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Abstract: While the use of crime data has been widely advocated in the literature, its availability is
often limited to large urban cities and isolated databases tend not to allow for spatial comparisons.
This paper presents an efficient machine learning framework capable of predicting spatial crime
occurrences, without using past crime as a predictor, and at a relatively high resolution: the U.S.
Census Block Group level. The proposed framework is based on an in-depth multidisciplinary
literature review allowing the selection of 188 best-fit crime predictors from socio-economic,
demographic, spatial, and environmental data. Such data are published periodically for the entire
United States. The selection of the appropriate predictive model was made through a comparative
study of different machine learning families of algorithms, including generalized linear models,
deep learning, and ensemble learning. The gradient boosting model was found to yield the most
accurate predictions for violent crimes, property crimes, motor vehicle thefts, vandalism, and the
total count of crimes. Extensive experiments on real-world datasets of crimes reported in 11 U.S.
cities demonstrated that the proposed framework achieves an accuracy of 73 and 77% when
predicting property crimes and violent crimes, respectively.

Keywords: Crime prediction; Ensemble Learning; Machine Learning; Regression.

1. Introduction

The ability to access reliable, high-resolution crime data has long been advocated by researchers
[1]. The analysis of crime data can be useful in many aspects of law enforcement policy. Among other
uses, it may help allocate law enforcement resources where they are most needed [2] and adapt law
enforcement policies to an ever-changing environment [3].

In the United States, crime data is mainly available through the FBI's Uniform Crime Report
program through the Summary Reporting System (SRS), currently transitioning into the National
Incident-Based Reporting System (NIBRS). However, the available data is still fragmented and not
always directly comparable across the contiguous U.S. In the absence of homogenous data, local
crime prediction can provide an additional perspective.

In the field of machine learning (ML), many approaches and models have been defined in
relation to crime prediction through methods of classification, clustering, regression, deep learning,
and ensemble learning [4, 5]. However, such models face a number of challenges. Among them, many
ML models dedicated to crime prediction are exclusively data-driven in their feature selection
process: the extensive use of feature engineering and automated feature selection techniques can then
limit the out-of-sample reliability of predictions. Besides, the ML models reaching satisfying
performances in their predictions tend to use past crime as a determinant of future crime [6-8]. As
such data tend to be available only in major urban centers and is often difficult to compare across
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locations, databases tend to be defined either at an aggregated level (city, county...) or at the local
level only (i.e. detailed grid in one city only).

Therefore, offering a prediction with a wide coverage and a high resolution would provide
policy makers and individuals with spatial elements of comparison, in addition to the traditional
advantages brought by predictive policing [9].

In this paper, we present a ML model able to predict crime counts in all U.S. Census Block
Groups, by using data available throughout the entire contiguous U.S. Our model relies on a
thorough review of the neighborhood effects literature to identify community correlates of crime.

As a first step, we reviewed different crime theories related to social, economic, and
demographic characteristics of a neighborhood, and selected 188 predictors by combining this
approach with correlation analysis. These predictors, along with our targets, consisting of crime
counts for various crime types between 2014 and 2018, were gathered at the U.S. Census Block Group
level for the contiguous U.S. Census Blocks are local areas defined as containing 600 to 3000 people,
with a median BG area of about 1.3 km?2. They have been argued to align with residents” perception
of their neighborhood, suggesting that they form an appropriate unit of analysis to study
neighborhood effects [10]. To build our model, we use the Crime Open Database [11],
geodocumenting crimes in 11 U.S. cities between 2014 and 2018, and thereby offering a variety of
urban contexts.

Then, since we deal with a regression problem, we studied different ML algorithm families,
including Generalized Linear Models (GLMs), Deep Learning, and Ensemble Learning. We
maintained the most accurate model for most types of crimes considered, namely: violent crimes,
property crimes, motor vehicle theft (MVT), and vandalism. Our model reaches up to 77% accuracy
in predicting crime counts for over 13,897 urban Block Groups in the U.S.

In short, the main contributions of this paper are as follows:

e Contribution 1: A spatial crime prediction model using data commonly available
throughout the entire continental U.S., thereby enabling spatial comparisons.

e Contribution 2: An efficient data strategy based on an in-depth multidisciplinary
literature review on crime and state-of-the-art predictive ML techniques.

e Contribution 3: A concise comparison of the performance of three predictive ML
models, namely: Poisson regression, Sequential Neural Network, and Gradient
Boosting.

e Contribution 4: A set of extensive experiments on real-world datasets of crimes
reported in different U.S. cities, and a detailed discussion of the promising local
crime predictions achieved.

The remainder of this paper is structured as follows: Section 2 presents the theoretical
background informing neighborhood effects on crime research and some state-of-the-art predictive
ML algorithms. Section 3 describes the data strategy followed to produce the input dataset and the
proposed predictive method. Section 4 discusses the achieved crime occurrences predictions. Finally,
Section 5 concludes and identifies some directions for future research.

2. Background and Related Work

2.1. Theoretical Background

Neighborhood effects is an important concept in geographic, public health and social science
research and is concerned with how neighborhood conditions affect social outcomes. The notion can
be traced back to University of Chicago sociologists Shaw and McKay [12] who proposed the field’s
oldest theoretical perspective, social disorganization, positing that neighborhood structures like
socioeconomic disadvantage, racial heterogeneity, and residential mobility prevent residents from
forming social ties to regulate crime. Shaw and McKay’s work heralded a major paradigm shift away
from individual-level theories of crime toward ecological models [13].
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While social disorganization theory fell out of favor in the 1960s, the approach was revitalized
in the 1980s by scholars in the U.S. with a renewed interest in neighborhood dynamics due to rising
crime rates and urban decline. These authors updated the framework by addressing criticisms [14],
testing and clarifying concepts [15, 16], and expanding causal mechanisms [17-19].

One important extension of social disorganization theory was the concept of collective efficacy
[18], which refers to residents’ ability to come together to achieve a shared desire for a safe
neighborhood [20]. Collective efficacy combines social cohesion, defined as trust and sense of
community between neighbors, with informal social control, which refers to residents’ ability to
regulate community disorder. Subsequent research has repeatedly demonstrated that collective
efficacy exerts a strong effect on community crime and violence [21-23].

Routine activities theory is another prominent perspective focused on neighborhood crime. The
theory posits that crime is more likely to occur when three factors meet in time and space: a motivated
offender, an available target, and the absence of a capable guardian (e.g. an authority figure) [24].
Research in this area is concerned with temporal and spatial effects on crime and focuses on micro-
geographies, including “hot spots,” such as street segments where crime occurs [25].

Pratt and Cullen [13] assessed routine activity theory and social disorganization theory along
with other criminological frameworks in their meta-analysis of macro-level predictors and theories
of crime. They found that social disorganization and resource deprivation theory, which links
economic inequality with an inability to regulate behavior in accordance with social norms, had the
strongest effects on crime. In their systematic, integrative review of the neighborhood effects
literature, Brisson & Roll [26] found that social disorganization theory and routine activities theory
had the most powerful effects on crime. Based on these findings, we elected to use predictors
associated with social disorganization theory in our framework.

Predictors of crime associated with social disorganization theory can be divided into two broad
categories: “static” neighborhood conditions that reflect a neighborhood’s social structural conditions
[27,26] and “dynamic” neighborhood processes, such as collective efficacy or social cohesion [18, 26,
28, 29]. Single static variables with significant effects on crime include income inequality [30-33];
race/ethnic segregation [34-36]; racial heterogeneity [37-40], residential instability [41], gender [42—
45], and age [46—48], all taken into account in our model. Table 1 lists major social structural predictors
of crime assessed in prior reviews [26, 49] and a meta-analysis [13] and indicates their effects (positive,
negative, unclear) on crime.

Table 1. Direct and Indirect Effects of Variables on Urban Crime [13, 26, 49].

Social Structural Variables  Relationship to Crime

Concentrated Disadvantage Positive

Unemployment Unclear, possibly positive
Family Disruption Positive
Residential Instability Positive
Racial/Ethnic Heterogeneity Positive
Segregation Positive
Income Inequality Positive
Immigration Unclear
Gender (Male) Positive
Age (Younger) Positive

Multicollinearity among social structural variables is a potential challenge in regression models
concerned with causal analysis of crime. This is because of strong links between many of the
structural factors associated with crime [50], creating what Wilson [19] referred to as “concentration
effects.” Concentrated disadvantage or “resource deprivation” [51] is one such index variable that
incorporates indicators for income inequality, poverty, racial diversity, educational attainment,
residential mobility, unemployment and/or family disruption [50, 52, 53]. Another index variable is
family disruption which combines measures of family stability such as nonmarriage, early marriage,
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early childbearing, parental absenteeism, widowhood, and death [54-56]. While we are aware of
multicollinearity issues in crime research, we did not use index variables in our model since
collinearity is only an issue for causal inference and not prediction, the purpose of our framework.

Brisson and Roll [26] assessed four dynamic or process variables in their review that tend to
interact with static predictors to affect crime. Assessing social cohesion, Brisson and Roll found limited
evidence of a relationship between social cohesion and crime in studies on hate crimes [57] and general
violence or intimate partner violence [58]. Results were mixed for informal social control, with one
study showing a relationship between informal social control and a decline in delinquency rates [59]
and another finding effects on anti-Black hate crime [57]. A third study, however, was unable to
demonstrate a link between informal social control and general violence and intimate partner violence
[58]. Research on social ties, which is a concept closely affiliated with social cohesion that looks at the
number of relationships in a community, has demonstrated that effects on crime depend on the type
and intensity of relationships and their influence on informal social control [40, 60]. Finally, support for
the effect of collective efficacy on crime is robust and the concept is applicable across urban locations.
Collective efficacy has been associated with a decline in violent victimization [61]; a decline in homicide
[61]; reduced fear of crime [62]; and increased street efficacy [53].

There is a nascent rural crime literature, largely dominated by studies oriented around social
disorganization theory [63]. Findings have been inconsistent, with evidence for some aspects of social
disorganization but little or no support for others [64]. Consequently, it is difficult to make broad
statements about crime patterns but preliminary research indicates that variables like poverty and
family disruption affect crime differently in rural communities than in urban areas. For example,
research suggests that poverty has no relationship or an inverse relationship with crime [65-68, 63, 69]
possibly because community stability produces stronger informal social control [70]. In another
example, racial heterogeneity appears to have limited effects on social disorganization in rural settings,
given the mixed results of studies. For example, Bouffard and Mulftic [65] found no association between
ethnic heterogeneity and violent crime, while other scholars have found a positive relationship
between variables, including robbery and assault in rural counties [67] and youth violent crime [71].
Table 2 provides an overview of social structural predictors of crime in rural communities.

Table 2. Social Disorganization Variables Effects on Rural Crime [64, 72].

Structural Variables Relationship to Crime

Poverty, Income, Income Inequality No relationship or Inverse

Unemployment Unclear, possibly positive

Family Disruption Unclear, possibly no relationship or even inverse
Residential Instability Unclear

Racial/Ethnic Heterogeneity Unclear

Due to remaining uncertainty about the mechanisms of crime in rural communities, we did not
create a separate model for predicting rural crime but applied the same model to rural and urban
contexts. Similarly, sparse research into suburban crime [65, 68, 73] meant that we were not able to
develop a distinct model to predict crime in suburban settings.

In sum, based on our thorough review of the neighborhood effects literature, we decided to select
predictors of urban crime associated with the neighborhood effects perspective, mainly social
disorganization theory, to inform our framework. These predictors have been shown to have significant
relationships with crime in prior research, and are summarized in Table 3. We subsequently drew on
datasets, including the U.S. Census, to select social, economic, and demographic indicators to represent
these predictors.

2.2. Related Work: ML and crime prediction

In this section, we review the recent work on spatial crime prediction using different ML
techniques, with an emphasis on the methods estimating crime rates or occurrences.
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H.W. Kang and H.B. Kang (Kang and Kang, 2017) proposed a deep learning method based on a
deep neural network (DNN) for crime occurrences prediction at the US census-tract level. In their
data strategy, the authors involved various sources of data, including crime occurrence reports and
demographic and climate information. Additionally, they considered environmental context
information using image data from Google Street View. In their prediction model, the authors
adopted a multimodal data fusion method, in such a way that the DNN is defined with four-layer
groups, namely: spatial, temporal, environmental context, and joint feature representation layers.
This predictive model produces significant results in terms of accuracy. However, it was trained and
tested using only real-world datasets collected from the city of Chicago, Illinois, due to data
availability constraints. Thus, it cannot be used uniformly for all US cities.

Based also on the deep learning family of methods, Huang et al. [75] proposed a Recurrent
Neural Network (RNN) for predicting spatio-temporal crime occurrences in urban areas. Their
method is characterized by detecting dynamic crime patterns using a hierarchical recurrent neural
network from hidden representation vectors. These vectors embed spatial, temporal, and categorical
signals while preserving the correlations between the crime occurrences and their time slots. This
method was trained and evaluated using real-world datasets collected from New York City. In this
dataset, crimes are recorded with their respective category, location, and timestamp. However, such
a method cannot be uniformly used for all urban areas, since this kind of data is not commonly
available for other cities.

A probabilistic model based on the Bayesian paradigm was suggested by [76]. This proposed
model was conceived to predict spatial crime rates using demographic and historical crime data. It
quantifies the uncertainties in the output predictions and the model parameters using a combination
of two Bayesian linear regression models. A first parametric model that takes into account the
relationship between crime rate and location-specific factors, and a second nonparametric model that
addresses the spatial dependencies. It also handles the inferences on the regression parameters by
estimating the posterior probability distribution using the MCMC (Markov Chain Monte Carlo
method). Results regarding three types of crime comply with the existing theoretical criminological
assumptions. In addition, the proposed model can be generalized to all of Australia, since it uses
demographic census data available nearly in all locations.

Besides these efforts, we found that ensemble-learning methods have been the subject of several
studies in the literature, and have proven to be effective in the context of spatial crime prediction.
This family of ML models draws its strength from the fact that it employs multiple learning
algorithms. Each algorithm works on a chunk or on the whole dataset to produce intermediate
predictions that are collected and processed in order to obtain the final predictions. Examples of
studies relying on ensemble-learning methods include [6, 7, 77].

Alves et al. [6] used a random forest regressor to predict crime in urban areas. Knowing that this
ML model is extremely sensitive to its main parameters (the number of trees and the maximum depth
of each tree), the authors estimated them using the stratified k-fold cross-validation method, and
then, they set them using the grid-search algorithm. Thus, they managed to create a trade-off between
bias and variance errors. They have also studied the relationship between crime incidents and urban
indicators using various statistical tests and metrics, in order to select the most important explanatory
indicators. Their proposed model has been trained and tested using urban indicators data from all
Brazilian cities. Experiments showed that it can yield a promising accuracy reaching up to 97% on
crime prediction. However, predictions concern only a single type of crime, i.e. homicides, at an
aggregated city-level.

More recently, Kadar et al. [7] proposed a predictive approach for spatio-temporal crime
hotspots predictions in low population density areas. The authors focused mainly on the problem of
class imbalance, handled through a repeated under-sampling technique. Indeed, in the learning
phase, their predictive model is trained using balanced sub-samples of the input dataset, which are
created by randomly selecting the same number of instances from the majority and minority classes.
Then, they adopted the random forest classifier as a base learner for predicting crime hotspots after
a deep evaluation of other ML models. Results with an input dataset composed of different
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227  predictors, such as socio-economic, geographical, temporal, meteorological, and crime variables,
228  showed that this approach outperforms the common baselines in predicting hotspots. However, it is
229  conceived to predict only a single type of crime, burglary incidents.

230 Another ensemble-learning predictive approach was proposed in [77]. Ingilevich and Ivanov
231  conceived a three-step approach for crime occurrences prediction in a specific urban area. Their
232  approach starts with a clustering step, in which the authors applied the DBSCAN (Density-Based
233  Spatial Clustering of Applications with Noise) algorithm in order to study the spatial patterns of the
234 considered crime types and to remove the noise from the dataset. Then, it is followed by a step of
235  feature selection, in which authors applied the chi-squared test in order to study the relative
236  importance of the features. Finally, in the third step, the authors used the gradient boosting model to
237  predict crime occurrences after a performance comparison of two other models, i.e. the linear
238  regression and the logistic regression. This model was trained and tested using the crime incidents
239  dataset from Saint-Petersburg, Russia. It outperformed the two other models in terms of accuracy for
240  three types of street crimes.

241 Building on this previous work and on our own efforts, we propose a predictive framework that
242  has been carefully designed to spatially predict crime occurrences at the U.S. Census Block Group
243  level, based on the gradient boosting model.

244 3. Methodology

245  3.1. Data strategy

246 Feature selection for this project was done using several approaches. First, relevant crime
247  predictors were identified using insights from the sociological, geographical, and ML literature, as
248  detailed in the Theoretical Background and Related Works sections. Second, correlations between all
249  variables available from the American Community Survey and our target variables were examined,
250  and variables displaying a correlation over 0.25 were retained. Third, variables were generated for
251  each feature based on neighboring Block Groups’ characteristics, to allow for spillover effects. The
252  following sections detail data sources and preprocessing steps used throughout this study.

253  3.1.1. Data sources

254 The input dataset of our proposed framework was built from different sources, as listed below:
255 e Socio-economic and demographic data were extracted from the American
256 Community Survey (ACS) 5-Year Estimates [78]. In the present work, we used the
257 ACS 5-year Estimates collection covering the period 2014-2018 for all U.S. Block
258 Groups.

259 e Climate data (monthly averages related to wind, rainfall, and temperature) was
260 retrieved from the WorldClim 2 project [79].

261 e Law enforcement data was collected based on Homeland Infrastructure data related
262 to Local Law Enforcement Agencies in the U.S.

263 e Crime counts for Violent Crime, Property Crime, and two specific subcases
264 (Vandalism and Motor Vehicle Theft) in the time-period 2014-2018 were extracted
265 and pooled at the U.S. Census Block Group level from the Crime Open Database [11].

266  3.1.2. Data preprocessing

267 The feature preprocessing pipeline adopted in our data strategy consists of four steps: preparing
268  the collected data, creating the new features, scaling the features, and de-skewing, as depicted in

269  Figure 1.
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Model input data

Figure 1. Data preprocessing steps.

First, the collected data was cleaned and formatted. Then, some new features were created by
combining the existing features with the goal of adding explicit information. For example, for each
socio-economic and demographic variable, a spillover variable was generated using the variable’s
mean or sum in neighboring Block Groups. In the feature scaling step, a min-max normalization was
performed in order to transform all input feature values to the [0,1] range. Finally, a log(1 + x) de-
skew function was applied only to variables with a skew score greater than 0.75 (found empirically
to be optimal). The skew score was calculated using the skew function from the Scipy [80] library.
log(1 + x) de-skewing was also applied to the target variable during the training phase.

The above steps yielded a dataset composed of 13,897 observations where each observation has
188 features. For the sake of clarity, we have aggregated the considered features under 15 themes, as
shown in Table 3. We present the mean absolute correlation of features per theme in order to take
into account the positive and negative correlations to the count target variable, in addition to the
mean of the feature importance per theme. The obtained values are expressed in percentages.

Table 3. Summary of the selected features.

Themes Number of Mean absolute Mean feature
attributes correlation (%) importance (%)

Poverty 14 23.57 0.59

Residential instability 4 19.89 0.75

Housing and 14 19.18 0.65

commuting

Income 4 18.4 0.68

Population 4 16.95 1.26

Family disruption 10 16.79 0.69

Unemployment 8 11.16 0.66

Gender 2 9.29 0.71

Climate 60 8.99 0.31

Education 36 8.73 0.54

Socio-economic 5 8.67 0.12

indicators

Age 10 7.45 0.64

Law enforcement 4 7.37 0.65

Ethnic heterogeneity 12 5.17 0.61

Land area 1 4.47 3.61

Target variables include four types of crime counts and a single variable, which represent a
combination of two types of crime counts:

e Target 1: Violent crime occurrences

e Target 2: Property crime occurrences

e Target 3: MVT crime occurrences

e Target 4: Vandalism crime occurrences

e Target 5: Total crime count (Violent + Property)

A brief overview of correlations listed in Table 3 suggests that factors showing the highest
correlations with total crime counts are related to static neighborhood conditions as poverty,
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residential instability, housing and commuting, and income, all clearly identified in the literature as
crime determinants [81, 50, 41, 33], along with population and population density. Feature
importances reveal that the land area covered by and population in a Block Group have the highest
importance, as Block Groups can widely vary in size (with urban Block Groups smaller than rural
Block Groups) and population (usually 600 to 3000).

3.2. The proposed method

The considered targets are count variables (the sum of crime type incidents within a fixed zone
area, a Block Group, during 5 years) and can be approximated by a Poisson distribution. Thus, we
first selected the Poisson regression model, because of its ability to model count data. The considered
target variables and the logarithm of its expected values can be modeled by a linear combination of
unknown parameters. However, this model assumes that the mean and variance are equal (equi-
dispersion). Unfortunately, this assumption is often violated in the observed data [82].

Let y; be the response variable. We assume that y; follows a Poisson distribution with mean 2;
defined as a function of covariates x;. The Poisson probability mass function is given by the equation
below:

- Vi
e "t /11' t

P(y;) = T 1)

Where: A; = E(y;|x;), and P defines the dimension of the covariates vector incorporated in the
model.

We have also examined the possibility of modeling the problem addressed in this paper using
Deep Learning methods. The Multilayer perceptron is one of the most widely used class of artificial
neural networks (ANN). It is composed of several layers. Each layer contains several, but non-
connected perceptrons [83].

The first layer is called the input layer and, in our case, it is composed of 188 units (perceptrons),
which correspond to the number of features. Since we are trying to solve a regression problem, the
last layer (the output layer) contains only one perceptron. We added two hidden layers. The first
layer contains 700 units, and the second includes 25 units. The input units pass their outputs to the
units in the first hidden layer. Each of the hidden layer units adds a constant (‘bias’) to a weighted
sum of its inputs, and then calculates an activation function of the result, in our case the ReLU
activation function:

y = max(0; x) )

Finally, we have investigated the use of Ensemble Learning methods. We opted for the Gradient
Boosting [84] algorithm because it performs well on tasks where the numbers of features and
observations are relatively limited and have a small computational footprint. The gradient boosting
model produces an ensemble of weak prediction models, typically decisions trees, and it generalizes
them by allowing optimization of an arbitrary differentiable loss function, in our case, the Fair loss
function [85].

As the model was trained on the log(1 + x) transformed targets, we use the inverse e* —1 on
the model predictions when inferencing in order to get proper crime count values.

The dataset is randomly split into train and test sets using a 80:20 ratio respectively. To find
optimal model hyperparameters we employ the cross-validation strategy on the train set (n_folds =
6) along with grid search for the hyperparameter space search. The cross-validation chooses the
optimal hyperparameters according to the lowest negative mean absolute error score.

We used the LightGBM gradient boosting algorithm implementation and the following optimal
hyperparameters found using grid search:
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Table 4. The optimal hyperparameters set using the grid search algorithm.

Parameters Values
learning_rate 0.005
reg_lambda 0.01
bagging fraction 1
num_leaves 128
max_bin 512
max_depth 7
num_iterations 5000
feature_selection 0.5
objective Fair
seed 1337

Hyperparameter tuning was done on the total crime count target variable and the same optimal
hyperparameters were used to train models for the remaining four target variables. In the end, each
target variable has a dedicated gradient boosting model.

4. Results and Discussion

4.1. Experimental settings

All operations related to the training and the test of the three models, i.e. Gradient Boosting,
neural network, and Poisson regressor, were conducted on a computer having a processor Intel (R)
Core (TM) i5 of 2.40 GHz and eight Giga bytes of RAM.

The proposed framework was implemented using Python 3.7, installed on a virtual environment
of the package manager Anaconda. For the Gradient Boosting model implementation, we used the
Light GBM library. For the Poisson model implementation, we used the Scikit-learn package. And,
for the neural network model implementation, we used the Keras library based on the TensorFlow
backend.

4.2. Evaluation metrics

In order to assess the quality of the predictions obtained with our proposed framework, we
relied on the most commonly used evaluation metrics for regression problems, namely: the Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

MAE 3)

_ i—qlri — 7l
n

iz (= #)?

n

RMSE = @)
Where r; denotes the ground truth target value for the i-th data point, #; denotes the predicted
target value for the i-th data point, and n is the total number of data points.

Additionally, we used a third metric to quantify the percentage of how close the predictions are
against the ground truth: the MAE divided by the mean of target values. This metric, what we call
accuracy in this paper, is defined as follows:

AC,=1- (Z:;llri - ﬁl/zzlzlri> (5)

4.3. Experiment Results

Table 5 shows the performances of three ML models, namely: Poisson regression, Deep learning,
and Gradient boosting. We applied these models for each crime type, in addition to the total count of
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crimes, using the same input dataset and in the same conditions. Then, we measured their accuracy
using the MAE and RMSE described above.

The gradient boosting model outperforms the other models in all the evaluated types of crime.
It should be noted, however, that the deep learning model also yields performances close to the
gradient boosting results.

Table 5. Comparison of the performance of three predictive ML models in terms of MAE and RMSE.

Crime types Metrics Models
Poisson regression Deep learning Gradient boosting

Count MAE 181.94 130.69 123.24
RMSE 439.35 331.14 318.28

Violent MAE 76.41 52.48 49.87
RMSE 175.70 132.39 132.37

Property MAE 114.34 86.61 79.13
RMSE 309.25 246.30 230.73

MVT MAE 15.54 9.35 8.70
RMSE 37.64 23.28 23.81

Vandalism  MAE 28.56 20.18 18.54
RMSE 56.25 39.04 38.19

In order to further evaluate the performance of these predictive models, we selected a random
set of 1000 observations from the input dataset, and then we compared the predicted crime
occurrences of each type of crime, in addition to the total count of crime occurrences, against the
ground truth, as depicted in Figure 2.
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Figure 2. Comparison of the predicted occurrences of crimes against the ground truth using three
different models. (a) Total crime count: predictions vs. real observations; (b) Violent crimes:
predictions vs. real observations; (c) Property crimes: predictions vs. real observations; (d) MVT:
predictions vs. real observations; (e) Vandalism: predictions vs. real observations.
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As stated before, our framework is able to provide predicted crime occurrences for all Block
Groups in the contiguous U.S. The learning phase was performed on 188 identified features, used to
predict crime occurrences for 11 U.S. cities across 13,897 Block Groups and for 5 years (2014-2018).
The model was then used to produce predictions for crime occurrences for the same period and all
U.S. Block Groups. For the sake of clarity, Figure 3 represents our findings for one year using map
visualizations of the New York City area, with a focus on Manhattan.

[ 0,44-1389

11389-255

[ 25,5 - 46,51 _ 7 &

W 46,51-13306 s < 16,55 - 55,61
I 133,06 - 2078, e S R “ 5 I 55,61 - 611,28
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Figure 3. Map visualizations of yearly-predicted crime occurrences in New York City!. (a) Predicted
total crime (count) occurrences; (b) Predicted violent crime occurrences; (c) Predicted property crime
occurrences; (d) Predicted MVT occurrences. (e) Predicted vandalism acts.

4.4. Discussion

Our approach generates Mean Absolute Errors (MAE) between 36 (vandalism) and 41%
(property crime) of the targets’ means, suggesting accuracies between 59% and 64% in our ability to

I Categories used to generate maps (from light to dark) correspond to the first quartile, second quartile, third
quartile, fourth quartile (excluding the 2 highest centiles), and the 2 highest centiles, of crime count predictions,
respectively. Basemap obtained from OpenStreetMap, and U.S. Census Block Groups delimitations were
extracted from the Tiger Census Shapefiles.
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predict the exact count of crimes occurring in a Block Group between 2014 and 2018. This
performance can appear moderate in comparison to studies using aggregated data (city, county,
state) and past crimes as features, that can reach up to 97% accuracy [6]. However, we believe it to be
remarkable given that (1) we predict crime at a higher resolution (Census Block Groups) and (2) our
approach does not use past crimes as a predictor. Our approach has the advantage of only using
features available throughout the entire U.S. Its results can thus provide elements of comparison to
policy makers at the national level, including in urban environments where crime data is scarce.
Furthermore, our tests reveal that predicting whether an observation lies within one of the categories
displayed in Figure 3 instead of the exact crime count can increase our accuracy to 75% when
predicting the total count of crimes, 77% for violent crimes, 73% for property crimes, 77% for motor
vehicle thefts, and 77% for vandalism acts.

Analyzing the importance of selected features in the decision process can add perspective to our
results. In the context of a tree-based algorithm, feature importance can be calculated by the sum of
all improvements over all internal nodes where this feature is used [86, cited by 6]. The resulting
feature importance, as calculated by the LightGBM regressor within the Python SciKitlearn library
[87], sums to 100 (across all features used) and provides a way to describe a feature’s relative
importance in generating the final prediction.

A number of features were found to be particularly important in predicting crime using this
approach. Population and population density are the most important predictors. Such factors are
followed by the total area covered by the Block Group, which can vary significantly (with larger Block
Groups located in rural areas). The median age comes third, followed by the distance to the nearest
local law enforcement agency. However, those features collectively explain less than 11% of the total
feature importance (with the 10 most important, involving additional factors related to social mobility
and education, explaining 17% of the total importance). These results highlight the complexity of
crime as a social phenomenon, as an important number of features in our framework significantly
improve our ability to predict crime occurrences.

Besides, in many instances, spillover features (i.e. features describing attributes of the
neighboring Block Groups) were found as more important than original features (describing attribute
of a single Block Group). This is further illustrated by an important spatial autocorrelation in crimes
predicted. If we consider total crime throughout the U.S., the Moran’s I (i.e. the correlation between
crime in a Block Group and the average crime predicted in neighboring Block Groups) predicted by
our approach is around 0.7 nationwide, and the existence of clusters is particularly clear in the case
of violent crime, vandalism, and motor vehicle theft (see Figures 3: (b), (d) and (e) for the case of New
York).

Finally, a number of limitations should be stated. First, due to the methodological framework
used, we can identify features of importance but not their impact (positive or negative) on crime in
our model. Second, our approach is based on more than 180 features gathered from multiple different
sources. Therefore, it involves a significant amount of work in terms of data processing. Third and
nonetheless, our accuracy could be improved by adding additional types of features to the analysis.
In this perspective, considering point of interests (involving a significant amount of social
interactions), such as bus stops [2], malls, bars, churches, or schools [77], additional factors related to
street lights [74] and/or social networks data [88] are additional approaches that can be
complementary to our analysis. Considering ambient population instead of residential population
[89] is also a promising perspective for future research. Finally, our model is trained on various urban
contexts, meaning that it does not necessarily capture crime dynamics in rural settings. Consequently,
predictions relative to rural areas are more uncertain than their urban counterparts.

5. Conclusions

In this paper, we proposed a ML framework able to provide predictions for spatial crime
occurrences across all U.S. Census Block Groups in the contiguous U.S. Our findings from a set of
extensive experiments on real-world datasets of crimes reported in 11 U.S. cities demonstrate that the
proposed framework yields accurate predictions for the different crime types considered, i.e. violent
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crimes, property crimes, motor vehicle thefts, vandalism acts, and total count of crime occurrences.
For these crimes types, our ability to predict whether crime count in a Block Group belongs to the
first, second, third, or fourth quartile or the 2 highest centiles range between 73 and 77%.

We believe that our findings could be further enhanced if we consider selected additional
features, such as social networks data, sites involving significant amounts of social interactions
(malls, bars, churches, schools, etc.), land use, and streetlights, among others. Another track to
explore in future research could be a deep dive into the subject of rural crime: although many factors
defining rural areas (such as lower population density) have indeed be taken into account by our
model, differing societal frameworks might justify the use of a separate model in the future.
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