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Abstract: Genomic selection (GS) is a predictive approach that was build up to increase the rate of 

genetic gain per unit of time in breeding programs.  It has emerged as a valuable method for 

improving complex traits that are controlled by many genes with small effect. GS enables the 

prediction of breeding value of candidate genotypes for selection. In this work we address 

important issues related to GS and its implementation in tomato breeding context. Genomic 

constrains and critical parameters affecting the accuracy of prediction in such crop such as 

phenotyping, genotyping training population composition and size and statistical method should 

be carefully evaluated. Comparison of GS approaches for facilitating the selection of tomato 

superior genotypes during breeding program are also discussed. GS applied to tomato breeding has 

already shown to be feasible. We illustrated how GS can improve the rate of gain in elite lines 

selection, descendent and in backcross schemes. The GS schemes begin to be delineated and 

computer science can provide support for future selection strategies. A new breeding framework is 

beginning to emerge for optimizing tomato improvement procedures. 
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1. Background 

Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide. It 

possesses unique properties, offering a rich source of minerals (potassium, magnesium, phosphorus) 

and antioxidant compounds, which prevents cardiovascular, cancer diseases and strengthens our 

immune system [1]. Tomato is an autogamous diploid species, with a modest genome size (∼900 Mb) 

and a relatively short life cycle. As a model plant, numerous genetic and molecular tools have been 

developed for tomato species, including a high-quality draft genome sequence, high-density genetic 

maps, high-throughput molecular markers, introgression lines and mutant collections (Tomato 

Genome Consortium- [2]). In addition, hundreds of genomes from landraces, cultivars, and wild 

relatives have been re-sequenced, revealing a relatively low molecular diversity but high rate of 

chromosome rearrangements due to traces of wild introgressions [3].  

Tomato crop genetic basis became narrow along the process of domestication, preventing intra-

populational breeding strategies to provide satisfactory genetic gains [4]. Besides the low genetic 

variability that limits breeding gains of conventional and modern selection schemes, tomato is 

tolerant to inbreeding and this allows the generation and maintenance of inbred lines. Therefore, the 
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recombination of the genetic variability has been an excellent alternative for obtaining superior 

genotypes [4]. Moreover, the retaining of genome segments from wild relatives, used for 

introgressing agronomically relevant traits such as resistance to diseases and quality traits [5,6], 

largely contributes to the genetic variability within the cultivated tomato gene pool.  

 In the early 1980s, the development of different molecular marker systems drastically changed 

the fate of plant breeding. Molecular markers were mainly integrated in traditional phenotypic 

selection (PS) by applying marker-assisted selection (MAS) to improve the plant selection process 

through the inclusion of chromosomal segments containing quantitative trait loci (QTLs) or single 

genes [7,8,9]. Several research articles concerning the identification of tomato QTLs and major genes 

conferring resistance to biotic and environmental stresses have been reviewed in [5,10]. Molecular 

markers have been also used in tomato to map genes or QTLs for environmental stresses and some 

flower and fruit-related traits (reviewed in [11]). However, MAS is more suitable for application 

concerning simple traits with a few major-effect genes than for complex traits controlled by a large 

number of minor genes [12,13].  

Genomic selection (GS) provides new opportunities for increasing the efficiency of plant 

breeding programs for traits with polygenic inheritance [13,14,15]. The potential breeding value of 

an individual is estimated using genomic-based data such as single nucleotide polymorphisms (SNP). 

Recent high-throughput genotyping (HTG) systems helps to generate several thousand of SNP 

markers allowing entire genomes to be scanned at a reasonable cost. Genomic screening of breeding 

populations can accelerate the genetic gain obtained at each cycle, especially when selection is 

performed for traits with low heritability. Although the effect of each marker is very small, a large 

amount of genome-wide marker information has the potential to explain all the genetic variance [16]. 

The development of statistical methods capable of accurately predict marker effects has led to 

the breakthrough of GS increasing the rate of genetic gain per unit of time. GS combines genotypic 

and phenotypic data from a training population (TRN) in a training set (TRS) to obtain the genomic 

estimated breeding values (GEBVs) of a testing set (TST) which has been genotyped but not 

phenotyped. The GS model will be then employed to predict breeding values of not phenotyped 

individuals in the next selection step (Figure 1).  
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Figure 1. Flowchart of a genomic selection (GS) breeding program. GS overview with cross validation 

using a training set (70-90% out of 100-1000 lines) to estimate marker effects in order to get a genomic 

estimated breeding value (GEBV) of lines in the testing set (10-30% out of 100-1000 lines). Finally, 

phenotypic and genotypic data of the training set are used to setup the prediction model. 

 

In tomato, pioneer studies concerning the application of GS for yield-related traits were reported for 

fresh market varieties and wild related species [17,18]. More recently, Yamamoto et al. [19] assessed 

the potential of GS to increase soluble solids content and fruit weight in F1 tomato varieties, whereas 

Liabeuf et al. [20] reported the implementation of a GS approach to develop bacterial spot resistant 
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tomato lines. GS models were widely exploited for predicting phenotypes of progeny and parents, 

although the efficiency varied depending on the parental cross combinations and the selected traits 

[21].  Optimized and validated GS protocols are still needed in tomato. Several GS programs in 

tomato are still in progress, thus the impact of factors affecting the implementation and the accuracy 

of the model have not yet been evaluated while their optimization for tomato breeding is still required. 

Among these factors, phenotyping procedures, TRN size, genetic relationship between individuals 

in TRS and TST, genotyping platforms, marker quality metrics and design of GS schemes should be 

further investigated. Here we discussed the application in tomato breeding schemes of GS within and 

across breeding generations, as well as its potential to select parents based on their assessed GEBV. 

2. Tomato GS schema implementation 

Recent studies have demonstrated that the establishment of GS experiment optimal parameters 

requires a careful evaluation of key factors. Selection response depends on the precision of the 

phenotyping and genotyping methods used to obtain the GEBVs (including size of TRN, marker 

density, marker technology), knowledge of the genome structure and marker linkage disequilibrium 

[21]. 

The success of modern breeding programs based on genomic techniques strictly depends on 

precision of measurements related to phenotyped traits [22]. Digital instruments with scalable 

technologies can improve the precision of phenotyping [23] and accelerate the selection. Recent 

technologies have being used to acquire specific data on tomato  traits with the aim of boosting the 

precision and the throughput of measurements, the size of analyzed plant populations and, thus, 

enhancing the accuracy of the predicted phenotypic value and the genetic gain [24,25]. 

The appropriate TRN size and composition are also critical for gaining high prediction accuracy. 

A positive correlation between prediction accuracy and TRN size was confirmed in several species 

[26,27]. However, the optimal TRN size seems to be highly influenced by the relatedness of TRS and 

TST [28,20,29]. The highest prediction accuracies were found using TRS with a strong relationship to 

the TST [15,30,31]. Indeed, when the TRS and TST are unrelated, marker effects could be inconsistent 

due to the presence of different alleles, allele frequencies, and linkage phases. Developing ad hoc TRN 

is crucial and update the TRN at each cycle could improve the prediction accuracy since that the 

segregating population could accumulate genetic diversity and gene frequencies may change at each 

selection cycle [20]. 

To capture as much informative loci as possible an appropriate abundance of markers is required 

[32]. In this regard, genotyping-by-sequencing (GBS) can be used to efficiently generate high-density 

marker panels. Alternately, the cDNA-based GBS technique (RAR-seq restriction site associated RNA 

sequencing) may detect conserved SNPs associated to a candidate mutation directly at the expression 

level [33]. Recently, a customizable method for tomato targeted genotyping, named single primer 

enrichment technology (SPET) was developed for improving the panel design and increasing the 

multiplexing levels of tomato genotyping [34]. Previous GS data can help to design an optimized suite 

of markers for next steps. Liabeuf et al. [20] reduced the initial “SolCAP array”  of 7,700 SNPs [35] to screen 

populations with limited recombination. Moreover, the prediction accuracy may be also affected by minor 

allele frequency threshold (MAF) [32]. Establishing methods for efficiently transferring validated genome 

signatures within tomato breeding selection procedures is also relevant. Linkage drag caused by 

recombination suppression can be reduced by estimating the effects of relevant markers improving 

prediction performance. Indeed, large gene introgression fragments in tomato cultivars from Solanum 

wild species caused drastic chromosome landscape changes. The Solanum peruvianum introgression 

carrying the tomato mosaic virus (ToMV) resistance gene Tm2 can cover up to 79% of chromosome 9 

in modern varieties [3].  

In the framework of GS, several statistical methods have been developed to estimate the marker 

effects in tomato [20]. The choice of the most appropriate method should be finalized to the specific 

context, considering the model complexity (genetic architecture, population size and heritability) and 

the computation requirements [36,37]. Ridge regression best linear unbiased prediction (RR-BLUP) 

and genomic best linear unbiased prediction (G)BLUP [38] are suggested when assessing a trait that 
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is affected by many small-effect genes using close TRN relatives. On the other hand, when traits are 

controlled by major-effect QTLs or when considering prediction of unrelated individuals, a higher 

prediction accuracy can be obtained by Bayesian methods [39]. However empirical studies suggest 

that there are no major differences between regression-based methods and Bayesian GS in tomato 

[20]. 

3. Applying GS in tomato crop improvement  

Several constraints can affect the genetic gain of a GS program in tomato. The implementation 

of GS requires the optimization of field trial management and agricultural practices, seed production, 

phenotyping, sample collection and sequencing [40]. Moreover, as discussed above, parameters such 

as inbreeding level of populations, number of individuals to be assessed, and marker metrics, should 

be carefully evaluated to effectively run a GS-assisted breeding scheme. It can be estimated that, for 

tomato breeding programs, the genotyping work to complete GEBV predictions requires 

approximately three months. Once these issues have been addressed, the GEBVs can be calculated 

both to perform parental line selection and to evaluate the overall performance of the progenies in a 

descendent selection or backcross schemes. The selection decision will be achieved based on the 

higher GEBVs for each tested trait on the overall average of traits or as ‘indices' of GEBV from several 

traits following selection priorities. 

4. Evaluation of Elite lines  

The first step in tomato F1 hybrid variety development is the selection of elite parents to 

maximize the genetic variability exploitation. Elite germplasm represents a core collection of cross-

compatible genotypes enriched for some favorable alleles [41]. In a GS-assisted breeding scheme for 

tomato F1 hybrid development, the decision to select parental lines is based on their breeding value 

(i.e., the mean performance of the progeny of a given parent) that consequently requires to be 

estimated accurately. Consistently, Yamamoto and collaborators [19] used a set of 96 big-fruited F1 

tomato varieties to develop GS models, and the segregating populations obtained from crosses were 

used to validate the models. Consequently, the GS models were used to successfully predict parental 

combinations generating superior hybrids using progeny genotypic and phenotypic data for soluble 

solids content and total fruit weight. However, the efficiency of predictions varied depending on 

traits and parental combinations. While the need for fixing favorable alleles in the gene pool leads to 

increase inbreeding, the GS selection gain is dramatically reduced in small populations with narrow genetic 

variability. The managing of elite genetic diversity to increase the frequency of favorable alleles over time can 

highly benefit from GS approaches [41]. The prediction accuracy of parent cross ability could improve 

with the assessment of a higher number of selfing progenies. Thanks to the advances made in tomato 

genome knowledge and genotyping technologies, breeders can easily identify valuable alleles in elite 

germplasm [42,43] and create new lines combining these valuable alleles using a set of validated 

markers. 

5. Descendent selection schemes 

In tomato, breeders commonly take advantage of useful genetic variability by recycling the best-

performing varieties that have been successful for a given area by Single Seed Descendent (SSD) 

schema where each generation derived from the former, taking only one seed from each parent plant. 

Nearly all steps can be conducted in the greenhouse, making this a method of choice for accelerating 

breeding in areas that do not benefit of a growing season long enough [43]. In the classical SSD 

scheme, the choice of tomato parental lines is very critical to ensure a higher additive breeding value 

since self-fertilization increases inbreeding level by 1⁄2 at each cycle. In the SSD scheme, no selection 

is conducted until the last generation (generally F6-F7), so the phenotyping of a larger number of 

lines could be challenging. The integration of the GS approach in the SSD could result in reducing 

the number of selfing generations thus shortening the overall schema and decreasing the 

phenotyping effort (Figure 2). Because the prediction accuracy is generally higher when LD is high, 

an increase of the breeding gains is expected when applying GS in the earliest heterozygous 
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segregating generations (i.e., F2-F4). Therefore, these generations could be successfully used for 

developing the GS model, and subsequently GS prediction could assist selection in the following 

generations. Genomic data can accurately track the best performing plants along the generations, and 

the approach can successfully lead to the selection of individuals with the highest GEBV.  
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Figure 2. Comparison of genomic selection (GS) and conventional selection in tomato breeding 

programs. Screening of recombinant lines through GS approaches optimizes the genetic gain obtained 

in each selection cycle. Breeding cycles (horizontal dashed lines) are shortened by removing 

phenotypic evaluation of lines before training population (TRN) evaluation for the next cycle. 

6. Backcross schemes 

Backcrossing is a quite popular breeding scheme where a valuable trait is introgressed from a 

donor parent into the genomic background of a recurrent parent. In tomato breeding, backcrossing 

schemes with exotic or elite materials are widely used to introduce favorable traits. However, the 

constant introduction of novel alleles and the linkage drag, the crossing with old varieties or exotic 

material with low breeding value as well as the extended breeding cycles deriving from complex 

crossing scheme, can reduce the genetic gain per year. The response to genetic selection achieved 

through the selection of lines with high breeding value in a segregating population can be certainly 

improved by GS (Figure 2). A variant of the classical backcross scheme, where lines of each generation 

are selected based on recurrent parent breeding value, allowed obtaining high rates of genetic gain 

[44,45].  By combining GS with single-marker assays, genes with major effects can be also selected 

within each offspring following the cross with the recurrent line. In this way, the GS approach is 

expected to additively increase the genetic gain at each generation. Candidate genotypes for selection, 

carrying specific alleles (i.e, resistance traits) can be identified using genotyping platforms that 

include gene specific diagnostic markers or integrate single locus data obtained with different 

technologies. In addition, among markers used in the GS model implementation, a subset of them 

identifying undesirable segments of wild donor can be selected. In fact, large wild genome segments (between 

the 30 and 70% of the whole chromosome) were found to be incorporated due to resistance gene introgressions 

on specific chromosome in cultivated tomatoes [3]. As an extension of this approach, genome-wide 

selection with high-throughput markers in BC1 could be even more efficient and the recovering of 

the recurrent parent genome could be increased from generation BC1 to BC3 without affecting 

favorable trait introgression. 

7. Conclusions 

The evaluation of complex traits such as disease resistance genes and QTLs for quality traits with 

high efficiency in a segregating population can be a difficult task for tomato breeders. The 

implementation of GS in breeding schemes, supporting the selection of improved genotypes, can 

accelerate genetic achievable gain. Major GS implementation challenges were highlighted here, 

including model development, genotyping quality, optimal GS incorporation stage and indications 

for overcoming these issues were also discussed. While the methodological procedures begin to be 

delineated, the optimal way to incorporate GS in a breeding scheme remains to be empirically defined. 

Important features for the success of GS under different breeding scenarios should be assessed. 

Advancements in genotyping efficiency and phenotyping technologies will facilitate the adoption of 

GS in tomato breeding. A future update of existing selection schemas may be achieved using 

computer simulations for investigating different strategies to face the selection process gaps. 
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