

1 Initial multitarget approach shows importance for 2 improved Caprine arthritis-encephalitis virus control 3 program in Russia for hobbyist goat farms

4 Abstract

5 **Aim:** The aim of this study was to use a multi target approach to testing with both serological tests and an in-
6 house real-time molecular test to investigate the prevalence of the caprine arthritis-encephalitis virus (CAEV)
7 in goats from three hobbyist farms in the Republic of Tatarstan, Russia.

8 **Materials and Methods:** We have approached the detection of using a multi target approach testing with both
9 ELISA and an in-house real-time PCR test to investigate the prevalence of CAEV in goats. Animals from three
10 hobbyist farms were used in this study. The animals from two farms (n=13 for F1 and n=8 for F2) had clinical
11 signs of arthritis and mastitis. In the third farm (n=15 for F3), all goats were homebred and had no contact with
12 imported animals.

13 **Results:** CAEV antibodies (ELISA targets TM *env* and *gag* genes) were detected in serum samples from two
14 farms (F1 and F2), indicating a seroprevalence 87.50-92.31%. Specific CAEV antibodies were also detected in
15 milk samples. CAEV proviral DNA was detected in 53.85-62.50%. Results from all tests performed in the third
16 farm (F3) were negative, indicating all tests were 100% specific.

17 **Conclusion:** Results of this work show that CAEV is circulating and present in small hobbyist goat farms in
18 Russia. Serological and molecular tests could be of importance for CAEV control and eradication programs in
19 Russia for hobbyist goat farms.

20 **Keywords:** caprine arthritis-encephalitis virus; goat; antigens; antibodies; proviral DNA.
21

22 **Introduction:**

23 Caprine arthritis-encephalitis virus (CAEV) belongs to the small ruminant lentiviruses (SRLVs), the genus
24 Lentivirus, and the family Retroviridae, and can cause serious economic problems for goat farms. The infection
25 may develop into multisystemic inflammatory diseases, which affect the central nervous system in kids and
26 joints and mammary glands in adult goats [1,2]. However, the asymptomatic period may last several months or
27 more. The virus (CAEV) was initially isolated in the United States from an infected adult goat more than 40
28 years ago [3]. Since that initial report the prevalence of CAEV has been reported in many countries [4-10].
29 Several reports describe the detection of specific CAEV antibodies in Russian goat populations, what indicates
30 the circulation of CAEV in Russian goat farms [11-14]. In Belgium, small ruminant lentiviruses, including
31 CAEV, were detected in small numbers of sheep and goats on hobbyist farms in the presence of an ongoing
32 voluntary testing scheme [15], indicating that a low uptake on the voluntary scheme, can create difficulties and
33 slows progress in the control program by harboring undetected seropositive animals. While, the un-
34 proportionally high seroprevalence of CAEV in dwarf goats in reported in Switzerland indicates that these
35 hobby breeds do not fall under official controls [16] and are going undetected, however, these hobby breeders
36 are more likely to inadvertently escape some of the official controls. A widespread of CAEV infection in goat
37 herds in southern Spain has been reported to be associated with such factors as, herd size, existence of kidding
38 area, absence of cleaning and disinfection program, natural mating and multiparous births [5].

39 A major route for the spread of CAEV infection is, colostrum and milk from a seropositive goat, in these
40 secretions free virus and infected macrophages or epithelial cells can be present [17,18]. Cross-species
41 transmission of CAEV was also observed in wild small ruminants [19].

42 There is no “gold standard diagnostic test” available currently for CAEV, and use of a multi-faceted screening
43 approach using both serological and molecular biology techniques for blood and milk samples is recommended
44 to detect positive animals [20,21]. In chapter 3.7.2 of the OIE Terrestrial manual [22], the use of different
45 diagnostic methods, including serology and PCR are recommended along with clinical evaluation and post
46 mortem examinations for diagnosis of this persistent infection. Since CAEV is a life-long infection, animals are
47 considered carriers and present as persistently seropositive animals.

48 Antibody responses during CAEV infection do not play a protective role [23], but can be used for diagnostic
49 purposes. In the humoral immune response of goats' immunoglobulins subtype IgG1 is the dominant type in
50 infected goats with clinical arthritis and inflammatory joint lesions [24]. During the SRLV infection process
51 antibodies against several antigens develop, including capsid protein p25CA, transmembrane protein gp46TM,
52 nucleocapsid p14NC, matrix protein p16MA and surface protein gp135SU [25]. Due to this antigenic
53 heterogeneity, using all or most of these antigens has the potential to increase the sensitivity of CAEV
54 serodiagnosis [26-28].

55 CAEV, like all members of the retrovirus family, is an RNA-containing pathogen that upon infection of an
56 organism, integrates a proviral insertion in the genome of an infected animal, and both provirus and virus
57 detection can be achieved by PCR and RT-PCR, respectively [29,30]. CAEV detection methods based on
58 defining the proviral insertion allows for the most expedient approach for its detection. CAEV was detected
59 using nested PCR in the Philippines [5] and Argentina [9] previously. For the detection of proviral CAEV DNA,
60 recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) assay was recommended for
61 use in another study [31]. Detecting CAEV proviral DNA in goat samples could be useful in eradication
62 programs and epidemiological studies.

63 In Russia, the goat sector is small and consists mostly of hobbyist farmers keeping small numbers of animals
64 on each farm. The current lack of CAEV prevalence data in this hobbyist sector makes it difficult to evaluate
65 the risk of CAEV transmission, even for such relatively low farm and animal numbers. Here, we report the
66 prevalence of CAEV in goats from three hobbyist farms as determined by ELISA and real-time PCR in the
67 Republic of Tatarstan, Russia.

68 Materials and Methods:

69 Animals and clinical samples

70 Our research was conducted in three hobbyist goat farms in the Republic of Tatarstan, Russia, in 2015, during
71 common veterinary examination of farms. Animals from two farms (n=13 for F1, n=8 for F2) containing a
72 mixture of home bred and purchased animals some of which were already showing clinical signs of arthritis
73 (Figure 1) and mastitis were used here for the assessment of infection prevalence. Goats from a third farm (n=15
74 for F3) were used to determine the tests apparent specificity, were all homebred and had no contact with
75 imported animals, there were no clinical signs of CAEV observed. No CAEV testing history was available for
76 animals used in this study.

77 Whole blood was collected into 4.5 mL Vacutte® K3E K3EDTA 13x75 lavender cap-black ring, premium
78 tubes and also into Vacutte® Tube 4.5 ml Z Serum Clot Activator 13x75 red cap-black ring, premium tubes
79 (Greiner Bio-One GmbH, Austria) from the jugular vein using Vacutte® Multiple Use Drawing Needles, 18G
80 x 1 1/2" pink, sterile, latex-free, 1.25x38 mm (Greiner Bio-One GmbH, Austria). The serum was separated in
81 the serum clot activator tubes by centrifugation at 500 g for 15 mins. Whole blood and serum samples stored at
82 -20°C.

83 Milk samples were collected in glass tubes (Khimlaborpribor, Russia) and then stored at 2-8°C for 24 hrs.
84 Samples were then centrifuged at 500 g for 15 mins, defatted, and then stored at -20°C. Bioethics Committee
85 of Federal Center for Toxicological, Radiation and Biological Safety provided full approval for this research.
86 A special ethical approval was not required, because animals were not involved in an experimental study. Only
87 blood and milk samples, collected by veterinarians, were used. The samples taken did not exceed the volume
88 that would have been taken for routine veterinary/animal husbandry purposes.

89 **Figure 1.** Clinical signs of arthritis in goats from farms F1 (A, B) and F2 (C).

90 Antibody detection

91 Goat serum and milk samples were tested using the commercial ELISA Maedi-Visna/CAEV Antibody Test Kit
92 (IDEXX, France) with one modification for milk testing. This ELISA uses a mixture of a synthetic peptide of
93 the immunogenic region of the transmembrane protein (TM *env* gene) and recombinant p28 protein, which is a
94 part of the viral capsid (*gag* gene), immobilized as an antigen in the wells of ELISA plate. Briefly, serum
95 samples were diluted 1:20 and individual milk samples were diluted 1:50 in dilution buffer and mixed before
96 following the manufacturer's instructions for the ELISA test for serum samples. Results were analyzed
97 according to the manufacturer's instructions and presented as S/P %.

98 Extraction of nucleic acids

99 For the extraction of nucleic acids, 1ml of milk sample was placed into a centrifuge tube and centrifuged at
100 7,000 rpm (MiniSpin, Eppendorf) for 5 min, 800 μ L of supernatant was removed, and the remaining 200 μ L
101 was used for DNA extraction. Whole blood samples were used without centrifugation.
102 The AmpliPraym DNA-sorb-B kit (NextBio) was used in according to the manufacturer's instructions for the
103 isolation of DNA from milk and whole blood samples. Lysis solution (300 μ L) and 100 μ L of milk or whole
104 blood sample were used per extraction.
105 The extracted DNA concentration and purity was measured using UV5Nano spectrophotometer (Mettler
106 Toledo) according to the manufacturer's instructions. Samples of nucleic acids were stored at -80°C until use.

107 Design of oligonucleotide primers

108 For the in-house real-time PCR assay, the target site from CAEV proviral DNA, available in the GenBank
109 (GenBank accession number: NC_001463), was selected using AlignX (ClustalW) and Vector NTI Version 9.1
110 (Invitrogen) programs. Several isolates/strains of the virus were analysed to identify a portion of the DNA that
111 was homologous across all (Figure 2). The env gene was selected and using Standard Nucleotide BLAST
112 (<https://blast.ncbi.nlm.nih.gov>) and a region between 7975-8098 bp (GenBank accession number: NC_001463)
113 was identified as highly specific and primers and probes were designed within this region.

114 **Figure 2.** Homologous portion of the proviral DNA or viral RNA in CAEV isolates / strains with positions in CAEV
115 genome shown.

116 The primer set (forward FCAEV; reverse RCAEV) and probe (PCAEV) used in this study (Table 1) were
117 designed based on the CAEV proviral DNA specific region identified as above. Using Standard Nucleotide
118 BLAST, it was confirmed that in this format no cross-reaction with DNA of other organisms can be observed
119 and it is 100% specific to CAEV. The Oligo Analysis module of the Vector NTI was used to check the primers
120 in vivo before syntheses (eg. melting temperature (Tm), primer-dimer formation and primer self-
121 complementarity). The maximum annealing temperature of the primers was 60.3°C for forward (F) and 60.3°C
122 for reverse (R) primers. The annealing temperature of the probe (P) was 65.5°C. The designed primers were
123 found not to form dimers, secondary structures or palindromes and had a GC composition of 40-60%. The
124 primers and probe (labeled with reporter and quencher dye (ROX, BHQ2) at its 5' and 3' ends respectively)
125 were synthesized by Syntol (Moscow, Russia) (Table 1).

126 Real-time PCR

127 Real-time PCR for CAEV proviral DNA was performed using a universal master mix RT-PCR kit (Syntol,
128 Moscow, Russia), comprising: 25 mM MgCl₂, 2.5 mM dNTP, PCR buffer \times 10, Taq polymerase and deionized
129 water. The final volume of 20 μ L PCR mixture contained: 1.5 μ L of 25 mM MgCl₂ solution; 0.5 μ L of 10 pM
130 probe solution; 0.5 μ L of 10 pM of each primer solution; 1.5 μ L of 2.5 mM dNTP solution; 1.5 μ L of 10x buffer
131 for PCR; 0.5 μ L of Taq polymerase; 10 μ L of DNA extract and 3.5 μ L of deionized water. PCR was carried out
132 in real-time on amplification platform C1000 with an optical reaction module CFX96 (BioRad). The PCR
133 cycling conditions were as follows: (I) denaturation at 95°C for 3 min followed by (II) 5 cycles of 10 sec each
134 at 95°C and 30 sec at 60.0°C, and then (III) 39 cycles: 10 sec at 95°C, 30 sec at 60.0°C (acquisition of fluorescent
135 signal).

136 Positive control

137 A synthetic insert as 150bp of synthetic DNA
138 (5'gcaagtctggagtcgcaacgcgattcagcagtcctatactagggcgctgtccagacccttgtaatgcaactgctgcacagcaggatgttagaagg
139 aacctatgccatggatcagcatgtggctaaaggcgtcaggatctggaa3') was designed to include recognition sites for CAEV
140 gene (GenBank accession number: NC_001463) and was inserted into synthetic oligonucleotide sequences. The
141 final nucleotide sequence was synthesized and then subcloned within plasmid pAL2-T (ZAO Evrogen, Russia),
142 which was used as a positive control in real-time PCR for CAEV proviral DNA.

143 Statistical analysis

144 The prevalence was calculated using Wilson 95% confidence interval (CI) without a correction for continuity
145 available on line (The Confidence Interval of a Proportion/VassarStats: <http://vassarstats.net/prop1.html>). The

146 agreement between tests were calculated using Kappa available on line (Kappa as a Measure of Concordance
147 in Categorical Sorting/VassarStats: <http://vassarstats.net/kappa.html>).

148 **Results:**

149 **Seroprevalence of CAEV**

150 For comparison of CAEV seroprevalence in the two herds where animals were showing clinical symptoms of
151 CAEV infection (Figure 1), results from F1 and F2 were analysed. In the cases of F1 and F2, 12/13 and 7/8
152 goats were positive in IDEXX assay, with seroprevalence 92.31% (95% CI 66.69 to 98.63%) and 87.50% (95%
153 CI 52.91 to 97.76%), respectively. For comparison of apparent specificity, 15 goats from F3 were tested for
154 presence of specific CAEV antibodies in serum samples using the Maedi-Visna/CAEV Antibody Test Kit
155 (IDEXX). None of these 15 goats were antibody positive by the ELISA (Table 2).

156 **Prevalence of CAEV antibody in milk**

157 Positive ELISA results were obtained for 9/10 milk samples from goats of F1, (90.00%, 95% CI 59.59 to
158 98.21%). For 2/10 animals there were no clinical signs, but were determined to be serum positive. Antibodies
159 were detected in one sample obtained from a goat with clinical symptoms (33.33%; 95% CI 6.15 to 79.23%).
160 Only 5/15 milk samples from F3 were tested with the ELISA, and all five were negative.

161 **Comparison of serum and milk**

162 While the observed agreement between serum and milk test results for IDEXX for the three farms (total n= 18)
163 was 0.7692 indicating good agreement. However, serum ELISA testing detected more positive goats, than milk
164 samples tested here.

165 **Synthetic viral DNA detection limit**

166 To determine the detection limit of the PCR, synthetic viral DNA was titrated (13 tenfold dilutions) and tested.
167 The initial concentration of the DNA was 426.6 ng/µL (plasmid DNA 3150bp; 1×10^{14} copies/mL). Real-time
168 PCR was carried out on the dilutions, starting at the 1×10^{11} copies/mL. Each dilution was amplified and results
169 confirmed for 8 repeats per dilution (Figure 3).

170 **Figure 3.** Real-time PCR result of plasmid DNA containing marker DNA CAEV. Amplification curves of CAEV,
171 respectively using serial 10-fold dilutions of the mixed recombinant plasmids from, 1×10^{11} , 1×10^{10} , 1×10^9 , 1×10^8 ,
172 1×10^7 , 1×10^6 , 1×10^5 , 1×10^4 , 1×10^3 and 100 copies/mL.

173 The last dilution successfully amplified was 1×10^3 copies/mL (1×10 copies/10µL), at this dilution a positive
174 reaction was observed in 6 out of 8 of the repeats while all of the dilution 1×10^4 copies/mL (1×10^2 copies/10µL)
175 were amplified in all cases, the dilution 100 copies/mL (1×1 copies/10µL) did not amplify. To evaluate the
176 inter-assay variability, tenfold dilutions of 1×10^{12} , 1×10^{11} , 1×10^{10} , 1×10^9 , 1×10^8 , 1×10^7 , 1×10^6 , 1×10^5 , 1×10^4 ,
177 1×10^3 and 100 copies/mL of the plasmid DNA were tested (8 replicates on the same amplification run). The
178 CV values of intra-assay were 0.1 – 14.88 (Table 3).

179 **Real-time PCR for CAEV proviral DNA**

180 The total DNA concentration range for both milk and whole blood-based extractions were in the range of 200
181 to 1,200 µg/mL, and all DNA extracted in this study had 260/280 ratio of >1.8 (data not shown).
182 In order to determine the detection limit for the PCR assay, serial dilutions were prepared based on total DNA
183 extracted from a whole blood sample. Serial dilutions of total goat DNA from 900 to 0.05 µg/mL (Figure 4)
184 were used. The Cq at the lowest DNA dilution (0.05µg/mL total DNA) was determined as 37.57.

185 **Figure 4.** Real-time PCR result of goat F1-11 milk sample: total DNA titration from 900 to 0.05 µg/mL (900µg/mL,
186 300µg/mL, 100µg/mL, 33µg/mL, 11µg/mL, 3.7µg/mL, 1.2µg/mL, 0.41µg/mL, 0.05µg/mL) and no amplification
187 negative control.

188 Whole blood samples from all 15 goats from F3 were tested and 5 were tested by the milk-based PCR, in both
189 cases all samples were PCR negative (Table 2).

190 A total of 13 blood samples from F1 were tested by real-time PCR and CAEV proviral DNA was detected in
191 7/13 animals (Table 2) with prevalence 53.85% (95% CI 29.15 to 76.80%). 5 of these 7 goats had clinical signs
192 of CAEV infection (arthritis), there were no clinical signs in the other 2 animals. Real-time PCR was carried
193 out for 10 milk samples from these 13 animals. CAEV proviral DNA was detected in 4/10 milk samples. These
194 4 animals were also positive when blood was PCR tested.

195 In F2 blood samples from 8 goats were tested and PCR was positive in 5/8 samples, indicating the prevalence
196 of CAEV proviral DNA to be at 62.50% (95% CI 30.57 to 86.32%). Of the 5 animals tested as positive, 3/5 had
197 clinical CAEV symptoms.

198 Milk samples from F2 were also tested for three animals, using real-time PCR. CAEV proviral DNA was
199 detected in 1/3 of these milk samples. This one positive animal was also positive when blood was tested by
200 PCR.

201 CAEV proviral DNA was not detected in any blood or milk samples from F3, where clinical signs of CAEV
202 were absent in all animals.

203 These results indicate that used in this study real-time PCR is highly sensitive and it can detect CAEV proviral
204 DNA at very low concentration (Figure 3).

205 Comparison of ELISA and PCR

206 An overall good level of agreement of 0.6182, was determined for samples (milk/serum/blood) from all three
207 farms (n=36) between all tests done on the IDEXX ELISA and the PCR.

208 Discussion:

209 There are no official reports of CAEV infection in goats on hobbyist farms and no eradication/monitoring
210 programs exist currently, in Republic of Tatarstan, Russia. There is a goat/sheep population of 65.8 thousand
211 heads as of 2016 [32], of which it is estimated that 90.5% are in small and hobbyist farms. Currently control
212 measures consist of veterinary certification of imported goats as originating from a CAEV-free region only
213 [33], which aims to prevent the introduction of the infection to farms in Russia. However, it is common practice
214 for large dairy goat farmers to strictly control and test for a range of different infections to help prevent entry
215 of any infected animals into their herds. Goats from three small hobbyist farms in the Republic of Tatarstan,
216 Russia, were investigated here for the presence of CAEV antibodies and proviral DNA. CAEV antibodies were
217 detected in serum samples from two farms, where animals were also showing clinical signs of the disease, with
218 seroprevalence at levels of 92.31% (95% CI 66.69 to 98.63%) in Farm 1 and 87.50% (95% CI 52.91 to 97.76%)
219 in Farm 2 determined. Specific CAEV antibodies were also detected in milk samples from the two farms (F1
220 and F2) indicating a prevalence of 90.00% (95% CI 59.59 to 98.21%) and 33.33% (95% CI 6.15 to 79.23%),
221 respectively. CAEV proviral DNA was also detected with levels of 53.85% (95% CI 29.15 to 76.80%) and
222 62.50% (95% CI 30.57 to 86.32%), for the two farms respectively. The observed agreement between serum and
223 milk ELISA results was 0.7692, and between ELISA and PCR was 0.6182 in the two farms. This indicates the
224 presence of previously unreported CAEV seropositive goats in these farms in Republic of Tatarstan, Russia.
225 It has been demonstrated in an Italian study that ELISA can be used as a diagnostic test for control measures,
226 for aiding the reduction of seroprevalence as well as clinical manifestations of CAEV infection [34]. The
227 reactivity of CAEV antigens in serological tests may vary which depends on the geographical and breeding
228 origin of the goats [35]. The presence of antibodies and proviral DNA in goat samples may vary within the
229 time, and the combination of different tests for CAEV diagnostics may improve the efficacy of control and
230 eradication programs [20,21,36]. Therefore, for epidemiological purposes, serological assays with various
231 CAEV antigens as well as PCR methods are needed for detection of the disease. The study in Thailand showed
232 that combination of ELISA and PCR provided advantages to detect CAEV-infected goats [37]. The IDEXX
233 ELISA kit, which was used in our study, uses a mixture of the transmembrane protein (TM ENV gene) and
234 recombinant p28 protein (GaG gene) for detection of the infection as a multi-antigen approach. It was reported
235 that monoclonal antibodies against p28 are also reactive against p55 (gag) protein and the intermediate cleavage
236 products, p44, p36 and p22 [38]. The antibody response was significantly higher among arthritic than
237 asymptomatic goats [28]. In our study, all animals with clinical signs of CAEV were seropositive.

238 There is potential for using PCR for CAEV, as an alternative to serology or as a supplemental test, CAEV RNA
239 PCR and previously a PCR for detection of CAEV proviral DNA was shown to be highly efficient [39]. It was
240 also reported that presence of CAEV proviral-DNA and CAEV in the seminal plasma was significantly higher
241 in bucks with PCR-positive blood [40]. Proviral DNA was detectable 15 days post experimental CAEV

242 infection, whereas specific antibodies were detected after 40-60 days using a real time PCR also targeting a
243 specific region of the CAEV env gene [41]. The CAEV genome is characterized by a pronounced polymorphism
244 of the nucleotide sequence. In the conservative sequence we have chosen [42] to indicate the CAEV provirus
245 the polymorphism is also observed (Figure 2), and the oligonucleotides for CAEV indication are complementary
246 to non-polymorphic regions of this sequence.

247 Results from this study show that the use of both ELISA and PCR has the advantage of potentially improving
248 the sensitivity. However, the lack of agreement between ELISA and PCR results reported by other authors
249 [20,21] has also been observed in this study. The results of this study revealed a pattern of a positive reaction
250 in ELISA and PCR (both with blood samples and milk) in goats with clinical manifestations of the disease
251 (samples: F1-6, F1-7, F1-11 and F2-1). This circumstance is associated with the peculiarities of CAEV infection
252 process, the provirus can be detected at early stages and during virus release into the environment, antibodies
253 are synthesized at a later stage after infection and can circulate in the organism of infected animals for a long
254 time. Recently it was reported that goats on multispecies farms (where goats and sheep coexist) in Italy had a
255 higher CAEV seroprevalence, where sheep can serve as a reservoir of small ruminant lentivirus infection [43].
256 Also indications for cross-species transmission of small ruminant lentivirus strains between sheep and goats
257 were found in Belgium [44]. Hobbyist farms in most cases are multispecies farms, and small ruminant lentivirus
258 control programs should be concentrated on both sheep and goats. The lack of regular screening for small
259 ruminant lentiviruses is increasing the spread of the disease [45-47].

260 The results of our studies on the example of three small farms in the Republic of Tatarstan indicate the
261 possibility of the spread of CAEV among goats on hobbyist farms, the owners of which lack the professionalism
262 to control this viral disease. Moreover, the absence of reported CAEV cases in large goat farms indicates
263 compliance with veterinary and animal husbandry regulations. Initial work presented here on the in-house PCR
264 show that the test is specific in the samples tested, however further work is needed to develop the assay further
265 for both milk and blood-based assay. The work on the analysis of the prevalence of CAEV in the Republic of
266 Tatarstan and other regions of the Russian Federation will continue.

267 Conclusion:

268 The results of this study indicate that CAEV is circulating and present in small hobbyist goat farms in the
269 Republic of Tatarstan, Russia and is currently going undetected in the absence of a control program or
270 monitoring. Due to the complex nature of the CAEV infection and viral life cycle and based on the results in
271 this comparative study it can be concluded that serological tests, targeting different proteins, as well as
272 molecular based tests could be of importance for use in any future CAEV control and eradication programs in
273 Russia for hobbyist goat farms.

274

275 References:

1. Larruskain A, Jugo BM. 2013. Retroviral infections in sheep and goats: small ruminant lentiviruses and host interaction. *Viruses* 5(8): 2043-2061 DOI: 10.3390/v5082043.
2. Ravazzolo AP, Nenci C, Vogt HR, Waldvogel A, Obexer-Ruff G, Peterhans E, Bertoni G. 2006. Viral load, organ distribution, histopathological lesions, and cytokine mRNA expression in goats infected with a molecular clone of the caprine arthritis encephalitis virus. *Virology* 350(1): 116-127.
3. Crawford TB, Adams DS, Cheevers WP, Cork LC. 1980. Chronic arthritis in goats caused by a retrovirus. *Science* 207(4434): 997-999.
4. Tabet E, Hosri C, Abi-Rizk A. 2015. Caprine arthritis encephalitis virus: prevalence and risk factors in Lebanon. *Rev Sci Tech* 34(3): 915-921,907-914.
5. Padiernos RB, Balbin MM, Parayao AM, Mingala CN. 2015. Molecular characterization of the gag gene of caprine arthritis encephalitis virus from goats in the Philippines. *Arch Virol* 160(4): 969-978 DOI: 10.1007/s00705-015-2359-5.
6. Linderot de Cardona K, De Gracia Scanapieco A, Braun PG. 2016. First results on small ruminant brucellosis and tuberculosis and caprine arthritis-encephalitis in El Salvador. *Trop Anim Health Prod* 48(5): 1083-1087 DOI: 10.1007/s11250-016-1044-3.
7. Konishi M, Hayama Y, Shirafuji H, Kameyama K, Murakami K, Tsutsui T, Akashi H. 2016. Serological survey of caprine arthritis-encephalitis virus infection in Japan. *J Vet Med Sci* 78(3): 447-450 DOI: 10.1292/jvms.15-0357.

292 8. Barrero Domínguez B, Luque I, Maldonado A, Huerta B, Sánchez M, Gomez Laguna J, Astorga R. 2017.
293 Seroprevalence and risk factors of exposure to caprine arthritis-encephalitis virus in southern Spain. *Vet Rec* 180(9): 226
294 DOI: 10.1136/vr.104014.

295 9. Panei CJ, Gos ML, Valera AR, Galosi CM, Echeverria MG. 2017. First isolation and nucleotide comparison of the
296 gag gene of the caprine arthritis encephalitis virus circulating in naturally infected goats from Argentina. *Open Vet J* 7(1):
297 32-35 DOI: 10.4314/ovj.v7i1.5.

298 10. Yang WC, Chen HY, Wang CY, Pan HY, Wu CW, Hsu YH, Su JC, Chan KW. 2017. High prevalence of caprine
299 arthritis encephalitis virus (CAEV) in Taiwan revealed by large-scale serological survey. *J Vet Med Sci* 79(2): 273-276
300 DOI: 10.1292/jvms.16-0387.

301 11. Sidelnickov GD, Colbasov DV, Chichikin AJ, Volkova IJ, Rzhavin AV. 2007. Experience in sanitation of a caprine
302 arthritis-encephalitis-affected farm. *Veterinariya* 12: 25-26. (in Russian).

303 12. Kudryashov AA, Balabanova VI, Babina SY. 2014. Pathomorphological findings in lungs and brain at caprine
304 arthritis-encephalitis. *Actual Questions of Veterinary Biology* 3: 54-58. (in Russian)

305 13. Baryshnikova EI, Kolbasova OL, Malogolovkin AS. 2015. Investigation of molecular genetic characteristics of small
306 ruminant lentivirus. *Voprosy Normativno-Pravovogo Regulirovaniya v Veterinarii* 2: 27-28. (in Russian)

307 14. Balabanova VI, Kudriashov AA, Shumakov OP. 2016. Pathologic diagnosis of contagious diseases of goats and sheep
308 on farms. *Actual Questions of Veterinary Biology* 4(32): 43-48. (in Russian)

309 15. Michiels R, Van Mael E, Quinet C, Welby S, Cay AB, De Regge N. 2018. Seroprevalence and risk factors related to
310 small ruminant lentivirus infections in Belgian sheep and goats. *Prev Vet Med* 151: 13-20 DOI:
311 10.1016/j.prevetmed.2017.12.014.

312 16. Thomann B, Falzon LC, Bertoni G, Vogt HR, Schüpbach-Regula G, Magouras I. 2017. A census to determine the
313 prevalence and risk factors for caprine arthritis-encephalitis virus and visna/maedi virus in the Swiss goat population. *Prev
314 Vet Med* 137(Pt A): 52-58 DOI: 10.1016/j.prevetmed.2016.12.012.

315 17. Blacklaws BA, Berriatua E, Torsteinsdóttir S, Watt NJ, de Andres D, Klein D, Harkiss GD. 2004. Transmission of
316 small ruminant lentiviruses. *Vet Microbiol* 101(3): 199-208.

317 18. Reina R, Berriatua E, Luján L, Juste R, Sánchez A, de Andrés D, Amorena B. 2009. Prevention strategies against
318 small ruminant lentiviruses: an update. *Vet J* 182(1): 31-37 DOI: 10.1016/j.tvjl.2008.05.008.

319 19. Minardi da Cruz JC, Singh DK, Lamara A, Chebloune Y. 2013. Small ruminant lentiviruses (SRLVs) break the species
320 barrier to acquire new host range. *Viruses* 5(7): 1867-1884 DOI: 10.3390/v5071867.

321 20. Barquero N, Arjona A, Domenech A, Toural C, de las Heras A, Fernández-Garayzabal JF, Ruiz-Santa Quiteria JA,
322 Gomez-Lucia E. 2011. Diagnostic performance of PCR and ELISA on blood and milk samples and serological survey for
323 small ruminant lentiviruses in central Spain. *Vet Rec* 168(1): 20 DOI: 10.1136/vr.c4951.

324 21. Barquero N, Gomez-Lucia E, Arjona A, Toural C, Heras A, Fernández-Garayzabal JF, Domenech A. 2013. Evolution
325 of specific antibodies and proviral DNA in milk of small ruminants infected by small ruminant lentivirus. *Viruses* 5(10):
326 2614-2623 DOI: 10.3390/v5102614.

327 22. Caprine arthritis/encephalitis and Maedi-visna. *Manual of Diagnostic Tests and Vaccines for Terrestrial Animals*
328 2019. Chapter 3.7.2.

329 23. Blacklaws BA. 2012. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and
330 encephalitis virus. *Comp Immunol Microbiol Infect Dis* 35(3): 259-269 DOI: 10.1016/j.cimid.2011.12.003.

331 24. Trujillo JD, Hötzl KJ, Snekvik KR, Cheevers WP. 2004. Antibody response to the surface envelope of caprine
332 arthritis-encephalitis lentivirus: disease status is predicted by SU antibody isotype. *Virology* 325(1): 129-136.

333 25. Torsteinsdóttir S, Carlsdóttir HM, Svansson V, Matthíassdóttir S, Martin AH, Pétursson G. 2007. Vaccination of sheep
334 with Maedi-visna virus gag gene and protein, beneficial or harmful? *Vaccine* 25(37-38): 6713-6720.

335 26. Grego E, Bertolotti L, Carrozza ML, Profiti M, Mazzei M, Tolari F, Rosati S. 2005. Genetic and antigenic
336 characterization of the matrix protein of two genetically distinct ovine lentiviruses. *Vet Microbiol* 106(3-4): 179-85 DOI:
337 10.1016/j.vetmic.2004.12.007.

338 27. Tolari F, Al-Ramadneh W, Mazzei M, Carrozza ML, Forzan M, Bandecchi P, Grego E, Rosati S. 2013. Small ruminant
339 lentiviruses in Jordan: evaluation of sheep and goat serological response using recombinant and peptide antigens. *Trop
340 Anim Health Prod* 45(6): 1335-40 DOI: 10.1007/s11250-013-0366-7.

341 28. Czopowicz M, Szalusi-Jordanow O, Moroz A, Mickiewicz M, Witkowski L, Markowska-Daniel I, Bagnicka E, Kaba
342 J. 2018. Use of two commercial caprine arthritis-encephalitis immunoenzymatic assays for screening of arthritic goats. *J
343 Vet Diagn Invest* 30(1): 36-41 DOI: 10.1177/1040638717729397.

344 29. Turchetti AP, Paniago JJ, da Costa LF, da Cruz JC, Braz GF, Gouveia AM, Paixão TA, Santos RL, Heinemann MB.
345 2013. Distribution of caprine arthritis encephalitis virus provirus, RNA, and antigen in the reproductive tract of one naturally
346 and seven experimentally infected bucks. *Theriogenology* 80(8): 933-9 DOI: 10.1016/j.theriogenology.2013.07.021.

347 30. Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, Teixeira MFS. 2018. Duplex nested-PCR
348 for detection of small ruminant lentiviruses. *Braz J Microbiol* 49 Suppl 1: 83-92 DOI: 10.1016/j.bjm.2018.04.013.

349 31. Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH. 2017. Development of a recombinase polymerase
350 amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV)
351 infection. *J Virol Methods* 243: 98-104 DOI: 10.1016/j.jviromet.2017.01.023.

352 32. Federal State Statistics Service. Results of the 2016 All-Russian Agricultural Census: statistical compilation.
353 Tatarstanstat, Kazan, 2018. Vol. 5. The population of farm animals. 560 p. <https://tatstat.gks.ru/folder/33497> (in Russian)

354 33. Order of the Ministry of Agriculture of Russia dated 09.03.2011 N 62 (as amended on 15.02.2017) On approval of the
355 List of contagious and other animal diseases. <https://legalacts.ru/doc/prikaz-minselkhoza-rf-ot-09032011-n-62/> (in
356 Russian).

357 34. Tavella A, Bettini A, Ceol M, Zambotto P, Stifter E, Kusstatscher N, Lombardi R, Nardeli S, Beato MS, Capello K,
358 Bertoni G. 2018. Achievements of an eradication programme against caprine arthritis encephalitis virus in South Tyrol,
359 Italy. *Vet Rec* 182(2): 51 DOI: 10.1136/vr.104503.

360 35. Bertoni G, Hertig C, Zahno ML, Vogt HR, Dufour S, Cordano P, Peterhans E, Cheevers WP, Sonigo P, Pancino G.
361 2000. B-cell epitopes of the envelope glycoprotein of caprine arthritis-encephalitis virus and antibody response in infected
362 goats. *J Gen Virol* 81(Pt 12): 2929-2940 DOI: 10.1099/0022-1317-81-12-2929.

363 36. Gomez-Lucia E, Barquero N, Domenech A. 2018. Maedi-Visna virus: current perspectives. *Vet Med (Auckl)* 9: 11-
364 21 DOI: 10.2147/VMRR.S136705.

365 37. Panneum S, Rukkwamsuk T. 2017. Diagnosis of Caprine arthritis encephalitis virus infection in dairy goats by ELISA,
366 PCR and viral culture. *Pol J Vet Sci* 20(2): 347-353 DOI: 10.1515/pjvs-2017-0042.

367 38. Brandão CF, Campos GS, Silva AC, Torres JA, Tigre DM, Sardi SI. 2013. Monoclonal antibodies against Caprine
368 arthritis-encephalitis virus epitopes in the p28 and p55(gag) viral proteins. *J Virol Methods* 187(2): 352-356 DOI:
369 10.1016/j.jviromet.2012.10.020.

370 39. Huang J, Sun Y, Liu Y, Xiao H, Zhuang S. 2012. Development of a loop-mediated isothermal amplification method
371 for rapid detection of caprine arthritis-encephalitis virus proviral DNA. *Arch Virol* 157(8): 1463-1469 DOI:
372 10.1007/s00705-012-1322-y.

373 40. Ali Al Ahmad MZ, Fieni F, Pellerin JL, Guiguen F, Cherel Y, Chatagnon G, Bouzar AB, Chebloune Y. 2008.
374 Detection of viral genomes of caprine arthritis-encephalitis virus (CAEV) in semen and in genital tract tissues of male goat.
375 *Theriogenology* 69(4): 473-480 DOI: 10.1016/j.theriogenology.2007.10.017.

376 41. Brajon G, Mandas D, Liciardi M, Taccori F, Meloni M, Corrias F, Montaldo C, Coghe F, Casciari C, Giammarioli M,
377 Orrù G. 2012. Development and field testing of a real-time PCR assay for Caprine arthritis-encephalitis-virus (CAEV).
378 *Open Virol J* 6: 82-90 DOI: 10.2174/1874357901206010082.

379 42. Saltarelli M, Querat G, Konings DAM, Vigne R, Clements JE. 1990. Nucleotide sequence and transcriptional analysis
380 of molecular clones of CAEV which generate infectious virus. *Virology* 179(1): 347-364. DOI: 10.1016/0042-
381 6822(90)90303-9.

382 43. Nardelli S, Bettini A, Capello K, Bertoni G, Tavella A. 2020. Eradication of caprine arthritis encephalitis virus in the
383 goat population of South Tyrol, Italy: analysis of the tailing phenomenon during the 2016-2017 campaign. *J Vet Diagn
384 Invest* 32(4): 589-593. DOI: 10.1177/1040638720934055.

385 44. Michiels R, Adjadj NR, De Regge N. 2020. Phylogenetic analysis of Belgian small ruminant lentiviruses supports
386 cross species virus transmission and identifies new subtype B5 strains. *Pathogens* 9(3): 183. DOI:
387 10.3390/pathogens9030183.

388 45. Potarniche AV, Cerbu CG, Czopowicz M, Szalus-Jordanow O, Kaba J, Spinu M. 2020. The epidemiological
389 background of small ruminant lentivirus infection in goats from Romania. *Veterinary World* 13(7): 1344-1350. DOI:
390 10.14202/vetworld.2020.1344-1350.

391 46. Idres T, Lamara A, Temim S, Boudjellaba S, Gagnon J, Chebloune Y. 2019. Serological Diagnosis of Lentivirus
392 Infection in Goats Raised in Algeria. *J Vet Res* 63(1): 27-33. DOI: 10.2478/jvetres-2019-0001.

393 47. Jesse FFA, Bitrus AA, Abba Y, Raju VN, Hambali IU, Peter ID, Haron AW, Lila MAM, Norsidin JM. 2018.
394 Seroprevalence of small ruminant caprine arthritis encephalitis lentivirus among goats from selected small ruminant farms
395 in Selangor, Malaysia. *Veterinary World* 11(2): 172-176. DOI: 10.14202/vetworld.2018.172-176.

396
397

398 **Tables:**

399

Table 1. Primers and probe designed in this study.

Primers and probe	Sequence (5'-3')	Position in genome ¹	Amplicon size (bp)
FCAEV	TCGCAAACGCGATTCAGCAGT	7975-7995	
PCAEV	ROX-CTGTCCAGACCCTTGCTAATGCAACTGC-BHQ2	8011-8038	124
RCAEV	ACGCCTTAGCCACATGCTGTACC	8075-8098	

400 ¹ Numbering according to the Caprine arthritis-encephalitis virus, complete genome (GenBank accession
 401 number: NC_001463)

Table 2. Summary of all test results using the IDEXX Maedi-Visna/CAEV Antibody Test Kit and in-house real-time PCR assay.

Farm	Animal ID	CAEV Symptoms	IDEXX ELISA, Serum	PCR, Blood	IDEXX ELISA, Milk	PCR, Milk
Farm 1 (F1)	F1-1	Present	POS	POS	NEG	POS
	F1-2	Present	POS	NEG	POS	NEG
	F1-3	Present	POS	NEG	POS	NEG
	F1-4	Present	POS	POS	POS	NEG
	F1-5	Present	POS	NEG	POS	NEG
	F1-6	Absent	POS	POS	POS	POS
	F1-7	Absent	POS	POS	POS	POS
	F1-8	Present	POS	NEG	N/A	N/A
	F1-9	Present	POS	NEG	POS	NEG
	F1-10	Present	POS	POS	N/A	N/A
Farm 2 (F2)	F1-11	Present	POS	POS	POS	POS
	F1-12	Present	POS	POS	POS	NEG
	F1-13	Absent	NEG	NEG	N/A	N/A
	F2-1	Present	POS	POS	POS	POS
	F2-2	Present	POS	POS	N/A	N/A
	F2-3	Absent	POS	POS	N/A	N/A
	F2-4	Present	POS	POS	N/A	N/A
	F2-5	Present	POS	NEG	N/A	N/A
Farm 3 (F3)	F2-6	Absent	POS	POS	N/A	N/A
	F2-7	Absent	NEG	NEG	NEG	NEG
	F2-8	Absent	POS	NEG	NEG	NEG
	F3-1	Absent	NEG	NEG	N/A	N/A
	F3-2	Absent	NEG	NEG	N/A	N/A
	F3-3	Absent	NEG	NEG	NEG	NEG

F3-7	Absent	NEG	NEG	NEG	NEG
F3-8	Absent	NEG	NEG	N/A	N/A
F3-9	Absent	NEG	NEG	N/A	N/A
F3-10	Absent	NEG	NEG	N/A	N/A
F3-11	Absent	NEG	NEG	NEG	NEG
F3-12	Absent	NEG	NEG	N/A	N/A
F3-13	Absent	NEG	NEG	N/A	N/A
F3-14	Absent	NEG	NEG	N/A	N/A
F3-15	Absent	NEG	NEG	N/A	N/A

404

POS – positive result, NEG – negative result, N/A – not applicable

405

Table 3. Intra-assay for PCR detection of synthesized viral DNA.

Target	Conc. (copies/reaction)	Number of determinations	Mean Ct	CV
CAEV	1×10^9	8	6,38	0,827677
	1×10^8	8	10,98	0,535454
	1×10^7	8	14,86	0,157619
	1×10^6	8	18,21	0,103976
	1×10^5	8	21,57	0,182821
	1×10^4	8	24,84	0,1283
	1×10^3	8	28,49	0,414638
	1×10^2	8	31,19	0,515722
	1×10	8	33,75	14,61552
	1×1	8	N/A	N/A

406

Mean Ct – average value of the beginning of registration of amplification reaction,

407

CV – coefficient of variation, standard deviation from Mean Ct