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Abstract: In this paper, the authors employ Mountain Pass Lemma, the method of weak solution
regularization and Lyapunov function method to derive the unique existence of globally exponential
stable positive stationary solution of a single-species model with diffusion and delayed feedback.
The obtained stability criterion illuminates that under some suitable conditions, a certain internal
competition is conducive to the overall stability of the population, and a certain amount of family
planning is conducive to the overall stability of the population. A numerical example and three tables
show the effectiveness of the proposed methods.
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1. Introduction

Logistic system is one of the most classical models in ecology and mathematics, which is very
important to the development of ecology ([1]). It is usually expressed as

dx
dt

= rx(t)(1− x(t)
K

), (1.1)

where Where x(t) represents the density or quantity of population x at time t, r > 0 and K represent
the intrinsic growth rate of population and environmental capacity, respectively. In 2011, Xiaoling
Zou and Ke Wang investigated the long time behavior of the following stochastic ecosystem for a
single-species ( [2, Theorem 2] ):

dx = x[a− bx]dt + αxdB(t). (1.2)

where a > 0 and b > 0 describe the growth rate and the intra-specific competition; α > 0 measures
the intensity of the environmental disturbances. In recent years, model (1.2) has been widely adopted
in many applications (see, e.g. [3-5]). A large number of facts have shown that the spatial scale and
structure of the environment can affect population interaction [6, 7] and community composition [8].
In the landmark document [9], Kellam gave a large number of observations, which had a profound
impact on the study of spatial ecology. First, he linked random walk with diffusion equation, The
former is a description of the individual movement of some theoretical biological species, and the
latter is a description of the density distribution of biological populations. He uses the data of muskrat
transmission in Central Europe to prove that this connection is reasonable for small animals. Secondly,
he combines diffusion with population dynamics, and effectively introduces the reaction-diffusion
equation into theoretical ecology.
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In recent years, many dynamical systems, including reaction systems, have been considered as the
theoretical branches of dynamical systems([10-12]). In addition, the competition within the population
is the participation of the adult population, and there is a period from infancy to adulthood. At the
same time, this time-delay problem is affected by many stochastic factors such as weather, temperature,
humidity and so on. Besides, in real life, the factors that affect population growth do not change only at
a fixed time, but also occur randomly. When these factors occur, the system will also change randomly.
As is well known, the phenomenon of population clustering is widespread in nature, which is likely to
be completely affected by environmental factors and human factors. In this case, the growth curve of
mosquitoes or small fish will be different from the previous form. This phenomenon can be expressed
as a switch between two environmental states, because the switching between different environments
is not memory free, Therefore, one can use continuous time Markov chain to model the situation of
environment switching ([13-16]).

Inspired by some ideas and method of related literature [17-23], I am to investigate the stability of
stationary density of a single-species model with diffusion and delayed feedback under natural state.
This paper has the following highlights:

F As far as I know, it is the first paper to investigate the stability of stationary density of a
single-species model with diffusion and delayed feedback under Dirichlet zero boundary value. And
the Dirichlet boundary value can well simulate the fact that the species lives in its biosphere, while the
population density tends to zero at the boundary of biosphere due to the harsh condition.

F It is the first comprehensive application of Mountain Pass Lemma, variational technique and
Lyapunov function method to derive the unique existence of globally exponentially stable positive
stationary solution of a single-species model with diffusion and delayed feedback under Dirichlet zero
boundary value.

F The obtained stability criterion illuminates that under some suitable conditions, a certain
internal competition is conducive to the overall stability of the population, and a certain amount of
family planning is conducive to the overall stability of the population.

For convenience, throughout of this paper, I denote by λ1 the first positive eigenvalue of Laplace

operator −∆ in H1
0(Ω). Denote u+ = max{u, 0}, u− = min{u, 0}. Denote by ‖u‖ =

√∫
Ω |∇u(x)|2dx

the norm of H1
0(Ω), and by λ1 the first positive eigenvalue of Laplace operator −∆ in H1

0(Ω). Besides,
I denote |v| = (|v1|, |v2|)T for v = (v1, v2)

T ∈ R2, and |C| = (|cij|)2×2 for matrix C = (cij)2×2.

2. System descriptions

Denote by (Υ, F , P) the complete probability space with a natural filtration {Ft}t≥0. Let S =

{1, 2, · · · , n0} and the random form process {r(t) : [0, +∞) → S} be a homogeneous, finite-state
Markovian process with right continuous trajectories with generator Π = (γij)n0×n0 and transition
probability from mode i at time t to mode j at time t + δ, i, j ∈ S,

P(r(t + δ) = j | r(t) = i) =

{
γijδ + o(δ), j 6= i
1 + γijδ + o(δ), j = i,

where γij > 0 is transition probability rate from i to j(j 6= i) and γii = −∑n0
j=1,j 6=i γij, δ > 0 and

lim
δ→0

o(δ)/δ = 0.

Consider the following ecosystem with diffusion and delayed feedback


∂u(t, x)

∂t
=q∆u(t, x) + u(t, x)[a− bu(t, x)] + c(r(t))[u(t, x)− u(t− τ(t), x)] + Λ(u), t > 0, x ∈ Ω,

u(t, x) =0, x ∈ Ω, t > 0.
(2.1)
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where Λ(u) is the external input, a > 0 and b > 0 describe the growth rate and the intra-specific
competition, and Ω ∈ R3 is bounded domain with its boundary ∂Ω, and is also a C2,σ domain in
R3(see, e.g. [17]). It is also suitable to the case that the species lives in two dimensional plane (see [19,
Remark 1]).

Throughout this paper, I assume
(H1) the positive function Λ is only a micro perturbation. That is, there exists a positive number

ε > 0 small enough such that

lim
u→∞

Λ(u)
uθ

= ε = lim
u→∞

Λ(u)
u

, (2.2)

where 2∗ − 1 > θ = θ2
θ1

> 2 with θ2 and θ1 being a pair of coprime odd numbers. And Λ(·) is
continuous and Λ(u) > 0 for all u > 0. Here, 2∗ is the Sobolev critical exponent. In addition, Λ(u) = 0
for all u 6 0.

Let u∗(x) be a stationary solution of the system (2.1) implies that u∗(x) is a solution of the
following equation

−q∆u = au− bu2 + Λ(u), x ∈ Ω; u|∂Ω = 0, (2.3)

Of course, each solution of the equation (2.3) must be one of the solutions of the system (2.1).

Definition 1. The stationary solution u∗(x) of the system (2.1) is called the ground-state stationary
solution of the system (2.1) if u∗(x) is the ground-state solution of the equation (2.3).

Definition 2. A solution u∗(x) of the equation (2.3) is called the strong solution of the equation (2.3) if
u∗(x) ∈ C2(Ω).

To prove the main result of this paper, I need the following Lemmas (see, e.g. [17, 20]):

Lemma 2.1. Consider the following equation:{
−∆u = f (x, u), x ∈ Ω;

u|∂Ω = 0,
(2.4)

where Ω is a Ck+2,α domain of Rn, and f satisfies the following conditions:
(a) there exists 0 < r 6 1 such that for any given positive number M,

f (x, u) ∈ Ck,r(Ω× [−M, M], R1),

(b) if n > 3 and s = 2∗ − 1, or n 6 2 and s > 1, then f (x, u) = O(|u|s) (as |u| → ∞) holds
uniformly for x ∈ Ω,

(c) lim
u→0

f (x,u)
u = a(x) ∈ L∞(Ω).

Then the solution of the equation (2.3) in H1
0(Ω) is the strong solution. In addition, u ∈ Ck+2,δ for

δ = αrk+1.

Lemma 2.2. Let u ∈ H1
0(Ω). Then there is a conclusion that u+, u−, |u| ∈ H1

0(Ω). Besides, ∇u+ = ∇u
if u > 0, and ∇u+ = 0 if u 6 0; ∇u− = 0 if u > 0, and ∇u− = ∇u if u < 0; In addition, ∇|u| = ∇u if
u > 0, and ∇|u| = −∇u if u < 0. Besides, ∇|u| = 0 if u = 0.

Lemma 2.3 (Mountain Pass Lemma without the (PS) condition). Let X is a Banach space, Ψ ∈ C1(X,R),
satisfying Ψ(0) = 0 , and there exists ρ > 0 such that Ψ|∂Bρ(0) > α > 0. Besides, there is e ∈ X \ Bρ(0)
such that Ψ(e) 6 0. Let Γ be the set of all paths connecting 0 and e. That is,

Γ = {ψ ∈ C([0, 1], H1
0(Ω)) : ψ(0) = 0, ψ(1) = e}. (2.5)
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Set
c∗ = inf

ψ∈Γ
max
s∈[0,1]

Ψ(ψ(s)). (2.6)

Then c∗ > α, and Ψ possesses a critical sequence on c∗.

Remark 1. Lemma 2.3 is the Mountain Pass Lemma without the (PS) condition (see,e.g. [18]). If, in
addition, Ψ satisfies the (PS) condition, then c∗ is a critical value of Ψ.

Remark 2. Let Ψ be the functional corresponding to the equation (2.3), then u∗(x) must be a
ground-state solution of the equation (2.3) if u∗(x) is a critical point of the functional Ψ with
Ψ(u∗(x)) = c∗ defined in (2.6) of Lemma 2.3.

3. Main result

Firstly, I may present the existence of a stationary strong solution u∗(x) of the system 2.1. In
addition, it is necessary to guarantee that u∗(x) > 0 and u∗(x) 6= 0, which may be proved as follows:

Theorem 3.1. Suppose the condition (H1) holds, and if

a < qλ1, (3.1)

Then there is a ground-state strong stationary solution for the system (2.1).

Proof. Let u∗(x) be a positive stationary solution of the system (2.1), satisfying

−q∆u = au− bu2 + Λ(u), u(x) > 0, x ∈ Ω; u|∂Ω = 0, (3.2)

whose functional is

Ψ(u) =
∫

Ω

|∇u|2 + µu2 − µ(u+)2

2
dx− a

2q

∫
Ω
(u+)2dx +

b
3q

∫
Ω
(u+)3dx−

∫
Ω

Λ̃(u+)dx, (3.3)

where µ > 0 is a constant, and Λ̃(u) =
∫ u

0 Λ(s)ds. It is obvious that Ψ ∈ C1(H1
0(Ω), R1), and a critical

point of the functional Ψ is corresponding to the solution of the equation (3.2). Next, I claim that Ψ
satisfies the condition of the Mountain road geometry. In fact, obviously Ψ(0) = 0.

The micro perturbation condition (H1) yields that there are there positive constants c0, m1, m2

with m1 < 1 < m2 such that

ε− 1
2

ε < | Λ
uθ
| < ε +

1
2

ε, u ∈ (m2,+∞), (3.4)

or

1
2

εu 6 Λ(u) 6
3
2

εu, u ∈ [0, m1);
1
2

εuθ 6 Λ(u) 6
3
2

εuθ , u ∈ (m2,+∞); 0 6 Λ(u) 6 c0, u ∈ [m1, m2],

(3.5)
which implies

Λ(u) 6
3
2

εu, u ∈ [0, m1); Λ(u) 6
3
2

εuθ , u ∈ (m2,+∞); Λ(u) 6 c0, u ∈ [m1, m2], (3.6)

and then

Λ(u) 6
3
2

εu +
3
2

εuθ + c0 6
3
2

εu +
3
2

εuθ + c0
uθ

mθ
1

, ∀ u > 0. (3.7)

Moreover,

Λ̃(u) =
∫ u

0
Λ(s)ds 6

3
4

εu2 + (
3
2

ε +
c0

mθ
1
)

1
1 + θ

u1+θ , ∀ u > 0. (3.8)
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Next, (3.3) ,(3.8), Poincare inequality and Sobolev embedding theorem yield that there is a positive
constant c1 > 0 such that

Ψ(u) >
1
2

∫
Ω
|∇u|2dx− a

2q

∫
Ω

u2dx−
∫

Ω
Λ̃(u+)dx >

(
1
2
− a

2qλ1
− 3

4
ε

)
‖u‖2 − c1‖u‖1+θ (3.9)

Besides, (3.1) and small ε > 0 lead to

1
2
− a

2qλ1
− 3

4
ε > 0, (3.10)

which together with θ > 2 means that there exists ρ > 0 small enough such that J|∂Bρ(0) > α > 0.
On the other hand, it follows by (3.5) and m1 < 1 that

1
2

εuθ 6
1
2

εu 6 Λ(u), u ∈ [0, m1);
1
2

εuθ 6 Λ(u), u ∈ (m2,+∞); Λ(u) > 0, u ∈ [m1, m2],

which implies

Λ(u) >
1
2

εuθ , ∀ u > 0, (3.11)

or

Λ̃(u) >
1

2(1 + θ)
εu1+θ , ∀ u > 0. (3.12)

I may select u ∈ H1
0(Ω) with u > 0, and then

Ψ(u) =
1
2

∫
Ω
|∇u|2dx− a

2q

∫
Ω

u2dx +
b

3q

∫
Ω

u3dxdx−
∫

Ω
Λ̃(u)dx

6
1
2

∫
Ω
|∇u|2dx− a

2q

∫
Ω

u2dx +
b

3q

∫
Ω

u3dxdx−
∫

Ω

1
2(1 + θ)

εu1+θdx.
(3.13)

Let ϕ1(x) > 0 with ‖ϕ‖ = 1 be the eigenfunction corresponding to the first positive eigenvalue λ1 (see,
e.g. [18]), and set u = sϕ, then Ψ(sϕ)→ −∞ if s→ +∞ so that there exists s0 > 0 satisfying ‖s0 ϕ‖ > ρ

and Ψ(sϕ) < 0. And then Ψ satisfies the condition of the Mountain road geometry. According to
Mountain Pass Lemma, Let Γ be the set of all paths connecting 0 and e = s0 ϕ. That is,

Γ = {ψ ∈ C([0, 1], H1
0(Ω)) : ψ(0) = 0, ψ(1) = e}. (3.14)

Set
c∗ = inf

ψ∈Γ
max
s∈[0,1]

Ψ(ψ(s)). (3.15)

Then c∗ > α, and Ψ possesses a critical sequence on c∗, say, {uk} ⊂ H1
0(Ω) with Ψ(uk) → c∗ and

Ψ′(uk)→ 0 in (H1
0(Ω))∗. That is, for any given ε > 0, there exists k big enough such that

∫
Ω

|∇uk|2 + µu2
k − µ(u+

k )
2

2
dx− a

2q

∫
Ω
(u+

k )
2dx +

b
3q

∫
Ω
(u+

k )
3dx−

∫
Ω

Λ̃(u+
k )dx = Ψ(uk) = c∗ + o(1)

(3.17)
and ∫

Ω

(
|∇uk|2 + µu2

k − µu+
k uk −

a
q

u+
k uk +

b
q
(u+

k )
2uk −Λ(u+

k )uk

)
dx = 〈Ψ′(uk), uk〉. (3.18)

〈Ψ′(uk), uk〉 6 ε‖uk‖, (3.19)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2020                   doi:10.20944/preprints202009.0286.v1

https://doi.org/10.20944/preprints202009.0286.v1


6 of 10

(3.7) yields

Λ(u) 6
3
2

εu +
3
2

εuθ + c0 (3.20)

Similarly as the methods of [17, (3.12)-(3.15)], employing (3.17)-(3.20) results in

(
1
2
− 1

1 + θ
)

(
1− a

λ1q
− c3ε

)
‖uk‖2 + c4

∫
Ω
(u+)3dx 6 c∗ + o(1) +

ε

1 + θ
‖uk‖,

where c3, c4 both are positive constants, and 1− a
λ1q − c3ε > 0 due to the small ε, which means the

boundedness of {uk}. Due to θ < 2∗ − 1, the equation (3.2) is the subcritical growth. It is a routine
proof of the fact that {uk} sequently compact, say, uk → u∗(x) in H1

0(Ω) and Ψ(u∗(x)) = c∗ > α > 0,
which implies u∗(x) 6= 0. Besides, u∗(x) is the critical point of Ψ so that

∫
Ω

(
∇u∗(x)∇ϑ + µu∗(x)ϑ− µu∗(x)+ϑ− a

q
u∗(x)+ϑ +

b
q
(u∗(x)+)2ϑ−Λ(u∗(x)+ϑ)

)
dx = 0. (3.21)

In (3.21), setting ϑ = u∗(x)−, Lemma 2.2 leads to

µ
∫

Ω
|u∗(x)−|2dx 6

∫
Ω

(
|∇u∗(x)−|2 + µ|u∗(x)−|2

)
dx = 0,

which implies that u∗(x)− = 0 a.e. x ∈ Ω. Now I have prove that u∗(x) > 0 and u∗(x) 6= 0.
Similarly as that of [17], now I claim that the above-mentioned u∗(x) is the strong solution.
Indeed, u∗(x) 6= 0 is the non-negative solution of the following Dirichlet problem:{

−∆u = f (x, u), x ∈ Ω;

u|∂Ω = 0
(3.22)

where
f (x, u) =

1
q
[au− bu2 + Λ(u)].

It is easy from the assumptions on Λ to verify that f satisfies the conditions (a)-(c), then Lemma 2.1
yields that u∗(x) is the strong solution.

Set v(t, x) = u(t, x)− u∗(x). Since u∗(x) is a stationary solution of the system (2.1), the system
(2.1) is equivalent to the following system


∂v(t, x)

∂t
=q∆v(t, x) + (a + cr − 2bu∗(x))v(t, x) + g(v(t, x))− bv2(t, x)− crv(t− τ(t), x), t > 0, x ∈ Ω,

v(t, x) =0, x ∈ Ω, t > 0,
(3.23)

where
g(v(t, x)) = Λ(u(t, x))−Λ(u∗(x)). (3.24)

Obviously, u∗(x) of the system (2.1) is corresponding to the zero solution of the system (3.23).
Equipped the system (3.23) with the initial value:

v(s, x) = φ(s, x), (s, x) ∈ [−τ, 0]×Ω. (3.25)

Moreover, I give some suitable assumptions as follows,
(H2) There are positive numbers M0, N0 such that

0 < N0 6 u 6 M0. (3.26)
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(H3) There is a positive number M1 > 0 such that

|Λ(s1)−Λ(s2)| 6 M1|s1 − s2|, ∀ s1, s2 ∈ R1. (3.27)

Remark 3. Everyone knows the fact that the population density of any species must have the bounded
below, or the species will die out. For example, When the population density of whales is lower than a
certain degree, it will be difficult for male and female whales to meet each other in the vast sea, leading
to the extinction of the species. Besides, due to the limited resource, the population density of any
species must have an supper boundedness. So the condition (H2) is a suitable assumption.

Theorem 3.2. If all the conditions of Theorem 3.1 hold, and if, in addition,

λ1q > a− 2bN0 + M1, (3.28)

then u∗(x) is the unique stationary solution of the system (3.1).

Proof. Let u, w both are the stationary solutions of the system (2.1). Firstly, the conditions (H2) yields

(u− w)[−b(u2 − w2)] = −b(u− w)2(u + w) 6 −2bN0(u− w)2

and
(u− w)(Λ(u)−Λ(w)) 6 |u− w||Λ(u)−Λ(w)| 6 M1(u− w)2.

Since u, w both are the stationary solutions of the system (2.1), then Pioncare inequality yields

λ1q‖u− w‖2
L2(Ω) 6

∫
Ω
(u− w)[a(u− w)− b(u2 − w2) + Λ(u)−Λ(w)]dx 6

∫
Ω
[a− 2bN0 + M1](u− w)2dx,

which proves u = w, and the proof is completed.

Theorem 3.3. Suppose the conditions (H1)-(H3) and (3.28) hold, and if there are positive numbers
pr(r ∈ S), k1 > 0 such that

min
r∈S

(
2λ1q + 2(2bN0 − a− cr)− 2M1 − 2b(M0 − N0)− crk1 −

1
pr

∑
j∈S

γrj pj

)
> max

r∈S
(crk−1

1 ) > 0,

(3.29)
then the null solution of the system (3.23) with the initial value (3.25) is globally exponential

input-to-state stability , at the same time, u∗(x) is globally exponential input-to-state stability at

the convergence rate λ
2 , where α = min

r∈S

(
2λ1q + 2(2bN0 − a − cr) − 2M1 − 2b(M0 − N0) − crk1 −

1
pr

∑
j∈S

γrj pj

)
, β = max

r∈S
(crk−1

1 ), λ is the unique positive solution of λ = α− βeλτ .

Proof. Consider the following Lyapunov function:

V(t, x, v, r) =
∫

Ω
prv2(t, x)dx, (3.30)

where pr is a positive number for each r.
Firstly, (H2) yields,

v = u− u∗(x) > N0 −M0 ⇒ v3 > (N0 −M0)v2
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(H3) yields
|vg(v)| 6 |v|M1|v| = M1v2.

Let L be the weak infinitesimal operator (see, e.g. [21]) such that

LV 6
∫

Ω

(
− 2λ1qprv2 + 2pr(a + cr − 2bu∗(x))v2 + 2prvg(v(t, x))− 2bprv3 − 2prcrvv(t− τ(t), x) + ∑

j∈S
γrj pj

)
dx

6−
(

2λ1q + 2(2bN0 − a− cr)− 2M1 − 2b(M0 − N0)− crk1 −
1
pr

∑
j∈S

γrj pj

)
V + crk−1

1 Vτ

6−
[

min
r∈S

(
2λ1q + 2(2bN0 − a− cr)− 2M1 − 2b(M0 − N0)− crk1 −

1
pr

∑
j∈S

γrj pj

)]
V + max

r∈S
(crk−1

1 )Vτ

(3.31)
where Vτ(t) = sup

t−τ6s6t
V(s).

Now, [25, Lemma 2] yields that

min
r∈S

pr‖v‖2
L2(Ω) 6 V(t, r) 6 max

r∈S
pr‖v‖2

τe−λτ(t−t0), t > 0,

where t0 = 0, ‖v(t)‖2
τ = sup

t−τ6s6t
‖v(s)‖2

L2(Ω)
. This completes the proof.

Remark 4. In this paper, I employ Mountain Pass Lemma and variational technique to derive the
existence of positive stationary solution, which is different from the methods in my another paper [18].
Particularly, ground-state solution is more suitable to practical engineering (see,e.g. [26-29]).

4. Numerical example

Example 4.1. In the system (2.1), let Ω = (− 1
2 , 1

2 )× (− 1
2 , 1

2 )× (− 1
2 , 1

2 ), then λ1 > 3 (see [18, Remark
14]). q = 0.1, a = 0.2 then a < qλ1, and the condition (3.1) holds. Set

Λ(u) =


0, u ∈ (−∞, 0]

εu, u ∈ [0, 1]

εu
7
3 , u ∈ [1,+∞),

(4.1)

where ε = 0.00001 , then (H1) holds. Let b = 0.1, N0 = 2, M0 = 10, then direct computation yields
M1 = 0.003, obviously (3.28) holds. Then Theorem 3.1-3.2 yields u∗(x) is the unique stationary solution
of the system (2.1), and u∗(x) is the ground state stationary strong solution of the system (2.1).

Moreover, set τ = 0.5, S = {1, 2}, and c1 = 0.01, c2 = 0.02, γ11 = −0.01, γ12 = 0.01; γ21 =

−0.02, γ22 = 0.02, p1 = 0.9999, p2 = 1.0001, k1 = 1, direct computation yields (3.29) holds for r = 1, 2,
and λ = 0.4769. According to Theorem 3.3, the null solution of the system (3.23) with the initial value
(3.25) is globally exponential input-to-state stability , at the same time, u∗(x) is globally exponential
input-to-state stability at the convergence rate 23.85%.

Comparison 1. In Example 4.1, replacing ε = 0.00001 with ε = 0.0001, and other data unchanged,
direct computation yields the convergence rate λ

2 = 21.59%.

Table 1.Comparisons the influences on the convergence rate λ
2 under different perturbations with the same other data

ε = 0.00001 ε = 0.0001
Interference degree smaller bigger
Convergence rate λ

2 23.85% 21.59%

Remark 5. Table 1 illuminates that under some suitable conditions, the smaller the external input
disturbance, the more stable the natural ecosystem of a single-species.
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Comparison 2. In Example 4.1, replacing b = 0.1 with b = 0.2, and other data unchanged, direct
computation yields the convergence rate λ

2 = 28.98%.

Table 2.Comparisons the influences on the convergence rate λ
2 under different intra population competition intensities with

the same other data

b = 0.1 b = 0.2
Interference degree smaller bigger
Convergence rate λ

2 23.85% 28.98%

Remark 6. Table 2 shows that a certain degree of inhibition and competition within the population is
beneficial to the overall stability of the population for the natural ecosystem of a single-species.

Comparison 3. In Example 4.1, replacing a = 0.2 with a = 0.23, and other data unchanged, direct
computation yields the convergence rate λ

2 = 19.08%.

Table 3.Comparisons the influences on the convergence rate λ
2 under different growth rates with the same other data

a = 0.2 a = 0.23
growth rates smaller bigger

Convergence rate λ
2 23.85% 19.08%

Remark 7. Table 3 verifies that due to the loss of natural enemies in a single species model , the higher
the natural population growth rate is, the worse the population stability is.

5. Conclusions

In this paper, by using the mountain pass lemma, the method of weak solution regularization and
the method of Lyapunov function, the global stability criterion of the ground state positive stationary
strong solution of the single population model is given. As a single population loses the restriction of
natural enemies, a certain internal competition is conducive to the overall stability of the population,
and a certain amount of family planning is conducive to the overall stability of the population.

Funding: The work is supported by the Application basic research project of science and Technology Department
of Sichuan Province (No. 2020YJ0434) and the Major scientific research projects of Chengdu Normal University in
2019 (No. CS19ZDZ01).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Lansun Chen, Xinzhu Meng, Jianjun Jiao. Biodynamics, Beijing: Science Press, 2009.
2. Xiaoling Zou, Ke Wang. A robustness analysis of biological population models with protection zone. Applied

Mathematical Modelling, 35 (2011) 5553-5563
3. Weiming Ji , Guixin Hu. Stability and explicit stationary density of a stochastic single-species model. Applied

Mathematics and Computation, 390 (2021) 125593.
4. X. Yu , S. Yuan , T. Zhang , Persistence and ergodicity of a stochastic single species model with allee effect

under regime switching, Commun. Nonlinear Sci. Numer. Simul. 59 (2018) 359-374 .
5. Y. Jin , Analysis of a stochastic single species model with allee effect and jump-diffusion, Adv. Differ. Equ.

165 (2020) 1-11 .
6. Gause, G.F. The Struggle for Existence. Williams and Wilkins, Baltimore, MD, 1935.
7. Huisman, J., Arrayas, M., Ebert, U., Sommeijer, B. How do sinking phytoplankton species manage to persist?.

Amer. Natur. 2002, 159: 245-254.
8. MacArthur, R.H., Wilson, E.O. The Theory of Island Biogeography. Princeton University Press, Princeton,

NJ, 1967.
9. Skellam, J.G. Random dispersal in theoretical populations. Biometrika. 1951, 38: 196-218.
10. Hofbauer, J., Sigmund, K. Dynamical Systems and the Theory of Evolution. Cambridge University Press,

Cambridge, UK, 1988.
11. Hutson, V., Schmitt, K. Permanence and the dynamics of biological systems. Math. Biosci. 1992, 111: 1-71.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2020                   doi:10.20944/preprints202009.0286.v1

https://doi.org/10.20944/preprints202009.0286.v1


10 of 10

12. Smith, H.L., Thieme, H. Dynamical systems and population persistence. American Mathematical Society,
Providence, RI, 2011.

13. Li X., Jiang D., Mao X., Population dynamical behavior of Lotka-Volterra system under regime switching. J.
Comput. Appl. Math., 2009, 232, 428-448.

14. Rudnicki R., Pichr. K., Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 2007,
206(1): 108-119.

15. Rudnicki R., Long-time behavior of a stochastic prey-predator model. Bull. Math. Biol., 2003, 108(1): 93-107.
16. Gompertz B., On the nature of the function expressive of the law of human mortality and on a new method

of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115: 513-585.
17. Ruofeng Rao. Positive Solution for the Dirichlet Zero-Boundary Value Problem (In Chinese). College

Mathematics, 2010,26(2), 146-152.
18. Ruofeng Rao. Stability Analysis of Nontrivial Stationary Solution and Constant Equilibrium Point of

Reaction-Diffusion Neural Networks with Time Delays under Dirichlet Zero Boundary Value. Preprints
2020, 2020040277 (doi: 10.20944/preprints202004.0277.v5).

19. Ruofeng Rao. Unique Existence of Globally Asymptotical Input-to-State Stability of Positive Stationary
Solution for Impulsive Gilpin-Ayala Competition Model with Diffusion and Delayed Feedback under
Dirichlet Zero Boundary Value. Preprints 2020, 2020090052 (doi: 10.20944/preprints202009.0052.v1).

20. Wenduan Lu. Variational methods in differential equations. Beijing: Science Press, 2003.
21. Ruofeng Rao, Shouming Zhong, Xiongrui Wang. Stochastic stability criteria with LMI conditions for

Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and
nonlinear reaction-diffusion. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1),
258-273

22. Ruofeng Rao. Global Stability of a Markovian Jumping Chaotic Financial System with Partially Unknown
Transition Rates under Impulsive Control Involved in the Positive Interest Rate. Mathematics, 2019, 7(7), 579

23. D. Zhou, J. Cao, Globally exponential stability conditions for cellular neural networks with time-varying
delays, Appl. Math. Comput. 131 (2002) 487-496.

24. Ruofeng Rao and Shouming Zhong. Impulsive control on delayed feedback chaotic financial system with
Markovian jumping. Advances in Difference Equations, 2020 2020:50

25. Qingshan Liu, Jinde Cao. Improved global exponential stability criteria of cellular neural networks with
time-varying delays. Mathematical and Computer Modelling 43 (2006) 423-432.

26. Hui-Sheng, DingQihan He. Existence and asymptotic behavior of positive ground state solutions for
nonlinear Kirchhoff problems. Communications in Nonlinear Science and Numerical Simulation,2020, 90,
105369

27. Shuying Tian. Non-degeneracy of the ground state solution on nonlinear Schrodinger equation. Applied
Mathematics Letters,2021, 111, 106634

28. CHEN Xing;WU Xing-ping;TANG Chun-lei. Existence of a Positive Ground State Solution for a Class
of Asymptotically 3-Linear Kirchhoff-Type Equations (In Chinese). Journal of Southwest China Normal
University(Natural Science Edition). 2019(04),22-25

29. Yong-Yong LiGui-Dong LiChun-Lei Tang. Existence and concentration of ground state solutions for
Choquard equations involving critical growth and steep potential well. Nonlinear Analysis, 2020 , 111997

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2020                   doi:10.20944/preprints202009.0286.v1

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202009.0286.v1

