
838 Curtelin, D.; Perez-Valera, M.; Habib, J.J.; Pérez-López, A.; Vega, T.; Morales-
839 Alamo, D., et al. Enhancement of Exercise Performance by 48 Hours, and 15-Day
840 Supplementation with Mangiferin and Luteolin in Men. *Nutrients* **2019**, *11*, 344,
841 doi:10.3390/nu11020344.

842 58. Curtelin, D.; Morales-Alamo, D.; Torres-Peralta, R.; Rasmussen, P.; Martin-
843 Rincon, M.; Perez-Valera, M.; Siebenmann, C.; Pérez-Suárez, I.; Cherouveim, E.;
844 Sheel, A.W., et al. Cerebral blood flow, frontal lobe oxygenation and intra-arterial
845 blood pressure during sprint exercise in normoxia and severe acute hypoxia in
846 humans. *J Cereb Blood Flow Metab* **2018**, *38*, 136-150,
847 doi:10.1177/0271678x17691986.

848 59. Morales-Alamo, D.; Ponce-González, J.G.; Guadalupe-Grau, A.; Rodríguez-
849 García, L.; Santana, A.; Cusso, M.R.; Guerrero, M.; Guerra, B.; Dorado, C.; Calbet,
850 J.A. Increased oxidative stress and anaerobic energy release, but blunted Thr172-
851 AMPK α phosphorylation, in response to sprint exercise in severe acute hypoxia
852 in humans. *J Appl Physiol (1985)* **2012**, *113*, 917-928,
853 doi:10.1152/japplphysiol.00415.2012.

854 60. Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K. Contribution of
855 phosphocreatine and aerobic metabolism to energy supply during repeated
856 sprint exercise. *J Appl Physiol (1985)* **1996**, *80*, 876-884,
857 doi:10.1152/jappl.1996.80.3.876.

858 61. Morales-Alamo, D.; Losa-Reyna, J.; Torres-Peralta, R.; Martin-Rincon, M.; Perez-
859 Valera, M.; Curtelin, D.; Ponce-González, J.G.; Santana, A.; Calbet, J.A. What
860 limits performance during whole-body incremental exercise to exhaustion in
861 humans? *J Physiol* **2015**, *593*, 4631-4648, doi:10.1113/jp270487.

862 62. Calbet, J.A.; Losa-Reyna, J.; Torres-Peralta, R.; Rasmussen, P.; Ponce-González,
863 J.G.; Sheel, A.W.; de la Calle-Herrero, J.; Guadalupe-Grau, A.; Morales-Alamo,
864 D.; Fuentes, T., et al. Limitations to oxygen transport and utilization during
865 sprint exercise in humans: evidence for a functional reserve in muscle O₂
866 diffusing capacity. *J Physiol* **2015**, *593*, 4649-4664, doi:10.1113/jp270408.

867 63. Morales-Alamo, D.; Calbet, J.A. Free radicals and sprint exercise in humans. *Free
868 Radic Res* **2014**, *48*, 30-42, doi:10.3109/10715762.2013.825043.

869 64. Liu, L.; Xu, D.M.; Cheng, Y.Y. Distinct effects of naringenin and hesperetin on
870 nitric oxide production from endothelial cells. *J Agric Food Chem* **2008**, *56*, 824-829,
871 doi:10.1021/jf0723007.

872 65. Bryan, N.S.; Loscalzo, J. *Nitrite and nitrate in human health and disease*; Springer:
873 2011.

874 66. Hickner, R.C.; Fisher, J.S.; Ehsani, A.A.; Kohrt, W.M. Role of nitric oxide in
875 skeletal muscle blood flow at rest and during dynamic exercise in humans. *Am J*
876 *Physiol* **1997**, *273*, H405-410, doi:10.1152/ajpheart.1997.273.1.H405.
877 67. Clements, W.T.; Lee, S.R.; Bloomer, R.J. Nitrate ingestion: a review of the health
878 and physical performance effects. *Nutrients* **2014**, *6*, 5224-5264,
879 doi:10.3390/nu6115224.
880 68. Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson,
881 D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces
882 the O₂ cost of low-intensity exercise and enhances tolerance to high-intensity
883 exercise in humans. *J Appl Physiol* (1985) **2009**, *107*, 1144-1155,
884 doi:10.1152/japplphysiol.00722.2009.
885 69. Hood, D.A. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal
886 muscle. *Appl Physiol Nutr Metab* **2009**, *34*, 465-472, doi:10.1139/h09-045.
887 70. Akimoto, T.; Pohnert, S.C.; Li, P.; Zhang, M.; Gumbs, C.; Rosenberg, P.B.;
888 Williams, R.S.; Yan, Z. Exercise stimulates Pgc-1alpha transcription in skeletal
889 muscle through activation of the p38 MAPK pathway. *J Biol Chem* **2005**, *280*,
890 19587-19593, doi:10.1074/jbc.M408862200.
891 71. Li, D.; Mitsuhashi, S.; Ubukata, M. Protective effects of hesperidin derivatives
892 and their stereoisomers against advanced glycation end-products formation.
893 *Pharm Biol.* **2012**, *50*, 1531-1535, doi:10.3109/13880209.2012.694106.
894

895 FIGURES

896 **Figure 1.** Structure of hesperidin enantiomers S and R and their metabolites
897 hesperetin, produced by the intestinal microbiota. Modified from Li et al [71].

898

899 **Figure 2.** Study planning with explanation of the different visits (V 1-7).

900

901 **Figure 3.** Changes in ventilatory 1 (VT1) power, ventilatory threshold 2 (VT2)
 902 power, estimated functional threshold power (FTP) and maximum power during
 903 the maximal test. Values are mean \pm SE *Within-group significant changes ($p\leq 0.05$).
 904 #Between group significant changes ($p\leq 0.05$).

905

906 **Figure 4.** Changes in parameters evaluated during the Wingate test prior and after
 907 supplementation. Values are mean \pm SE *Within-group significant changes ($p\leq 0.05$).
 908 α Within-group trend to significant changes ($p=0.05-0.010$). \S Between group trend
 909 to significant changes ($p=0.05-0.010$).

910

911