

1 Article

2

Predicting Spatial Crime Occurrences through an 3 efficient Ensemble-Learning Model

4 **Yasmine Lamari** ¹, **Bartol Freskura** ², **Anass Abdessamad** ¹, **Sarah Eichberg** ³, and **Simon de**
5 **Bonviller** ^{1,*}6 ¹ Augurisk, Inc.; United States7 ² Velebit AI LLC; Croatia8 ³ The Eichberg Group; United States

9 * Correspondence: sdebonviller@augurisk.com

10

11 **Abstract:** While the use of crime data has been widely advocated in the literature, its availability is
12 often limited to large urban cities and isolated databases tend not to allow for spatial comparisons.
13 This paper presents an efficient machine learning framework capable of predicting spatial crime
14 occurrences, without using past crime as a predictor, and at a relatively high resolution: the U.S.
15 Census Block Group level. The proposed framework is based on an in-depth multidisciplinary
16 literature review allowing the selection of 188 best-fit crime predictors from socio-economic,
17 demographic, spatial, and environmental data. Such data are published periodically for the entire
18 United States. The selection of the appropriate predictive model was made through a comparative
19 study of different machine learning families of algorithms, including generalized linear models,
20 deep learning, and ensemble learning. The gradient boosting model was found to yield the most
21 accurate predictions for violent crimes, property crimes, motor vehicle thefts, vandalism, and the
22 total count of crimes. Extensive experiments on real-world datasets of crimes reported in 11 U.S.
23 cities demonstrated that the proposed framework achieves an accuracy of 73 and 77% when
24 predicting property crimes and violent crimes, respectively.25 **Keywords:** Crime prediction; Ensemble Learning; Machine Learning; Regression.
2627

1. Introduction

28 The ability to access reliable, high-resolution crime data has long been advocated by researchers
29 [1]. The analysis of crime data can be useful in many aspects of law enforcement policy. Among other
30 uses, it may help allocate law enforcement resources where they are most needed [2] and adapt law
31 enforcement policies to an ever-changing environment [3].32 In the United States, crime data is mainly available through the FBI's Uniform Crime Report
33 program through the Summary Reporting System (SRS), currently transitioning into the National
34 Incident-Based Reporting System (NIBRS). However, the available data is still fragmented and not
35 always directly comparable across the contiguous U.S. In the absence of homogenous data, local
36 crime prediction can provide an additional perspective.37 In the field of machine learning (ML), many approaches and models have been defined in
38 relation to crime prediction through methods of classification, clustering, regression, deep learning,
39 and ensemble learning [4, 5]. However, such models face a number of challenges. Among them, many
40 ML models dedicated to crime prediction are exclusively data-driven in their feature selection
41 process: the extensive use of feature engineering and automated feature selection techniques can then
42 limit the out-of-sample reliability of predictions. Besides, the ML models reaching satisfying
43 performances in their predictions tend to use past crime as a determinant of future crime [6–8]. As
44 such data tend to be available only in major urban centers and is often difficult to compare across

45 locations, databases tend to be defined either at an aggregated level (city, county...) or at the local
46 level only (i.e. detailed grid in one city only).

47 Therefore, offering a prediction with a wide coverage and a high resolution would provide
48 policy makers and individuals with spatial elements of comparison, in addition to the traditional
49 advantages brought by predictive policing [9].

50 In this paper, we present a ML model able to predict crime counts in all U.S. Census Block
51 Groups, by using data available throughout the entire contiguous U.S. Our model relies on a
52 thorough review of the neighborhood effects literature to identify community correlates of crime.

53 As a first step, we reviewed different crime theories related to social, economic, and
54 demographic characteristics of a neighborhood, and selected 188 predictors by combining this
55 approach with correlation analysis. These predictors, along with our targets, consisting of crime
56 counts for various crime types between 2014 and 2018, were gathered at the U.S. Census Block Group
57 level for the contiguous U.S. Census Blocks are local areas defined as containing 600 to 3000 people,
58 with a median BG area of about 1.3 km². They have been argued to align with residents' perception
59 of their neighborhood, suggesting that they form an appropriate unit of analysis to study
60 neighborhood effects [10]. To build our model, we use the Crime Open Database [11],
61 geodocumenting crimes in 11 U.S. cities between 2014 and 2018, and thereby offering a variety of
62 urban contexts.

63 Then, since we deal with a regression problem, we studied different ML algorithm families,
64 including Generalized Linear Models (GLMs), Deep Learning, and Ensemble Learning. We
65 maintained the most accurate model for most types of crimes considered, namely: violent crimes,
66 property crimes, motor vehicle theft (MVT), and vandalism. Our model reaches up to 77% accuracy
67 in predicting crime counts for over 13,897 urban Block Groups in the U.S.

68 In short, the main contributions of this paper are as follows:

- 69 • Contribution 1: A spatial crime prediction model using data commonly available
70 throughout the entire continental U.S., thereby enabling spatial comparisons.
- 71 • Contribution 2: An efficient data strategy based on an in-depth multidisciplinary
72 literature review on crime and state-of-the-art predictive ML techniques.
- 73 • Contribution 3: A concise comparison of the performance of three predictive ML
74 models, namely: Poisson regression, Sequential Neural Network, and Gradient
75 Boosting.
- 76 • Contribution 4: A set of extensive experiments on real-world datasets of crimes
77 reported in different U.S. cities, and a detailed discussion of the promising local
78 crime predictions achieved.

79 The remainder of this paper is structured as follows: Section 2 presents the theoretical
80 background informing neighborhood effects on crime research and some state-of-the-art predictive
81 ML algorithms. Section 3 describes the data strategy followed to produce the input dataset and the
82 proposed predictive method. Section 4 discusses the achieved crime occurrences predictions. Finally,
83 Section 5 concludes and identifies some directions for future research.

84 2. Background and Related Work

85 2.1. Theoretical Background

86 Neighborhood effects is an important concept in geographic, public health and social science
87 research and is concerned with how neighborhood conditions affect social outcomes. The notion can
88 be traced back to University of Chicago sociologists Shaw and McKay [12] who proposed the field's
89 oldest theoretical perspective, social disorganization, positing that neighborhood structures like
90 socioeconomic disadvantage, racial heterogeneity, and residential mobility prevent residents from
91 forming social ties to regulate crime. Shaw and McKay's work heralded a major paradigm shift away
92 from individual-level theories of crime toward ecological models [13].

93 While social disorganization theory fell out of favor in the 1960s, the approach was revitalized
 94 in the 1980s by scholars in the U.S. with a renewed interest in neighborhood dynamics due to rising
 95 crime rates and urban decline. These authors updated the framework by addressing criticisms [14],
 96 testing and clarifying concepts [15, 16], and expanding causal mechanisms [17–19].

97 One important extension of social disorganization theory was the concept of collective efficacy
 98 [18], which refers to residents' ability to come together to achieve a shared desire for a safe
 99 neighborhood [20]. Collective efficacy combines social cohesion, defined as trust and sense of
 100 community between neighbors, with informal social control, which refers to residents' ability to
 101 regulate community disorder. Subsequent research has repeatedly demonstrated that collective
 102 efficacy exerts a strong effect on community crime and violence [21–23].

103 Routine activities theory is another prominent perspective focused on neighborhood crime. The
 104 theory posits that crime is more likely to occur when three factors meet in time and space: a motivated
 105 offender, an available target, and the absence of a capable guardian (e.g. an authority figure) [24].
 106 Research in this area is concerned with temporal and spatial effects on crime and focuses on micro-
 107 geographies, including "hot spots," such as street segments where crime occurs [25].

108 Pratt and Cullen [13] assessed routine activity theory and social disorganization theory along
 109 with other criminological frameworks in their meta-analysis of macro-level predictors and theories
 110 of crime. They found that social disorganization and resource deprivation theory, which links
 111 economic inequality with an inability to regulate behavior in accordance with social norms, had the
 112 strongest effects on crime. In their systematic, integrative review of the neighborhood effects
 113 literature, Brisson & Roll [26] found that social disorganization theory and routine activities theory
 114 had the most powerful effects on crime. Based on these findings, we elected to use predictors
 115 associated with social disorganization theory in our framework.

116 Predictors of crime associated with social disorganization theory can be divided into two broad
 117 categories: "static" neighborhood conditions that reflect a neighborhood's social structural conditions
 118 [27, 26] and "dynamic" neighborhood processes, such as collective efficacy or social cohesion [18, 26,
 119 28, 29]. Single static variables with significant effects on crime include income inequality [30–33];
 120 race/ethnic segregation [34–36]; racial heterogeneity [37–40], residential instability [41], gender [42–
 121 45], and age [46–48], all taken into account in our model. Table 1 lists major social structural predictors
 122 of crime assessed in prior reviews [26, 49] and a meta-analysis [13] and indicates their effects (positive,
 123 negative, unclear) on crime.

124 **Table 1.** Direct and Indirect Effects of Variables on Urban Crime [13, 26, 49].

Social Structural Variables	Relationship to Crime
Concentrated Disadvantage	Positive
Unemployment	Unclear, possibly positive
Family Disruption	Positive
Residential Instability	Positive
Racial/Ethnic Heterogeneity	Positive
Segregation	Positive
Income Inequality	Positive
Immigration	Unclear
Gender (Male)	Positive
Age (Younger)	Positive

125 Multicollinearity among social structural variables is a potential challenge in regression models
 126 concerned with causal analysis of crime. This is because of strong links between many of the
 127 structural factors associated with crime [50], creating what Wilson [19] referred to as "concentration
 128 effects." Concentrated disadvantage or "resource deprivation" [51] is one such index variable that
 129 incorporates indicators for income inequality, poverty, racial diversity, educational attainment,
 130 residential mobility, unemployment and/or family disruption [50, 52, 53]. Another index variable is
 131 family disruption which combines measures of family stability such as nonmarriage, early marriage,
 132 family

133 early childbearing, parental absenteeism, widowhood, and death [54–56]. While we are aware of
 134 multicollinearity issues in crime research, we did not use index variables in our model since
 135 collinearity is only an issue for causal inference and not prediction, the purpose of our framework.

136 Brisson and Roll [26] assessed four dynamic or process variables in their review that tend to
 137 interact with static predictors to affect crime. Assessing social cohesion, Brisson and Roll found limited
 138 evidence of a relationship between social cohesion and crime in studies on hate crimes [57] and general
 139 violence or intimate partner violence [58]. Results were mixed for informal social control, with one
 140 study showing a relationship between informal social control and a decline in delinquency rates [59]
 141 and another finding effects on anti-Black hate crime [57]. A third study, however, was unable to
 142 demonstrate a link between informal social control and general violence and intimate partner violence
 143 [58]. Research on social ties, which is a concept closely affiliated with social cohesion that looks at the
 144 number of relationships in a community, has demonstrated that effects on crime depend on the type
 145 and intensity of relationships and their influence on informal social control [40, 60]. Finally, support for
 146 the effect of collective efficacy on crime is robust and the concept is applicable across urban locations.
 147 Collective efficacy has been associated with a decline in violent victimization [61]; a decline in homicide
 148 [61]; reduced fear of crime [62]; and increased street efficacy [53].

149 There is a nascent rural crime literature, largely dominated by studies oriented around social
 150 disorganization theory [63]. Findings have been inconsistent, with evidence for some aspects of social
 151 disorganization but little or no support for others [64]. Consequently, it is difficult to make broad
 152 statements about crime patterns but preliminary research indicates that variables like poverty and
 153 family disruption affect crime differently in rural communities than in urban areas. For example,
 154 research suggests that poverty has no relationship or an inverse relationship with crime [65–68, 63, 69]
 155 possibly because community stability produces stronger informal social control [70]. In another
 156 example, racial heterogeneity appears to have limited effects on social disorganization in rural settings,
 157 given the mixed results of studies. For example, Bouffard and Muftic [65] found no association between
 158 ethnic heterogeneity and violent crime, while other scholars have found a positive relationship
 159 between variables, including robbery and assault in rural counties [67] and youth violent crime [71].
 160 Table 2 provides an overview of social structural predictors of crime in rural communities.

161 **Table 2.** Social Disorganization Variables Effects on Rural Crime [64, 72].

Structural Variables	Relationship to Crime
Poverty, Income, Income Inequality	No relationship or Inverse
Unemployment	Unclear, possibly positive
Family Disruption	Unclear, possibly no relationship or even inverse
Residential Instability	Unclear
Racial/Ethnic Heterogeneity	Unclear

162 Due to remaining uncertainty about the mechanisms of crime in rural communities, we did not
 163 create a separate model for predicting rural crime but applied the same model to rural and urban
 164 contexts. Similarly, sparse research into suburban crime [65, 68, 73] meant that we were not able to
 165 develop a distinct model to predict crime in suburban settings.

166 In sum, based on our thorough review of the neighborhood effects literature, we decided to select
 167 predictors of urban crime associated with the neighborhood effects perspective, mainly social
 168 disorganization theory, to inform our framework. These predictors have been shown to have significant
 169 relationships with crime in prior research, and are summarized in Table 3. We subsequently drew on
 170 datasets, including the U.S. Census, to select social, economic, and demographic indicators to represent
 171 these predictors.

172 *2.2. Related Work: ML and crime prediction*

173 In this section, we review the recent work on spatial crime prediction using different ML
 174 techniques, with an emphasis on the methods estimating crime rates or occurrences.

175 H.W. Kang and H.B. Kang (Kang and Kang, 2017) proposed a deep learning method based on a
176 deep neural network (DNN) for crime occurrences prediction at the US census-tract level. In their
177 data strategy, the authors involved various sources of data, including crime occurrence reports and
178 demographic and climate information. Additionally, they considered environmental context
179 information using image data from Google Street View. In their prediction model, the authors
180 adopted a multimodal data fusion method, in such a way that the DNN is defined with four-layer
181 groups, namely: spatial, temporal, environmental context, and joint feature representation layers.
182 This predictive model produces significant results in terms of accuracy. However, it was trained and
183 tested using only real-world datasets collected from the city of Chicago, Illinois, due to data
184 availability constraints. Thus, it cannot be used uniformly for all US cities.

185 Based also on the deep learning family of methods, Huang et al. [75] proposed a Recurrent
186 Neural Network (RNN) for predicting spatio-temporal crime occurrences in urban areas. Their
187 method is characterized by detecting dynamic crime patterns using a hierarchical recurrent neural
188 network from hidden representation vectors. These vectors embed spatial, temporal, and categorical
189 signals while preserving the correlations between the crime occurrences and their time slots. This
190 method was trained and evaluated using real-world datasets collected from New York City. In this
191 dataset, crimes are recorded with their respective category, location, and timestamp. However, such
192 a method cannot be uniformly used for all urban areas, since this kind of data is not commonly
193 available for other cities.

194 A probabilistic model based on the Bayesian paradigm was suggested by [76]. This proposed
195 model was conceived to predict spatial crime rates using demographic and historical crime data. It
196 quantifies the uncertainties in the output predictions and the model parameters using a combination
197 of two Bayesian linear regression models. A first parametric model that takes into account the
198 relationship between crime rate and location-specific factors, and a second nonparametric model that
199 addresses the spatial dependencies. It also handles the inferences on the regression parameters by
200 estimating the posterior probability distribution using the MCMC (Markov Chain Monte Carlo
201 method). Results regarding three types of crime comply with the existing theoretical criminological
202 assumptions. In addition, the proposed model can be generalized to all of Australia, since it uses
203 demographic census data available nearly in all locations.

204 Besides these efforts, we found that ensemble-learning methods have been the subject of several
205 studies in the literature, and have proven to be effective in the context of spatial crime prediction.
206 This family of ML models draws its strength from the fact that it employs multiple learning
207 algorithms. Each algorithm works on a chunk or on the whole dataset to produce intermediate
208 predictions that are collected and processed in order to obtain the final predictions. Examples of
209 studies relying on ensemble-learning methods include [6, 7, 77].

210 Alves et al. [6] used a random forest regressor to predict crime in urban areas. Knowing that this
211 ML model is extremely sensitive to its main parameters (the number of trees and the maximum depth
212 of each tree), the authors estimated them using the stratified k-fold cross-validation method, and
213 then, they set them using the grid-search algorithm. Thus, they managed to create a trade-off between
214 bias and variance errors. They have also studied the relationship between crime incidents and urban
215 indicators using various statistical tests and metrics, in order to select the most important explanatory
216 indicators. Their proposed model has been trained and tested using urban indicators data from all
217 Brazilian cities. Experiments showed that it can yield a promising accuracy reaching up to 97% on
218 crime prediction. However, predictions concern only a single type of crime, i.e. homicides, at an
219 aggregated city-level.

220 More recently, Kadar et al. [7] proposed a predictive approach for spatio-temporal crime
221 hotspots predictions in low population density areas. The authors focused mainly on the problem of
222 class imbalance, handled through a repeated under-sampling technique. Indeed, in the learning
223 phase, their predictive model is trained using balanced sub-samples of the input dataset, which are
224 created by randomly selecting the same number of instances from the majority and minority classes.
225 Then, they adopted the random forest classifier as a base learner for predicting crime hotspots after
226 a deep evaluation of other ML models. Results with an input dataset composed of different

227 predictors, such as socio-economic, geographical, temporal, meteorological, and crime variables,
228 showed that this approach outperforms the common baselines in predicting hotspots. However, it is
229 conceived to predict only a single type of crime, burglary incidents.

230 Another ensemble-learning predictive approach was proposed in [77]. Ingilevich and Ivanov
231 conceived a three-step approach for crime occurrences prediction in a specific urban area. Their
232 approach starts with a clustering step, in which the authors applied the DBSCAN (Density-Based
233 Spatial Clustering of Applications with Noise) algorithm in order to study the spatial patterns of the
234 considered crime types and to remove the noise from the dataset. Then, it is followed by a step of
235 feature selection, in which authors applied the chi-squared test in order to study the relative
236 importance of the features. Finally, in the third step, the authors used the gradient boosting model to
237 predict crime occurrences after a performance comparison of two other models, i.e. the linear
238 regression and the logistic regression. This model was trained and tested using the crime incidents
239 dataset from Saint-Petersburg, Russia. It outperformed the two other models in terms of accuracy for
240 three types of street crimes.

241 Building on this previous work and on our own efforts, we propose a predictive framework that
242 has been carefully designed to spatially predict crime occurrences at the U.S. Census Block Group
243 level, based on the gradient boosting model.

244 3. Methodology

245 3.1. Data strategy

246 Feature selection for this project was done using several approaches. First, relevant crime
247 predictors were identified using insights from the sociological, geographical, and ML literature, as
248 detailed in the Theoretical Background and Related Works sections. Second, correlations between all
249 variables available from the American Community Survey and our target variables were examined,
250 and variables displaying a correlation over 0.25 were retained. Third, variables were generated for
251 each feature based on neighboring Block Groups' characteristics, to allow for spillover effects. The
252 following sections detail data sources and preprocessing steps used throughout this study.

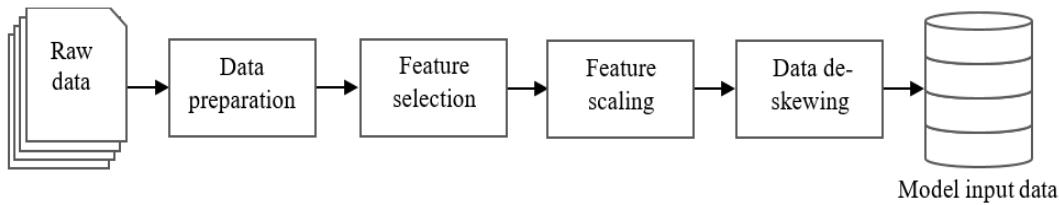
253 3.1.1. Data sources

254 The input dataset of our proposed framework was built from different sources, as listed below:

- 255 • Socio-economic and demographic data were extracted from the American
256 Community Survey (ACS) 5-Year Estimates [78]. In the present work, we used the
257 ACS 5-year Estimates collection covering the period 2014-2018 for all U.S. Block
258 Groups.
- 259 • Climate data (monthly averages related to wind, rainfall, and temperature) was
260 retrieved from the WorldClim 2 project [79].
- 261 • Law enforcement data was collected based on Homeland Infrastructure data related
262 to Local Law Enforcement Agencies in the U.S.
- 263 • Crime counts for Violent Crime, Property Crime, and two specific subcases
264 (Vandalism and Motor Vehicle Theft) in the time-period 2014-2018 were extracted
265 and pooled at the U.S. Census Block Group level from the Crime Open Database [11].

266 3.1.2. Data preprocessing

267 The feature preprocessing pipeline adopted in our data strategy consists of four steps: preparing
268 the collected data, creating the new features, scaling the features, and de-skewing, as depicted in
269 Figure 1.

**Figure 1.** Data preprocessing steps.

270 First, the collected data was cleaned and formatted. Then, some new features were created by
 271 combining the existing features with the goal of adding explicit information. For example, for each
 272 socio-economic and demographic variable, a spillover variable was generated using the variable's
 273 mean or sum in neighboring Block Groups. In the feature scaling step, a min-max normalization was
 274 performed in order to transform all input feature values to the [0,1] range. Finally, a $\log(1 + x)$ de-
 275 skew function was applied only to variables with a skew score greater than 0.75 (found empirically
 276 to be optimal). The skew score was calculated using the skew function from the Scipy [80] library.
 277 $\log(1 + x)$ de-skewing was also applied to the target variable during the training phase.

278 The above steps yielded a dataset composed of 13,897 observations where each observation has
 279 188 features. For the sake of clarity, we have aggregated the considered features under 15 themes, as
 280 shown in Table 3. We present the mean absolute correlation of features per theme in order to take
 281 into account the positive and negative correlations to the count target variable, in addition to the
 282 mean of the feature importance per theme. The obtained values are expressed in percentages.

283 **Table 3.** Summary of the selected features.

Themes	Number of attributes	Mean absolute correlation (%)	Mean feature importance (%)
Poverty	14	23.57	0.59
Residential instability	4	19.89	0.75
Housing and commuting	14	19.18	0.65
Income	4	18.4	0.68
Population	4	16.95	1.26
Family disruption	10	16.79	0.69
Unemployment	8	11.16	0.66
Gender	2	9.29	0.71
Climate	60	8.99	0.31
Education	36	8.73	0.54
Socio-economic indicators	5	8.67	0.12
Age	10	7.45	0.64
Law enforcement	4	7.37	0.65
Ethnic heterogeneity	12	5.17	0.61
Land area	1	4.47	3.61

284 Target variables include four types of crime counts and a single variable, which represent a
 285 combination of two types of crime counts:

286

- 287 • Target 1: Violent crime occurrences
- 288 • Target 2: Property crime occurrences
- 289 • Target 3: MVT crime occurrences
- 290 • Target 4: Vandalism crime occurrences
- 291 • Target 5: Total crime count (Violent + Property)

291 A brief overview of correlations listed in Table 3 suggests that factors showing the highest
 292 correlations with total crime counts are related to static neighborhood conditions as poverty,

293 residential instability, housing and commuting, and income, all clearly identified in the literature as
 294 crime determinants [81, 50, 41, 33], along with population and population density. Feature
 295 importances reveal that the land area covered by and population in a Block Group have the highest
 296 importance, as Block Groups can widely vary in size (with urban Block Groups smaller than rural
 297 Block Groups) and population (usually 600 to 3000).

298 *3.2. The proposed method*

299 The considered targets are count variables (the sum of crime type incidents within a fixed zone
 300 area, a Block Group, during 5 years) and can be approximated by a Poisson distribution. Thus, we
 301 first selected the Poisson regression model, because of its ability to model count data. The considered
 302 target variables and the logarithm of its expected values can be modeled by a linear combination of
 303 unknown parameters. However, this model assumes that the mean and variance are equal (equi-
 304 dispersion). Unfortunately, this assumption is often violated in the observed data [82].

305 Let y_i be the response variable. We assume that y_i follows a Poisson distribution with mean λ_i
 306 defined as a function of covariates x_i . The Poisson probability mass function is given by the equation
 307 below:

$$P(y_i) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{\lambda_i!} \quad (1)$$

308 Where: $\lambda_i = E(y_i|x_i)$, and P defines the dimension of the covariates vector incorporated in the
 309 model.

310 We have also examined the possibility of modeling the problem addressed in this paper using
 311 Deep Learning methods. The Multilayer perceptron is one of the most widely used class of artificial
 312 neural networks (ANN). It is composed of several layers. Each layer contains several, but non-
 313 connected perceptrons [83].

314 The first layer is called the input layer and, in our case, it is composed of 188 units (perceptrons),
 315 which correspond to the number of features. Since we are trying to solve a regression problem, the
 316 last layer (the output layer) contains only one perceptron. We added two hidden layers. The first
 317 layer contains 700 units, and the second includes 25 units. The input units pass their outputs to the
 318 units in the first hidden layer. Each of the hidden layer units adds a constant ('bias') to a weighted
 319 sum of its inputs, and then calculates an activation function of the result, in our case the *ReLU*
 320 activation function:

$$y = \max(0; x) \quad (2)$$

321 Finally, we have investigated the use of Ensemble Learning methods. We opted for the Gradient
 322 Boosting [84] algorithm because it performs well on tasks where the numbers of features and
 323 observations are relatively limited and have a small computational footprint. The gradient boosting
 324 model produces an ensemble of weak prediction models, typically decisions trees, and it generalizes
 325 them by allowing optimization of an arbitrary differentiable loss function, in our case, the *Fair* loss
 326 function [85].

327 As the model was trained on the $\log(1 + x)$ transformed targets, we use the inverse $e^x - 1$ on
 328 the model predictions when inferencing in order to get proper crime count values.

329 The dataset is randomly split into train and test sets using a 80:20 ratio respectively. To find
 330 optimal model hyperparameters we employ the cross-validation strategy on the train set ($n_folds =$
 331 6) along with grid search for the hyperparameter space search. The cross-validation chooses the
 332 optimal hyperparameters according to the lowest negative mean absolute error score.

333 We used the LightGBM gradient boosting algorithm implementation and the following optimal
 334 hyperparameters found using grid search:

335

Table 4. The optimal hyperparameters set using the grid search algorithm.

Parameters	Values
learning_rate	0.005
reg_lambda	0.01
bagging_fraction	1
num_leaves	128
max_bin	512
max_depth	7
num_iterations	5000
feature_selection	0.5
objective	Fair
seed	1337

336 Hyperparameter tuning was done on the total crime count target variable and the same optimal
 337 hyperparameters were used to train models for the remaining four target variables. In the end, each
 338 target variable has a dedicated gradient boosting model.

339 **4. Results and Discussion**

340 *4.1. Experimental settings*

341 All operations related to the training and the test of the three models, i.e. Gradient Boosting,
 342 neural network, and Poisson regressor, were conducted on a computer having a processor Intel (R)
 343 Core (TM) i5 of 2.40 GHz and eight Giga bytes of RAM.

344 The proposed framework was implemented using Python 3.7, installed on a virtual environment
 345 of the package manager Anaconda. For the Gradient Boosting model implementation, we used the
 346 Light GBM library. For the Poisson model implementation, we used the Scikit-learn package. And,
 347 for the neural network model implementation, we used the Keras library based on the TensorFlow
 348 backend.

349 *4.2. Evaluation metrics*

350 In order to assess the quality of the predictions obtained with our proposed framework, we
 351 relied on the most commonly used evaluation metrics for regression problems, namely: the Mean
 352 Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

$$MAE = \frac{\sum_{i=1}^n |r_i - \hat{r}_i|}{n} \quad (3)$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^n (r_i - \hat{r}_i)^2}{n}} \quad (4)$$

353 Where r_i denotes the ground truth target value for the i -th data point, \hat{r}_i denotes the predicted
 354 target value for the i -th data point, and n is the total number of data points.

355 Additionally, we used a third metric to quantify the percentage of how close the predictions are
 356 against the ground truth: the MAE divided by the mean of target values. This metric, what we call
 357 accuracy in this paper, is defined as follows:

$$AC_p = 1 - \left(\sum_{i=1}^n |r_i - \hat{r}_i| / \sum_{i=1}^n r_i \right) \quad (5)$$

358 *4.3. Experiment Results*

359 Table 5 shows the performances of three ML models, namely: Poisson regression, Deep learning,
 360 and Gradient boosting. We applied these models for each crime type, in addition to the total count of

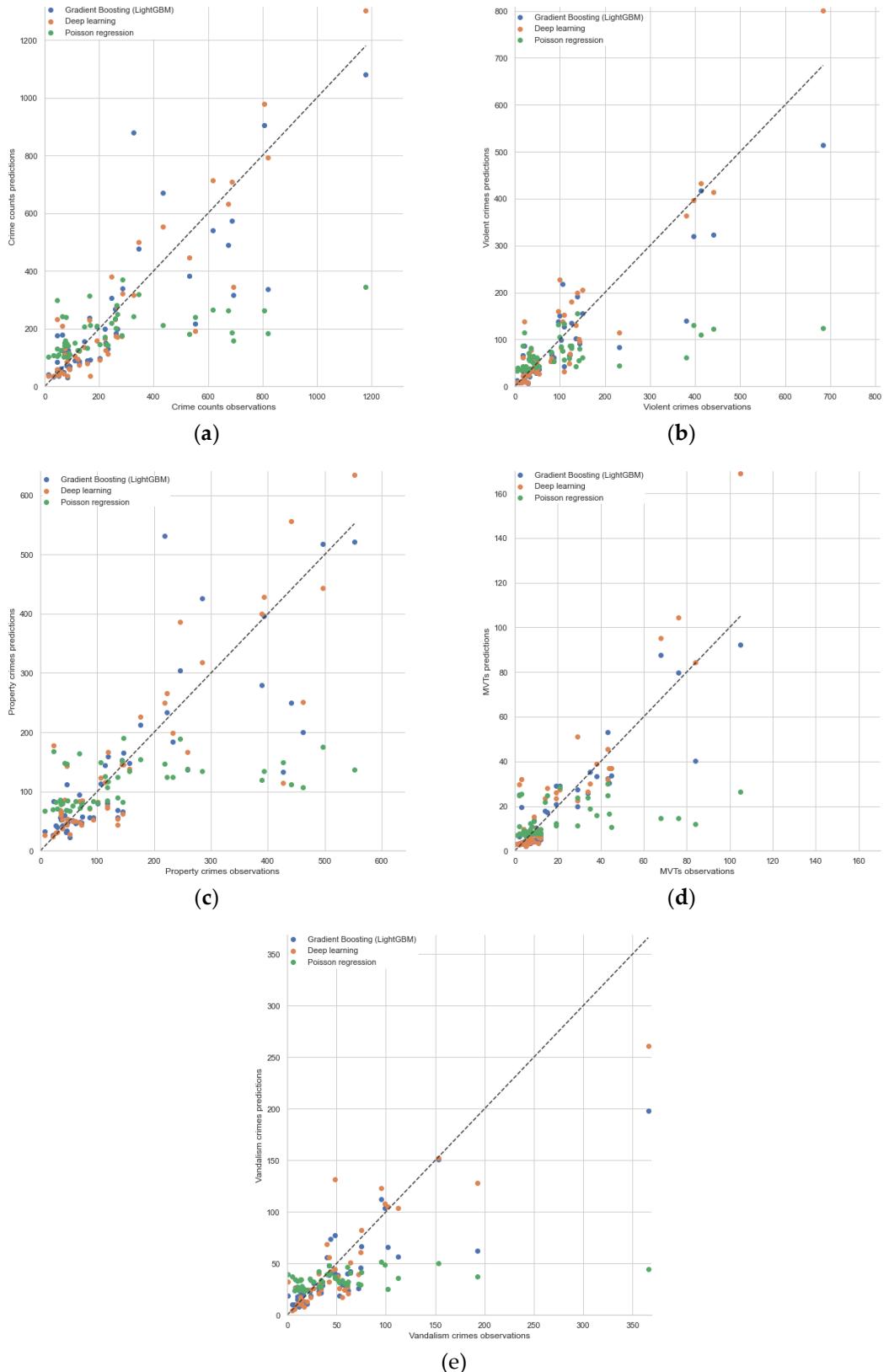
361 crimes, using the same input dataset and in the same conditions. Then, we measured their accuracy
 362 using the MAE and RMSE described above.

363 The gradient boosting model outperforms the other models in all the evaluated types of crime.
 364 It should be noted, however, that the deep learning model also yields performances close to the
 365 gradient boosting results.

366 **Table 5.** Comparison of the performance of three predictive ML models in terms of MAE and RMSE.

Crime types	Metrics	Models		
		Poisson regression	Deep learning	Gradient boosting
Count	MAE	181.94	130.69	123.24
	RMSE	439.35	331.14	318.28
Violent	MAE	76.41	52.48	49.87
	RMSE	175.70	132.39	132.37
Property	MAE	114.34	86.61	79.13
	RMSE	309.25	246.30	230.73
MVT	MAE	15.54	9.35	8.70
	RMSE	37.64	23.28	23.81
Vandalism	MAE	28.56	20.18	18.54
	RMSE	56.25	39.04	38.19

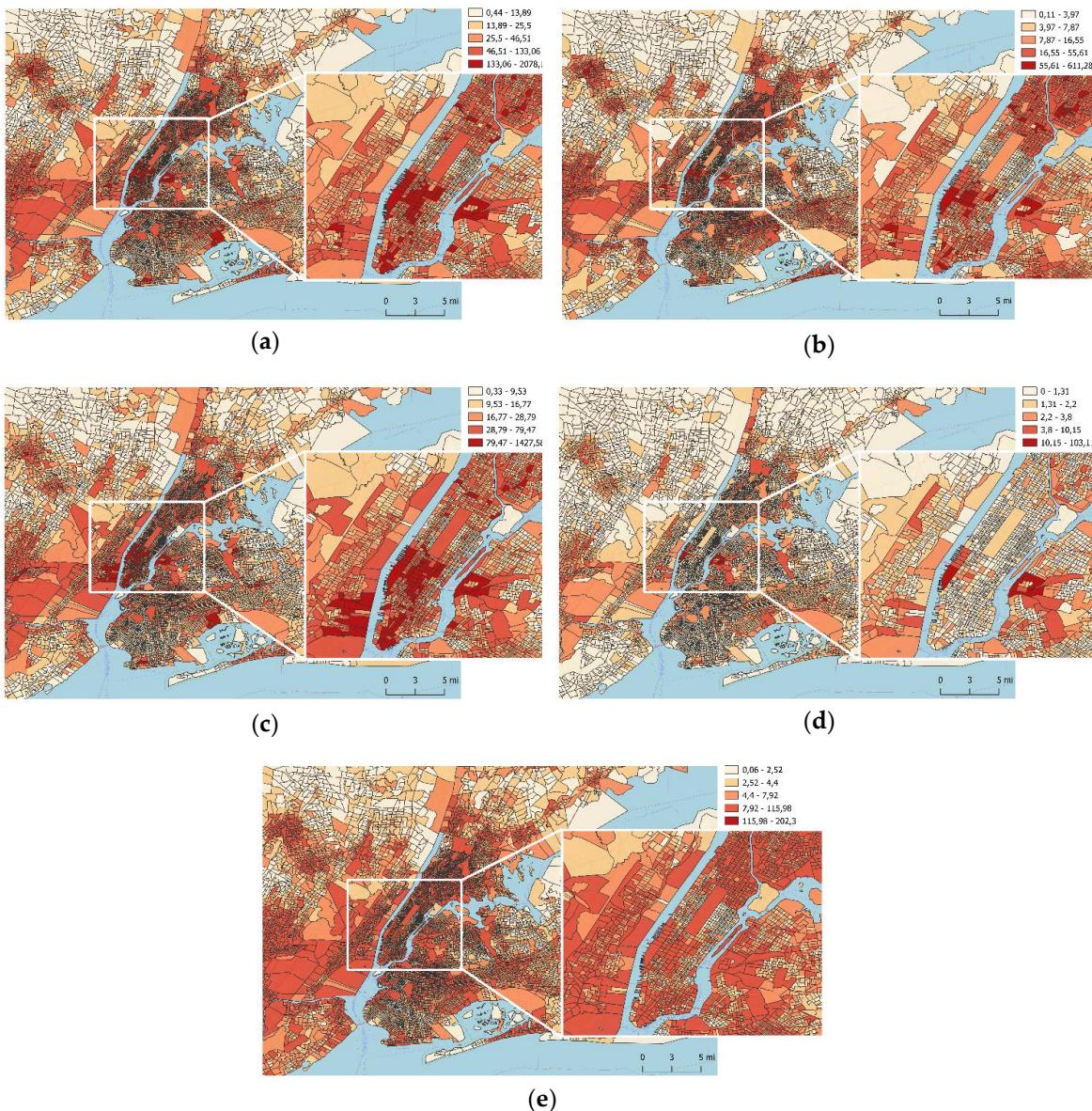
367 In order to further evaluate the performance of these predictive models, we selected a random
 368 set of 1000 observations from the input dataset, and then we compared the predicted crime
 369 occurrences of each type of crime, in addition to the total count of crime occurrences, against the
 370 ground truth, as depicted in Figure 2.



371
372
373
374

Figure 2. Comparison of the predicted occurrences of crimes against the ground truth using three different models. (a) Total crime count: predictions vs. real observations; (b) Violent crimes: predictions vs. real observations; (c) Property crimes: predictions vs. real observations; (d) MVT: predictions vs. real observations; (e) Vandalism: predictions vs. real observations.

375 As stated before, our framework is able to provide predicted crime occurrences for all Block
 376 Groups in the contiguous U.S. The learning phase was performed on 188 identified features, used to
 377 predict crime occurrences for 11 U.S. cities across 13,897 Block Groups and for 5 years (2014-2018).
 378 The model was then used to produce predictions for crime occurrences for the same period and all
 379 U.S. Block Groups. For the sake of clarity, Figure 3 represents our findings for one year using map
 380 visualizations of the New York City area, with a focus on Manhattan.



381 **Figure 3.** Map visualizations of yearly-predicted crime occurrences in New York City¹. (a) Predicted
 382 total crime (count) occurrences; (b) Predicted violent crime occurrences; (c) Predicted property crime
 383 occurrences; (d) Predicted MVT occurrences. (e) Predicted vandalism acts.

384 *4.4. Discussion*

385 Our approach generates Mean Absolute Errors (MAE) between 36 (vandalism) and 41%
 386 (property crime) of the targets' means, suggesting accuracies between 59% and 64% in our ability to

¹ Categories used to generate maps (from light to dark) correspond to the first quartile, second quartile, third quartile, fourth quartile (excluding the 2 highest centiles), and the 2 highest centiles, of crime count predictions, respectively. Basemap obtained from OpenStreetMap, and U.S. Census Block Groups delimitations were extracted from the Tiger Census Shapefiles.

387 predict the exact count of crimes occurring in a Block Group between 2014 and 2018. This
 388 performance can appear moderate in comparison to studies using aggregated data (city, county,
 389 state) and past crimes as features, that can reach up to 97% accuracy [6]. However, we believe it to be
 390 remarkable given that (1) we predict crime at a higher resolution (Census Block Groups) and (2) our
 391 approach does not use past crimes as a predictor. Our approach has the advantage of only using
 392 features available throughout the entire U.S. Its results can thus provide elements of comparison to
 393 policy makers at the national level, including in urban environments where crime data is scarce.
 394 Furthermore, our tests reveal that predicting whether an observation lies within one of the categories
 395 displayed in Figure 3 instead of the exact crime count can increase our accuracy to 75% when
 396 predicting the total count of crimes, 77% for violent crimes, 73% for property crimes, 77% for motor
 397 vehicle thefts, and 77% for vandalism acts.

398 Analyzing the importance of selected features in the decision process can add perspective to our
 399 results. In the context of a tree-based algorithm, feature importance can be calculated by the sum of
 400 all improvements over all internal nodes where this feature is used [86, cited by 6]. The resulting
 401 feature importance, as calculated by the LightGBM regressor within the Python SciKilearn library
 402 [87], sums to 100 (across all features used) and provides a way to describe a feature's relative
 403 importance in generating the final prediction.

404 A number of features were found to be particularly important in predicting crime using this
 405 approach. Population and population density are the most important predictors. Such factors are
 406 followed by the total area covered by the Block Group, which can vary significantly (with larger Block
 407 Groups located in rural areas). The median age comes third, followed by the distance to the nearest
 408 local law enforcement agency. However, those features collectively explain less than 11% of the total
 409 feature importance (with the 10 most important, involving additional factors related to social mobility
 410 and education, explaining 17% of the total importance). These results highlight the complexity of
 411 crime as a social phenomenon, as an important number of features in our framework significantly
 412 improve our ability to predict crime occurrences.

413 Besides, in many instances, spillover features (i.e. features describing attributes of the
 414 neighboring Block Groups) were found as more important than original features (describing attribute
 415 of a single Block Group). This is further illustrated by an important spatial autocorrelation in crimes
 416 predicted. If we consider total crime throughout the U.S., the Moran's I (i.e. the correlation between
 417 crime in a Block Group and the average crime predicted in neighboring Block Groups) predicted by
 418 our approach is around 0.7 nationwide, and the existence of clusters is particularly clear in the case
 419 of violent crime, vandalism, and motor vehicle theft (see Figures 3: (b), (d) and (e) for the case of New
 420 York).

421 Finally, a number of limitations should be stated. First, due to the methodological framework
 422 used, we can identify features of importance but not their impact (positive or negative) on crime in
 423 our model. Second, our approach is based on more than 180 features gathered from multiple different
 424 sources. Therefore, it involves a significant amount of work in terms of data processing. Third and
 425 nonetheless, our accuracy could be improved by adding additional types of features to the analysis.
 426 In this perspective, considering point of interests (involving a significant amount of social
 427 interactions), such as bus stops [2], malls, bars, churches, or schools [77], additional factors related to
 428 street lights [74] and/or social networks data [88] are additional approaches that can be
 429 complementary to our analysis. Considering ambient population instead of residential population
 430 [89] is also a promising perspective for future research. Finally, our model is trained on various urban
 431 contexts, meaning that it does not necessarily capture crime dynamics in rural settings. Consequently,
 432 predictions relative to rural areas are more uncertain than their urban counterparts.

433 5. Conclusions

434 In this paper, we proposed a ML framework able to provide predictions for spatial crime
 435 occurrences across all U.S. Census Block Groups in the contiguous U.S. Our findings from a set of
 436 extensive experiments on real-world datasets of crimes reported in 11 U.S. cities demonstrate that the
 437 proposed framework yields accurate predictions for the different crime types considered, i.e. violent

438 crimes, property crimes, motor vehicle thefts, vandalism acts, and total count of crime occurrences.
 439 For these crimes types, our ability to predict whether crime count in a Block Group belongs to the
 440 first, second, third, or fourth quartile or the 2 highest centiles range between 73 and 77%.

441 We believe that our findings could be further enhanced if we consider selected additional
 442 features, such as social networks data, sites involving significant amounts of social interactions
 443 (malls, bars, churches, schools, etc.), land use, and streetlights, among others. Another track to
 444 explore in future research could be a deep dive into the subject of rural crime: although many factors
 445 defining rural areas (such as lower population density) have indeed be taken into account by our
 446 model, differing societal frameworks might justify the use of a separate model in the future.

447 **Author Contributions:** Conceptualization, Simon de Bonviller and Sarah Eichberg; Methodology, Anass
 448 Abdessamad and Bartol Freskura; Software, Anass Abdessamad and Bartol Freskura; Validation, Simon de
 449 Bonviller, Anass Abdessamad and Bartol Freskura; Formal Analysis, Yasmine Lamari, Bartol Freskura and
 450 Anass Abdessamad; Investigation, Bartol Freskura and Anass Abdessamad; Resources, Simon de Bonviller,
 451 Yasmine Lamari, Anass Abdessamad, Sarah Eichberg, and Bartol Freskura; Data Curation, Yasmine Lamari,
 452 Anass Abdessamad and Simon de Bonviller; Writing-Original Draft Preparation, Yasmine Lamari, Simon de
 453 Bonviller, Anass Abdessamad, Sarah Eichberg, and Bartol Freskura; Writing-Review & Editing, Yasmine Lamari,
 454 Simon de Bonviller, Anass Abdessamad, and Sarah Eichberg; Visualization, Yasmine Lamari and Anass
 455 Abdessamad; Supervision, Simon de Bonviller and Yasmine Lamari; Project Administration, Simon de Bonviller
 456 and Yasmine Lamari; Funding Acquisition, Simon de Bonviller, Anass Abdessamad and Yasmine Lamari.

457 All authors have read and agreed to the published version of the manuscript.

458 **Funding:** This work was funded by Augurisk in the context of a crime risk assessment project for commercial
 459 purposes.

460 **Conflicts of Interest:** Simon de Bonviller has been involved in Augurisk as a lead scientist. Yasmine Lamari and
 461 Anass Abdessamad have been involved in Augurisk as data scientists. Sarah Eichberg and Bartol Freskura have
 462 been involved in Augurisk as external consultants. The funder (Augurisk) has been involved in (1) the research
 463 goal of the study (providing crime predictions in the contiguous United States), and (2) the decision to publish
 464 the results of this study.

465 References

- 466 1. Clancey, G. Are We Still 'Flying Blind?' Crime Data and Local Crime Prevention in New South Wales.
 467 *Current Issues in Criminal Justice*, 2011, 22 (3), 491–500. <https://doi.org/10.1080/10345329.2011.12035901>.
- 468 2. Cichosz, P. Urban Crime Risk Prediction Using Point of Interest Data. *ISPRS International Journal of Geo-Information*, 2020, 9 (7), 459. <https://doi.org/10.3390/ijgi9070459>.
- 469 3. Inayatullah, S. The Futures of Policing: Going beyond the Thin Blue Line. *Futures*, 2013, 49, 1–8.
 470 <https://doi.org/10.1016/j.futures.2013.01.007>.
- 471 4. Almaw, A.; Kadam, K. Survey Paper on Crime Prediction Using Ensemble Approach. *International Journal of Pure and Applied Mathematics*, 2018, 118 (8), 133–139.
- 472 5. Prabakaran, S.; Mitra, S. Survey of Analysis of Crime Detection Techniques Using Data Mining and
 473 Machine Learning. *J. Phys.: Conf. Ser.*, 2018, 1000, 012046. <https://doi.org/10.1088/1742-6596/1000/1/012046>.
- 474 6. Alves, L. G. A.; Ribeiro, H. V.; Rodrigues, F. A. Crime Prediction through Urban Metrics and Statistical
 475 Learning. *Physica A: Statistical Mechanics and its Applications*, 2018, 505, 435–443.
 476 <https://doi.org/10.1016/j.physa.2018.03.084>.
- 477 7. Kadar, C.; Maculan, R.; Feuerriegel, S. Public Decision Support for Low Population Density Areas: An
 478 Imbalance-Aware Hyper-Ensemble for Spatio-Temporal Crime Prediction. *Decision Support Systems*, 2019,
 479 119, 107–117. <https://doi.org/10.1016/j.dss.2019.03.001>.
- 480 8. Lin, Y.-L.; Yen, M.-F.; Yu, L.-C. Grid-Based Crime Prediction Using Geographical Features. *ISPRS International Journal of Geo-Information*, 2018, 7 (8), 298. <https://doi.org/10.3390/ijgi7080298>.
- 481 9. Meijer, A.; Wessels, M. Predictive Policing: Review of Benefits and Drawbacks. *International Journal of Public
 482 Administration*, 2019, 42 (12), 1031–1039. <https://doi.org/10.1080/01900692.2019.1575664>.
- 483 10. Konkel, R. H.; Ratkowski, D.; Tapp, S. N. The Effects of Physical, Social, and Housing Disorder on
 484 Neighborhood Crime: A Contemporary Test of Broken Windows Theory. *ISPRS International Journal of Geo-
 485 Information*, 2019, 8 (12), 583. <https://doi.org/10.3390/ijgi8120583>.

489 11. Ashby, M. P. J. Studying Crime and Place with the Crime Open Database: Social and Behavioural Sciences.
490 2018. <https://doi.org/10.1163/24523666-00401007>.

491 12. Shaw, C. R.; McKay, H. D. *Juvenile Delinquency and Urban Areas*; Juvenile delinquency and urban areas;
492 University of Chicago Press: Chicago, IL, US, 1942; pp xxxii, 451.

493 13. Pratt, T. C.; Cullen, F. T. Assessing Macro-Level Predictors and Theories of Crime: A Meta-Analysis. *Crime*
494 and *Justice*, **2005**, 32, 373–450. <https://doi.org/10.1086/655357>.

495 14. Bursik, R. J. Social Disorganization and Theories of Crime and Delinquency: Problems and Prospects.
496 *Criminology*, **1988**, 26 (4), 519–552. <https://doi.org/10.1111/j.1745-9125.1988.tb00854.x>.

497 15. Kornhauser, R. R. Social Sources of Delinquency: An Appraisal of Analytic Models. **1978**.

498 16. Sampson, R.; Groves, W. B. Community Structure and Crime: Testing Social-Disorganization Theory.
499 *American Journal of Sociology*, **1989**. <https://doi.org/10.1086/229068>.

500 17. Bursik, R. J. J.; Grasmick, H. G. Economic Deprivation and Neighborhood Crime Rates, 1960–1980. *Law &*
501 *Soc'y Rev.*, **1993**, 27, 263.

502 18. Sampson, R. J.; Raudenbush, S. W.; Earls, F. Neighborhoods and Violent Crime: A Multilevel Study of
503 Collective Efficacy. *Science*, **1997**, 277 (5328), 918–924. <https://doi.org/10.1126/science.277.5328.918>.

504 19. Wilson, W. J. *The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy*; University of Chicago
505 Press: Chicago, 1987.

506 20. Cole, S. J. Social and Physical Neighbourhood Effects and Crime: Bringing Domains Together Through
507 Collective Efficacy Theory. *Social Sciences*, **2019**, 8 (5), 147.

508 21. Browning, C. R. The Span of Collective Efficacy: Extending Social Disorganization Theory to Partner
509 Violence. *Journal of Marriage and Family*, **2002**, 64 (4), 833–850.

510 22. Morenoff, J. D.; Sampson, R. J.; Raudenbush, S. W. Neighborhood Inequality, Collective Efficacy, and the
511 Spatial Dynamics of Urban Violence. *Criminology*, **2001**, 39 (3), 517–558. <https://doi.org/10.1111/j.1745-9125.2001.tb00932.x>.

512 23. Sampson, R. J.; Wikström, P.-O. H. The Social Order of Violence in Chicago and Stockholm Neighborhoods:
513 A Comparative Inquiry. In *Order, Conflict, and Violence*; Shapiro, I., Kalyvas, S. N., Masoud, T., Eds.;
515 Cambridge University Press: Cambridge, 2008; pp 97–119. <https://doi.org/10.1017/CBO9780511755903.006>.

516 24. Cohen, L. E.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. *American*
517 *Sociological Review*, **1979**, 44 (4), 588–608. <https://doi.org/10.2307/2094589>.

518 25. Weisburd, D.; Groff, E. R.; Yang, S.-M. *The Criminology of Place: Street Segments and Our Understanding of the*
519 *Crime Problem*; Oxford University Press, 2012.

520 26. Brisson, D.; Roll, S. The Effect of Neighborhood on Crime and Safety: A Review of the Evidence. *null*, **2012**,
521 9 (4), 333–350. <https://doi.org/10.1080/15433714.2010.525407>.

522 27. Furstenberg, F. F.; Cook, T. D.; Eccles, J.; Elder, G. H.; Sameroff, A. *Managing To Make It: Urban Families and*
523 *Adolescent Success. Studies on Successful Adolescent Development*; University of Chicago Press, 5801 South Ellis
524 Avenue, Chicago, IL 60637; Fax: 773-702-9756; 1999.

525 28. Coleman, J. S. Social Capital in the Creation of Human Capital. *American Journal of Sociology*, **1988**, 94, S95–
526 S120.

527 29. Putnam, R. D. *Bowling Alone: The Collapse and Revival of American Community*; Bowling alone: The collapse
528 and revival of American community; Touchstone Books/Simon & Schuster: New York, NY, US, 2000; p 541.
529 <https://doi.org/10.1145/358916.361990>.

530 30. Chiu, W. H.; Madden, P. Burglary and Income Inequality. *Journal of Public Economics*, **1998**, 69 (1), 123–141.
531 [https://doi.org/10.1016/S0047-2727\(97\)00096-0](https://doi.org/10.1016/S0047-2727(97)00096-0).

532 31. Hsieh, C.-C.; Pugh, M. D. Poverty, Income Inequality, and Violent Crime: A Meta-Analysis of Recent
533 Aggregate Data Studies. *Criminal Justice Review*, **1993**, 18 (2), 182–202.
534 <https://doi.org/10.1177/073401689301800203>.

535 32. Kelly, M. Inequality and Crime. *The Review of Economics and Statistics*, **2000**, 82 (4), 530–539.
536 <https://doi.org/10.1162/003465300559028>.

537 33. Weatherburn, D. *What Causes Crime?*; NSW Bureau of Crime Statistics and Research Sydney, 2001.

538 34. Feldmeyer, B. The Effects of Racial/Ethnic Segregation on Latino and Black Homicide. *The Sociological*
539 *Quarterly*, **2010**, 51 (4), 600–623.

540 35. Krivo, L. J.; Peterson, R. D.; Kuhl, D. C. Segregation, Racial Structure, and Neighborhood Violent Crime.
541 *American Journal of Sociology*, **2009**, 114 (6), 1765–1802.

542 36. Peterson, R. D.; Krivo, L. J. *Divergent Social Worlds: Neighborhood Crime and the Racial-Spatial Divide*; Russell
543 Sage Foundation, 2010.

544 37. Balkwell, J. W. Ethnic Inequality and the Rate of Homicide. *Social Forces*, **1990**, 69 (1), 53–70.

545 38. Blau, P. M.; Golden, R. M. Metropolitan Structure and Criminal Violence. *Sociological Quarterly*, **1986**, 27 (1),
546 15–26.

547 39. Kubrin, C. Racial Heterogeneity and Crime: Measuring Static and Dynamic Effects. *Research in Community
548 Sociology*, **2000**, 10, 189–219.

549 40. Warner, B. D.; Rountree, P. W. Local Social Ties in a Community and Crime Model: Questioning the
550 Systemic Nature of Informal Social Control. *Social problems*, **1997**, 44 (4), 520–536.

551 41. Schieman, S. Residential Stability and the Social Impact of Neighborhood Disadvantage: A Study of
552 Gender-and Race-Contingent Effects. *Social Forces*, **2005**, 83 (3), 1031–1064.

553 42. Burton Jr, V. S.; Cullen, F. T.; Evans, T. D.; Alarid, L. F.; Dunaway, R. G. Gender, Self-Control, and Crime.
554 *Journal of research in crime and delinquency*, **1998**, 35 (2), 123–147.

555 43. Carrabine, E.; Iganski, P.; South, N.; Lee, M.; Plummer, K.; Turton, J.; Iganski, P.; South, N.; Lee, M.;
556 Plummer, K.; et al. *Criminology: A Sociological Introduction*; Routledge, 2004.
<https://doi.org/10.4324/9780203642955>.

558 44. Chrisler, J. C.; McCreary, D. R. *Handbook of Gender Research in Psychology*; Springer, 2010; Vol. 1.

559 45. Rowe, D. C.; Vazsonyi, A. T.; Flannery, D. J. Sex Differences in Crime: Do Means and within-Sex Variation
560 Have Similar Causes? *Journal of research in Crime and Delinquency*, **1995**, 32 (1), 84–100.

561 46. Hirschi, T.; Gottfredson, M. Age and the Explanation of Crime. *American journal of sociology*, **1983**, 89 (3),
562 552–584.

563 47. Farrington, D. P. Childhood Aggression and Adult Violence: Early Precursors and Later-Life Outcomes.
564 *The development and treatment of childhood aggression*, **1991**, 5, 29.

565 48. Flanagan, T. J.; Maguire, K. *Sourcebook of Criminal Justice Statistics - 1989*; Washington, DC: U.S. Department
566 of Justice, Bureau of Justice Statistics, 1990.

567 49. Sampson, R. J.; Morenoff, J. D.; Gannon-Rowley, T. Assessing “Neighborhood Effects”: Social Processes
568 and New Directions in Research. *Annual review of sociology*, **2002**, 28 (1), 443–478.

569 50. Land, K. C.; McCall, P. L.; Cohen, L. E. Structural Covariates of Homicide Rates: Are There Any Invariances
570 across Time and Social Space? *American journal of sociology*, **1990**, 95 (4), 922–963.

571 51. Messner, S. F.; Rosenfeld, R.; Baumer, E. P. Dimensions of Social Capital and Rates of Criminal Homicide.
572 *American Sociological Review*, **2004**, 69 (6), 882–903.

573 52. Lo, C. C.; Zhong, H. Linking Crime Rates to Relationship Factors: The Use of Gender-Specific Data. *Journal
574 of Criminal Justice*, **2006**, 34 (3), 317–329.

575 53. Sharkey, P. T. Navigating Dangerous Streets: The Sources and Consequences of Street Efficacy. *American
576 Sociological Review*, **2006**, 71 (5), 826–846.

577 54. McLanahan, S.; Bumpass, L. Intergenerational Consequences of Family Disruption. *American Journal of
578 Sociology*, **1988**, 94 (1), 130–152.

579 55. Messner, S. F.; Sampson, R. J. The Sex Ratio, Family Disruption, and Rates of Violent Crime: The Paradox
580 of Demographic Structure. *Social Forces*, **1991**, 69 (3), 693–713.

581 56. Sampson, R. J. Neighborhood Family Structure and the Risk of Personal Victimization. In *The social ecology
582 of crime*; Springer, 1986; pp 25–46.

583 57. Lyons, C. J. Community (Dis) Organization and Racially Motivated Crime. *American Journal of Sociology*,
584 **2007**, 113 (3), 815–863.

585 58. Frye, V. The Informal Social Control of Intimate Partner Violence against Women: Exploring Personal
586 Attitudes and Perceived Neighborhood Social Cohesion. *Journal of Community Psychology*, **2007**, 35 (8), 1001–
587 1018.

588 59. Cantillon, D. Community Social Organization, Parents, and Peers as Mediators of Perceived Neighborhood
589 Block Characteristics on Delinquent and Prosocial Activities. *American journal of community psychology*, **2006**,
590 37 (1–2), 111–127.

591 60. Bellair, P. E. Social Interaction and Community Crime: Examining the Importance of Neighbor Networks.
592 *Criminology*, **1997**, 35 (4), 677–704.

593 61. Browning, C. R.; Dietz, R. D.; Feinberg, S. L. The Paradox of Social Organization: Networks, Collective
594 Efficacy, and Violent Crime in Urban Neighborhoods. *Social Forces*, **2004**, 83 (2), 503–534.

595 62. Gibson, C. L.; Zhao, J.; Lovrich, N. P.; Gaffney, M. J. Social Integration, Individual Perceptions of Collective
596 Efficacy, and Fear of Crime in Three Cities. *Justice quarterly*, **2002**, 19 (3), 537–564.

597 63. Wells, L. E.; Weisheit, R. A. Patterns of Rural and Urban Crime: A County-Level Comparison. *Criminal
598 Justice Review*, **2004**, 29 (1), 1–22.

599 64. Kaylen, M. T.; Pridemore, W. A. Social Disorganization and Crime in Rural Communities: The First Direct
600 Test of the Systemic Model. *British Journal of Criminology*, **2013**, 53 (5), 905–923.

601 65. Bouffard, L. A.; Muftić, L. R. The "Rural Mystique": Social Disorganization and Violence beyond Urban
602 Communities. *Western Criminology Review*, **2006**, 7 (3).

603 66. Li, Y.-Y. Social Structure and Informal Social Control in Rural Communities. **2011**.

604 67. Petee, T. A.; Kowalski, G. S. Modeling Rural Violent Crime Rates: A Test of Social Disorganization Theory.
605 *Sociological Focus*, **1993**, 26 (1), 87–89.

606 68. Osgood, D. W.; Chambers, J. M. Social Disorganization Outside the Metropolis: An Analysis of Rural Youth
607 Violence. *Criminology*, **2000**, 38 (1), 81–116.

608 69. Wells, L. E.; Weisheit, R. A. Explaining Crime in Metropolitan and Non-Metropolitan Communities. **2012**.

609 70. Barnett, C.; Mencken, F. C. Social Disorganization Theory and the Contextual Nature of Crime in
610 Nonmetropolitan Counties. *Rural sociology*, **2002**, 67 (3), 372–393.

611 71. Osgood, D. W.; Chambers, J. M. Community Correlates of Rural Youth Violence. *Juvenile Justice Bulletin*,
612 **2003**.

613 72. Ward, K. C.; Kirchner, E. E.; Thompson, A. J. Social Disorganization and Rural/Urban Crime Rates: A
614 County Level Comparison of Contributing Factors. **2018**.

615 73. Kaylen, M.; Pridemore, W. A.; Roche, S. P. The Impact of Changing Demographic Composition on
616 Aggravated Assault Victimization during the Great American Crime Decline: A Counterfactual Analysis
617 of Rates in Urban, Suburban, and Rural Areas. *Criminal justice review*, **2017**, 42 (3), 291–314.

618 74. Kang, H.-W.; Kang, H.-B. Prediction of Crime Occurrence from Multi-Modal Data Using Deep Learning.
619 *PLOS ONE*, **2017**, 12 (4), e0176244. <https://doi.org/10.1371/journal.pone.0176244>.

620 75. Huang, C.; Zhang, J.; Zheng, Y.; Chawla, N. V. DeepCrime: Attentive Hierarchical Recurrent Networks for
621 Crime Prediction. In *Proceedings of the 27th ACM International Conference on Information and Knowledge
622 Management; CIKM '18*; Association for Computing Machinery: Torino, Italy, 2018; pp 1423–1432.
<https://doi.org/10.1145/3269206.3271793>.

624 76. Marchant, R.; Haan, S.; Clancey, G.; Cripps, S. Applying Machine Learning to Criminology: Semi-
625 Parametric Spatial-Demographic Bayesian Regression. *Security Informatics*, **2018**, 7 (1), 1.
<https://doi.org/10.1186/s13388-018-0030-x>.

627 77. Ingilevich, V.; Ivanov, S. Crime Rate Prediction in the Urban Environment Using Social Factors. *Procedia
628 Computer Science*, **2018**, 136, 472–478. <https://doi.org/10.1016/j.procs.2018.08.261>.

629 78. US Census Bureau. 2014–2018 ACS 5-year Estimates [https://www.census.gov/programs-
630 surveys/acs/technical-documentation/table-and-geography-changes/2018/5-year.html](https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2018/5-year.html) (accessed Aug 18,
631 2020).

632 79. Fick, S. E.; Hijmans, R. J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land
633 Areas. *International Journal of Climatology*, **2017**, 37 (12), 4302–4315. <https://doi.org/10.1002/joc.5086>.

634 80. Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.;
635 Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0—Fundamental Algorithms for Scientific Computing
636 in Python. *Nat Methods*, **2020**, 17 (3), 261–272. <https://doi.org/10.1038/s41592-019-0686-2>.

637 81. Armitage, R.; Monchuk, L.; Rogerson, M. It Looks Good, but What Is It like to Live There? Exploring the
638 Impact of Innovative Housing Design on Crime. *European Journal on Criminal Policy and Research*, **2011**, 17
639 (1), 29–54.

640 82. Mouatassim, Y.; Ezzahid, E. H. Poisson Regression and Zero-Inflated Poisson Regression: Application to
641 Private Health Insurance Data. *Eur. Actuar. J.*, **2012**, 2 (2), 187–204. <https://doi.org/10.1007/s13385-012-0056-2>.

643 83. Fallah, N.; Gu, H.; Mohammad, K.; Seyyedsalehi, S. A.; Nourijelyani, K.; Eshraghian, M. R. Nonlinear
644 Poisson Regression Using Neural Networks: A Simulation Study. *Neural Comput & Applic*, **2009**, 18 (8), 939.
<https://doi.org/10.1007/s00521-009-0277-8>.

646 84. Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. *The Annals of Statistics*,
647 2001, 29 (5), 1189–1232.

648 85. Zhang, Z. *Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting*; Research Report RR-
649 2676; INRIA: Sophia Antipolis, France, 1995; pp 59–76.

650 86. Breiman, L.; Friedman, J.; Stone, C. J.; Olshen, R. A. *Classification and Regression Trees*; Routledge & CRC
651 Press, 1984.

652 87. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
653 Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. *Journal of Machine Learning Research*,
654 2011, 12 (85), 2825–2830.

655 88. Bogomolov, A.; Lepri, B.; Staiano, J.; Oliver, N.; Pianesi, F.; Pentland, A. Once Upon a Crime: Towards
656 Crime Prediction from Demographics and Mobile Data. In *Proceedings of the 16th International Conference on*
657 *Multimodal Interaction*; ICMI '14; Association for Computing Machinery: New York, NY, USA, 2014; pp 427–
658 434. <https://doi.org/10.1145/2663204.2663254>.

659 89. He, L.; Páez, A.; Jiao, J.; An, P.; Lu, C.; Mao, W.; Long, D. Ambient Population and Larceny-Theft: A Spatial
660 Analysis Using Mobile Phone Data. *ISPRS International Journal of Geo-Information*, 2020, 9 (6), 342.
661 <https://doi.org/10.3390/ijgi9060342>.