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Abstract

This paper is a slightly modified, abridged version of a previous work “Parametric Gevrey asymptotics
in two complex time variables through truncated Laplace transforms” motivated by our contribution in
the conference “Formal and Analytic Solutions of Diff. (differential, partial differential, difference, q-
difference, q-difference-differential) Equations on the Internet” (FASnet20). It aims to clarify and give
further detail at some crucial points concerning the asymptotic behavior of the solutions of the problems
studied in that work.
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1 Introduction

The main aim of this revision is to clarify some points and give answer to some questions
on a recent work on truncated Laplace transform [1] which was presented at the conference
“Formal and Analytic Solutions of Diff. (differential, partial differential, difference, q-difference,
q-difference-differential,. . .) Equations on the Internet” (FASnet20), held virtually during the
last week of June, 2020. Moreover, we motivate future problems in this direction.

All technical difficulties have been simplified, whose proof can be found in detail in our
work [1], in order to focus on the mentioned details. In this revision we highlight two aspects
that have not been detailed in that paper. Namely, we utterly explain the necessity to use a
truncated Laplace transform instead of a complete one in order to extract asymptotic information
from our constructed solutions. Furthermore, we provide a more geometric description (with
the help of enlightening drawings) of a technical part needed for the study of the difference of
consecutive solutions in the framework of the Ramis-Sibuya approach.

The motivation on the use of truncated Laplace transform leans on previous recent works in
which truncated Laplace transform has been applied in different settings, namely in the study
of sharp lower estimates [2] and its numerical properties [3] and [4].
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Truncated Laplace transform appears in the classical theory of asymptotic expansions of
complex functions at the time of constructing a function with prescribed Gevrey asymptotic
behavior at the origin [5, 6] and also in the study of singularities of canard solutions to singularly
perturbed equations [7]. Further applications can be found in many other recent publications [1].

In the next section, Section 2, we recall the main problem under study, and the main steps
to provide analytic solutions to the problem, as well as formal solutions which are related by
means of certain asymptotic expansions. Further remarks on some steps are also shown. In
Section 3, we give further detail on the geometric aspects on the difference of two consecutive
solutions, and describe further properties and future research.

2 Review of the main results

This section is devoted to review the main results in the work “Parametric Gevrey asymptotics
in two complex time variables through truncated Laplace transforms” [1], stated without proof.
We have also decided not to enter into many details and refer to the precise expression or result
in the original text.

We focus our attention on the next initial value problem which involves two complex time
variables t1, t2 and a small complex parameter ε,

(1) Q(∂z)u(t1, t2, z, ε) = ε∆D1D2 (tk1+1
1 ∂t1)δD1 (tk2+1

2 ∂t2)δ̃D2RD1D2(∂z)u(t1, t2, z, ε)

+
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆`1`2 (tk1+1
1 ∂t1)δ`1 t

d`2
2 ∂

δ̃`2
t2
c`1`2(z, ε)R`1`2(∂z)u(t1, t2, z, ε) + f(t1, t2, z, ε),

under given initial conditions u(0, t2, z, ε) ≡ u(t1, 0, z, ε) ≡ 0.
Here, we assume that Q,RD1D2 , R`1`2 are polynomials, k1, k2 ≥ 1 are integers, the coefficients

c`1`2(z, ε) are bounded holomorphic functions on some horizontal strip

Hβ = {z ∈ C : |Im(z)| < β},

for some β > 0, with respect to z, and holomorphic with respect to ε on a disc D(0, ε0), ε0 > 0.
The forcing term f(t1, t2, z, ε) is a holomorphic function in t1, t2 on C? ×D(0, h′), for some

radius h′ > 0, bounded holomorphic with respect to z on Hβ and on any given open sector E
centered at 0, E ⊆ D(0, ε0) for some ε0 > 0, with respect to the perturbation parameter ε.

Our goal is the construction of holomorphic solutions u(t1, t2, z, ε) of (1) where t1, t2, ε are
located on sectors in C, together with the analysis of their asymptotic expansions with respect
to ε,

u(t1, t2, z, ε) ∼ε→0 û(t1, t2, z, ε) =
∑
n≥0

un(t1, t2, z)ε
n.

We search for solutions as a double Laplace and Fourier transform

(2) u(t1, t2, z, ε) =
k1k2

(2π)1/2

∫ ∞
−∞

∫
Ld1

∫
Ld2

ω(u1, u2,m, ε)

× exp

(
−
(
u1

εt1

)k1 ( u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

along half-lines Ldj = [0,∞)e
√
−1dj for suitable directions dj ∈ R, j = 1, 2.
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This approach has been successfully applied in two previous works [8, 9] for other singularly
perturbed families of PDEs with two complex time variables that can be expressed (in the linear
setting) in the form

Q(∂z)∂t1∂t2y(t1, t2, z, ε) = P1(ε, t1, t2, ∂t1 , ∂t2 , ∂z)y(t1, t2, z, ε) + f(t1, t2, z, ε),

where the differential operators with polynomial coefficients

P2(ε, t1, t2, ∂t1 , ∂t2 , ∂z) := Q(∂z)∂t1∂t2 − L1(ε, t1, t2, ∂t1 , ∂t2 , ∂z)

for L1 being an operator which comprises the leading terms of P1:

• can be factorized in a special manner as

P2 = P2.1(ε, t1, ∂t1 , ∂z) · P2.2(ε, t2, ∂t2 , ∂z)

with factors that only depend on one time variable. In this case, the “Borel map”
ω(u1, u2,m, ε) is defined w.r.t. its first two variables on domains of the form (Sd1 ∪
D(0, ρ1)) × (Sd2 ∪ D(0, ρ2)), where Sdj stands for an infinite sector with vertex at the
origin and bisecting direction dj for j = 1, 2, and ρj > 0 is small enough [8].

• can not be factorized in the previous manner, and are of a special shape. The related
domains for the “Borel map” (u1, u2) 7→ ω(u1, u2,m, ε) are of the form Sd1×(Sd2∪D(0, ρ2))
or (Sd1 ∪D(0, ρ1))× Sd2 , together with a polydisc at the origin [9].

In the study of (1), none of the solutions provided for the two previous problems hold and
ω(u1, u2,m, ε) in (2) can only be defined on products of unbounded sectors Sd1×Sd2 with respect
to (u1, u2). Therefore, the actual solution u(t1, t2, z, ε) can be built up, whereas no asymptotic
features with respect to ε can be obtained.

Indeed, u(t1, t2, z, ε) solves (1) provided that ω(u1, u2,m, ε) solves a convolution equation of
the form

(3) Pm(u1, u2)ω(u1, u2,m, ε) = convolution terms in ω(u1, u2,m, ε) + entire forcing term,

where

(4) Pm(u1, u2) = Q(im)− kδD1
1 k

δ̃D2
2 u

k1δD1
1 u

k2δ̃D2
2 RD1D2(im),

whose precise shape is detailed in our work [1].
Under the assumption that the quotient Q(im)/RD1D2(im) remains inside certain sectorial

annulus, then, for every fixed ρ0 > 0, the map u1 7→ Pm(u1, u2) has k1δD1 complex roots in
D(0, ρ0), provided that u2 ∈ Sd2 with large enough |u2|.

The observation above on ω follows from the fact that in solving (3), one needs to invert
Pm(u1, u2).

As a result, we need to follow another approach in order to analyze the asymptotic expansions
with respect to ε. Our idea consists on the next construction: instead of a solution expressed as
a double Laplace transform, we search for a genuine solution in the form of a Fourier, truncated
Laplace and Laplace transform, namely

(5) u(t1, t2, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L1,ε

∫
Ld2

ω(u1, u2,m, ε)

× exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,
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where Ld2 = [0,∞)e
√
−1d2 is such that d2 ∈ R is a suitable direction, and L1,ε stands for a

segment of the form
[
0,
(
C1/ε

λk2δ̃D2

)
e
√
−1θ1

]
, for some C1, λ > 0 with λ < (k1δD1)−1, and an

appropriate angle θ1 ∈ R.
The first important feature is that the solution (5) remains close, as ε → 0, to a double

Laplace transform in both time variables as mentioned earlier, since C1/ε
λk2δ̃D2 →∞ as ε→ 0.

The second important property is that the asymptotic expansions relatively to ε can be reached
out for this solution. Accordingly, we impose that the forcing term shares the same shape as
the solution, namely

(6) f(t1, t2, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L1,ε

∫
Ld2

ψ(u1, u2,m, ε)

× exp

(
−
(
u1

εt1

)k1 ( u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

where ψ is a polynomial in u1, entire in u2 with at most exponential growth of order k2, con-
tinuous with respect to m with exponential decay on R and holomorphic with respect to ε on
D(0, ε0). The resulting function f(t1, t2, z, ε) is holomorphic on C? ×D(0, h′)×Hβ × E , for any
sector E ⊆ D(0, ε0) centered at the origin. From the fact that f approaches a double Laplace
transform in t1, t2 as ε→ 0, observe that f remains close to a polynomial in t1 (on some sector)
as ε→ 0, ε ∈ E .

It is worth noticing that the approach proposed in this situation differs from that previously
worked out [10] which concerns a subclass of (1) where the differential operators in t2 belong

to a less general class of operators of the form (tk2+1
2 ∂t2)δ̃`2 , and the solutions are built up as

Fourier and single Laplace transform along appropriate half-lines, and with a special kernel.
The precise set of conditions we impose to (1) are the following:

(7) ∆D1D2 = k1δD1 + k2δ̃D2 , and for all 1 ≤ `j ≤ Dj − 1, j = 1, 2,

∆`1`2 > k1δ`1 +
k2δ̃D2δ`1
δD1

, d`2 > δ̃`2(k2 + 1), δ̃D2δ`1 ≥ δD1(δ̃`2 + 1/k2).

The quotient Q(im)/RD1D2(im) remains inside a fixed unbounded sector SQ,RD1D2
with positive

distance to the origin. The first main result concerns the construction of actual holomorphic
solutions to (1).

Theorem 1 (First statement of Theorem 1 [1]) There exist:

(a) a finite set of bounded sectors covering a puntured disc at the origin, {Ep}0≤p≤ι−1, with
Ep ⊆ D(0, ε0),

(b) a set of directions d2,p ∈ R, with 0 ≤ p ≤ ι− 1,

(c) A pair of bounded sectors T1, T2,

such that a holomorphic solution

(8) up(t1, t2, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L1,p,ε

∫
Ld2,p

ωp(u1, u2,m, ε)

× exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

of (1) is defined on T1 × T2 ×Hβ × Ep, for all 0 ≤ p ≤ ι− 1.
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For all 0 ≤ p ≤ ι − 1, the paths of integration L1,p,ε depend on ε ∈ Ep, and represent the

segment [0, (C1/ε
λk2δ̃D2 )e

√
−1θ1,p ], for some θ1,p ∈ R, and Ld2,p = [0,∞)e

√
−1d2,p . The Borel

function ωp(u1, u2,m, ε) turns out to be continuous with respect to m on R with exponential
decay at infinity, and holomorphic with exponential growth with respect to (u1, u2) on domains
which depend on ε given by:

• The polydisc D(0, r1(ε))×D(0, r2(ε)), where r1(ε) = C1/|ε|λk2δ̃D2 and r2(ε) = 1
2 |ε|

λk1δD1 .

• a product Sθ1,p,r1(ε)×(Sd2,p∪D(0, r2(ε))), where Sθ1,p,r1(ε) is a sector centered at 0 with small

aperture, bisecting direction θ1,p − λk2δ̃D2arg(ε), and radius r1(ε); Sd2,p is an unbounded
sector centered at 0, with small opening and bisecting direction d2,p.

The presence of a small divisor phenomenon occurs since the radius r2(ε) tends to 0 as ε→ 0,
which determines an impact on the asymptotic behavior of up with respect to the perturbation
parameter. The previous domains appear in the resolution of the related convolution problem
for ωp since Pm(u1, u2) is invertible on these domains with appropriate lower bounds.

Our second main result deals with the asymptotic expansions of up relatively to ε.

Theorem 2 (Theorem 3 [1]) Let

(9) α = min{k2(1− λk1δD1), k1(1 + λk2δ̃D2)}.

There exists a formal power series

û(t1, t2, z, ε) =
∑
m≥0

Hm(t1, t2, z)
εm

m!
,

where Hm(t1, t2, z) are bounded holomorphic functions on T1 × T2 × Hβ for all m ≥ 0, which
solves (1) and is the common asymptotic expansion of Gevrey order 1/α with respect to ε on Ep
of up(t1, t2, z, ε) for all 0 ≤ p ≤ ι− 1, i.e.

sup
(t1,t2,z)∈T1×T2×Hβ

∣∣∣∣∣up(t1, t2, z, ε)−
N−1∑
m=0

Hm(t, z)
εm

m!

∣∣∣∣∣ ≤ CMNΓ

(
1 +

N

α

)
|ε|N ,

for all ε ∈ Ep, N ≥ 1 and 0 ≤ p ≤ ι− 1, for well chosen constants C,M > 0.

This result leans on the application of the cohomological approach given by Ramis-Sibuya
theorem and appropriate bounds on the difference of two consecutive solutions of (1) stated in
the second statement of Theorem 1 [1], and described in the next section.

3 Further comments and open problems

The action of the small divisor phenomenon on the order 1/α (see (9)) of the Gevrey asymptotic
expansion appearing in Theorem 2 is explained in terms of the difference of two consecutive
solutions (in the sense that the solutions are related to consecutive sectors in (Ep)0≤p≤ι−1) of (1)
on the intersection of their domains. More precisely for all 0 ≤ p ≤ ι− 1, identifying the indices
ι and 0, we have shown the existence of two constants K,M > 0 with

sup
(t1,t2,z)∈T1×T2×Hβ

|up+1(t1, t2, z, ε)− up(t1, t2, z, ε)| ≤ K exp

(
− M

|ε|α

)
,
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for all ε ∈ Ep ∩ Ep+1, and 0 ≤ p ≤ ι− 1. In order to provide these bounds, we use deformations
of the integration paths involved in the solution (5). More precisely, the following three cases
occur:

Case 1: One can choose L1,p,ε ≡ L1,p+1,ε, i.e. θ1,p = θ1,p+1 and Ld2,p differs from Ld2,p+1.
Then, the path

L1,p,ε × Ld2,p+1 − L1,p,ε × Ld2,p = L1,p,ε × (Ld2,p+1 − Ld2,p),

represented in Figure 1 is deformed into the path displayed in Figure 2.

Figure 1: Integration path. Case 1

We notice that this deformation can be performed since the function (u1, u2) 7→ ωj(u1, u2,m, ε),
j = p, p + 1 is holomorphic on D(0, r1(ε)) × D(0, r2(ε)). The integration along this new con-
figuration gives rise to bounds of exponential decay at the origin of order k2(1 − λk1δD1) with
respect to the perturbation parameter, in the intersection of the corresponding sectors of the
difference of the solutions, uniformly with respect to the other variables.

Figure 2: Deformation of the integration path. Case 1

Case 2: One can choose Ld2,p ≡ Ld2,p+1, but L1,p,ε differs from L1,p+1,ε. Then, the path

L1,p+1,ε × Ld2,p − L1,p,ε × Ld2,p

is split into three pieces, and deformed to the concatenation of the following paths:
Piece 2.1: L1,p+1,ε × Ld2,p,r2(ε) (see Figure 3)
Piece 2.2: −L1,p,ε × Ld2,p,r2(ε) (see Figure 4)
Piece 2.3: (L1,p+1,ε−L1,p,ε)×Lr2(ε),d2,p (see Figure 5). Notice that the deformation involved

in this piece can be performed since (u1, u2) 7→ ωj(u1, u2,m, ε), j = p, p + 1 is holomorphic on
D(0, r1(ε))×D(0, r2(ε)). The deformation path is displayed in Figure 6.
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Figure 3: Integration path. Case 2. Piece 2.1

Figure 4: Integration path. Case 2. Piece 2.2

As in the first case, the integration along this new configuration in the pieces 2.1 and 2.2
gives rise to bounds of exponential decay at the origin of order k2(1−λk1δD1) with respect to the
perturbation parameter, in the intersection of the corresponding sectors of the difference of the
solutions, uniformly with respect to the other variables. On the other hand, the integration along
the arrangement in the piece 2.3 provides exponential decay at the origin of order k1(1+λk2δ̃D2).

Case 3: Assume that Ld2,p does not coincide with Ld2,p+1, and L1,p,ε differs from L1,p+1,ε.
In this case, the path

L1,p+1,ε × Ld2,p+1 − L1,p,ε × Ld2,p
is split into four pieces, and deformed as follows:

Piece 3.1: L1,p+1,ε × Lr2(ε),d2,p+1 (see Figure 7)
Piece 3.2: L1,p+1,ε × Ld2,p+1,r2(ε) (see Figure 8)
Piece 3.3: −L1,p,ε × Lr2(ε),d2,p (see Figure 9)
Piece 3.4: −L1,p,ε × Ld2,p,r2(ε) (see Figure 10)
The piece 3.3 is deformed into two further block, namely −L1,p,ε × Cr2(ε) and −L1,p,ε ×

Lr2(ε),d2,p+1, say piece 3.3 (1) and piece 3.3 (2), represented in Figure 11 and Figure 12, respec-
tively.

Finally, the piece 3.1 together with the piece 3.3 (2) can be deformed into Cr1(ε)×Lr2(ε),d2,p+1
,

shown in Figure 13.
Notice that the deformation from the path related to the piece 3.3, into piece 3.3 (1) and

piece 3.3 (2); and the piece 3.1 together with the piece 3.3 (2) can be performed since the map
(u1, u2) 7→ ωj(u1, u2,m, ε), j = p, p+ 1 is holomorphic on the polydisc D(0, r1(ε))×D(0, r2(ε)).
As a result, the integration along the concatenation of the pieces 3.2, 3.4 and 3.3 (1) leads to
bounds of exponential decay at 0 with respect to the perturbation parameter in the intersection
of the corresponding sectors, uniformly with respect to the other variables, of order k2(1 −
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Figure 5: Integration path. Case 2. Piece 2.3

Figure 6: Deformation of the integration path. Case 2. Piece 2.3

λk1δD1), and the integration along the deformed piece drawn in Figure 13 gives rise to bounds
of exponential decay of order k1(1 + λk2δ̃D2).

Since the truncated Laplace transform does not behave properly under products (unlike the
complete one), one major challenging problem would be to generalize our statement to the case
of nonlinear equations. Of course, the construction of solutions by means of double complete
Laplace transforms remains possible in that extended situation. But the extraction of asymptotic
information out of the solutions, which is the core of our study, remains an unsolved question
left for future research.
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Figure 9: Integration path. Case 3. Piece 3.3

Figure 10: Integration path. Case 3. Piece 3.4

Figure 11: Deformation of the integration path. Case 3. Piece 3.3 (1)

Figure 12: Deformation of the integration path. Case 3. Piece 3.3 (2)
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Figure 13: Deformation of the integration path. Case 3. Piece 3.1 together with Piece 3.3 (2)
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