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 This work probes the combined effects of magnetic field and viscous 

dissipation  on heat field and examine the second law analysis (entropy 

generation) in an electrically conducting fluid under the effect of wall mass 

transfer over continuous stretched  non-isothermal surface with variable 

viscosity. The viscosity of the fluid is assumed to be an inverse linear function of 

temperature. The governing equation for the problem are changed to 

dimensionless ordinary differential equations by using similarity transformation 

and solved numerically by using Rung Kutta and Shooting technique. Velocity, 

concentration and temperature distribution are obtained and used to compute the 

entropy generation and the Bejan number in the flow field. The effect of variable 

viscosity, Schmidt number, Hartman and Reynolds number on the velocity, 

concentration, temperature, entropy generation and Bejan number are studied 

and discussed.  

              Key words: Entropy generation, heat and mass transfer, Stretching sheet,  

              variable viscosity                                                                        

 Introduction 

  Fluid flow over a stretching sheet is important in many practical applications such as 

extrusion of plastic sheets, paper production, glass blowing, metal spinning, polymers in metal 

spring processes, the continuous casting of metals, drawing plastic films and spinning of fibers, 

all involve some aspects of flow over a stretching sheet or cylindrical fiber (Paullet and 

Weidman [1]). The quality of the final product depends on the rate of heat transfer at the 

stretching surface. Literature survey shows that interest in the flows over a stretched surface has 

grown during the past decades. The problem of stretching surface with constant surface 

temperature was analyzed by Crane [2]. Later, the stretching sheet flow has been studied by 
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several researchers to examine the sole effects of rotation, velocity and thermal slip conditions, 

heat and mass transfer, chemical reaction, MHD, suction/injection, different non-Newtonian 

fluids or possible combinations effects ([3-8]). Elbashbeshy and Basziz [9] studied the effect of 

variable viscosity and internal heat generation on heat transfer over a continuous moving surface. 

Salem [10] Studied the problem of flow and heat transfer of an electrically conducting 

viscoelastic fluid having a temperature-dependent viscosity over a continuously stretching sheet. 

Salem [11] has further studied the problem of steady laminar free-convection boundary-layer 

flow along a vertical wedge with the effect of temperature-dependent viscosity immersed in 

electrically fluid-saturated porous medium in the presence of internal heat generation or 

absorption. Entropy generation is associated with thermodynamic irreversibility, which is 

common in all types of heat transfer processes. Different mechanisms are responsible for the 

generation of entropy such as transfer across finite temperature gradient, magnetic effect, viscous 

dissipation effects, etc. Sahin [12] introduced the second law analysis to a viscous fluid in 

circular duct with isothermal boundary layer conditions. Also, Sahin [13] presented the effect of 

variable viscosity on the entropy generation rate through a duct subjected to constant heat flux. 

The study of entropy generation in a falling liquid film along an inclined heated plate was carried 

out by Saouli and Aiboud-Saouil [14]. Makinde [15-18] studied the entropy generation analysis 

for variable viscosity channel flow with non-uniform wall temperature , also Thermodynamic 

second law analysis for a gravity driven variable viscosity liquid film along an inclined heated 

plate with convective cooling and studied Second law analysis for variable viscosity 

hydromagnetic boundary layer flow with thermal radiation and Newtonian heating. Naseem and 

Khan [19] examined  boundary layer flow past a stretching plate with suction, heat and mass 

transfer and with variable conductivity. Cortell [20] also found the flow and heat transfer of a 

fluid through porous medium over a stretching surface with internal heat generation. Combined 

effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching 

surface have been investigated by Nadeem et al. [21]. Akbar et al. [22] have studied the 

numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching 

sheet. Heat transfer and entropy generation analysis of non-Newtonoan fluid flow through 

vertical microchannel with convective boundary condition has been investigated by Madhu et al 

[23]. Recently, second law analysis of unsteady MHD viscous flow over a horizontal stretching 

sheet heated non-uniformly in the presence of ohmic heating  has been studied by Qasim [24]. 

Here, we examine the effects of temperature dependent fluid viscosity in an electrically fluid on 

the flow, thermal and entropy generation features over a linear stretching sheet in the presence of 

a constant transfer magnetic field with blowing at the sheet. We derive velocity, concentration 

and temperature distribution and use them to compute the entropy generation and the Bejan 

number in the flow field. We also study and examine the effect of variable viscosity, Hartman 

and Reynolds number on velocity, temperature and concentration. 
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Formulation of the problem 

  A steady laminar, incompressible electrically conducting, viscoelastic fluid flow caused 

by porous stretching plate. In the presence of magnetic field, the magnetic Reynolds number is 

assumed to be small so that the induced magnetic field is neglected, the 𝑥-axis is taken in the 

direction of main flow along the plate and 𝑦-axis is normal to the plate, the boundary-layer 

equation for the problem can be written as follows  
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          The boundary conditions are given by         

         cxu   ,  w-vv   ,  2

w

2

w )
L

x
B(CC    ,)

L

x
A(T(x)TT   ,    at 0y     

          0u   ,    CC   ,TT                       as y                                                                   (5) 

where  ρ∞and cpare the density and specific heat at constant pressure, Q is the volumetric heat 

generation or absorption, σ is the electric conductivity, 𝐵0 is the magnetic induction , K is the 

thermal conductivity, T is the temperature ,C is concentration of the fluid, D is the molecular 

diffusivity,  𝑇𝑤, 𝐶𝑤 are the variable wall temperature and concentration, 𝑙  is a characteristic 

length, c is constant and 𝑣𝑤 represents suction velocity across the stretching sheet, the viscosity 

is considered to be of the form: 
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 where μ  and T are the fluid free stream dynamic viscosity and fluid free stream temperature; a 

and rT  are constants and their values depend on the reference state and thermal property of the 

fluid, i.e.  δ . In general,  0a   for fluids such as liquids and 0a   for gases. 

The governing equations (1)-(4) can be expressed in a simpler form by introducing the following 

similarity transformation: 
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Substituting eq.(7) into eqs(1)-(3) produces the following ordinary differential equations 
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where the prime denote the differentiation with respect to similarity variable η . Boundary 

conditions are: 
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Entropy generation analysis: 

            The local volumetric rate of entropy generation in the presence of magnetic field is given 

by:  

(13)          
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               The first term on the right hand side of Eq.(13) is the entropy generation due to the heat 

transfer across a finite temperature difference, the second term is the local entropy generation 

due to viscous dissipation, the third term is the local entropy generation due to the effect of the 

magnetic field and the final terms are due to the Lorentz force. The entropy generation number is 
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Where k is the thermal conductivity and L is the characteristic length scale. Using the similarity 

variables defined in Eq.(7), we obtain the entropy generation number as 
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where 𝑁𝐻 , 𝑁𝐹 , 𝑁𝐽 𝑎𝑛𝑑 𝑁𝑀 are respectively the dimensionless local entropy generation rate due to 

heat transfer, fluid friction, joule heating, and concentration defined as 
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where LRe ,Br, Ω and Ha are respectively, the Renolds number based on the characteristic 

length, Brinkman number, the dimensionless temperature difference and the Hartman number. 

These parameters are given by  
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Dimensionless terms denoted 3)i(1λ i  , and called irreversibility distribution ratios, are given 

by  
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Also, it is necessary to define the local Bejan number that can be calculated as the ratio of 

entropy generation due to heat transfer HN  to the total entropy generation sN  i.e.  

                    Ns

N
Be H                                                                                                                               (17) 

 

Findings  and  discussion: 

We solve numerically the system of coupled non-linear ordinary differential equations 

(8)-(10) togethers with boundary conditions(11)- (12) by using the fourth order Rung-kutta  

methods along with the shooting technique. We obtain numerical results to examine the behavior 

of velocity, temperature and concentration profiles along with entropy generation rate and Bejan 

number for a linear stretching sheet for sundry values of the fluid viscosity parameter 
rθ , the 

magnetic field parameter M, the Ekeart number 𝐸𝑐, the heat source or sink parameter 𝛼 , the 

Schmidt number 𝑆𝑐 and the dimensionless wall mass transfer 𝐹𝑤 . 
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Velocity, temperature and concentration distributions: 

Figures 1-3 are graphical representation of dimensionless velocity, temperature and 

concentration profiles for different values of magnetic field parameter M in the absent and 

presence of  temperature dependent viscosity 𝜃𝑟 throughout the boundary layer. It is found that 

as M increases, the fluid velocity decreases; this is due to presence of transfer magnetic fields 

which causes the emergency of drag force opposing the motion of the field and as a result it 

retards the flow velocity. This is accompanied with slight increase in the fluid temperature and 

concentration within the boundary layer. In addition, the velocity in the case of variable viscosity 

(plotted as dotted lines) is higher than that constant viscosity (plotted as solid lines) for all values 

of magnetic field parameter M and reverse trend is seen for temperature and concentration 

profiles. The rise in concentration and temperature profiles may be attributed to resistance 

offered by Lorentz force. 
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Figures.(4-9) display the influence of the Eckert number Ec and heat generation 

parameter 𝛼 on the velocity, temperature and concentration profiles in the absence and presence 

of 𝜃𝑟. The velocity and concentration are almost not affected with increase of 𝐸𝑐 𝑎𝑛𝑑 𝛼 in the 

absence of the variable viscosity  𝜃𝑟 inside the boundary layer. From figures 4 and 6 one sees 

that the viscous dissipation and heat generation has  negligible effect on the velocity and 

concentration in the case of constant viscosity since the viscous dissipation and heat generation 

are associated basically with energy equation. However, in the presence of variable viscosity, the 

momentum and energy equations are coupled, therefore, changes in values of viscous dissipation 

and heat generation causes change in the velocity profiles which are plotted as dotted lines. In 

the presence and absence of variable viscosity, the effect of viscous dissipation and heat 

generation increase temperature inside the thermal boundary layer. Physically, when the frication 

on plate increases due to fluid viscosity, more heat is generated and as a result the fluid 

temperature increases.                               
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Figures 10-12 show the effect of Schmidt number Sc on the velocity, temperature and 

concentration in the absence and presence of variable viscosity 𝜃𝑟 . It is seen in  Figures 10 and 

12 that the variation of Schmidt number does not t have much effect on velocity and temperature 

profiles. However, as it is seen in Figure 11, the effect of increasing the values Sc is to decrease 

concentration distribution inside the flow region. Physically, the increase of Sc means decrease 

of molecular diffusivity. Hence, the concentration of species is higher for small values of Sc and 

lower for large values of Sc. Also it is observed that the concentration in the case of variable 

viscosity is lower than that of uniform viscosity for all values of Schmidit number Sc. 

  

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 September 2020                   



            In Figures 13, 14 and 15, the dimensionless velocity, temperature and concentration 

profiles are plotted for different values of suction parameter wF in the absence and presence of 

variable viscosity  parameter rθ throughout the boundary layer. For M=1,

 

 0.1α  , Ec=0.1 and 

Pr=0.72, we observe that both profiles of horizontal velocity, temperature and concentration 

decrease with the increase of suction parameter. The same observation is made by Kandasamy 

[25] which is " the presence of wall suction decreases the velocity boundary layer thicknesses but 

decreases the thermal and solute boundary layer thickness, i.e. thin out the thermal and solute 

boundary layers". In addition, the velocities in the case of variable viscosity are higher than that 

of constant viscosity for all values of suction parameter and reverse trend is seen for temperature 

and concentration inside the boundary layer.   

  

 

 

Entropy generation rate: 

Figures 16-21 show entropy generation number profiles  ) Ns(η  for different values of 

magnetic field parameter M, viscous dissipation parameter Ec, heat generation parameter α ,     

suction parameter  wF , Schmidt number Sc, Hartmann number Ha  and group parameter   -1BrΩ    

in the presence and absence of variable viscosity parameter rθ .As it is observed in Figures 16,17 

and 18, the entropy generation decreases across the boundary layer with increase of M, Ec and 

α,while the reverse trend is observed outside the boundary layer. However an increase in suction 
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parameter wF ,generates the opposite effect to magnetic field parameter M as shown in Figure 19. 

According to Figure 20, the increase of Schmidt number Sc could highly diminish the entropy 

generation number profiles throughout the boundary layer. In the presence of temperature-

dependent viscosity, the effect of Schmidt number is to decrease the entropy generation number 

profiles throughout the boundary layer more than that the case of fluid with uniform viscosity for 

lower and higher values of Sc,  i.e. variable viscosity with large values of Schmidt number 

causes a decrease in the entropy generation throughout the boundary layer. The effect of 

Hartmann number Ha causes the entropy generation number to slightly increase throughout the 

boundary layer, as it is observed in Figure 21.  
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Bejan number: 

Figure 22 shows how the Bejan number profiles ) Be(η vary with the Hartman number. 

The Bejan number profiles increase due to increase in the Hartman number within the boundary 

layer in the absence as well as in the presence of temperature dependent fluid viscosity. In 

addition, the Bejan number of the fluid with constant viscosity is greater than that for the fluid 

with variable viscosity for all values of Hartman number. The effect of Brinkman group -1BrΩ

on Bejan number for three different values of  Hartman number, namely, Ha=0, 0.5 and 1.5, is 

presented in Figure 23 in the absence and presence of variable viscosity parameter. The Bejan 

number increases due to an increase in the group parameter -1BrΩ  for 0Ha   within the 

boundary layer. This increase in Bejan number is much at large values of Ha. 
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Conclusion  

            Entropy analysis for the steady two dimensional laminar flow, heat and mass transfer of 

an incompressible fluid over a non-isothermal permeable stretching sheet in the presence 

magnetic field, variable viscosity, and heat generation is examined. The governing boundary 

layer equations are transferred using suitable similarity transformations three nonlinear coupled 

ordinary differential equations, which are then solved by using Rung-Kutta method with 

shooting technique. The effect of variable physical parameters on the velocity, temperature, 

concentration, entropy generation number, and  Bejan number are analyzed. The results indicate 

that, increasing the magnetic field parameter tends to decrease the velocity profile but increases 

the temperature and concentration profiles. In addition, when the temperature dependent fluid 

viscosity is included, a considerable rise in the velocity and considerable reduction in the 

temperature and concentration profiles throughout the boundary layer are observed. Also it has 

been noticed that the increasing of Schmidt number Sc corresponds to lower concentration field 

) φ(η for both constant and variable viscosity. The entropy generation inside the boundary layer 

slightly decreases with increase of magnetic field, Eckert number and heat generation but the 

opposite behavior is noticed outside the boundary layer. Moreover, by increasing the Schmidt 

number, the entropy generation is found to be smaller for the flow of variable fluid viscosity than 

that for the flow of constant fluid viscosity. The present study assures that the Schmidt number 

and temperature dependent fluid viscosity parameter may be taken as the dominant variables for 

entropy generation since their variations could considerably alter the entropy generation inside 

the boundary layer. 
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Nomenclature  

Be Local Began number                        Greek symbols 

0B  Magnetic induction      Kinematics coefficient of viscosity 

fC  Skin-friction coefficient     Fluid density 

Ns  entropy generation number                Stream function 

f  Nonsimilarity function      Dimensionless temperature 

k Therma conductivity             0       fluid electrical conductivity 

pc  specific heat at constant pressure              Porous medium permeability 

M  Magnetic field parameter     coordinate of the wavy surface 

Nu  Nusselt number      Laplacian operator   

Pr  Prandtl number    Subscripts 

wq  wall heat flux       Conditions far away from the surface 

yx,  Dimensionless coordinates   ' differentiation with respect to η  

lRe  Local Reynolds number   w  wall surface 

T  Temperature      

,u  Dimensionless velocities    

wU  Constant velocity     

yx,  Dimensionless coordinates 
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