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Abstract: While the use of crime data has been widely advocated in the literature, its availability is 11 
often limited to large urban cities and isolated databases tend not to allow for spatial comparisons. 12 
This paper presents an efficient machine learning framework capable of predicting spatial crime 13 
occurrences, without using past crime as a predictor, and at a relatively high resolution: the U.S. 14 
Census Block Group level. The proposed framework is based on an in-depth multidisciplinary 15 
literature review allowing the selection of 188 best-fit crime predictors from socio-economic, 16 
demographic, spatial, and environmental data. Such data are published periodically for the entire 17 
United States. The selection of the appropriate predictive model was made through a comparative 18 
study of different machine learning families of algorithms, including generalized linear models, 19 
deep learning, and ensemble learning. The gradient boosting model was found to yield the most 20 
accurate predictions for violent crimes, property crimes, motor vehicle thefts, vandalism, and the 21 
total count of crimes. Extensive experiments on real-world datasets of crimes reported in 11 U.S. 22 
cities demonstrated that the proposed framework achieves an accuracy of 73 and 77% when 23 
predicting property crimes and violent crimes, respectively. 24 

Keywords: Crime prediction; Ensemble Learning; Machine Learning; Regression. 25 

 26 

1. Introduction 27 

The ability to access reliable, high-resolution crime data has long been advocated by researchers 28 
[1]. The analysis of crime data can be useful in many aspects of law enforcement policy. Among other 29 
uses, it may help allocate law enforcement resources where they are most needed [2] and adapt law 30 
enforcement policies to an ever-changing environment [3]. 31 

In the United States, crime data is mainly available through the FBI’s Uniform Crime Report 32 
program through the Summary Reporting System (SRS), currently transitioning into the National 33 
Incident-Based Reporting System (NIBRS). However, the available data is still fragmented and not 34 
always directly comparable across the contiguous U.S. In the absence of homogenous data, local 35 
crime prediction can provide an additional perspective. 36 

In the field of machine learning (ML), many approaches and models have been defined in 37 
relation to crime prediction through methods of classification, clustering, regression, deep learning, 38 
and ensemble learning [4, 5]. However, such models face a number of challenges. Among them, many 39 
ML models dedicated to crime prediction are exclusively data-driven in their feature selection 40 
process: the extensive use of feature engineering and automated feature selection techniques can then 41 
limit the out-of-sample reliability of predictions. Besides, the ML models reaching satisfying 42 
performances in their predictions tend to use past crime as a determinant of future crime [6–8]. As 43 
such data tend to be available only in major urban centers and is often difficult to compare across 44 
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locations, databases tend to be defined either at an aggregated level (city, county…) or at the local 45 
level only (i.e. detailed grid in one city only). 46 

Therefore, offering a prediction with a wide coverage and a high resolution would provide 47 
policy makers and individuals with spatial elements of comparison, in addition to the traditional 48 
advantages brought by predictive policing [9]. 49 

In this paper, we present a ML model able to predict crime counts in all U.S. Census Block 50 
Groups, by using data available throughout the entire contiguous U.S. Our model relies on a 51 
thorough review of the neighborhood effects literature to identify community correlates of crime. 52 

As a first step, we reviewed different crime theories related to social, economic, and 53 
demographic characteristics of a neighborhood, and selected 188 predictors by combining this 54 
approach with correlation analysis. These predictors, along with our targets, consisting of crime 55 
counts for various crime types between 2014 and 2018, were gathered at the U.S. Census Block Group 56 
level for the contiguous U.S. Census Blocks are local areas defined as containing 600 to 3000 people, 57 
with a median BG area of about 1.3 km². They have been argued to align with residents’ perception 58 
of their neighborhood, suggesting that they form an appropriate unit of analysis to study 59 
neighborhood effects [10]. To build our model, we use the Crime Open Database [11], 60 
geodocumenting crimes in 11 U.S. cities between 2014 and 2018, and thereby offering a variety of 61 
urban contexts. 62 

Then, since we deal with a regression problem, we studied different ML algorithm families, 63 
including Generalized Linear Models (GLMs), Deep Learning, and Ensemble Learning. We 64 
maintained the most accurate model for most types of crimes considered, namely: violent crimes, 65 
property crimes, motor vehicle theft (MVT), and vandalism. Our model reaches up to 77% accuracy 66 
in predicting crime counts for over 13,897 urban Block Groups in the U.S. 67 

In short, the main contributions of this paper are as follows: 68 

 Contribution 1: A spatial crime prediction model using data commonly available 69 
throughout the entire continental U.S., thereby enabling spatial comparisons. 70 

 Contribution 2: An efficient data strategy based on an in-depth multidisciplinary 71 
literature review on crime and state-of-the-art predictive ML techniques. 72 

 Contribution 3: A concise comparison of the performance of three predictive ML 73 
models, namely: Poisson regression, Sequential Neural Network, and Gradient 74 
Boosting.  75 

 Contribution 4: A set of extensive experiments on real-world datasets of crimes 76 
reported in different U.S. cities, and a detailed discussion of the promising local 77 
crime predictions achieved. 78 

The remainder of this paper is structured as follows: Section 2 presents the theoretical 79 
background informing neighborhood effects on crime research and some state-of-the-art predictive 80 
ML algorithms. Section 3 describes the data strategy followed to produce the input dataset and the 81 
proposed predictive method. Section 4 discusses the achieved crime occurrences predictions. Finally, 82 
Section 5 concludes and identifies some directions for future research. 83 

2. Background and Related Work 84 

2.1. Theoretical Background 85 

Neighborhood effects is an important concept in geographic, public health and social science 86 
research and is concerned with how neighborhood conditions affect social outcomes. The notion can 87 
be traced back to University of Chicago sociologists Shaw and McKay [12] who proposed the field’s 88 
oldest theoretical perspective, social disorganization, positing that neighborhood structures like 89 
socioeconomic disadvantage, racial heterogeneity, and residential mobility prevent residents from 90 
forming social ties to regulate crime. Shaw and McKay’s work heralded a major paradigm shift away 91 
from individual-level theories of crime toward ecological models [13]. 92 
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While social disorganization theory fell out of favor in the 1960s, the approach was revitalized 93 
in the 1980s by scholars in the U.S. with a renewed interest in neighborhood dynamics due to rising 94 
crime rates and urban decline. These authors updated the framework by addressing criticisms [14], 95 
testing and clarifying concepts [15, 16], and expanding causal mechanisms [17–19]. 96 

 One important extension of social disorganization theory was the concept of collective efficacy 97 
[18], which refers to residents’ ability to come together to achieve a shared desire for a safe 98 
neighborhood [20]. Collective efficacy combines social cohesion, defined as trust and sense of 99 
community between neighbors, with informal social control, which refers to residents’ ability to 100 
regulate community disorder. Subsequent research has repeatedly demonstrated that collective 101 
efficacy exerts a strong effect on community crime and violence [21–23]. 102 

Routine activities theory is another prominent perspective focused on neighborhood crime. The 103 
theory posits that crime is more likely to occur when three factors meet in time and space: a motivated 104 
offender, an available target, and the absence of a capable guardian (e.g. an authority figure) [24]. 105 
Research in this area is concerned with temporal and spatial effects on crime and focuses on micro-106 
geographies, including “hot spots,” such as street segments where crime occurs [25]. 107 

Pratt and Cullen [13] assessed routine activity theory and social disorganization theory along 108 
with other criminological frameworks in their meta-analysis of macro-level predictors and theories 109 
of crime. They found that social disorganization and resource deprivation theory, which links 110 
economic inequality with an inability to regulate behavior in accordance with social norms, had the 111 
strongest effects on crime. In their systematic, integrative review of the neighborhood effects 112 
literature, Brisson & Roll [26] found that social disorganization theory and routine activities theory 113 
had the most powerful effects on crime. Based on these findings, we elected to use predictors 114 
associated with social disorganization theory in our framework. 115 

Predictors of crime associated with social disorganization theory can be divided into two broad 116 
categories: “static” neighborhood conditions that reflect a neighborhood’s social structural conditions 117 
[27, 26] and “dynamic” neighborhood processes, such as collective efficacy or social cohesion [18, 26, 118 
28, 29]. Single static variables with significant effects on crime include income inequality [30–33]; 119 
race/ethnic segregation [34–36]; racial heterogeneity [37–40], residential instability [41], gender [42–120 
45], and age [46–48], all taken into account in our model. Table 1 lists major social structural predictors 121 
of crime assessed in prior reviews [26, 49] and a meta-analysis [13] and indicates their effects (positive, 122 
negative, unclear) on crime.  123 

Table 1. Direct and Indirect Effects of Variables on Urban Crime [13, 26, 49]. 124 

Social Structural Variables Relationship to Crime 

Concentrated Disadvantage Positive   

Unemployment Unclear, possibly positive 

Family Disruption Positive 

Residential Instability Positive 

Racial/Ethnic Heterogeneity Positive 

Segregation Positive 

Income Inequality Positive 

Immigration Unclear 

Gender (Male) Positive 

Age (Younger) Positive 

 125 
Multicollinearity among social structural variables is a potential challenge in regression models 126 

concerned with causal analysis of crime. This is because of strong links between many of the 127 
structural factors associated with crime [50], creating what Wilson [19] referred to as “concentration 128 
effects.” Concentrated disadvantage or “resource deprivation” [51] is one such index variable that 129 
incorporates indicators for income inequality, poverty, racial diversity, educational attainment, 130 
residential mobility, unemployment and/or family disruption [50, 52, 53]. Another index variable is 131 
family disruption which combines measures of family stability such as nonmarriage, early marriage, 132 
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early childbearing, parental absenteeism, widowhood, and death [54–56]. While we are aware of 133 
multicollinearity issues in crime research, we did not use index variables in our model since 134 
collinearity is only an issue for causal inference and not prediction, the purpose of our framework. 135 

Brisson and Roll [26] assessed four dynamic or process variables in their review that tend to 136 
interact with static predictors to affect crime. Assessing social cohesion, Brisson and Roll found limited 137 
evidence of a relationship between social cohesion and crime in studies on hate crimes [57] and general 138 
violence or intimate partner violence [58]. Results were mixed for informal social control, with one 139 
study showing a relationship between informal social control and a decline in delinquency rates [59] 140 
and another finding effects on anti-Black hate crime [57]. A third study, however, was unable to 141 
demonstrate a link between informal social control and general violence and intimate partner violence 142 
[58]. Research on social ties, which is a concept closely affiliated with social cohesion that looks at the 143 
number of relationships in a community, has demonstrated that effects on crime depend on the type 144 
and intensity of relationships and their influence on informal social control [40, 60]. Finally, support for 145 
the effect of collective efficacy on crime is robust and the concept is applicable across urban locations. 146 
Collective efficacy has been associated with a decline in violent victimization [61]; a decline in homicide 147 
[61]; reduced fear of crime [62]; and increased street efficacy [53]. 148 

There is a nascent rural crime literature, largely dominated by studies oriented around social 149 
disorganization theory [63]. Findings have been inconsistent, with evidence for some aspects of social 150 
disorganization but little or no support for others [64]. Consequently, it is difficult to make broad 151 
statements about crime patterns but preliminary research indicates that variables like poverty and 152 
family disruption affect crime differently in rural communities than in urban areas. For example, 153 
research suggests that poverty has no relationship or an inverse relationship with crime [65–68, 63, 69] 154 
possibly because community stability produces stronger informal social control [70]. In another 155 
example, racial heterogeneity appears to have limited effects on social disorganization in rural settings, 156 
given the mixed results of studies. For example, Bouffard and Muftic [65] found no association between 157 
ethnic heterogeneity and violent crime,  while other scholars have found a positive relationship 158 
between variables, including robbery and assault in rural counties [67] and youth violent crime [71]. 159 
Table 2 provides an overview of social structural predictors of crime in rural communities. 160 

Table 2. Social Disorganization Variables Effects on Rural Crime [64, 72].   161 

Structural Variables Relationship to Crime 

Poverty, Income, Income Inequality No relationship or Inverse 

Unemployment Unclear, possibly positive 

Family Disruption Unclear, possibly no relationship or even inverse 

Residential Instability Unclear 

Racial/Ethnic Heterogeneity Unclear 

Due to remaining uncertainty about the mechanisms of crime in rural communities, we did not 162 
create a separate model for predicting rural crime but applied the same model to rural and urban 163 
contexts. Similarly, sparse research into suburban crime [65, 68, 73] meant that we were not able to 164 
develop a distinct model to predict crime in suburban settings. 165 

In sum, based on our thorough review of the neighborhood effects literature, we decided to select 166 
predictors of urban crime associated with the neighborhood effects perspective, mainly social 167 
disorganization theory, to inform our framework. These predictors have been shown to have significant 168 
relationships with crime in prior research, and are summarized in Table 3. We subsequently drew on 169 
datasets, including the U.S. Census, to select social, economic, and demographic indicators to represent 170 
these predictors. 171 

2.2. Related Work: ML and crime prediction 172 

In this section, we review the recent work on spatial crime prediction using different ML 173 
techniques, with an emphasis on the methods estimating crime rates or occurrences. 174 
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H.W. Kang and H.B. Kang (Kang and Kang, 2017) proposed a deep learning method based on a 175 
deep neural network (DNN) for crime occurrences prediction at the US census-tract level. In their 176 
data strategy, the authors involved various sources of data, including crime occurrence reports and 177 
demographic and climate information. Additionally, they considered environmental context 178 
information using image data from Google Street View. In their prediction model, the authors 179 
adopted a multimodal data fusion method, in such a way that the DNN is defined with four-layer 180 
groups, namely: spatial, temporal, environmental context, and joint feature representation layers. 181 
This predictive model produces significant results in terms of accuracy. However, it was trained and 182 
tested using only real-world datasets collected from the city of Chicago, Illinois, due to data 183 
availability constraints. Thus, it cannot be used uniformly for all US cities.  184 

Based also on the deep learning family of methods, Huang et al. [75] proposed a Recurrent 185 
Neural Network (RNN) for predicting spatio-temporal crime occurrences in urban areas. Their 186 
method is characterized by detecting dynamic crime patterns using a hierarchical recurrent neural 187 
network from hidden representation vectors. These vectors embed spatial, temporal, and categorical 188 
signals while preserving the correlations between the crime occurrences and their time slots. This 189 
method was trained and evaluated using real-world datasets collected from New York City. In this 190 
dataset, crimes are recorded with their respective category, location, and timestamp. However, such 191 
a method cannot be uniformly used for all urban areas, since this kind of data is not commonly 192 
available for other cities.   193 

A probabilistic model based on the Bayesian paradigm was suggested by [76]. This proposed 194 
model was conceived to predict spatial crime rates using demographic and historical crime data. It 195 
quantifies the uncertainties in the output predictions and the model parameters using a combination 196 
of two Bayesian linear regression models. A first parametric model that takes into account the 197 
relationship between crime rate and location-specific factors, and a second nonparametric model that 198 
addresses the spatial dependencies. It also handles the inferences on the regression parameters by 199 
estimating the posterior probability distribution using the MCMC (Markov Chain Monte Carlo 200 
method). Results regarding three types of crime comply with the existing theoretical criminological 201 
assumptions. In addition, the proposed model can be generalized to all of Australia, since it uses 202 
demographic census data available nearly in all locations.  203 

Besides these efforts, we found that ensemble-learning methods have been the subject of several 204 
studies in the literature, and have proven to be effective in the context of spatial crime prediction. 205 
This family of ML models draws its strength from the fact that it employs multiple learning 206 
algorithms. Each algorithm works on a chunk or on the whole dataset to produce intermediate 207 
predictions that are collected and processed in order to obtain the final predictions. Examples of 208 
studies relying on ensemble-learning methods include [6, 7, 77]. 209 

Alves et al. [6] used a random forest regressor to predict crime in urban areas. Knowing that this 210 
ML model is extremely sensitive to its main parameters (the number of trees and the maximum depth 211 
of each tree), the authors estimated them using the stratified k-fold cross-validation method, and 212 
then, they set them using the grid-search algorithm. Thus, they managed to create a trade-off between 213 
bias and variance errors. They have also studied the relationship between crime incidents and urban 214 
indicators using various statistical tests and metrics, in order to select the most important explanatory 215 
indicators. Their proposed model has been trained and tested using urban indicators data from all 216 
Brazilian cities.  Experiments showed that it can yield a promising accuracy reaching up to 97% on 217 
crime prediction. However, predictions concern only a single type of crime, i.e. homicides, at an 218 
aggregated city-level.  219 

More recently, Kadar et al. [7] proposed a predictive approach for spatio-temporal crime 220 
hotspots predictions in low population density areas. The authors focused mainly on the problem of 221 
class imbalance, handled through a repeated under-sampling technique. Indeed, in the learning 222 
phase, their predictive model is trained using balanced sub-samples of the input dataset, which are 223 
created by randomly selecting the same number of instances from the majority and minority classes. 224 
Then, they adopted the random forest classifier as a base learner for predicting crime hotspots after 225 
a deep evaluation of other ML models. Results with an input dataset composed of different 226 
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predictors, such as socio-economic, geographical, temporal, meteorological, and crime variables, 227 
showed that this approach outperforms the common baselines in predicting hotspots. However, it is 228 
conceived to predict only a single type of crime, burglary incidents. 229 

Another ensemble-learning predictive approach was proposed in [77]. Ingilevich and Ivanov 230 
conceived a three-step approach for crime occurrences prediction in a specific urban area. Their 231 
approach starts with a clustering step, in which the authors applied the DBSCAN (Density-Based 232 
Spatial Clustering of Applications with Noise) algorithm in order to study the spatial patterns of the 233 
considered crime types and to remove the noise from the dataset. Then, it is followed by a step of 234 
feature selection, in which authors applied the chi-squared test in order to study the relative 235 
importance of the features. Finally, in the third step, the authors used the gradient boosting model to 236 
predict crime occurrences after a performance comparison of two other models, i.e. the linear 237 
regression and the logistic regression. This model was trained and tested using the crime incidents 238 
dataset from Saint-Petersburg, Russia. It outperformed the two other models in terms of accuracy for 239 
three types of street crimes. 240 

Building on this previous work and on our own efforts, we propose a predictive framework that 241 
has been carefully designed to spatially predict crime occurrences at the U.S. Census Block Group 242 
level, based on the gradient boosting model. 243 

3. Methodology 244 

3.1. Data strategy 245 

Feature selection for this project was done using several approaches. First, relevant crime 246 
predictors were identified using insights from the sociological, geographical, and ML literature, as 247 
detailed in the Theoretical Background and Related Works sections. Second, correlations between all 248 
variables available from the American Community Survey and our target variables were examined, 249 
and variables displaying a correlation over 0.25 were retained. Third, variables were generated for 250 
each feature based on neighboring Block Groups’ characteristics, to allow for spillover effects. The 251 
following sections detail data sources and preprocessing steps used throughout this study. 252 

3.1.1. Data sources 253 

The input dataset of our proposed framework was built from different sources, as listed below:   254 

 Socio-economic and demographic data were extracted from the American 255 
Community Survey (ACS) 5-Year Estimates [78]. In the present work, we used the 256 
ACS 5-year Estimates collection covering the period 2014-2018 for all U.S. Block 257 
Groups.  258 

 Climate data (monthly averages related to wind, rainfall, and temperature) was 259 
retrieved from the WorldClim 2 project [79]. 260 

 Law enforcement data was collected based on Homeland Infrastructure data related 261 
to Local Law Enforcement Agencies in the U.S. 262 

 Crime counts for Violent Crime, Property Crime, and two specific subcases 263 
(Vandalism and Motor Vehicle Theft) in the time-period 2014-2018 were extracted 264 
and pooled at the U.S. Census Block Group level from the Crime Open Database [11]. 265 

3.1.2. Data preprocessing 266 

The feature preprocessing pipeline adopted in our data strategy consists of four steps: preparing 267 
the collected data, creating the new features, scaling the features, and de-skewing, as depicted in 268 
Figure 1. 269 
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Figure 1. Data preprocessing steps. 

First, the collected data was cleaned and formatted. Then, some new features were created by 270 
combining the existing features with the goal of adding explicit information. For example, for each 271 
socio-economic and demographic variable, a spillover variable was generated using the variable’s 272 
mean or sum in neighboring Block Groups. In the feature scaling step, a min-max normalization was 273 
performed in order to transform all input feature values to the [0,1] range. Finally, a log(1 + 𝑥) de-274 
skew function was applied only to variables with a skew score greater than 0.75 (found empirically 275 
to be optimal). The skew score was calculated using the skew function from the Scipy [80] library. 276 
log(1 + 𝑥) de-skewing was also applied to the target variable during the training phase. 277 

The above steps yielded a dataset composed of 13,897 observations where each observation has 278 
188 features. For the sake of clarity, we have aggregated the considered features under 15 themes, as 279 
shown in Table 3. We present the mean absolute correlation of features per theme in order to take 280 
into account the positive and negative correlations to the count target variable, in addition to the 281 
mean of the feature importance per theme. The obtained values are expressed in percentages. 282 

Table 3. Summary of the selected features. 283 

Themes Number of 

attributes 

Mean absolute 

correlation (%) 

Mean feature 

importance (%) 

Poverty 14 23.57 0.59 

Residential instability 4 19.89 0.75 

Housing and 

commuting 

14 19.18 0.65 

Income 4 18.4 0.68 

Population 4 16.95 1.26 

Family disruption 10 16.79 0.69 

Unemployment 8 11.16 0.66 

Gender 2 9.29 0.71 

Climate 60 8.99 0.31 

Education 36 8.73 0.54 

Socio-economic 

indicators 

5 8.67 0.12 

Age 10 7.45 0.64 

Law enforcement 4 7.37 0.65 

Ethnic heterogeneity 12 5.17 0.61 

Land area 1 4.47 3.61 

Target variables include four types of crime counts and a single variable, which represent a 284 
combination of two types of crime counts: 285 

 Target 1: Violent crime occurrences 286 
 Target 2: Property crime occurrences 287 
 Target 3: MVT crime occurrences 288 
 Target 4: Vandalism crime occurrences 289 
 Target 5: Total crime count (Violent + Property) 290 

A brief overview of correlations listed in Table 3 suggests that factors showing the highest 291 
correlations with total crime counts are related to static neighborhood conditions as poverty, 292 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2020                   



8 of 18 

 

residential instability, housing and commuting, and income, all clearly identified in the literature as 293 
crime determinants [81, 50, 41, 33], along with population and population density. Feature 294 
importances reveal that the land area covered by and population in a Block Group have the highest 295 
importance, as Block Groups can widely vary in size (with urban Block Groups smaller than rural 296 
Block Groups) and population (usually 600 to 3000). 297 

3.2. The proposed method 298 

The considered targets are count variables (the sum of crime type incidents within a fixed zone 299 
area, a Block Group, during 5 years) and can be approximated by a Poisson distribution. Thus, we 300 
first selected the Poisson regression model, because of its ability to model count data. The considered 301 
target variables and the logarithm of its expected values can be modeled by a linear combination of 302 
unknown parameters. However, this model assumes that the mean and variance are equal (equi-303 
dispersion). Unfortunately, this assumption is often violated in the observed data [82]. 304 

Let 𝑦𝑖  be the response variable. We assume that 𝑦𝑖  follows a Poisson distribution with mean 𝜆𝑖 305 
defined as a function of covariates 𝑥𝑖. The Poisson probability mass function is given by the equation 306 
below: 307 

𝑃(𝑦𝑖) =
𝑒−𝜆𝑖 𝜆𝑖

𝑦𝑖

𝜆𝑖!
 (1) 

Where:  𝜆𝑖 = 𝐸(𝑦𝑖|𝑥𝑖), and 𝑃  defines the dimension of the covariates vector incorporated in the 308 
model. 309 

We have also examined the possibility of modeling the problem addressed in this paper using 310 
Deep Learning methods. The Multilayer perceptron is one of the most widely used class of artificial 311 
neural networks (ANN). It is composed of several layers. Each layer contains several, but non-312 
connected perceptrons [83].  313 

The first layer is called the input layer and, in our case, it is composed of 188 units (perceptrons), 314 
which correspond to the number of features. Since we are trying to solve a regression problem, the 315 
last layer (the output layer) contains only one perceptron. We added two hidden layers. The first 316 
layer contains 700 units, and the second includes 25 units. The input units pass their outputs to the 317 
units in the first hidden layer. Each of the hidden layer units adds a constant (‘bias’) to a weighted 318 
sum of its inputs, and then calculates an activation function of the result, in our case the ReLU 319 
activation function: 320 

𝑦 = max (0; 𝑥)  (2) 

Finally, we have investigated the use of Ensemble Learning methods. We opted for the Gradient 321 
Boosting [84] algorithm because it performs well on tasks where the numbers of features and 322 
observations are relatively limited and have a small computational footprint. The gradient boosting 323 
model produces an ensemble of weak prediction models, typically decisions trees, and it generalizes 324 
them by allowing optimization of an arbitrary differentiable loss function, in our case, the Fair loss 325 
function [85]. 326 

As the model was trained on the log(1 + 𝑥) transformed targets, we use the inverse 𝑒𝑥 − 1 on 327 
the model predictions when inferencing in order to get proper crime count values. 328 

The dataset is randomly split into train and test sets using a 80:20 ratio respectively. To find 329 
optimal model hyperparameters we employ the cross-validation strategy on the train set (n_folds = 330 
6) along with grid search for the hyperparameter space search. The cross-validation chooses the 331 
optimal hyperparameters according to the lowest negative mean absolute error score. 332 

We used the LightGBM gradient boosting algorithm implementation and the following optimal 333 
hyperparameters found using grid search: 334 
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Table 4. The optimal hyperparameters set using the grid search algorithm. 335 

Parameters Values 

learning_rate 0.005 

reg_lambda 0.01 

bagging_fraction 1 

num_leaves 128 

max_bin 512 

max_depth 7 

num_iterations 5000 

feature_selection 0.5 

objective Fair 

seed 1337 

Hyperparameter tuning was done on the total crime count target variable and the same optimal 336 
hyperparameters were used to train models for the remaining four target variables. In the end, each 337 
target variable has a dedicated gradient boosting model. 338 

4. Results and Discussion 339 

4.1. Experimental settings 340 

All operations related to the training and the test of the three models, i.e. Gradient Boosting, 341 
neural network, and Poisson regressor, were conducted on a computer having a processor Intel (R) 342 
Core (TM) i5 of 2.40 GHz and eight Giga bytes of RAM. 343 

The proposed framework was implemented using Python 3.7, installed on a virtual environment 344 
of the package manager Anaconda. For the Gradient Boosting model implementation, we used the 345 
Light GBM library. For the Poisson model implementation, we used the Scikit-learn package. And, 346 
for the neural network model implementation, we used the Keras library based on the TensorFlow 347 
backend. 348 

4.2. Evaluation metrics 349 

In order to assess the quality of the predictions obtained with our proposed framework, we 350 
relied on the most commonly used evaluation metrics for regression problems, namely: the Mean 351 
Absolute Error (MAE) and the Root Mean Squared Error (RMSE). 352 

𝑀𝐴𝐸 =
∑ |𝑟𝑖 − 𝑟̂𝑖|

𝑛
𝑖=1

𝑛
 (3) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖 − 𝑟̂𝑖)

2𝑛
𝑖=1

𝑛
 (4) 

Where 𝑟𝑖  denotes the ground truth target value for the i-th data point, 𝑟̂𝑖  denotes the predicted 353 
target value for the i-th data point, and 𝑛 is the total number of data points. 354 

Additionally, we used a third metric to quantify the percentage of how close the predictions are 355 
against the ground truth: the MAE divided by the mean of target values. This metric, what we call 356 
accuracy in this paper, is defined as follows: 357 

𝐴𝐶𝑝 = 1 − (∑ |𝑟𝑖 − 𝑟̂𝑖|
𝑛

𝑖=1
∑ 𝑟𝑖

𝑛

𝑖=1
⁄ ) (5) 

4.3. Experiment Results 358 

Table 5 shows the performances of three ML models, namely: Poisson regression, Deep learning, 359 
and Gradient boosting. We applied these models for each crime type, in addition to the total count of 360 
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crimes, using the same input dataset and in the same conditions. Then, we measured their accuracy 361 
using the MAE and RMSE described above.  362 

The gradient boosting model outperforms the other models in all the evaluated types of crime. 363 
It should be noted, however, that the deep learning model also yields performances close to the 364 
gradient boosting results. 365 

Table 5. Comparison of the performance of three predictive ML models in terms of MAE and RMSE. 366 

Crime types Metrics Models 

Poisson regression Deep learning Gradient boosting 

Count MAE 181.94 130.69 123.24 

RMSE 439.35 331.14 318.28 

Violent MAE 76.41 52.48 49.87 

RMSE 175.70 132.39 132.37 

Property MAE 114.34 86.61 79.13 

RMSE 309.25 246.30 230.73 

MVT MAE 15.54 9.35 8.70 

RMSE 37.64 23.28 23.81 

Vandalism MAE 28.56 20.18 18.54 

RMSE 56.25 39.04 38.19 

In order to further evaluate the performance of these predictive models, we selected a random 367 
set of 1000 observations from the input dataset, and then we compared the predicted crime 368 
occurrences of each type of crime, in addition to the total count of crime occurrences, against the 369 
ground truth, as depicted in Figure 2. 370 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2. Comparison of the predicted occurrences of crimes against the ground truth using three 371 
different models. (a) Total crime count: predictions vs. real observations; (b) Violent crimes: 372 
predictions vs. real observations; (c) Property crimes: predictions vs. real observations; (d) MVT: 373 
predictions vs. real observations; (e) Vandalism: predictions vs. real observations.  374 
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As stated before, our framework is able to provide predicted crime occurrences for all Block 375 
Groups in the contiguous U.S. The learning phase was performed on 188 identified features, used to 376 
predict crime occurrences for 11 U.S. cities across 13,897 Block Groups and for 5 years (2014-2018). 377 
The model was then used to produce predictions for crime occurrences for the same period and all 378 
U.S. Block Groups. For the sake of clarity, Figure 3 represents our findings for one year using map 379 
visualizations of the New York City area, with a focus on Manhattan.  380 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Map visualizations of yearly-predicted crime occurrences in New York City1. (a) Predicted 381 
total crime (count) occurrences; (b) Predicted violent crime occurrences; (c) Predicted property crime 382 
occurrences; (d) Predicted MVT occurrences. (e) Predicted vandalism acts. 383 

4.4. Discussion 384 

Our approach generates Mean Absolute Errors (MAE) between 36 (vandalism) and 41% 385 
(property crime) of the targets’ means, suggesting accuracies between 59% and 64% in our ability to 386 

                                                 
1 Categories used to generate maps (from light to dark) correspond to the first quartile, second quartile, third 

quartile, fourth quartile (excluding the 2 highest centiles), and the 2 highest centiles, of crime count predictions, 

respectively. Basemap obtained from OpenStreetMap, and U.S. Census Block Groups delimitations were 

extracted from the Tiger Census Shapefiles. 
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predict the exact count of crimes occurring in a Block Group between 2014 and 2018. This 387 
performance can appear moderate in comparison to studies using aggregated data (city, county, 388 
state) and past crimes as features, that can reach up to 97% accuracy [6]. However, we believe it to be 389 
remarkable given that (1) we predict crime at a higher resolution (Census Block Groups) and (2) our 390 
approach does not use past crimes as a predictor. Our approach has the advantage of only using 391 
features available throughout the entire U.S. Its results can thus provide elements of comparison to 392 
policy makers at the national level, including in urban environments where crime data is scarce. 393 
Furthermore, our tests reveal that predicting whether an observation lies within one of the categories 394 
displayed in Figure 3 instead of the exact crime count can increase our accuracy to 75% when 395 
predicting the total count of crimes, 77% for violent crimes, 73% for property crimes, 77% for motor 396 
vehicle thefts, and 77% for vandalism acts. 397 

Analyzing the importance of selected features in the decision process can add perspective to our 398 
results. In the context of a tree-based algorithm, feature importance can be calculated by the sum of 399 
all improvements over all internal nodes where this feature is used [86, cited by 6]. The resulting 400 
feature importance, as calculated by the LightGBM regressor within the Python SciKitlearn library 401 
[87], sums to 100 (across all features used) and provides a way to describe a feature’s relative 402 
importance in generating the final prediction. 403 

A number of features were found to be particularly important in predicting crime using this 404 
approach. Population and population density are the most important predictors. Such factors are 405 
followed by the total area covered by the Block Group, which can vary significantly (with larger Block 406 
Groups located in rural areas). The median age comes third, followed by the distance to the nearest 407 
local law enforcement agency. However, those features collectively explain less than 11% of the total 408 
feature importance (with the 10 most important, involving additional factors related to social mobility 409 
and education, explaining 17% of the total importance). These results highlight the complexity of 410 
crime as a social phenomenon, as an important number of features in our framework significantly 411 
improve our ability to predict crime occurrences. 412 

Besides, in many instances, spillover features (i.e. features describing attributes of the 413 
neighboring Block Groups) were found as more important than original features (describing attribute 414 
of a single Block Group). This is further illustrated by an important spatial autocorrelation in crimes 415 
predicted. If we consider total crime throughout the U.S., the Moran’s I (i.e. the correlation between 416 
crime in a Block Group and the average crime predicted in neighboring Block Groups) predicted by 417 
our approach is around 0.7 nationwide, and the existence of clusters is particularly clear in the case 418 
of violent crime, vandalism, and motor vehicle theft (see Figures 3: (b), (d) and (e) for the case of New 419 
York).  420 

Finally, a number of limitations should be stated. First, due to the methodological framework 421 
used, we can identify features of importance but not their impact (positive or negative) on crime in 422 
our model. Second, our approach is based on more than 180 features gathered from multiple different 423 
sources. Therefore, it involves a significant amount of work in terms of data processing. Third and 424 
nonetheless, our accuracy could be improved by adding additional types of features to the analysis. 425 
In this perspective, considering point of interests (involving a significant amount of social 426 
interactions), such as bus stops [2], malls, bars, churches, or schools [77], additional factors related to 427 
street lights [74] and/or social networks data [88] are additional approaches that can be 428 
complementary to our analysis. Considering ambient population instead of residential population 429 
[89] is also a promising perspective for future research. Finally, our model is trained on various urban 430 
contexts, meaning that it does not necessarily capture crime dynamics in rural settings. Consequently, 431 
predictions relative to rural areas are more uncertain than their urban counterparts.  432 

5. Conclusions 433 

In this paper, we proposed a ML framework able to provide predictions for spatial crime 434 
occurrences across all U.S. Census Block Groups in the contiguous U.S. Our findings from a set of 435 
extensive experiments on real-world datasets of crimes reported in 11 U.S. cities demonstrate that the 436 
proposed framework yields accurate predictions for the different crime types considered, i.e. violent 437 
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crimes, property crimes, motor vehicle thefts, vandalism acts, and total count of crime occurrences. 438 
For these crimes types, our ability to predict whether crime count in a Block Group belongs to the 439 
first, second, third, or fourth quartile or the 2 highest centiles range between 73 and 77%. 440 

We believe that our findings could be further enhanced if we consider selected additional 441 
features, such as social networks data, sites involving significant amounts of social interactions 442 
(malls, bars, churches, schools, etc.), land use, and streetlights, among others.  Another track to 443 
explore in future research could be a deep dive into the subject of rural crime: although many factors 444 
defining rural areas (such as lower population density) have indeed be taken into account by our 445 
model, differing societal frameworks might justify the use of a separate model in the future. 446 
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