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Abstract: In Electronic Nicotine Delivery System (ENDS), coil resistance is an important factor in the 

generation of heat energy used to change e-liquid into vapor. An accurate and unbiased method for 

testing coil resistance is vital for understanding its effect on emissions and reporting results that are 

comparable across different types and brands of ENDS and measured in different laboratories. This 

study proposes a robust, accurate and unbiased method for measuring coil resistance. An apparatus 

is used which mimics the geometric configuration and assembly of ENDS pods and power control 

units. The method is demonstrated on two commonly used ENDS devices, the ALTO by Vuse and 

JUUL. Analysis shows that the proposed method is stable and reliable. The two-wire configuration 

introduced a positive measurement bias of 0.086 [], which is a significant error for sub-ohm coil 

designs. The four-wire configuration is far less prone to bias error. We observed a significant 

difference in coil resistance of 0.593 [] (p<0.001) between the two products tested.  The mean 

resistance and standard deviation of the pod coil assemblies was shown to be 1.031 (0.067) [] for 

ALTO and 1.624 (0.033) [] for JUUL. The variation in coil resistance between products and within 

products can have significant impacts on aerosol emissions. 

 

Keywords: coil resistance; e-cigarette; electronic nicotine delivery system; pod-style; atomizer. 

 

1. Introduction 

1.1. Theoretical Foundation 

Typical pod-style Electronic Nicotine Delivery Systems (ENDS) consist of three subsystems: the 

pod, Power Control Unit (PCU) and lithium battery. The pod includes a mouthpiece, an e-liquid 

reservoir, a heating element herein called the coil, and an aerosol generation chamber, sometimes 

referred to as the atomizer. Pods designed for re-use, permitting users to refill the reservoir with e-

liquids, are sometimes called “open systems.” Pods designed to be disposable, not intended to permit 

e-liquid refills by the user, are sometimes called “closed systems.”  Most pods are designed with the 

heating element, or “coil”, fully integrated with a wick to deliver e-liquid from the reservoir to the 

heating element such that thermally generated aerosol mixes with inhaled air for delivery through 

the mouthpiece to the user. The PCU contains electronics which manages the user interface, controls 

energy delivered to the pod, and withdraws or replaces (recharges) energy to the battery. The lithium 

battery is the energy storage unit and provides energy to the PCU and the pod. The three subsystems 

interact with one another in an integrated manner. Variation in one component, such as the coil in 

the pod, may have different impacts on aerosol generation depending upon its interaction with the 

PCU and the battery.  

The aerosol generation performance of an ENDS is jointly dependent upon the physical 

characteristics of the ENDS pod, PCU and battery [1-6], characteristics of e-liquid in the reservoir 

[2,3,5,7], and user behaviors of puff flow rate and puff duration [1,8-12]. Understanding the theory of 
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ENDS operation elucidates potential effects of variation in resistance arising from interactions with 

the PCU and battery.  All ENDS fundamentally are heat and mass transfer devices, which are 

commonly studied in engineering disciplines [13] for medical, industrial, residential and commercial 

products. The purpose of the heating coil is to convert electrical energy discharge from the battery 

into thermal energy which raises the temperature of the e-liquid. As the e-liquid solvent temperature 

reaches its saturation temperature (the effective boiling point of the e-liquid mixture), mass transfers 

from the e-liquid reservoir into the air stream to form an aerosol. The effectiveness of aerosol 

generation is impacted by many factors, but most importantly is dominated by the electrical energy 

from the battery dissipated as thermal energy in the coil. The amount of heat energy, E, in Joules [J], 

dissipated in the coil is defined as the product of the instantaneous direct current power, P, supplied 

to the coil, in Watts (1 W ≡ 1 J/Sec), and time duration over which the power is supplied [Sec]. The 

power is a function of the electrical current, Icoil [A], flowing through the coil, the Voltage, Vcoil [V], 

applied across the terminals of the coil, and Resistance, Rcoil [Ω] of the coil itself as shown in Equation 

(1). 

P ≡ Vcoil Icoil =
V2

coil

Rcoil

  =   I2
coil Rcoil (1) 

The coil resistance is an inherent physical characteristic of the coil which depends primarily 

upon the purity and composition of the coil and its geometry. In this study, we include the internal 

electrical connections between the coil and the pod housing to quantify the effective resistance of the 

coil assembly. The voltage, Vcoil, and current, Icoil, passing through coil are related to one another using 

the classical definition of Ohm’s law, Vcoil = Icoil × Rcoil, from physics [14]. The PCU controls the duration 

over which power is supplied to the coil. The PCUs employed in early ENDS designs simply shorted 

the voltage available from the battery across the coil for an interval of time. As the battery discharged 

over time, its available voltage decreased and hence the power delivered to the coil decreased.  All 

modern ENDS PCU designs control the time duration of power delivery, while some PCU designs 

actively control the current, Icoil, flowing through the coil and other designs actively control the 

voltage, Vcoil, applied across the terminals of the coil. Fully understanding the effects of variation in 

coil resistance, Rcoil, on aerosol emissions cannot be accomplished without understanding the logic 

implemented in the ENDS PCU.  

Equation 1 shows the desired power of an ENDS can be achieved by a specific ratio of coil 

resistance and applied voltage. In the lowest cost ENDS designs, the applied voltage is limited by 

physical constraints of the most common lithium batteries, which peaks at approximately 3.7 [V] and 

decreases as the battery discharges. Higher cost ENDS designs may actively control the output 

voltage using a “boost” converter [15], at the penalty cost of reduced operating time between 

recharging. ENDS manufacturers, over time, have sought to increase the power dissipation in the coil 

in order to increase the rate of e-liquid aerosolization. Given the physical limitations of low-cost 

rechargeable lithium batteries, ENDS designers choose to reduce the coil resistance as the most 

appealing parameter to increase power. This is illustrated by an example. Consider an ENDS designer 

who specified a power level of 12 [W] and a lithium battery operating at nominally 3.7 [V]. Equation 

1 dictates that a coil resistance of 1.14 [] should be used. If power of more than 12 [W] is desired, 

even smaller resistance is required. Otherwise, a stack of two or more batteries connected in series or 

a DC-to-DC boost converter can be used to step up the applied voltage [15]. Using two batteries is 

not a desirable solution, because it increases the cost, weight and volume of the ENDS. Boost 

converters are increasingly common in modern ENDS but appear to be primarily used as a means to 

extend operating lifetime and maintain steady power while the battery discharges. 

The desire for high power ENDS pushes designers to increasingly use coils with low resistance 

values which led to the introduction of the sub-ohm devices which use coils that have resistance of  

< 1  [16,17]. Reducing the coil resistance to 0.068  permits instantaneous power as high as 200 W. 

The sub-ohm devices are reported to satisfy several features desired by users such as intense flavor, 

warm vape and big clouds which is associated with high airflow that is suitable for direct to lung 

inhale style [18,19]. Sub-ohm coils are mostly available in the box-mod ENDS style; however, some 
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pod style ENDS started to use coils with resistances of less than 1 [] such as SMOK2 pod (0.8 []) 

and NORD2 (0.3, 0.4, 0.6 []) [20], TARGET PM80 (0.2, 0.3, 0.6, 0.8 ) [21], and Z-BIIP (0.48 []) [22]. 

Several studies investigated the effects of power values on the performance of ENDS devices 

while others focused on coil’s resistance values. As demonstrated with Equation 1, power levels can 

be controlled in real-time by manipulating the applied voltage and current, or by installing a coil with 

a different resistance. The power level of an ENDS may be increased by increasing the applied voltage 

(which has the effect of increasing the current) or by decreasing coil’s resistance value while keeping 

the applied voltage constant. The same approach can be followed for decreasing power level. For this 

reason, most of the results achieved from the studies focusing on power and voltage values can be 

generalized to coil’s resistance values with appropriate adjustments and vice versa. However, it is 

essential that studies investigating the effect of power on emissions document both the power 

dissipation and coil resistance in order to make results generalizable to other products.  

 1.2. Context of Prior Work 

Previous studies have shown that coil resistance affects both the amount of vapor generated and 

constituents. Cirillo et. al., 2019 [23] showed that reducing coil resistance leads to higher 

concentration of some carbonyls and reactive oxygen species (ROS). Their research also reported that 

vapor generated by coils with lower resistances has higher negative impact on cell viability. The same 

research group [24] also showed in a separate work in 2019 that the production of selected aldehydes 

increased as coil resistance decreased from 1.5 [] to 0.25 []. The effects of the aerosols generated 

by the two coils on Sprague Dawley rats was studied. The rat group exposed to the 0.25 [] vape 

showed disorganization of alveolar and bronchial epithelium. The same group also showed higher 

perturbation of the antioxidant and phase II enzymes compared to the 1.5 []  groups. Gillman et. 

al., 2016 [25] studied the effects of changing power on the total yield mass and the formation of 

aldehyde. Their results showed that power has significant impact on the concentration of aldehyde 

in the vapor. Although their main focus was power, they used several coils with various resistance 

values to control the power. This indicates that in this study the physically important factor is 

resistance values as it is already demonstrated in Equation 1. Chausse et. al, in 2015 [26] suggested 

coil resistance could be the key to lung toxicity. Their analysis showed that combination of certain 

voltage and coil’s resistance values may lead to high impact on human health. Hiler et. al, 2019 [27] 

investigated the effects of changing heating coil  resistance and on nicotine delivery, puffing 

topography, subjective effects and liquid consumption. They used off the shelf coils with two 

resistance values of 0.5 [] and 1.5 []. Lower resistance coils were found to deliver higher nicotine 

and have higher liquid consumption.   

Several prior studies did not document the method used to measure coil resistance or assess 

variation in this key parameter. Cirillo et. al., 2019 [23,24], Sleiman et. al., 2016 [28], Ogunwale et. al., 

2017 [29] and Soulet et. al., 2018 [30] reported coil resistance as a study parameter without 

documenting the method used to measure resistance. Researchers may be tempted to select “off the 

shelf” coils with resistance values that suit their study. This approach assumes the coil resistances 

reported by the manufacturer are accurate, neglects manufacturing variation between coils, and may 

limit study designs to ENDS brands that offer coils with different resistance values.  

 Conversely, other studies reported the measurement methods employed. Gillman et. al., 2016 

[25] used a measurement instrument that is specialized in milliohm resistance measurement (Extech 

milliohm meter, 380560) which claims high precision and low error rate. Hiler et.al [27] used off the 

shelf ohm meter “Coil Master 521 TAB v2”, advertised to test homemade coil resistance and ensure 

proper operation before using them. The Coil Master [31] is reported to have a 510 threaded connector, 

compatible with many box-mod ENDS, and is equipped with a fire button which applies voltage to 

the coil during test. The manufacturer reports readings have an error of about +/- 0.05 [], which 

corresponds to a reading error of +/- 10% when the measured coil has resistance of 0.5 []. The high 

error margin of this meter suggests it is generally not appropriate for use in scientific studies.  

In summary, many studies have been done to assess the impact of power and coil resistance on 

emissions and toxicity, but no studies have been done to evaluate the accuracy of the methods used 
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to measure coil resistance. Many modern commercially available box-mod ENDs are equipped with 

a resistance meter to report coil resistance to the user, but no studies could be found that validate the 

reliability of these values.  

With the current trend to reduce coil resistance values to sub-ohm levels [16,17], manufacturing 

variations might have greater effects on the actual resistance of the coils, which in turn may give rise 

to variation in the composition of emissions from the ENDS. Until the time this study is written, we 

have found no reports that quantify such variation nor how it might affect the expected performance 

of the ENDS. Previous inconsistencies in reporting coil resistance may be caused by the absence of a 

robust standard method.  

1.3. Study Objectives 

This study focuses on demonstrating accurate and robust methods for quantifying: (1) the 

effective resistance of the heating coil in a fully assembled pod, (2) variation in effective coil resistance 

across pods from a single manufacturer, (3) repeatability of the test method and apparatus, and (4) 

differences in effective coil resistance between manufacturing designs. The proposed methods are 

demonstrated on two popular [32-34] commercially available pod style ENDS: ALTO by Vuse [35] 

and JUUL [36]. The test fixtures described herein are supported by detailed published protocols [37] 

enabling researchers to use commercially available test equipment and instructions to fabricate 

custom test fixtures for measuring effective coil resistance of integrated pods from various 

manufacturers.  

2. Materials and Methods  

2.1. Constant Current Resistance Measurement Method 

The constant current method is commonly used for resistance measurement in conjunction with 

a digital multi–meter (DMM). Modern DMMs for laboratory use incorporate an integrated voltmeter 

and constant current source. The DMM constant current source, ISource, is used to supply current to 

the Device Under Test (DUT) while measuring the voltage, VVoltmeter, across the DUT. The resistance 

of the DUT, RMeasured, is determined as the ratio of measured voltage over the applied current, 

consistent with Ohm’s law:   

             𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  =  
𝑉𝑉𝑜𝑙𝑡𝑚𝑒𝑡𝑒𝑟 

𝐼𝑆𝑜𝑢𝑟𝑐𝑒
                         (2) 

Two configurations are commonly used with the constant current method. The most common two-wire 

configuration is appropriate for general purposes with large DUT resistances on the order of kilo-ohms and 

mega-ohms. The four-wire configuration is more appropriate for accurate measurement of sub-ohm coil 

resistances. The effect of measurement configuration is assessed herein by using both configurations on a 

sample of pods from two manufacturers and conducting a repeated measures difference between configurations.  

2.1.1 Two-Wire Configuration 

The schematic shown in Figure 1 is known as the two-wire configuration [38]. Two terminals 

(denoted as the + and - terminals) are supplied with a constant current, ISource, from the DMM. Two 

wire-leads are connected from the terminals of the DMM to the opposing ends of the DUT coil being 

tested.  Kirchoff’s voltage law states voltage drops across three components in series is the 

summation of the voltage drop across each component in the series. Thus, the voltage, VVoltmeter, 

measured by the DMM is the summation of voltage drops across the DUT and the two wire leads. 

Kirchoff’s current law asserts the steady current flowing through three resistive components in series 

are equal. Consequently, the measured current through the DUT will be identical to the current 

through the wire-leads. Equation (3) shows the calculations in detail, which can be simplified to the 

second form if we assume the two wire-leads are of the same composition, diameter and length. 

𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝑉𝑉𝑜𝑙𝑡𝑚𝑒𝑡𝑒𝑟

𝐼𝑆𝑜𝑢𝑟𝑐𝑒

=
𝑉𝐿𝑒𝑎𝑑 + 𝑉𝐷𝑢𝑡 + 𝑉𝐿𝑒𝑎𝑑

𝐼𝑆𝑜𝑢𝑟𝑐𝑒

= 𝑅𝐷𝑈𝑇 + 2 × 𝑅𝐿𝑒𝑎𝑑 (3) 
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 The resistance of wire-leads can vary widely between research laboratories and test benches, 

easily between 0.010 [] to 1.000 [] depending mainly on their materials and lengths. The resistance 

of the wire-leads, RLead, introduces a significant bias error between the DMM observed, RMeasured, and 

the actual coil, RDUT, when the DUT has low resistance. For example, when measuring the resistance 

of an ENDS coil with a true resistance of 1 [] in this configuration with two wire-leads having a 

resistance of 0.050 [] each, the measured value would be around 1.1 [], a 10% bias error in 

measurement. If we use the same apparatus and wire-leads to measure sub-ohm coils, the percent of 

bias error would be correspondingly higher. The wire-leads are the main source of error in this 

configuration. The bias error can be reduced by using very short wire-leads with high electrical 

conductivity (e.g. gold instead of copper). However, short leads are often difficult to manipulate in 

the lab, and this approach does not completely remove the bias introduced by the wire-leads. The 

four-wire configuration offers a practical and robust approach to removing the bias error associated 

with the two-write configuration.   

 

 

Figure 1. Two-wire resistance measurement schematic. Dotted box labeled DMM is a simplified 

version of internal schematic of the digital multimeter. 

2.1.2 Four-Wire Configuration 

The four-wire configuration employs two current wire-leads (Force + and Force -) to supply 

current through the DUT and two separate sensor wire-leads (Sense + and Sense -) to measure the 

voltage across the DUT. The four-wire configuration eliminates the bias effect of lead resistances 

described in the two-wire resistance measurement configuration [38]. 错误!未找到引用源。 shows 

the schematic of this configuration. The voltmeter has very high resistance (on the order of megaohms) 

and thus very low current (on order of picoohms) flows through the Sense +/- wire-leads. Thus, the 

voltage drop across the Sense +/- wire-leads are negligible and the voltage measured by the voltmeter 

is the same as the voltage cross the DUT. The resistance of the wire-lead is totally insignificant, and 

the measured resistance is un-biased compared to the two-wire configuration. Random errors such 

as those associated with analog to digital conversion in the DMM, remain in both configurations but 

are negligible in comparison to the quantities typically required for characterization of ENDS coils. 
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Figure 2. Four-wire resistance measurement schematic. Dotted box labeled DMM is a simplified 

version of internal schematic of the digital multimeter. 

2.2. ENDS Product-Specific Test Fixture  

An apparatus was assembled to conduct constant current method resistance measurements in 

both the two-wire and four-wire configuration. The DMM used for all resistance measurements in 

this study was a Model 34465A from KEYSIGHT™ [39] and supports both two-wire and four-wire 

resistance configurations with several user-selectable ranges (100 [] to 1,000 [M]). The DMM was 

set to “auto scale” option for all observations conducted in this study, resulting in every observation 

being measured on the 100 [] range. The DMM was connected to a desktop computer running 

Microsoft Windows™ 10 operating system with a USB-2 cable.  A custom MATLAB™ script was 

used to trigger measurements and collect readings from the DMM and save the data to comma 

separated value (CSV) test files for later analysis.  

While commercial-off-the-shelf (COTS) four-wire-leads, commonly called “Kelvin leads”, may 

be used to connect the DUT to the DMM, we elected to fabricate custom four-wire-leads which were 

permanently soldered to each DUT fixture.  We determined that COTS Kelvin leads might not be 

the best option for measurement of ENDS coil resistance. In some types of ENDS, the coils are 

separable from the reservoir and wick. However, during and after usage, the coil is in contact or 

submerged with the e-liquid. In other types of ENDS, such as the pod style devise studied here, the 

coil is permanently attached within the pod and is submerged in the e-liquid reservoir. In removable 

pod ENDS devices, the pods most often make electrical contact with the ENDS PCU using two 

different styles connectors. Several pod style ENDS employ two spring-loaded connectors, also 

known as pogo pin connectors, for the + and – terminals on the PCU side while mating with two 

corresponding flat connectors on the pod side. The connectors come in various sizes and shapes 

across ENDS designs and, most importantly, they have different distances between the +/- terminals. 

Additionally, the mechanical means of retaining the pod in the ENDS is different from one 

manufacturer’s design to another. Some manufacturers use a friction fit, some use a magnetic clasp, 

and others may use detents. This variation between ENDS designs means the pod style coil terminals 

are not directly exposed and cannot directly connect to COTS Kelvin lead clips. Further, we desired 

a test fixture which would allow us to assess the impact of the pod retaining mechanisms employed 

in various ENDS designs on the repeatability of effective coil resistance measurement. Electrical 

contact resistance caused by the connectors is a potential confounder in natural environment 

operation of ENDS products, and is worthy of investigation.  
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Accordingly, this study incorporates a special holding fixture which is unique to each ENDS 

product and retains the pod with its integrated coil in position while measurements are made with 

the DMM. Each holding fixture uses a scavenged ENDS PCU housing and original manufacturer’s 

connectors to mimic the housing, connectors and pod retention employed in the original ENDS to 

create a more realistic setup and produce accurate resistance measurements. This study employs 

connectors and PCU housing of the same design as the ENDS device under test. Figure 3 shows the 

holding fixture built for an ALTO style ENDS with a snap pod retainer as part of its internal structure. 

The Model 34465A KEYSIGHT™ DMM is used in conjunction with each unique ENDS holding 

fixture. Each test fixture is secured vertically using a table-top vise with the pod housing on the top 

end while the four wires are to the bottom. This setup made it easy to position the test fixture and 

switch between pods during the experiment.  

 

Figure 3. Custom ENDS test fixture for Vuse/ALTO pod style ENDS coil resistance measurement in 

conjunction with a Keysight Model 34465A digital multimeter. The exploded view shows an inside 

view of the wire connections. 

The process has currently been demonstrated on two ENDS designs. Detailed tutorials for 

building resistance measurement holding fixtures are available at [37]. The process of building the 

pod holding fixture includes multiple steps which are briefly summarized here: 

1. Discharge the battery of the ENDS prior to opening the device.  

2. Open the ENDS PCU to access its internal structure. Use standard electrical safety 

precautions when working in the presence of possible charge carrying components such 

as capacitors. Avoid shorting any electrical leads during disassembly.  

3. Remove the battery and the readily accessible PCU electronic components. 

4. Locate the internal side of the connectors. These connectors are used to connect the PCU 

to the pod or tank section of the ENDS. The connectors may be directly soldered to a 
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printed circuit board (PCB) as in the JUUL or connected to the PCB via thin wires as in 

ALTO.  

5. Solder two lead-wires, force +/- and sense +/-, to the ENDS PCU +/- connectors, 

respectively. Care must be taken not to damage the connectors or gaskets which lie 

between the ENDS PCU PCB and the END PCU pod receiver. Details of these 

connections are important in developing an accurate and robust fixture and are 

discussed in detail and with photographic guides in [37]. In the case of the device built 

for ALTO, the lead-wires are soldered to the cut end of the manufacturer’s thin lead- 

wires linking the connectors to the PCB. This step has been taken to protect the 

connectors and the surrounding plastic case from the soldering heat, if wires have been 

soldered directly to the connectors. These thin wires between the four-wire leads and 

the connectors means that their resistance will be added to the measured coil’s resistance 

in addition to the resistance of the connectors themselves. These extra resistances can be 

measured and subtracted from coil resistance or can be simply neglected if they 

appeared to be very small. This point is discussed in detail in the results section. It 

should be noted these wires are inherently present in the circuitry the ENDS PCU may 

use in dynamically sensing coil resistance, and thus represent an accurate measure of 

the effective resistance of the pod/coil assembly.  

6. Make a small groove at the end of the ENDS PCU housing to make room to pass the 

four wires out from the fixture to the DMM. 

7. Connect color-coded banana plugs to the free end of the four lead-wires, for inserting 

into the DMM. 

2.3. Data Sampling Procedure 

Each pod to be tested is marked with a unique identification number. Prior to making a 

resistance measurement, this ID number is entered into the data logging script. The operator places 

the pod to be tested in the holding fixture and pressed a button on the computer to initiate data 

sampling. The script has the ability to read the resistance using two-wire and four-wire mode without 

additional operator intervention. The tested pod remains inserted between two-wire and four-wire 

measurements. The script can read and report a single observation of coil resistance or can read and 

record 120 sequential readings of the same pod taken at 1 second intervals, to evaluate the 

performance of the fixture and validate stability.  Each data reading is tagged with the pod ID, two-

wire vs four-wire configuration, trial number (for test/re-test repeatability), a time-date stamp (to 

identify 120 sequential readings), and the numerical value of the resistance reported by the DMM.  

2.4. Test Specimens 

Two popular pod style ENDS devices were chosen for this study. The Vuse ALTO and JUUL 

ENDS are two of the most popularly used e-cigarettes especially among teenagers [32-34]. We 

purchased N=22 Vuse ALTO pods and N=16 JUUL pods filled with nicotine flavor e-liquid having a 

manufacturer-reported 5% nicotine concentration. The manufacturers report ALTO pods are filled 

with ~1.8 mL of e-liquid [35], while JUUL pods are filled with ~0.7 mL of e-liquid [36]. All pods were 

new and, in the manufacturer’s, original sealed packaging until opened for this test.  Pods were 

purchased from local retail brick-and-mortar establishments and national on-line vendors. We 

observed the Vuse ALTO pods were identified with N=5 unique manufacturing lots, and the JUUL 

pods were identified with N=2 manufacturing lots.  

2.5. Statistical Analyses 

Descriptive statistics were computed for each ENDS design including the mean, median, inter-

quartile range and outlier analysis. Standard statistical tests were used to assess all data collected. 

Assessment of bias evident between the two-wire and four-wire configuration of the constant current 

resistance test method was conducted with a repeated measure (single sample) t-test for each ENDS 
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design studied. Assessment of test/re-test repeatability was conducted by taking independent 4-wire 

measurements of each uniquely identified pod on two different days, separated by five months 

between the test and re-test observation. The test/re-test correlation coefficient, rtest/re-test,[40] and the 

one-to-one intra-class correlation coefficient, ICC1:1,[40] were computed and reported for each ENDS 

studied. Assessment of differences in mean effective coil resistance between ENDS designs was 

conducted using a two-sample t-test under the assumptions of a normal distribution, unequal sample 

sizes and unequal variances. The assumption of normally distributed samples was evaluated using a 

quantile-quantile (Q-Q) plot of data observations vs. theoretical normal distribution. Assessment of 

manufacturing variation was conducted using a normal distribution with point estimates for the 

mean and standard deviation to predict the ±6σ range of coil resistances anticipated for mass-

produced ENDS pods.  

  

3. Results 

Coil resistance test fixtures are built for two pod style products: ALTO and JUUL. The constant 

current resistance measurement method was used to measure N = 22 ALTO pods and N = 16 JUUL 

pods with both the two and four wire-lead configuration. Each observation consisted of 120 resistance 

readings sampled from the digital multi-meter at one second intervals. Variation between repeated 

readings exhibited a 95% confidence interval of less than 0.0002 [] for every set of 120 repeated 

observations per pod and test configuration, indicating excellent stability of the test fixture. The 

underlying data for the results presented herein is available in Supplemental Table 1.  The mean of 

each of the 120 readings has been calculated to produce two values for each pod, one for each 

resistance testing configuration. ALTO pod means ranged 1.018-1.304 [] for two-wire configuration 

and 0.933-1.214 [] for four-wire configuration. JUUL pod means were 1.631-1.744 [] for two-wire 

configuration and 1.544-1.659 [] for four-wire configuration.   

Figure 4 shows a box plot of four groups of data: two-wire and four-wire readings for ALTO 

pods and JUUL pods. The mean resistance and standard deviation of N=22 ALTO pods was observed 

to be 1.118 (0.053) [] using the two wire-lead configuration and 1.031 (0.052) [] using the four wire-

lead configuration. The ALTO data exhibits a slight positive skew and a paired t-test between the two 

wire-lead and four wire-lead configurations exhibits a difference in means of δ = 0.087 [] (p < 0.001). 

The mean resistance and standard deviation of N=16 JUUL pods was observed to be 1.710 (0.032) [] 

using the two wire-lead configuration and 1.624 (0.033) [] using the four wire-lead configuration. 

The JUUL data exhibits a negative skew and the paired t-test between the two and four wire 

configurations exhibits a difference in means of δ = 0.086 [] (p < 0.001) Results demonstrate the  two 

wire-led configuration exhibits a  positive bias of ≈ 0.087 [], as would be expected due to the 

additional resistance (2 × RLead) present in the two wire-lead test configuration illustrated in Figure 1.  

For this reason, only four-wire configuration data is taken to the next analysis step.  
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Figure 4. Box plot and t-test results of ALTO, N=22, and JUUL, N=16, coil resistance readings for two-

wire and four-wire configurations using the constant current method. The differences between two-

wire and four-wire configurations are 0.087 []  ( p<0.001) and 0.086 []  ( p<0.001) for ALTO and 

JUUL respectively. The magenta difference bars are pointing at the group means while the red line in 

the box plot refers to the group medians. The box notches illustrate the 95% confidence interval on 

the median. 

The test/re-test correlation coefficient, rtest/re-test, and the one-to-one intra-class correlation 

coefficient, ICC1:1, were computed to assess the repeatability of the testing apparatus. The one-to-one 

intra-class correlation coefficient is conducted on two sets of readings. The first set is the means of 

the 120 readings reported for in the previous paragraph. The second set consists of repeated 

measurements for the same pods five months later. This comparison will show the stability of the test 

fixture and pods over a period of five moths. Result of the ICC1:1 for ALTO N=13 is 0.9997(13) p<0.001 

and for JUUL N=16 is 0.9960(16) p<0.001. The test/re-test correlation coefficient is used to show the 

consistency or reliability among measurements. A set of 10 consecutive readings with 2-5 seconds 

interval is taken for each pod. Result of the test/re-test correlation coefficient for ALTO N=17 is 

0.9997(144) p<0.001 and for JUUL N=16 is 0.9873(135) p<0.001. 

A quantile-quantile (Q-Q) plot of the each data sample obtained using the unbiased four wire-

lead configuration is shown in Figure 5. The data was evaluated against several standard 

distributions, and the normal distribution was found to be the closest fit to both ALTO and JUUL 

data with slight positive and negative skew respectively, consistent with the  box plots in Figure 4. 
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Figure 5. QQ plot of the four-wire coil resistance readings of ALTO, N = 22 and JUUL, N = 16 for a 

standard normal distribution. The data was tested against several standard random distributions and 

normal distribution was found to be the closest fit. 

Figure 6 shows normalized histogram and fitted pdf for the four-wire resistance readings of the 

ALTO and JUUL. The plot shows that both pod products exhibit manufacturing variations in coil 

resistance. The mean and standard deviation of the sample distributions from the unbiased 4 wire-

lead configuration are 1.031 (0.067) [] for the ALTO and 1.624 (0.033) [] for the JUUL. A two-sample 

t-test was conducted to assess the effective mean resistance between the two pod products, 

demonstrating a result of δ≈ 0.593 [] (p < 0.001).  
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Figure 6. Normalized histogram and fitted PDF for four-wire coil resistances of ALTO (N=22) and 

JUUL (N = 16).  The group mean resistance of ALTO pods is 0.593 []  ( p<0.001) less than that of 

JUUL pods. The sample of ALTO pods tested exhibits more manufacturing variability than the sample 

of JUUL pods. 

4. Discussion 

The 4-wire constant current method is the preferred technique for quantifying electronic 

cigarette coil resistance. Between-product comparisons may not be reliable when resistance 

measurements are taken using the popular 2-wire method. For example, in our controlled setting, the 

2-wire method introduced a bias of 0.086 [], which was 15% of the observed difference between 

product means of 0.593 []. If care is not taken with the wire-lead resistance, the bias can be even 

larger than 15% and obfuscate important variation between products. Similarly, if 2-wire 

comparisons are made between data collected by two different labs with two different apparatus, we 

may inadvertently conclude there is no significant difference between product characteristics or 

ascribe a difference to the product which could actually be a result of the test apparatus. While two-

wire resistance measurement methods are common in many laboratory settings, they may not be 

sufficiently accurate for measuring the resistance of electronic cigarette coils with a resistance of ≈3 

[] or lower.  

Results demonstrated a sample of coils from a single manufacturer procured across 

manufacturing lots exhibit variation which is a significant fraction of the nominal coil resistance. Such 

manufacturing variation is expected. The amount of manufacturing variation in coil resistance 

associated with a particular product may have significant implications on the emissions resulting 

from the use of the product. The coefficient of variation (standard deviation over the mean) was 

observed to be 5.1% for ALTO and 2.0% for JUUL. Correspondingly, it is reasonable to conclude to 

±3σ coil resistance of ALTO and JUUL pods to vary as much as ±15% and ±6% for ALTO and JUUL, 

respectively, when considering large production lots typical of a national and global distribution 

channel.  

Differences in coil resistance, whether associated with bias error from the 2-wire configuration, 

variation between products or variation within a single product, may yield important variations in 

the emissions of total particulate matter (TPM) and presence of Hazardous and Potentially 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2020                   doi:10.20944/preprints202009.0281.v1

https://doi.org/10.20944/preprints202009.0281.v1


 13 of 17 

 

Hazardous Constituents (HPHCs) in the emissions. Furthermore, the impact of variability in coil 

resistance in the pod (or e-cig reservoir) on emissions is closely related to the electronics used in the 

Power Control Unit (PCU) of the e-cig. The PCUs of modern e-cigs are far more sophisticated than a 

simple battery. However, examining the effect of variation in coil resistance on power dissipated in 

the coil by a simple Direct Current (DC) circuit of a battery across a coil provides insight into the joint 

impacts of both the coil and the PCU on emissions.  

Consider an electronic cigarette having a nominal coil resistance of 1 [] (measured using four-

wire configuration) and powered by battery having a fully charged voltage of 3.7 [V]. To illustrate 

the point, consider the PCU as being a simple “on-off” switch with no active voltage or current control 

and not supporting pulse width modulation. The nominal power dissipated will be 𝑃 =
3.72

1.0
 =

 13.69 [𝑊] as given by Equation (1) and the nominal current flowing through the coil will be Icoil =Vcoil 

/ Rcoil = 3.7/1.0 = 3.7 [A] as determined by Ohm’s Law, Equation (2). It is well known from DC circuit 

analysis that the total energy delivered from the coil to the liquid is limited by the product of the 

nominal power and duration of activation. Similarly, it is well known from heat and mass transfer 

analysis, that rate of mass transfer from the liquid to the aerosol stream is affected by the surface area, 

flow path, and flow rate.  As the power, P, and energy increases, we can anticipate more emission 

of TPM. As the current, Icoil, increases the temperature of the coil itself will increase through a well-

known phenomenon known as “Ohmic heating.”  We might anticipate, then, that increases in 

current flowing through the coil might give rise to increased production of HPHCs in the emissions 

resulting from thermal decomposition of e-liquid constituents. Thus, understanding the influence of 

variation in coil resistance of e-cigs is essential to understanding emissions.  

We demonstrated the two-wire configuration introduced a positive bias, over-estimating the 

true value of the coil resistance by 0.086 [Ω]. If we use this biased estimate of coil resistance, we would 

under-estimate the power 𝑃 =
3.72

1.086
 =  12.6 [𝑊] and current Icoil = 3.6 [A] in the coil. These biased 

estimates are not conservative, and could very well give rise to apparent inconsistencies observed 

between the emissions produced when comparing products to one another.  

The same concern holds true when we assess the effect of manufacturing variation between coils 

of the same product design. A manufacturing variation of +/- 15% in coil resistance with a simple 

PCU would result in variations in coil power and current dissipation of -13% / + 18%. As the 

manufacturing variation in coils increases, the potential adverse consequences of changes in HPHC 

emissions also increases. It has been reported that coils with lower resistance values may have higher 

negative health impacts [23-25,27]. Therefore, it is essential to develop a full understanding of the 

manufacturing variation in coil resistance associated with electronic cigarettes.  This high difference 

in the expected instantaneous power has the potential to drastically change performance of the device, 

constituents of the aerosol produced, and e-liquid consumption rate.  

Electronic cigarette Power Control Units (PCUs) which employ active voltage control may 

mitigate the adverse impact of variation in coil resistance.  Both the ALTO and JUUL are equipped 

with PCUs exhibiting active control logic. The sophistication of PCUs varies widely between product 

designs. The potential of the PCU to mitigate manufacturing variation in coil resistance deserves 

further attention. Little is known about the performance of various PCUs and their limitations.  

The robust method introduced herein provides a foundation for investigation of several research 

questions, including the following. What resistance variation is exhibited between coils of different 

products? What variation in resistance is exhibited within a product design? What are the effects of 

resistance variation on the aerosol composition and generation rate? How does the resistance of a coil 

changes over the course of its operating life? How does the resistance of a coil change during a vaping 

session? How do these variations affect the performance, lifetime and safety of the lithium battery? 

What is the relation between coil resistance, power, and the performance of the PCU?  To what 

extent can the PCU overcome variations in coil resistance? What is the effect of using interchangeable 

coils (such as the now common 510 threaded reservoir) in conjunction with PCUs on emissions? How 

does this framework inform potential adverse health consequences of product misuse and product 

hacking? 
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5. Conclusions 

The preferred constant current resistance measurement method using four wire-leads is 

demonstrated to provide stable, accurate, repeatable and unbiased observations of the resistance of 

pod-style electronic cigarette coil assemblies. The commonly employed two wire-lead configuration 

is demonstrated to introduce a positive bias, the magnitude of which is dependent upon the 

laboratory testing apparatus and impedes reproducing results between independent laboratories. 

The constant current four wire-lead method is recommended as the standard method for measuring 

resistance of electronic cigarette coil assemblies. The coil resistance measurement method, which was 

demonstrated using two brands of pod style electronic cigarettes, is broadly applicable to other 

brands and styles of electronic cigarettes.     

A quantile-quantile assessment demonstrated the manufacturing variation of effective coil 

resistance of pod assemblies for two brands of popular electronic cigarettes is normally distributed. 

The mean coil resistance of pods varies significantly between the brands of electronic cigarettes tested, 

demonstrating the sample mean resistance of the ALTO pods was 0.593 [Ω] lower than the mean 

resistance of JUUL pods (p < 0.001).  Furthermore, the sample of (N=22) ALTO pods tested exhibited 

a mean and 99% confidence interval of 1.031 ± 0.0405 [Ω], while the (N=16) JUUL pods exhibited a 

mean and 99% confidence interval of 1.624 ± 0.0243 [Ω]. The resistance measurement method thus is 

valuable for assessing variations between brands of electronic cigarettes and for quantifying 

manufacturing variation which may be anticipated within a single product brand. Products 

exhibiting larger manufacturing variation in coil resistance may result in wider variability of 

emissions generated from those products. As a result, it is recommended the distribution of 

manufacturing coil resistance (using the constant current four wire-lead method) be reported in 

future comprehensive emissions studies and new product applications for coils and coil assemblies. 
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