

1 *Type of the Paper (Article)*

2 **Meeting SDG6 in the Kingdom of Tonga: The 3 Mismatch between National and Local Sustainable 4 Development Planning for Water Supply**

5 **Ian White^{1*}, Tony Falkland² and Taaniela Kula³,**

6 ¹ Fenner School of Environment and Society, Australian National University, Canberra, ACT, 0200, Australia;
7 ian.white@anu.edu.au

8 ² Island Hydrology Services, 9 Tivey Place, Hughes, Canberra, ACT, 2605, Australia;
9 tony.falkland@netspeed.com.au

10 ³ Natural Resources Division, Ministry of Lands and Natural Resources, Nuku'alofa, Kingdom of Tonga
11 tkula@naturalresources.gov.to

12 * ian.white@anu.edu.au; Tel.: +61 418 262 881

13 **Abstract:** UN 2030 Sustainable Development Goal 6 presents difficulties for small island developing
14 states such as the Kingdom of Tonga, which relies on rainwater and groundwater lenses for
15 freshwater supply. Planning and managing water resources to supply demands in dispersed small
16 islands under variable climate and frequent extreme events is challenging. Tensions between water
17 planning using top-down versus bottom-up processes have long been recognized. Tonga's
18 overarching national planning instrument is the Tonga Strategic Development Framework, 2015-
19 2025 (TSDFII). This identifies desired national outcomes and is used to direct and resource
20 Ministries and address international and regional commitments. Water supply was a low priority
21 in the three-month consultations that led to TSDFII. Community Development Plans (CDPs),
22 developed by rural villages throughout Tonga's five Island Divisions over nine years, involved
23 participation from 80% of each village population who ranked local priorities. Analysis of priorities
24 in 117 available village CDPs reveals improvements to village water supply was the highest overall
25 priority in all five Island Divisions and ranked within the top three priorities by 76% of all villages,
26 with women, youth and men returning figures of 83%, 66% and 80% respectively. The mismatch
27 between top-down and bottom-up priorities appears to result from an urban/rural divide.

28 **Keywords:** groundwater; rainwater harvesting; climate variability; small island developing states;
29 water planning; community participation.

30

31 **1. Introduction**

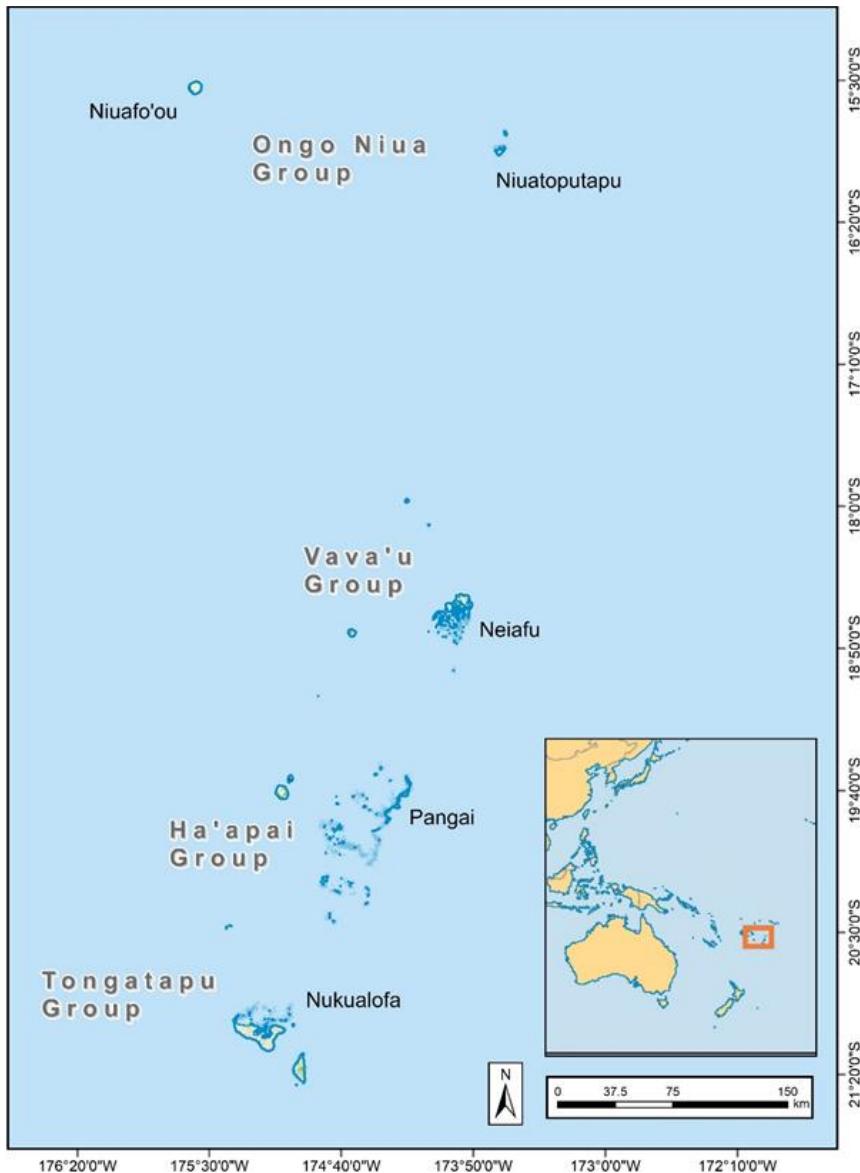
32 The United Nations (UN) 2030 Sustainable Development Goal (2030) for water and sanitation,
33 "Ensure availability and sustainable management of water and sanitation for all" (SDG 6 [1]) presents
34 significant challenges for small island development states (SIDS). Limited resources and institutions,
35 dispersed island communities, increasing demands, scarce fresh groundwater sources vulnerable to
36 salinization and pollution, variable and changing climates driven by large-scale ocean-atmosphere
37 interactions and frequent, devastating, extreme events such as tropical cyclones, droughts and floods
38 compound the difficulties of ensuring that communities have access to adequate and safe freshwater
39 supplies [2,3], fundamental for sustainable development.

40 National strategic development strategies (NSDS) for SIDS have been promoted as a key
41 mechanism for fulfilling government commitments to local, regional and international agendas on
42 sustainable development [4], particularly the 2005 Mauritius Strategy for the Further Implementation
43 of the Programme of Action for the Sustainable Development of SIDS [5] and the 2014 SIDS
44 Accelerated Modalities of Action (SAMOA) Pathway resolution [6]. They are also used
45 predominately by governments to identify national priorities, to allocate resources to government

46 agencies and to monitor outcomes. Initially, creating an NSDS involved a two-phase approach with
47 national assessments in phase one followed by selected interventions in phase two [4]. Inexperience,
48 limited resources and institutions in some SIDS meant that donor and funding agency-supported
49 external consultants played central roles in driving early NSDS processes assisted by senior national
50 bureaucrats. These externally originated processes tend to be top-down prescriptions with the
51 planning priorities and expected outcomes predominantly economically focused [7]. While NSDS
52 have evolved through several iterations and are now more locally driven, they still tend to favor
53 externally motivated processes.

54 One of the key characteristics of SIDS, and particularly those with dispersed island communities,
55 is their well-developed local institutions particularly suited to bottom-up priority-setting processes
56 [8]. A draw-back of bottom-up processes is the time involved to reach agreement or consensus [9].
57 The South Pacific Kingdom of Tonga, reliant predominantly on fresh groundwater lenses and
58 rainwater harvesting for water supply, presents a unique opportunity to compare priorities in water
59 supply identified by both top-down and bottom up planning processes.

60 Tonga government with support from the Asian Development Bank developed the Tonga
61 Strategic Development Framework 2015-2015 (TSDFII) through a high-level consultation process
62 over three months in 2014 [10]. TSDFII incorporated lessons learnt in the preceding Tonga Strategic
63 Development Framework 2011-2014. TSDF II identifies 29 highest priority issues as key planned
64 organizational outcomes (OOs) for Ministries, Departments and agencies while 153 more specific
65 objectives are listed as strategic concepts (SCs) under the OOs.


66 From 2007 to 2016, a very extensive, nation-wide Community Development Plan (CDP) process
67 involved most rural villages throughout Tonga's five Island Divisions. Communities identified and
68 ranked priority development issues in their village and then built and endorsed their CDP. The plans
69 prioritized the most urgent issues in each village in terms of women's, youth's and men's
70 perspectives with 136 CDPs out of 151 rural villages were presented in 2016 [11].

71 In this work we give an overview of the demographics, water sources, water use, groundwater
72 and rainfall characteristics of the Kingdom of Tonga, to provide background to the planning
73 processes. We then examine the priority given to water supply in the OOs and the SCs of TSDFII. The
74 first analysis of water supply priorities in the 117 available CDPs is then presented. These are
75 analyzed in terms of women's, youth's and men's priorities as well as Island Division priorities.
76 Island Division priorities are related to predominant water sources, groundwater salinity, annual
77 rainfall and its variability. The bottom-up CDP priorities in water supply are contrasted with the OOs
78 and SCs of the top-down TSDFII. The large discrepancy between national and local priorities in water
79 are discussed and suggestions for linking processes are made.

80 2. Materials and Methods

81 2.1. Study Location

82 The population of the Kingdom of Tonga is dispersed over 169 islands in five Island Divisions
83 covering a land area of about 750 km² scattered across 700,000 km² of the southwestern Pacific Ocean
84 (Figure 1). The Kingdom adjoins the seismically very-active Tonga trench. Tonga's western islands
85 are of volcanic origin while the eastern islands are uplifted coral limestone and sand islands. Many
86 of the eastern islands, such as Tongatapu, the largest island which contains the capital Nuku'alofa,
87 have a mantle of fertile volcanic soil from past volcanic eruptions of the western islands. Volcanic
88 eruptions, earthquakes and subsequent tsunamis, tropical cyclones (TCs), storm surges and El Niño
89 Southern Oscillation- (ENSO) and Pacific Decadal Oscillation-related droughts and floods are
90 frequent natural hazards faced by the Kingdom's island communities.

91

92 **Figure 1.** Map of the South Pacific Kingdom of Tonga, main Island Divisions and population centers [13].

93 *2.2. Demographics, Water Sources, Water Use and Water Demand*

94 We use the results of the latest Census in 2016 [12] to examine the urban/rural composition and the
95 distribution of population and their trends across Tonga's five Island Divisions (Figure 1). Census
96 results are also used to compare water sources used by households for different water uses, again
97 between urban and rural communities and across Island Divisions. Outside urban areas, there is
98 comparatively little information on water demand and unaccounted for water in Tonga. Here we
99 make use of recent estimates for urban areas [13] and limited estimates for selected villages in outer
100 islands [14-16]

101 *2.3. Climate, Rainfall, Variability and Rainwater Harvesting Failures*

102 A recent draft report on national water resources in Tonga [13] is used to extract data on average
103 annual and seasonal rainfall and their variability and trends across Tonga's Island Divisions. Trends
104 are examined using linear regression and the statistical significance of the trends is tested. Trends are
105 compared with climate model projections of the impact of climate change on rainfall in Tonga [17].

106 The frequency of failure of rainwater harvesting systems over six month wet (November to April)
107 and dry (May to October) seasons is estimated from the percentile of 360 mm of rainfall over the full
108 seasonal record for that location. That rainfall amount is equivalent to supplying the average
109 household size in Tonga with 20 L/person/day, the World Health Organization recommended
110 minimum quantity of water required to satisfy essential health and hygiene needs in emergency
111 situations [18],, from a typical roof area of 100m² with a capture efficiency of 55% [14-16].

112 *2.4. Groundwater*

113 A summary of the limited information on groundwater resources is provided from [13] and the
114 few available island integrated water management plans [14-16]. Other information is sourced from
115 reports and publications [19-25]. Estimates of per capita groundwater use in population centers are
116 based on data provided by the Tonga Water Board [26].

117 *2.4. Tonga Strategic Development Framework 2025-2015*

118 The TSDF II is: "the overarching framework of the planning system in Tonga. It provides an
119 integrated vision of the direction that Tonga seeks to pursue. ... It is a ten-year framework within
120 which government, and other organizations in the Kingdom, can plan in a more consistent and
121 integrated manner." [10]. The TSDFII notes that: "Inclusion and equality as well as sustainability have
122 for a long time been matters of importance to Tonga..." [10].

123 The Ministry of Finance and National Planning (MFNP) led the creation of TSDF II, which was
124 based on a wide, but fairly rapid consultative process. In the period October 2014 to December 2014,
125 consultation meetings were held throughout Tongatapu and the Island Divisions of 'Eua, Ha'apai
126 and Vava'u. Ongi Niua Division was not covered.

127 The TDSFII was scanned for references to water, freshwater, rainwater, groundwater and water
128 supply and the planned National Outcomes, OO's and SC's were examined for their relevance to water
129 supply.

130 *2.4. Community Development Plans, 2016*

131 Work on CDPs began in 2007, under the Local Government Division of the Ministry of Internal
132 Affairs. The CPDs were a response to the then National Vision "a Progressive Tonga Supporting
133 Higher Life for All." Consultations throughout rural villages in Tonga's five Island Divisions were
134 implemented by Mainstreaming of Rural Development Innovation Trust Tonga (MORDI TT). The
135 CDP process was supported by the International Fund for Agricultural Development (IFAD), UNDP,
136 AusAID and the Tonga Government. One of the requirements of the project was participation of 80%
137 of the population of each rural village in the development, ranking of priorities and endorsement of
138 the village CDP. This was a lengthy process which culminated in District Officers and Town Officers
139 of 136 village communities presenting their CDPs to the then Prime Minister, the late Hon. 'Akilisi
140 Pohiva on 4 October 2016 [11].

141 During the planning process the Department for Local Government was transferred from the
142 Prime Minister's Office to the Ministry of Training, Employment, Youth, and Sports, and then to the
143 Ministry of Internal Affairs. Action on the Community Development Plans appears to have been
144 deferred by these moves. We have been unable to find any analysis of the valuable information
145 contained in these CDPs.

146 Of the 136 CDPs presented 117 are available on-line [27]. These represent 77.5% of all rural
147 villages in Tonga. CDPs were downloaded and the priority rankings of each village that mentioned
148 water or water supply were examined and their ranking recorded. Particular note was made when
149 water or water supply ranked in the top three priorities for women, men and youth. Village level
150 results were aggregated to Island Division and the percentage of villages in each Island Division that
151 ranked water both highest priority and within the top three priorities was recorded. Also recorded
152 was the percentage of villages within each Island Division that did not rank water or water supply
153 as a priority.

154 **3. Results**155 **3.1. Demographics**

156 The distribution of Tonga's population across its Island Divisions in 2016 is given in Table 1 [12].
 157 Also shown are the total rural, urban and the population of the capital greater Nuku'alofa, as well as
 158 the annual growth rate between 2011 and 2016, the population density and the average household
 159 size.

160 **Table 1.** Summary of 2016 population statistics in Tonga, by Island Division, and total urban, rural and greater
 161 Nuku'alofa populations [12]

Item	Tonga	'Eua	Tongatapu	Vava'u	Ha'apai	Ongo Niua ¹	Urban ²	Rural ³	Greater ⁴ Nuku'alofa
Total Population	100,651	4,945	74,611	13,738	6,125	1,232	23,221	77,430	35,184
Male	50,255	2,486	37,135	6,866	3,118	650	11,529	38,726	17,490
Female	50,396	2,459	37,476	6,872	3,007	582	11,692	38,704	17,694
Population change 2011-2016 (%)	-2.5	-1.4	-1.1	-7.9	-7.4	-3.9	-4.2	-2	-2.4
Av. Annual Growth (%)	-0.5	-0.3	-0.2	-1.7	-1.5	-0.8	-0.9	-0.4	-0.5
Population Density (pers/km²)	155	57	286	114	56	17	2,035	121	1,010
Number of Households	18,198	889	13,096	2,745	1,193	275	4,175	14,023	6,240
Average Household Size (pers)	5.5	5.6	5.7	5	5.2	4.5	5.6	5.5	5.6
Number of Villages	165	15	67	44	27	12	3	162	14

162 ¹ Niuafo'ou and Niutoputapu combined.

163 ² Urban area comprises the villages of Kolofo'ou, Kolomotu'a and Ma'ufanga in Tongatapu.

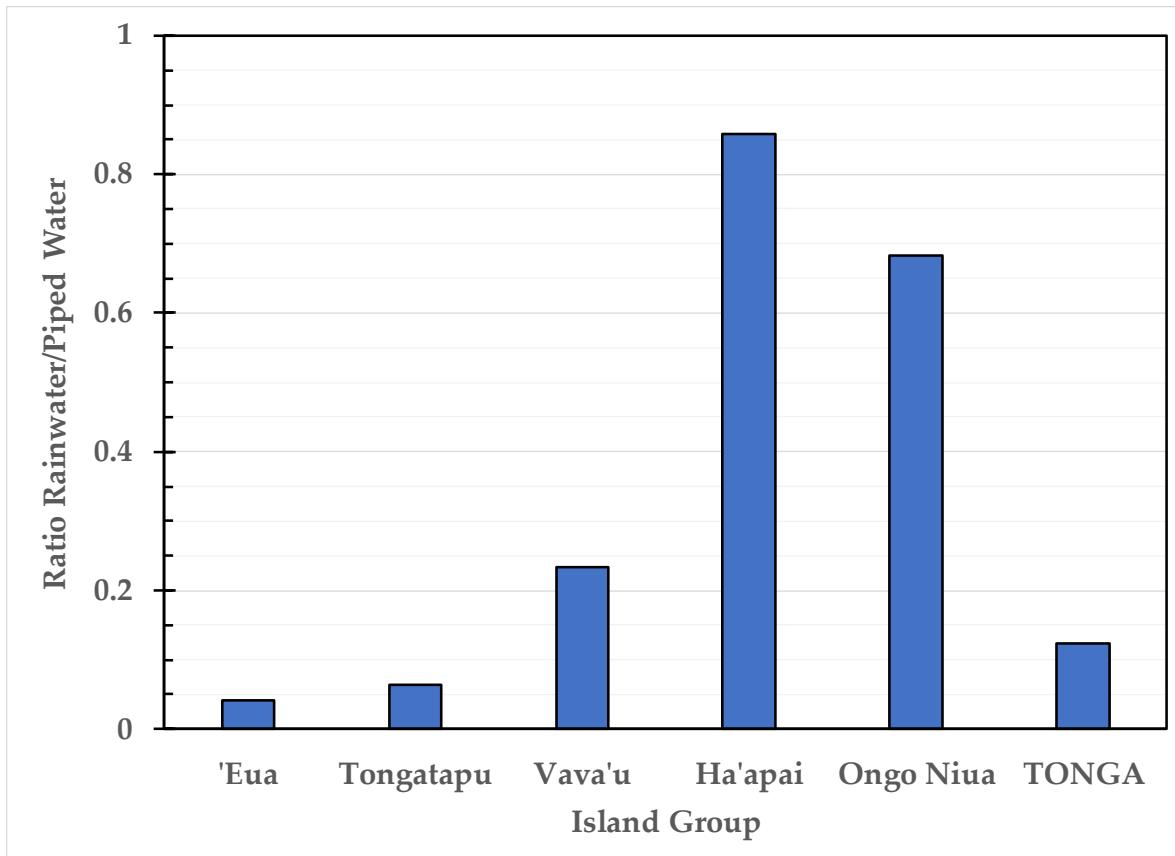
164 ³ Rural area consists of all villages in Tonga except Kolofo'ou, Kolomotu'a and Ma'ufanga in Tongatapu.

165 ⁴ Greater Nuku'alofa is made up of the districts of Kolofo'ou and Kolomotu'a in Tongatapu.

166 The demographic data in Table 1 show a concentration of population in the main island
 167 Tongatapu with 35% of the population of just over 100,000 living in the capital, Greater Nuku'alofa,
 168 and a further 40% of the population living in 53 rural villages across the Tongatapu Island Division.
 169 Just over 35% of all rural villages are in Tongatapu. The remaining 26% of Tonga's population are
 170 scattered over 98 villages in Tonga's other four Island Divisions.

171 Between 2011 and 2016 the population of Tonga shrank by an annual rate of -0.5% and urban
 172 populations decreased at over twice the annual rate of that of rural populations. The rate of loss of
 173 population was highest in Vava'u and Ha'apai Island Divisions and lowest in Tongatapu. Table 3
 174 suggests an inward migration from outer islands to rural villages in Tongatapu at an annual rate of
 175 about +0.9%.

176 Population density was over 16 times higher in urban areas than in rural areas. In Tongatapu,
 177 the population density was nearly 17 times higher than that of the far northern Ongo Niua division.
 178 Average household size in urban areas, however, was very close to that in rural areas, with
 179 Tongatapu having the highest average household size (5.7 persons) and Ongo Niua the lowest (4.5
 180 persons).


181 3.2. Water Sources

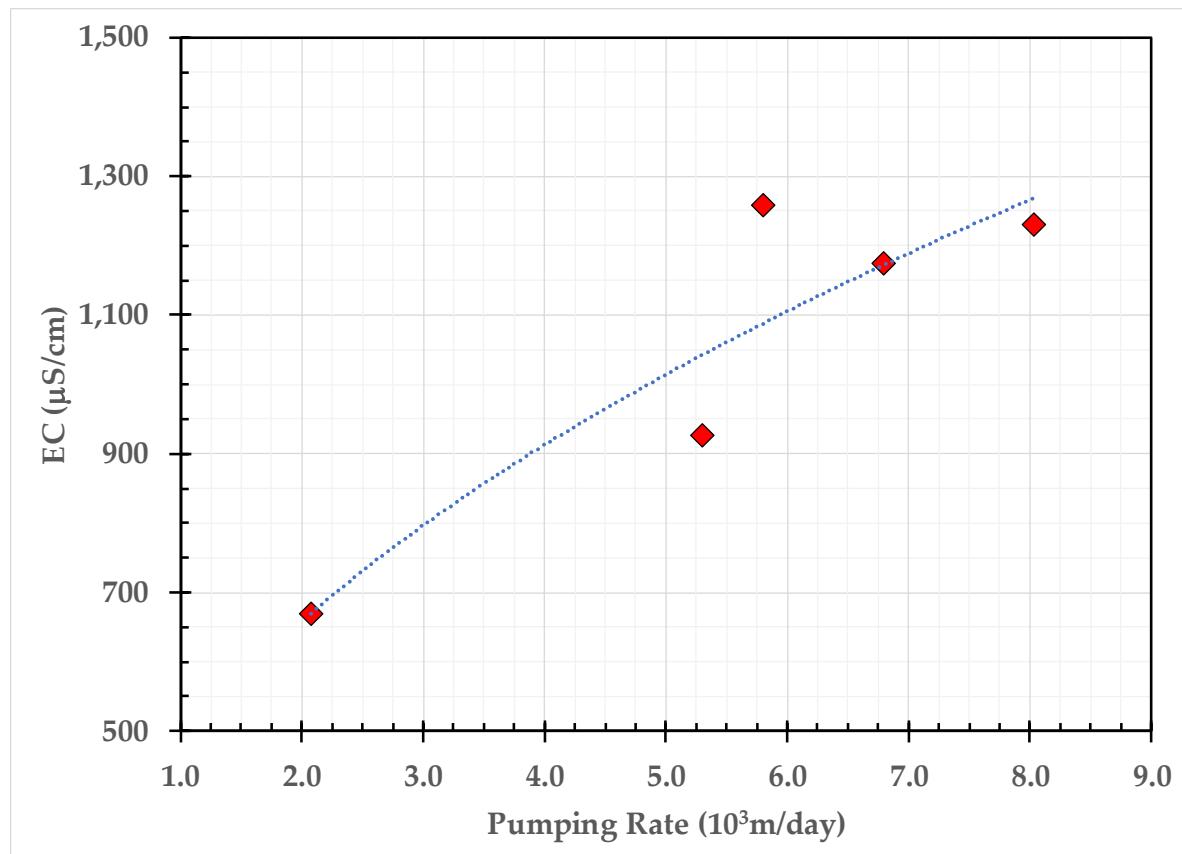
182 Table 2 lists the percentage of households using water from different sources for drinking and
183 for all other uses for Tonga as a whole and for each of the island Divisions from the 2016 Census [12].184 Table 2. Percentages of households in each island Division using water from different sources for (a) drinking
185 water and (b) all other water uses at the 2016 Census [12]

Water Source	TONGA	'Eua	Tongatapu	Vava'u	Ha'apai	Ongo Niua	Urban	Rural	Greater Nuku'alofa
(a) Drinking Water (%)									
Piped Supply	10.0	2.5	11.3	10.3	3.0	1.1	12.2	9.3	11.7
Rain Tank	60.5	73.1	54.8	69.2	86.2	92.3	53.5	62.5	53.8
Neighbour / Community ¹	19.6	23.4	20.7	18.8	10.0	6.6	14.3	21.2	15.8
Bottled water	9.5	0.9	12.8	1.4	0.6	0.0	19.3	6.6	18.1
Boiled Well Water	0.2	0.1	0.2	0.1	0.1	0.0	0.4	0.1	0.3
Other	0.2	0.0	0.2	0.2	0.2	0.0	0.3	0.1	0.2
(b) All Other Water Uses (%)									
Piped Supply	88.3	95.6	93.3	80.7	52.0	59.0	92.3	87.1	92.0
Rain Tank	10.9	4.0	6.0	18.9	44.6	40.3	7.1	12.0	7.1
Own Well	0.6	0.0	0.5	0.0	3.1	0.4	0.4	0.6	0.6
Other	0.3	0.5	0.3	0.3	0.3	0.4	0.2	0.3	0.3
Total Number Households	18,005	885	12,953	2,715	1,179	273	4,089	13,916	6,139

186 ¹ Probably neighbour or community rain tanks.187 Table 2 reveals the variety of water sources used for different purposes in the island Divisions.
188 It is apparent that households throughout Tonga prefer rainwater (over 60%) for drinking over piped
189 supply (10%). Most piped water supply is sourced from groundwater. Nationally, nearly 20% of
190 drinking water is sourced from neighbors' or community rainwater tanks.191 Urban households in Table 2(a) have a 31% higher use of piped water for drinking than rural
192 users who access rainwater for drinking 17% more than urban users. Bottled water is increasingly
193 being used for drinking, with urban use of bottled water 2.9 times that of rural households. Boiled
194 groundwater from household wells has very low use for drinking, 0.2% nationally. Ha'apai and Ongo
195 Niua stand out in the island Districts, with much less drinking water supplied from piped water than
196 the other Island Divisions and correspondingly much more from rainwater harvesting.197 When all other uses of water are considered, Table 2(b) shows that nationally 88% of household
198 water is sourced from piped groundwater systems, with rainwater tanks supplying only 11% of other
199 uses since it is reserved for drinking. Only 0.6% access water from private wells. Rural households
200 access piped water 5.7% less than urban households for non-drinking water uses so that rural
201 households rely on rain tanks nearly 1.7 times more than those in urban districts. Again, Ha'apai and
202 Ongo Niua are quite distinct from the other Island Divisions with less than 60% of other household
203 water use coming from the piped system and more than 40% of supply coming from rainwater
204 harvesting. Figure 2 shows the ratio of the use of rainwater to that of piped water supply for other
205 uses in each Island Division and Tonga as a whole. There is a large difference in the ratio between,
206 Ha'apai, Ongo Niua, Vava'u and Tongatapu and 'Eua. Piped water systems are less available in the
207 Ha'apai and Ongo Niua Divisions than in the other Island Divisions [13].

208

209
210 **Figure 2.** Ratio of the use of rainwater to piped water supply for other uses [Table 2(b)] in households across
211 Tonga's Island Divisions. Also shown are the average results for Tonga.


212 *3.3. Fresh Groundwater*

213 Fresh groundwater in Tonga's islands mostly consists of freshwater lenses overlying seawater
214 in carbonate (limestone and sand) islands [13, 19-22]. The salinity gradient increases with depth
215 through the lens going from low salinity water at the groundwater surface through a diffuse saline
216 transition zone to underlying seawater [21]. Groundwater may also exist in fractured rock aquifers
217 in the volcanic islands, but these are yet to be assessed [13]. There are also a number of springs
218 emanating from fresh perched groundwater on 'Eua, an island with mixed volcanic and carbonate
219 geology, and small freshwater lakes on Niuafo'ou [13].

220 There is a significant amount of information about the freshwater lens in Tongatapu, used to
221 supply the capital Nuku'alofa from an isolated wellfield location at Mataki'eua-Tongamai, and less
222 about village pumping from local wells and boreholes throughout Tongatapu [19-22, 24, 25, 28]. Local
223 wells and boreholes are vulnerable to contamination from septic tanks and pit latrines.

224 The mean maximum height of the surface of the freshwater lens in Tongatapu has been
225 estimated to be about 0.6 m above mean sea level and the lens thins toward the coastal margins. Its
226 elevation varies slightly with the oceanic tide. In the period 1997 to 2018, maximum thickness of the
227 freshwater lens was around 16m. Maximum thickness varied with rainfall between 9.5 and 16 m.
228 During the same period, the salinity of water, as measured by the electrical conductivity (EC) of the
229 water supplied to Nuku'alofa, varied between almost 1600 $\mu\text{S}/\text{cm}$, following the dry period in 1998,
230 to about 800 $\mu\text{S}/\text{cm}$ following the wet period in 1999 [13].

231 There is no evidence of any increasing trend in groundwater salinity in Tongatapu over the
232 period 1997 to 2018 [13]. Increases in EC of individual bores due to progressive increases in wellfield
233 pumping rates over time have been observed at Makahi'eua-Tongamai since 1971 (Figure 3 [24]). The
234 current rate of fresh groundwater extraction across all Tongatapu has been estimated to be about
235 24,000 m^3/day .

236

237

Figure 3. Impact of pumping rate from the Mataki'eua-Tongamai wellfield on the EC of water pumping from an individual well (PS106) between 1971 and 2007 [24].

238

There is very limited information about groundwater used to supply population centers in Ha'apai or Vava'u. On Lifuka Island in the Ha'apai Division, the spatially limited fresh groundwater lens is much thinner than in Tongatapu, with maximum thickness ranging from 2m in 1998 to 4m at the end of 2011. Because of the thin freshwater lens, the salinity in the water supply system is higher than in Nuku'alofa, varying from a brackish EC of about 10,000 $\mu\text{S}/\text{cm}$ to a low of around 1,000 $\mu\text{S}/\text{cm}$. The salinity of the water there depends on the method of extraction with groundwater pumped from vertical wells having a higher salinity, due to upconing of the underlying seawater, than that pumped from horizontal infiltration galleries or skimming wells. The approximate groundwater extraction rate for water supply in Lifuka is about 500 m^3/day .

239

The population center of Vava'u, Neiafu, in the main island Vava'u 'Utu, a raised limestone island, is supplied water from a fresh groundwater lens with maximum thickness between 5 to 8.5 m over the period 1999 to 2018. Thickness of the lens varies across the island with some village wells only producing brackish groundwater. The salinity of water supply to Neiafu in this period has varied from an EC of about 500 $\mu\text{S}/\text{cm}$ in September 2000 to a brackish 4,500 $\mu\text{S}/\text{cm}$ in January 2016. The approximate rate of groundwater extraction to supply Neiafu is about 1,000 m^3/day [13].

240

In 'Eua, water is supplied from groundwater springs and wells. Salinity of the supply water in 'Eua is low, typically less than 500 $\mu\text{S}/\text{cm}$ and the water supply is about 1,100 m^3/day [21, 26].

241

3.4. Water Demand

242

With the diversity of water sources used (Table 2) and the differences in use between rural and urban and Island Divisions there is little information on the ranges of water demand throughout Tonga. For Greater Nuku'alofa about 12.6 ML/day are pumped from the groundwater Mataki'eua-Tongamai wellfield [13]. Unaccounted for water amounts to between 30 to 40%. It has been estimated that about 11 ML/day of groundwater is extracted to supply the rural villages throughout Tongatapu [28]. Information is also available on groundwater extraction for the urban centers in Vava'u and

263 Ha'apai [26]. There is limited information on unaccounted for water in these or in Tongatapu's village
 264 water supply systems. Inspections of village groundwater supply systems suggest that 40 to 50%
 265 losses are conservative. With this estimate and the population numbers in the 2016 Census [12], the
 266 estimated average groundwater demand in Greater Nuku'alofa, in rural villages in Tongatapu and
 267 in the urban centers in Vava'u and Ha'apai, as well as spring and groundwater demand in 'Eua are
 268 given in Table 3.

269 **Table 3.** Estimated average per capita water demand in population centers and rural villages in Tonga's Island
 270 Divisions supplied by spring water (SW), groundwater (GW) and rainwater (RW) [13-16, 26, 28].

Island Division	Location	Water Source	Water Supply Rate (10 ³ m ³ /day)	Unaccounted for Water (%)	Average Demand (L/pers/day)
'Eua		SW, GW	1.1	40-50	110-130
Tongatapu	Greater Nuku'alofa	GW	12.6	30-40	230-270
	Rural ¹ Villages	GW	11	40-50	130-160
Vava'u	Neiafu	GW	1.0	40-50	140-160
	Koloa	RW	-	-	18
Ha'apai	Lifuka	GW	0.5	40-50	125-150
	Nomuka	RW	-	-	22
Ongo Niua	Niuafou	RW	-	-	14

271 ¹All villages not within Greater Nuku'alofa.

272 Rainwater is also used extensively throughout Tonga (Table 2). There is very little information
 273 on water demand from rainwater harvesting systems. Measurements at villages on three outer
 274 islands, Koloa, Nomuka and Niuafou, in the Vava'u, Ha'apai and Ongo Niua Divisions provide
 275 details on the average per capita rainwater and are listed in Table 3 [14-16]. In Koloa the thin
 276 groundwater lens is saline and is only used for toilet flushing, cleaning and bathing [14]. In Nomuka,
 277 the village piped water supply, which was sourced from beneath a shallow ephemeral freshwater
 278 lake is no longer operational, so that household and community rainwater tanks are the only sources
 279 of freshwater [15].

280 Niuafou island is a basalt shield volcano surmounted by an andesitic cone. Communities there
 281 rely on rainwater harvesting. It is not known if there is any viable fresh groundwater in Niuafou
 282 [16]. The World Health Organization recommends that the minimum quantity of water required to
 283 satisfy essential health and hygiene needs in emergency situations is 20L/person/day [18], a value
 284 similar to the average rainwater use for all most purposes in these three outer islands.

285 3.5. Rainfall

286 Tonga's climate is tropical with a warm period from December to April, when temperatures
 287 can reach 32°C, and a cooler season from May to November, with temperatures infrequently rising
 288 above 27°C [29]. Tonga's reliance of water sourced from rainfall harvesting and from groundwater
 289 (Table 2) means that rainfall and subsequent groundwater recharge are key determinants of water
 290 availability [19, 21, 24, 25]. Table 4 summarizes rainfall characteristics at the six long-term
 291 meteorological stations throughout Tonga.

292 Average annual rainfall varies from about 1,750 mm in the south to about 2,500 mm in the
 293 northern islands closer to the Equator. Tonga has a wetter season from November to April and a drier
 294 season from May to October. Its rainfall is influenced by the position and strength of the South Pacific
 295 Convergence Zone (SPCZ) which is influenced both by season, ENSO events [17, 30] and by the
 296 Pacific Decadal Oscillation (PDO)[24]. Tonga is periodically impacted by TCs whose intensity
 297 appears to be increasing[31] in line with climate change projections [17, 32].
 298

299
300**Table 4.** Annual, wet (November to April) and dry season (May to October) rainfall characteristics at meteorology stations in Tonga [13]

Met Station	Island Division	Daily Average Temperature Range (°C) ¹	Average Annual Rainfall (mm)	CV of Annual Rainfall	Mean Nov-Apr Rainfall (mm)	Mean May-Oct Rainfall (mm)	Period
Niu afo'ou	Ongo Niua	25.9-27.9	2,534	0.22	886	1,648	1971 - 2019
Niuatoputapu		25.7-27.5	2,315	0.21	803	1,512	1947 - 2019
Lupepau'u	Vava'u	22.9-26.9	2,290	0.22	793	1,497	1947 - 2019
Ha'apai	Ha'apai	23.1-27.4	1,754	0.24	599	1,155	1947 - 2019
Fua'amotu	Tongatapu	21.4-26.6	1,765	0.25	664	1,101	1980 - 2019
Nuku'alofa		21.8-27.2	1,863	0.26	735	1,128	1945 - 2019

301 ¹ Temperatures shown for the period 1980 to 2017.

302 During the wet season, the SPCZ lies between Samoa and Tonga while during the dry season
 303 the SPCZ is positioned normally to the north-east of Samoa, where it is often weak, inactive and
 304 sometimes non-existent [29]. In the northern islands, about 35% of annual rainfall occurs in the
 305 November to April period while in the south the percentage is slightly higher, 38-39%.

306 Estimates of average annual potential evaporation in Tonga range from about 1,460mm in
 307 Tongatapu to about 1,670mm in Niuatoputapu [29]. These high annual potential evaporation rates
 308 mean that open water storages lose large volumes of water. The losses from groundwater systems
 309 due to evaporation are much lower so that groundwater storages have an advantage over surface
 310 storages.

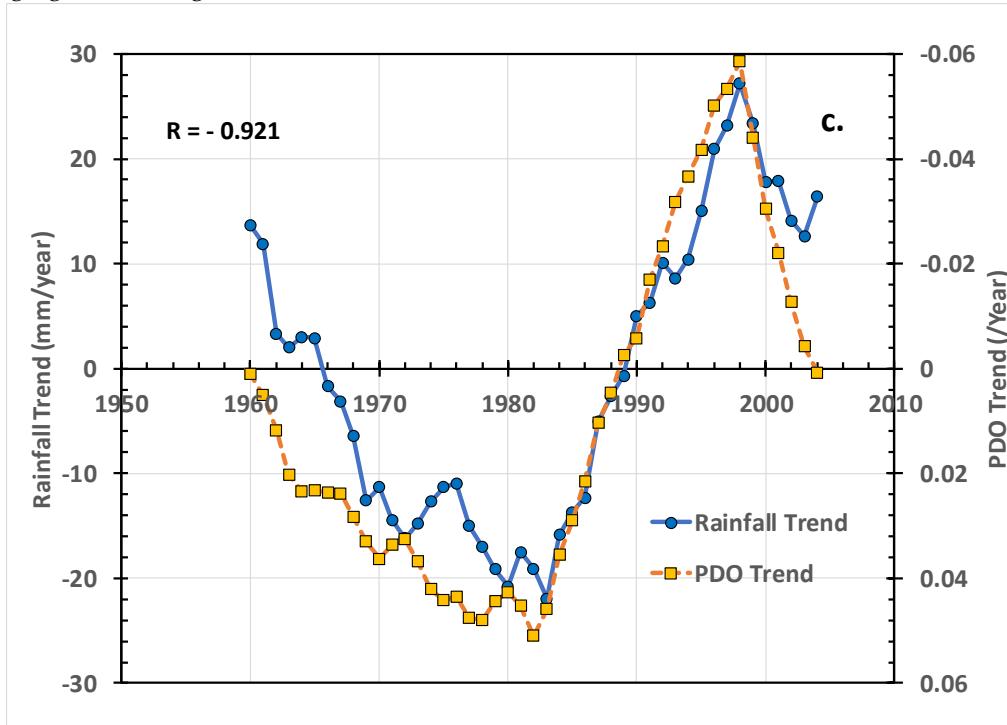
311 3.6. Variability of Rainfall

312 The coefficient of variability (CV) of annual rainfall in Table 4 is moderate at around 0.21 to 0.26
 313 and is less in the wetter, northern islands than in the south. ENSO and the Pacific Decadal Oscillation
 314 (PDO) are key drivers of this variability. Two indicators of ENSO, the Niño Index (sea surface
 315 temperature anomaly in the Niño 3.4 region) and the Southern Oscillation Index (based on sea level
 316 pressure difference between Darwin and Tahiti) are strongly negatively and positively correlated,
 317 respectively, to wet season but not dry season rainfall. The PDO index is also strongly negatively
 318 correlated to wet season rainfall. In La Niña phases of ENSO (negative Niño Index), the SPCZ tends
 319 to move further south and Tonga gets more rain in the wet season, while in El Niño phases (positive
 320 Niño Index) it moves further north and causes lower wet season rainfall [17]. Droughts tend to occur
 321 during El Niño events. During severe El Niños, the SPCZ can spread azimuthally along the equator [32]
 322 leading to wide-spread impacts across the Pacific. In negative phases of the longer-period PDO, the
 323 south-western Pacific is warmer than in positive phases leading to higher rainfalls.

324 3.6. Changing climate and rainfall trends

325 Projections for future climate in the 21st century based on the Coupled Model Intercomparison
 326 Project Phase 5 using global climate models have been made for Tonga under various Representative
 327 Concentration Pathways estimating possible future trends in greenhouse gas emissions [17]. These
 328 projections suggest that there will be more extreme rainfall events, continuing sea level rise,
 329 increasing ocean acidification, higher risk of coral bleaching and El Niño and La Niña events will
 330 continue (all very high confidence). It is projected that the frequency of tropical cyclones will decrease
 331 by the end of the 21st century (medium confidence) but their maximum intensity may increase [31].
 332 There is no consensus on whether average annual rainfall will increase or decrease [17].

333 CSIRO and the Australian Bureau of Meteorology [17] provided no projections of trends in
 334 potential evaporation or actual evapotranspiration. Earlier projections based on increasing
 335 temperatures [30] are erroneous. The available climate records for Tonga show average atmospheric
 336 temperatures increasing by about 1°C per century [13], similar to increases in sea surface


337 temperatures in the surrounding ocean. Table 5 lists the historic linear regression trends in annual
 338 and seasonal rainfall at the meteorological stations in Table 1.

339 **Table 5.** Historic trends in annual and seasonal rainfalls with standard errors and significance level for
 340 the meteorological stations in Table 4. Long- and short-term records are compared over the same periods,
 341 1947-2019 and 1980 to 2019 respectively.

Met Station	Trend Annual Rainfall (mm/decade)	Signif	Trend Nov-Apr Rainfall (mm/decade)	Signif	Trend May-Oct Rainfall (mm/decade)	Signif	Period
Niuafou	204±71 ¹	p<0.05	82±36	p<0.05	141±68 ¹	p<0.05	1980 - 2019
Niuatoputapu	-3±30	NS	-9±23	NS	6±19	NS	1947 - 2019
Lupepau'u	34±28	NS	2±24	NS	34±14	p<0.05	1947 - 2019
Ha'apai	14±25	NS	3±22	NS	14±12	NS	1947 - 2019
Fua'amotu	212±57	p<0.001	162±58	p<0.01	60±35	NS	1980 - 2019
Nuku'alofa	0±24	NS	-7±21	NS	9±12	NS	1947 - 2019

342 ¹Period 1981-2019, data missing for 1980.

343 There are no significant trends in Table 5 in annual or wet season rainfall over the period 1947
 344 to 2019. Out of the four stations with long-term rainfall records, only Lupepau'u in Vava'u has a
 345 significant increasing trend in dry season rainfall. In contrast, the two stations with shorter rainfall
 346 records, 1980 to 2019, in the northern and southern Island Divisions, have identical, within error,
 347 significant increasing trends in annual rainfall and significant increasing trends in wet season rainfall.
 348 While it is tempting to identify these more recent increasing trends over 39-year periods with climate
 349 change, they are very strongly negatively correlated with trends over 31 years in the PDO, unrelated
 350 to changing climate (Figure 4).

351
 352 **Figure 4.** Comparison between the trends in rainfall at Nuku'alofa over 31 year running periods and the running
 353 trends in the PDO over the same period. The correlation, -0.921, is highly significant. The year shown is the mid-
 354 year of the 31-year period.

355

356 *3.7. Droughts*

357 Because of the nation-wide reliance on rainwater harvesting or relatively shallow groundwater,
 358 droughts are particularly important in Tonga. They are projected to slightly decrease in frequency
 359 under climate change (low confidence) [17]. Projections, however, [34-37] suggest that the frequency
 360 of extreme ENSO events will increase from one in 20 years to one in 10 years within the 21st century
 361 and the PDO will become less predictable [38]. This implies that severe droughts in Tonga may
 362 increase in frequency. Resident household sizes and their water demands mean that rain tanks
 363 supplying households often fail during protracted dry seasons or droughts. Table 6 lists the historic
 364 frequency of severe dry periods, defined as 6-month periods in which the average rainfall per month
 365 is less than or equal to 60 mm and when household rainwater tanks are expected to run dry.

366 **Table 6.** Frequency of severe dry periods in both wet and dry season at meteorological stations in Tonga.

Met Station	Frequency Severe		Period
	Dry Periods	Nov-Apr	
Niuafou'	-	1/46	1980 - 2019
Niuatoputapu	-	1/43	1947 - 2019
Lupepau'u	-	1/28	1947 - 2019
Ha'apai	-	1/9	1947 - 2019
Fua'amotu	1/40	1/26	1980 - 2019
Nuku'alofo	1/39	1/28	1947 - 2019

367

368 In terms of dry season rainwater shortages in the Island Divisions, the frequency in Table 6
 369 increases in the order of Ong Niua<Vava'u = Tongatapu<Ha'apai. The frequency of extreme dry
 370 periods in Ha'apai is three times that in Tongatapu/Vava'u and five times that in Ong Niua. The
 371 frequency of severe dry seasons in the period 1980 to 2019 and in the period 1947 to 2019 are very
 372 close at both Ong Niua (Niuafou' and Niuatoputapu) and Tongatapu (Fua'amotu and Nuku'alofo).
 373 Surprisingly, Table 6 also indicates that, unlike other Island Divisions, the wet season in Tongatapu
 374 will also fail to supply adequate rainfall about once in forty years. Failure of the wet season is a serious
 375 concern. These results suggest that both Hapai and Tongatapu have higher risks of rainwater
 376 harvesting supply failures than the other Island Divisions.

377 The larger water storages in most groundwater systems mean that they are more robust supply
 378 sources during droughts, provided groundwater extraction is carefully monitored and managed.

379 *3.8. The Tonga Strategic Development Framework 2015-2025*

380 The TSDF II is arranged in a hierarchy where 29 Organizational Outcomes (OO), with 153
 381 accompanying Strategic Concepts (SCs), grouped under three institutional pillars and two input
 382 pillars, feed into seven desired National Outcomes which feed into the single planned National
 383 Impact of the TSDF II: "A more progressive Tonga supporting a higher quality of life for all" which
 384 supports the Motto of TSDF II, given by reformer monarch Tupou I: "God and Tonga are my
 385 inheritance." The planned National Outcomes (NOs) are listed in Table 7.

386 The five institutional and input pillars, together with their accompanying OO the number of
 387 associated SCs are listed in Appendix A. Not one of the 29 OO mentions water or water supply. The
 388 OO under the Infrastructure and Technology Inputs Pillar, associated with National Outcome E in
 389 Table 7, emphasize more reliable, safe and affordable energy, transport and information and
 390 communications technology (ICT) services, but they do not include water services.

391

392

393

Table 7. The seven planned National Outcomes of TSDFII [10]

Code	National Outcome
A.	a more inclusive, sustainable and dynamic knowledge-based economy
B.	a more inclusive, sustainable and balanced urban and rural development across island groups
C.	a more inclusive, sustainable and empowering human development with gender equality
D.	a more inclusive, sustainable and responsive good-governance with law and order
E.	a more inclusive, sustainable and successful provision and maintenance of infrastructure and technology
F.	a more inclusive, sustainable and effective land administration, environment management, and resilience to climate and risk
G.	a more inclusive, sustainable and consistent advancement of our external interests, security and sovereignty

394 The SCs numbered in Appendix A are considered : "...the priority issues identified for each
 395 Pillar during the consultation process with stakeholders. ...they are useful inputs to the
 396 implementation process. ... They are aids to sector, district and Ministry, Department and Agency
 397 planning and budgeting." [10]. Scanning the 153 SCs reveals that water appears only once, the second
 398 SC under 00 5.2: "b) improve the management and delivery of safe water supply for business and
 399 households". While under the Health component of the Social Institutions Pillar, "Percentage of
 400 population with safe water supply" is listed as a key performance indicator (KPI). There is no water
 401 supply KPI associated with SC 5.2 b).

402 In mapping the planned National Outcomes against the UN SDGs, the TSDFII identifies
 403 National Outcomes F, E, and B (above) as contributing to the UN's SDG6, yet the Infrastructure and
 404 Technology Inputs Pillar associated with National Outcome E does not mention water supply
 405 services nor sanitation.

406 3.9. Village Community Development Plans, 2016

407 Table 8 provides details of the number of village CDPs that were available for analysis for each
 408 of the Island Divisions and Districts. In total, 117 CDPs were available of the original 136 that were
 409 presented in 2016. The available CDPs are 77.5% of the total number of rural villages in Tonga (151).
 410 CDPs for the main island Tongatapu, excluded the Districts of Kolofo'ou and Kolomotu'a that
 411 comprise the capital Greater Nuku'alofa, and so represent rural areas of Tongatapu. Villages each
 412 identified a different number of priority issues to be addressed and the number varied for women,
 413 youth and men.

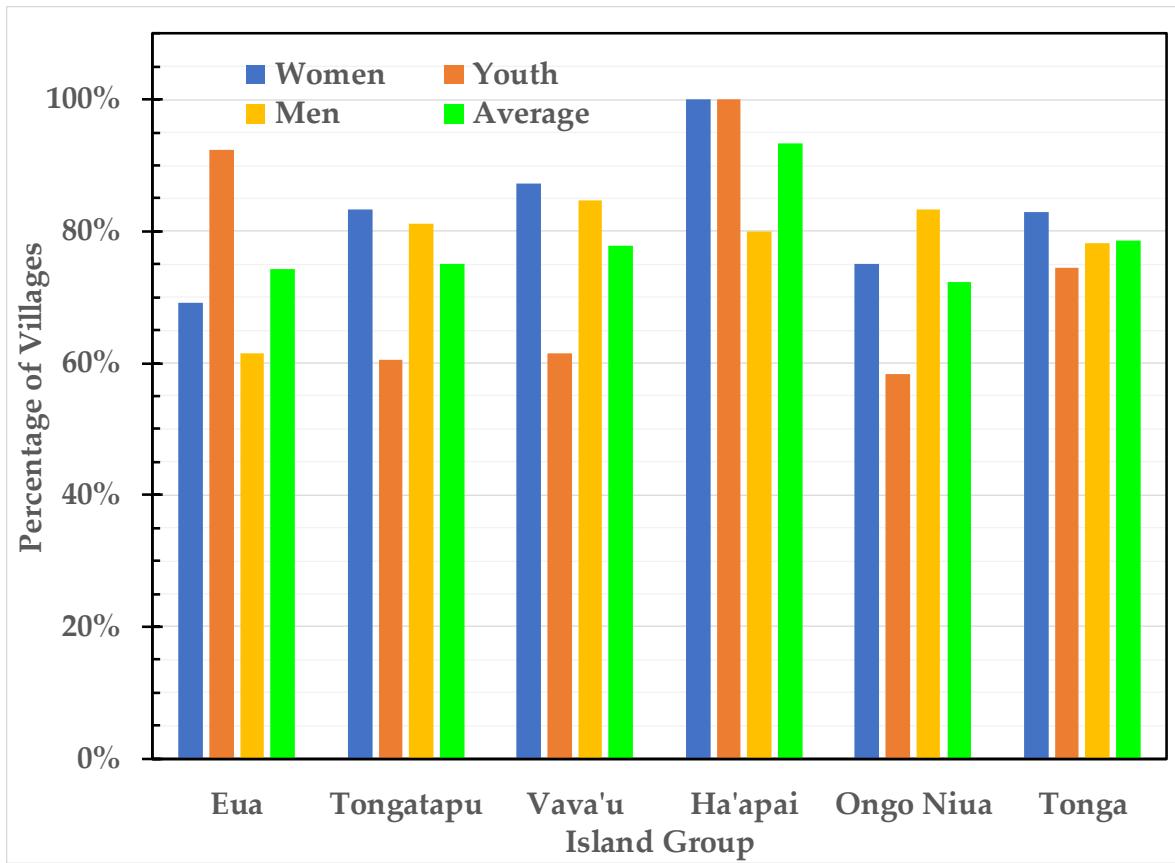
414 For the whole country, Table 8 shows that the median numbers of priority issues identified in
 415 villages by women, youth and men were the same. Ongi Niua Island Division identified the least
 416 number of priority issues while Ha'apai Island Division identified the most. Youth in 'Eua identified
 417 slightly more priority issues than youth elsewhere. The maximum numbers of priorities identified
 418 for women, youth and men were 12, 11 and 12, respectively, while minimum numbers were 4, 3, 3.

419 Table 9 lists the percentage of villages in each Island Division that identified water supply issues
 420 as their number one priority. Over 55% of the available village CDPs throughout Tonga identified
 421 water supply as the number one priority. Women in Tonga ranked water supply as a higher priority
 422 issue than did youth or men. Over 53% of all villages in all Island Divisions identified water as the
 423 highest priority. Only in 'Eua did men view water supply as a higher priority than did women and
 424 in 'Eua youth had the highest concern about water supply of any Island Division. Women in Ha'apai
 425 had the highest priority concerns about water supply of any gender-age cohort and Island Division.

426

427

428 **Table 8.** The number of accessed village community development plans for Districts and Island Divisions in
 429 Tonga and the medium number of identified priorities identified by women, youth and men within each
 430 Island Division [27]


Island Division	District	No. of Village CDPs	No. CDPs/Island Division	Median Number of Priorities in Island Division		
				Women	Youth	Men
'Eua	'Eua Motu'a	13	13	8	7.5	7.5
	Nukunuku	9				
	Tatakamataonga	7				
Tongatapu	Vaini	11	48	6	5	6
	Lapaha	10				
	Kolovai	11				
Vava'u	Hahake	8				
	Hihifo	5				
	Leimatua	4				
	Pangaimotu	4	39	7	6	7
	Motu	9				
Ha'apai	Neiafu	9				
		5	5	9	7	10
Ongi Niua	Niuatoputapu	4				
	Niuaofo'ou ¹	8	12	5	5	5.5
	Total	117	Country Median	6	6	6

431 ¹One village in Niuaofo'ou gave aggregated priorities rather than separate women's, youth and
 432 men's priorities.

433 Figure 5 shows the distribution of the percentage of villages throughout the Island Divisions
 434 where concerns over water supply were ranked within the top three priorities. The average
 435 percentage of villages in Tonga (Figure 5) that ranked water supply in the top three priorities was
 436 79% with women a slightly higher percentage (82%) than men (78%) or youth (75%). Concerns over
 437 village water supply were highest in Ha'apai (93%), where both 100% women and youth in villages
 438 ranked water within the top three priorities compared with 80% for men. Villages in the wetter,
 439 northern Ongi Niua Division had the lowest average percentage but still 72% ranked water supply
 440 issues within the top three village priorities. Youth in Ongi Niua villages had the lowest percentage
 441 (58%) of any who ranked water within the top 3 priorities.

442 **Table 9.** The percentage of villages in each Island Division that identified water supply issues as first priority
 443 in terms of women's, youth and men's perspectives.

Island Division	Percentage of Villages with Water Supply as Highest Priority			
	Women	Youth	Men	Average
'Eua	46%	62%	54%	54%
Tongatapu	67%	42%	54%	54%
Vava'u	67%	49%	62%	59%
Ha'apai	80%	60%	20%	53%
Ongi Niua	50%	58%	50%	53%
Tonga	62%	54%	48%	55%

445

446 **Figure 5.** The percentage of villages throughout Tonga's Island Divisions, as well as Tonga
 447 collectively, which ranked water supply within the top three priorities in terms of women's, youth
 448 and men's perspective and the average of all three.

449 Table 10 shows the number of villages which did not rank water supply as a concern. Overall,
 450 the least concerns over water supply were in the main island of Tongatapu, where youth were the
 451 group least concerned about water supply. The most concerns were in Ha'apai, where 100% of
 452 women and youth all ranked water supply as a priority, as did youth in 'Eua. Nationally men in
 453 villages had slightly more concerns in listing water as a priority than women and both sexes had
 454 more concerns than youth.

455 **Table 10.** The percentage of villages in each Island Division where water supply was not a priority concern

Island Division	Percentage of Villages where Water Supply was not a Priority			
	Women	Youth	Men	Average
Eua	8%	0%	8%	5%
Tongatapu	10%	31%	10%	17%
Vava'u	5%	21%	8%	11%
Ha'apai	0%	0%	20%	7%
Ongi Niua	17%	8%	8%	11%
Tonga	8%	12%	7%	9%

456 4. Discussion

457 4.1. Demographics, Water Use, Water Sources and Reliability

458 The data in Table 1 show the concentration of population of Tonga in both the urban and rural
 459 areas of the main Tongatapu Island Division, which includes the capital, Nuku'alofa. About 26% of

460 the population is dispersed across villages in the other Island Divisions. The population seems to fall
461 roughly into three main classes: urban Tongatapu, rural Tongatapu and rural outer islands, although
462 there are clear differences in outer islands, especially in terms of population density and household
463 size as well as population centers versus remote islands.

464 Between 2011 and 2016 there was a net decrease in population in Tonga. There was also an
465 exodus from outer islands, especially the Vava'u and Ha'apai Divisions, mostly to rural villages in
466 Tongatapu.

467 Table 2 reveals that Tongans switch sources between public piped groundwater supply and
468 private household rainwater harvesting depending on water use with rainwater preferred for
469 drinking. The greater volumetric use of water for non-drinking purposes, such as toilet flushing and
470 washing, means that the piped groundwater supplies are important. Urban areas and population
471 centers have greater access to piped groundwater supply than in rural areas with very limited use of
472 private local groundwater wells.

473 Ha'apai, Ongi Niua and Vava'u Island Divisions are vulnerable because of their larger reliance
474 on drought-sensitive household rainwater harvesting relative to piped water supply systems (Figure
475 2). Outer islands in these three Island Divisions that are more reliant on rainwater harvesting, and
476 have very limited average daily per capita water use (Table 3) equivalent to the quantity
477 recommended by the World Health Organization as the minimum quantity of water required to
478 satisfy essential health and hygiene needs in emergency situations [18].

479 The greatest volumetric use of water in Tonga is sourced from groundwater. In the southern
480 Island Divisions of 'Eua and Tongatapu, water is sourced from springs and well-studied relatively
481 thick freshwater lenses with comparatively low salinity. Increased pumping rates do increase the
482 salinity in individual boreholes in Tongatapu (Figure 3) but salinity of the water supply to Nuku'alofa
483 has shown no trends in salinity over the period 1997 to 2018. In the northern Island Divisions of
484 Vava'u and Ha'apai, fresh groundwater lenses are much thinner, and the salinities of water supplied
485 to population centers are more saline than in Tongatapu and can be even brackish in droughts.

486 Mean annual rainfall in Tonga is highest in the northern Island Divisions and decreases towards
487 the south (Table 4) due to the position of the SPCZ. The variability of annual rainfall is moderate but
488 increases southward. Large-scale variability is driven predominately by ENSO events and the PDO.
489 Projections on the impact of climate change on annual rainfall are equivocal [17, 31]. The historic
490 record shows no statistically significant long-term trends in annual rainfall over the period 1947 to
491 2019 (Table 5). There are shorter term trends in rainfall (Table 5) over 31-year periods which are
492 highly significantly negatively correlated with trends in the PDO over the same period (Figure 4).

493 Reliance on rainwater harvesting (Table 2) increases the risk of drinking water supply failures
494 during ENSO- and PDO-related droughts, when even well-managed rainwater harvesting systems
495 can fail, especially in large households. The risk of well-managed rainwater harvesting system failure
496 in the dry, May to October season in the Ha'apai Division (Table 6) is three times as frequent as in
497 the Tongatapu or Vava'u Island Divisions and five times as frequent as in the northern Ongi Niua
498 Division, showing that rainwater harvesting is less reliable in Ha'apai. The rainfall data suggests that
499 rainfall harvesting will also fail in the November to April wet season but only Tongatapu (Table 6)
500 with a frequency of one year in 40, which is a significant concern.

501 Groundwater in other Island Divisions is less well studied than in Tongatapu. Differences in
502 groundwater across Tonga's Island Divisions result from differences in geology and geomorphology.
503 Tongatapu's groundwater occurs as moderately thick, freshwater lens with generally low salinity.
504 Salinity of water is even lower in 'Eua. In Vava'u and Lifuka in Ha'apai the groundwater lens
505 supplying the population center is thinner than in Tongatapu and can become brackish in dry
506 periods. Some small islands in both the Vava'u and Ha'apai do not have reliable fresh groundwater.
507 Groundwater has not been assessed in the northern volcanic islands of Ongi Niua, where rainwater
508 harvesting is the main water supply.

509 Estimated per capita daily groundwater demands (Table 5) show that population centers in 'Eua,
510 Vava'u, Ha'apai as well as rural villages in Tongatapu have about 48% to 60% of the average per
511 capita daily supply to Nuku'alofa. For villages in the Vava'u, Ha'apai and Ongi Niua Divisions with

512 access to only rainwater harvesting, average daily per capita demand is equivalent to recommended
513 minimum emergency requirements for survival.

514 The demographic, water use, rainfall and groundwater data discussed above reveal the
515 considerable differences in water availability across Tonga, with the capital, Greater Nuku'alofa well
516 served with groundwater while rural Tongatapu and population centers in northern Island Divisions
517 have access to less groundwater and in the north more saline groundwater than in Nuku'alofa. In
518 addition, in Ha'apai and Vava'u the salinity of groundwater can be brackish at times. In the limited
519 number of small outer islands and in Ongo Niua, water supply is predominantly from rainwater
520 harvesting. In Ha'apai, even well-managed rainwater harvesting systems are expected to fail at a
521 much higher frequency than in other Island Divisions, especially Ongo Niua with higher and less
522 variable annual rainfall. It is expected from this data alone that, apart from Greater Nuku'alofa, there
523 may be significant community concerns over water supply in Island Divisions more reliant on
524 rainwater harvesting than on groundwater, particularly in the Ha'apai Division.

525 *4.2. Top-Down versus Bottom-Up Planning Priorities*

526 The largely top-down TDSFII involved discussions with key sectors of the economy including
527 District and Town officers, church leader forums, non-government organizations and all main sectors
528 of private business forums over a three-month period. TDSFII claims that the planned National
529 Outcomes, F, E and B (Table 7) are contributions to the UN's SDG6 on water and sanitation. Water
530 and sanitation do not appear in any of the Organizational Outcomes (Appendix A) or Strategic
531 Concepts associated with NOE or B. Indeed, the infrastructure OO associated with NOE specifically
532 target more reliable, safe and affordable energy services, transport services, and information and
533 communication technology but do not mention water services. As has been noted [38]: "There is
534 general international consensus that there is a positive correlation between infrastructure and
535 economic outcomes and that investment in infrastructure is a major driver of productivity. Core
536 economic infrastructure, such as transport, electricity, telecommunications, sewerage and water
537 systems, leads to the greatest levels of productivity, particularly when delivered with increased
538 efficiency and reduced service prices."

539 Water supply appears in only one of the 153 Strategic Concepts listed under the OO: "improve
540 the management and delivery of safe water supply for business and households." Since the SCs are
541 intended as "aids to sector, district and Ministry, Department and Agency planning and budgeting"
542 it could be construed that the absence of water supply from the OO and its mention in only one of
543 the associated SCs implies that water supply is a low national priority in Tonga, in contrast to the
544 findings above.

545 The rural village, bottom-up, Community Development Plans evolved over a 9-year period,
546 partly because each stage of the planning process involved participation of 80% of the population of
547 each village. The available 117 CDPs, analyzed here represents 77.5% of the total number of rural
548 villages in Tonga and 86% of the 136 CDPs presented in 2016. The greatest number of available CDPs
549 come from the main island Tongatapu, followed by the Vava'u Division, reflecting the distribution
550 of rural population (Table 1).

551 The median number of priority issues identified in the CDPs for Tonga as a whole was 6 with
552 the highest number of priorities identified in the Ha'apai Division and the least number in the wetter,
553 northern Ongo Niua Division (Table 8). Over 55% of all rural villages ranked water supply as their
554 top priority with women ranking water supply as first priority more frequently than youth or men
555 (Table 9). This reflects the fact that in rural villages, household water supply is largely the
556 responsibility of women. In Ha'apai, women in 80% of the villages ranked water supply as first
557 priority, in contrast to men in Ha'apai villages where only 20% ranked it as highest priority.

558 Around 76% of all villages ranked water supply within the top three priority issues with women
559 having a higher ranking than men followed by youth (Figure 5). The highest rankings were in villages
560 in Ha'apai with women and youth in 100% of villages ranking water supply within the top three
561 priorities. The lowest top three ranking was in the Ongo Niua Division due to low rankings by youth.
562 Even in rural Tongatapu, 75% of villages ranked water supply within the top three priorities. Only

563 an average of 9% of rural villages in Tonga omitted water supply in their list of local priority issues.
564 Tongatapu villages were the least concerned about water supply, while 'Eua and Ha'apai showed
565 most concern (Table 10).

566 The heavy reliance on rainwater for water supply in Ha'apai (Figure 2), coupled with limited
567 and more saline groundwater resources and more frequent failures of rainwater harvesting systems
568 contribute to the high priority for improved water supply in Ha'apai's CDPs. Even in Tongatapu,
569 where villages overall were the least concerned about water supply, three quarters of villages placed
570 water supply within the top three priorities.

571 The results of the rural village CDPs presents a dramatic contrast to the water supply priorities
572 in TSDFII and confirm expectations from the analysis of demographic, water sources, rainfall and
573 groundwater. The main government ministries, departments and agencies involved in producing
574 TSDFII are all located in the capital Nuku'alofa. Table 3 shows that the average per capita
575 groundwater supply in Nuku'alofa is considerably higher than that in other Island Division
576 population centers and very much higher than the limited number of islands totally reliant on
577 rainwater harvesting where data is available. The minimal water supply priorities identified in
578 TSDFII appear to reflect the priorities of urban Nuku'alofa, while the water supply priorities in the
579 117 village CDPs reflect rural village concerns.

580 5. Conclusions

581 National Sustainable Development Strategies, externally considered appropriate for SIDs, are
582 widely used across the Pacific as method for identifying national priorities, allocating government
583 resources and as a way of contributing to international and regional agreements. They are largely
584 top-down processes which are considered more time-efficient than lengthy community consultations
585 involved in bottom-up community priority identifying processes.

586 The Tonga Strategic Development Framework 2015-2025 involved three months of high-level
587 consultations. In contrast the Community Development Plans in rural villages through Tonga's five
588 Island Divisions took 9 years to complete, mainly because they required participation and consensus
589 of 80% of the cohort populations of each village in each phase of the process. The priority issues
590 ranked by the villages provide a valuable insight into the concerns of villages. They have not,
591 apparently, been analyzed previously.

592 Here we concentrated only on water supply priorities. We found an enormous difference
593 between priorities identified in TDSFII, where water supply is barely mentioned and not at all under
594 the Infrastructure Pillar. We have suggested that the low priority given to water supply may reflect
595 the fact that Ministries, Departments and Agencies which contributed substantially to TDSFII are
596 predominately located in the capital Nuku'alofa which has a much higher per capita water supply
597 from groundwater and a lower reliance on rainwater than in northern Island Divisions or in rural
598 Tongatapu.

599 In contrast to the TDSFII, 76% of village CDPs ranked water supply within the top three
600 priorities and 72% or greater of villages in all Island Divisions ranked water supply within the top
601 three priorities. The highest percentage of villages, 93%, being in the Ha'apai Division. Difference in
602 ranking were observed between women, youth and men, with women in villages having the highest
603 priority concerns, reflecting the responsibility of women in villages for household water supply.

604 The large concerns in Ha'apai villages over water supply are predictable from the demographic
605 and water use data in the 2016 Census and from the characteristics of groundwater and rainfall across
606 the Island Divisions. Given that, the failure of TDSFII to identify rural village water supply as a
607 priority throws into question the processes used in its development. This is particularly so as National
608 Outcome B. of the TSDFII is "a more inclusive, sustainable and balanced urban and rural
609 development across island groups".

610 Village CDPs were presented in 2016, about one year after TDSFII was produced. We have only
611 examined water supply priorities ranked in the CDPs. The mismatch between planning processes in
612 this sector is startling. There is an opportunity to revise all identified rural village priorities in the

613 available CDPs and to revise TSDFII to better reflect identified priorities in CDPs. Without this
 614 analysis and recognition, the CDP process was largely ceremonial.

615 The Fale Alea 'o Tonga (National Parliament) has very recently passed the Water Resources Act
 616 2020 to conserve, protect and manage the Kingdom's water resources. This requires amongst other
 617 objectives "implementation of urban and rural planning regimes that take account of water
 618 management". This has the potential to address gaps in knowledge of the Kingdom's water resources
 619 and their use, and to focus on improving water supplies in Island Divisions and villages identified in
 620 the CDPs.

621 We have been fortunate here of having the opportunity of analyzing water supply priorities in
 622 both a national top-down development planning process and a nation-wide rural village, bottom-up
 623 priority planning process. Our findings here raise the question as to whether the mismatch found
 624 here in water supply priorities also applies to top-down strategic development planning processes
 625 and infrastructure investment strategies in other SIDs.

626 **Author Contributions** "Conceptualization, I.W., T.F., and T.K.; methodology, I.W., T.F., and T.K.; formal
 627 analysis, T.F. and I.W.; investigation, X.X.; resources, X.X.; data curation, X.X.; writing—original draft
 628 preparation, I.W.; writing—review and editing, I.W., T.F., and T.K.; project administration, T.K. All authors
 629 have read and agreed to the published version of the manuscript

630 **Funding:** "This research received no external funding"

631 **Acknowledgments:** This work arose as a result of a strategic planning project supported by the World
 632 Meteorology Organization under its Climate Risk and Early Warning Systems Initiative for Pacific Island
 633 Countries focusing on improved governance. WMO Pacific are thanked for that support. We are grateful to
 634 Quddus Fidelia, Tonga Water Board, for providing helpful information on urban water supplies in Tonga, to
 635 Lope ti Tufui, Victoria University of Wellington, for information on rural groundwater pumping in Tongatapu
 636 and Karin Nagorcka for editorial assistance.

637 **Conflicts of Interest:** "The authors declare no conflict of interest."

638 **Appendix A.** The Pillars and associated Organizational Outcomes (OO) and number of Strategic
 639 Concepts connected with each OO in the Tonga Strategic Development Framework 2015-2025 [10].

Pillars	Organisational Outcomes	No. Strategic Concepts
1. Economic Institutions	1.1 Improved macroeconomic management & stability with deeper financial markets	6
	1.2 Closer private/public partnerships for economic growth	4
	1.3 Strengthened business enabling environment	4
	1.4 Improved public enterprise performance	5
	1.5 Better access to, & improved use of overseas trade and employment, & foreign investment	5
	2.1 Improved collaboration with and support to civil society organizations & community groups	7
	2.2 Closer partnerships between government & churches & other stakeholders for community development	4
	2.3 More appropriate social & cultural practices	7
	2.4 Improved education & training providing life time learning	11
	2.5 Improved health care & delivery systems (universal healthcare coverage)	5
2. Social Institutions	2.6 Stronger integrated approaches to address both communicable and non-communicable diseases	4
	2.7 Better care & support for vulnerable people, in particular the disabled	6
	2.8 Improved collaboration with the Tongan diaspora	3

3.1 More efficient, effective, affordable, honest, transparent & a political public service focussed on clear priorities	7
3.2 Improved Law & order & domestic security appropriately applied	7
3.3 Appropriate decentralisation of government admin. With better scope for engagement with the public	3
3.4 Modern & appropriate Constitution with laws & regulations reflecting international standards of democratic processes	4
3.5 Improved working relations and collaboration between Privy Council, executive, legislative & judiciary	2
3.6 Improved collaboration with development partners ensuring programs better aligned behind govt. priorities	4
3.7 Improved political & defence engagement within the Pacific & the rest of the World	4
4.1 More reliable, safe & affordable energy services	4
4.2 More reliable, safe & affordable transport services	7
4.3 More reliable, safe & affordable information & communication technology (ICT) used in more innovative ways	4
4.4 More reliable, safe & affordable buildings & other structures	5
4.5 Improved use of research & development focussing on priority needs based on stronger foresight	3
5.1 Improved land use planning, administration & management for private and public use	7
5.2 Improved use of natural resources for long term flow of benefits	7
5.3 Cleaner environment with improved waste recycling	5
5.4 Improved resilience to extreme natural events and climate change	9

640

641 **References**

1. <https://www.un.org/sustainabledevelopment/water-and-sanitation/> (accessed 21 07 2020).
2. UN. Report of the Global Conference on the Sustainable Development of Small Island Developing States (SIDS), Bridgetown Barbados, 25 Apr - 6 May 1994, United Nations, New York, 1994; pp 77. <https://undocs.org/pdf?symbol=en/A/CONF.167/9> (accessed 9 09 2020)
3. Falkland, T.; White, I. Freshwater availability under climate change, Chapter 11. In *Climate Change and Impacts in the Pacific*, Kumar, L. Ed.; Springer Nature Switzerland, 2020; pp 403- 448. doi/10.1007/978-3-030-32878-8_11
4. https://www.un.org/esa/sustdev/natinfo/nsds/pacific_sids/pacific_sids.htm (accessed 21 07 2020).
5. UN. Report of the International Meeting to Review the Implementation of the Programme of Action for the Sustainable Development of Small Island Developing States. Port Louis, Mauritius, 10-14 January 2005. United Nations, New York. https://www.un.org/ga/search/view_doc.asp?symbol=A/CONF.207/11&Lang=E (accessed 24 07 2020)
6. UN. SIDS Accelerated Modalities of Action (SAMOA) Pathway, Resolution adopted by the United Nations General Assembly, 51st plenary meeting, 14 November 2014.
7. Lamour, P. *Foreign Flowers: Institutional Transfer and Good Governance in the Pacific Islands*. University of Hawaii Press, Honolulu, 2005; pp 220.
8. Barnett, J. Titanic states? Impacts and responses to climate change in the Pacific Islands. *Journal of International Affairs*, 2005; 59 (1), 203–219.
9. Daniell, K.A. *Co-Engineering and Participatory Water Management, Organisational Challenges for Water Governance*, UNESCO IHP International Hydrology Series, Cambridge University Press, Cambridge. UK 2012; pp 215.
10. Government of Tonga. Tonga Strategic Development Framework, 2015-2025. A more progressive Tonga: enhancing our inheritance. Ministry of Finance and National Planning, May 2015; pp 130. <http://www.finance.gov.to/tonga-strategic-development-framework> (accessed 4 09 2020)

666 11. Pacific Islands Report. Tonga launches first community development plans, 13-10-2016;
667 <http://www.pireport.org/articles/2016/10/13/tonga-launches-first-community-development-plans>
668 (accessed 25 07 2020)

669 12. Tonga Statistics Department. Tonga 2016, Census of Population and Housing, Vol. 1: Basic Tables and
670 Administrative Report, October 2017; pp 259. <https://tongastats.gov.to/census/population-statistics/>
671 (accessed 9 09 2020)

672 13. WRMS. National Water Resources Report (draft). Water Resources Management Section, Natural
673 Resources Division, Ministry of Lands and Natural Resources, Prepared for Climate Resilience Sector
674 Project, Tonga, ADB Grant (03-78 TON), September 2019; 97 pp.

675 14. WRMS. Integrated Water Resources Management Plan for Koloa, Vava'u. Water Resources Section,
676 Natural Resources Division, Ministry of Lands and Natural Resources, Prepared for Climate Resilience
677 Sector Project, Tonga, ADB Grant (03-78 TON), February 2018; pp 43.

678 15. WRMS. Integrated Water Resources Management Plan for Nomuka, Ha'apai. Water Resources Section,
679 Natural Resources Division, Ministry of Lands and Natural Resources, Prepared for Climate Resilience
680 Sector Project, Tonga, ADB Grant (03-78 TON), September 2018; pp 68.

681 16. WRMS. Integrated Water Resources Management Plan for Niuafou, Ongi Niua. Water Resources
682 Section, Natural Resources Division, Ministry of Lands and Natural Resources, Prepared for Climate
683 Resilience Sector Project, Tonga, ADB Grant (03-78 TON), September 2018; pp 77.

684 17. ABOM and CSIRO. *Climate Variability, Extremes and Change in the Western Tropical Pacific: New Science and*
685 *Updated Country Reports*. Pacific-Australia Climate Change Science and Adaptation Planning Program
686 Technical Report, Australian Bureau of Meteorology and Commonwealth Scientific and Industrial
687 Research Organisation, Melbourne, Australia, 2014; 372 pp.

688 18. World Health Organisation. Chapter 9, Technical Notes on Drinking Water, Sanitation and Hygiene in
689 Emergencies, Prepared by Water, Engineering and Development Centre, Loughborough University
690 Leicestershire, UK. 2nd edition, September 2013; pp 4.

691 19. Hunt, B. An analysis of the groundwater resources of Tongatapu island, Kingdom of Tonga. *Journal of*
692 *Hydrology*, 1979; 40, 185-196.

693 20. Furness, L. and Helu, S.P. The Hydrogeology and Water Supply of the Kingdom of Tonga. Ministry of
694 Lands, Survey and Natural Resources, Nuku'alofa, February 1993.

695 21. Falkland, A. Water resources report. Tonga Water Supply Master Plan Project. PPK Consultants Pty Ltd
696 and Australian International Development Assistance Bureau, January 1992.

697 22. Furness, L.J. Hydrogeology of Carbonate Islands of the Kingdom of Tonga. Chapter 18 in Vacher H.L., and
698 Quinn, T. (eds). *Geology and Hydrogeology of Carbonate Islands*. Developments in Sedimentology 54, Elsevier
699 Science, Amsterdam, 1997; pp 565-576.

700 23. Falkland, A. An outline of recent water Supply improvements for Pangai-Hihifo, Lifuka, Kingdom of
701 Tonga. Ecowise Environmental, Prepared for Tonga Water Board, August 2000.

702 24. White I., Falkland A. and Fatai T. Groundwater Evaluation and Monitoring Assessment, Vulnerability of
703 Groundwater in Tongatapu, Kingdom of Tonga. Report to Pacific Islands Applied Geoscience
704 Commission (SOPAC) by Australian National University, Canberra Australia European Union EDF8
705 project, Reducing the Vulnerability of Pacific APC States, September 2009; pp 361.

706 25. Waterloo, M.J. and IJzermans, S. Groundwater availability in relation to water demands in Tongatapu.
707 Dutch Risk Reduction Team – reducing the risk of water related disasters. February 2017; pp 81.

708 26. Fielea, Q.V., (Tonga Water Board, Nuku'alofa, Kingdom of Tonga). Personal communication, 2020.

709 27. Tonga Community Development Plans. Launched 4 October 2016;
710 <https://www.tongalocal.gov.to/community-development-plans> (accessed 2/09/2020)

711 28. Tufui, L. (Victoria University of Wellington, Wellington, New Zealand). Personal communication 2020.

712 29. Thompson, C.S. The Climate and Weather of Tonga. NZ Met. Service, Misc. Publication 188 (5), New
713 Zealand Meteorological Service, Te Ratoonga Tiroangi, Wellington, New Zealand, 1986; 60 pp.

714 30. ABOM and CSIRO. *Climate change in the Pacific: Scientific Assessment and New Research*. Volume 1: *Regional*
715 *Overview*. Pacific Climate Change Science Program. Hennessy K, Power S and Cambers G (Scientific
716 Editors), Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research
717 Organisation, Melbourne, Australia, 2011; 257 pp.

718 31. Diamond, H.J., Lorrey, A.M., and Renwick, J.A. A Southwest Pacific tropical cyclone climatology and
719 linkages to the El Niño–Southern Oscillation. *J. Climate*, 2013, 26 (1), 3-25. doi:10.1175/JCLI-D-12-00077.1.

720 32. Lafale, P.F., Diamond, H.J., Anderson, C.L. Effects of climate change on extreme events relevant to the
721 Pacific Islands. Pacific Marine Climate Change Report Card, Science Review 2018: pp 50-73,
722 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/71453/05_Extreme_Events.pdf (accessed 30 07 2020)

723 33. Cai, W., Lengaigne, M., Borlace, S., Collins, M., Cowan, T., McPhaden, M.J., Timmermann, A., Power, S.,
724 Brown, J., Menkes, C., Ngari, A., Vincent, E.M., Widlansky, M.J. More extreme swings of the South Pacific
725 convergence zone due to greenhouse warming, *Nature*, **2012**; 488, 365-369, doi.org/10.1038/nature11358.

726 34. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-
727 Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama,
728 N.M. Weyer (eds.)]. Intergovernmental Panel on Climate Change, Geneva, Switzerland (In press), 2019, 795pp.
729 https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf (accessed 30 07
730 2020)

731 35. Cai, W., Borlace, S., Lengaigne, M., van Rensh, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A.,
732 McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E. and Jin, F. Increasing frequency of
733 extreme El Niño events due to greenhouse warming: *Nat. Clim. Change*, **2014**; 4, . 111-116. DOI
734 10.1038/NCLIMATE2100.

735 36. Cai, W., Wang, G., Santoso, A., McPhaden, M.J., Wu, L., Jin, F-F., Timmermann, A., Collins, M., Vecchi, G.,
736 Lengaigne, M., England, M.H., Dommenget, D., Takahashi, K., Guilyardi, E. Increased frequency of
737 extreme La Niña events under greenhouse warming. *Nat. Clim. Change*, **2015**; 5(2), 132-137, doi:10.1038/
738 Nclimate2492.

739 37. Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., McPhaden, M.J.
740 Increased variability of eastern Pacific El Niño under greenhouse warming. *Nature*, **2018**; 564(7735), 201-
741 206, doi:10.1038/s41586018-0776-9.

742 38. Li, S., Wu, L., Yang, Y., Geng, T., Cai, W., Gan, B., Chen, Z., Jing, Z., Wang, G., Ma, X. The Pacific Decadal
743 Oscillation less predictable under greenhouse warming. *Nat. Clim. Change*, **2020**; 10, 30-34,
744 doi.org/10.1038/s41558-019-0663-x

745 39. Republic of Nauru. Nauru Economic Infrastructure Strategy and Investment Plan, November 2011; pp 137.

746

747

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).