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Abstract: The purpose of this paper is threefold: (i) to introduce and study the Euler-Lagrange
prolongations of flatness PDEs solutions (best approximation of flatness) via associated least
squares Lagrangian densities and integral functionals on Riemannian manifolds; (ii) to analyze
some decomposable multivariate dynamics represented by Euler-Lagrange PDEs of least squares
Lagrangians generated by flatness PDEs and Riemannian metrics; (iii) to give examples of explicit
flat extremals and non-flat approximations.
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1. Introduction and contributions

Least squares Lagrangians on Riemannian manifolds and the problem of best approximation of
flatness have gained a lot of attention lately [2], especially when they come to optimization problems
whose objectives are integral functionals. Combining this theory with decomposable multivariate
dynamics [20], we get new results in differential geometry and global analysis.

Section 1 outlines the ground material regarding PDEs in differential geometry, least squares
Lagrangian densities, dual variational principle, Riemannian volume form, and positive definite
differential operators. Section 2 recalls the basic properties of ∇-flatness, introduces the crucial
notion of least squares Lagrangian density attached to ∇-flatness and underlines that the Euclidean
metrics extremals are stable with respect to conformal changing. In Section 3 comes the heart of the
paper. Detailing the Riemann-flatness, we introduce the least squares Lagrangian density attached
to Riemann-flatness and best approximations of Riemann-flatness solutions. Then the non-flatness
extremals are analysed in detail. Section 4 shows how Ricci-flatness implies a least squares Lagrangian
density and best approximations of Riemann-flatness solutions. Section 5 lists some analogues of least
squares Lagrangian density attached to scalar curvature - flatness and confirms again that Einstein
PDEs are extremals. Section 6 underlines that least squares technique is suitable for solving some
problems in differential geometry.
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All Lagrangians we use are written in a local version which is of special interest for geometers and
nonlinear analysts. Their explicit formulas reflect the properties usually needed for differential
geometric constructions. In order to make the techniques in this paper available for a broad
mathematical audience, we have tried to make the article as much self-contained as possible.

1.1. PDEs in Differential Geometry

The behavior of many different systems in nature and science are governed by a PDEs system.
Usually such a system is thought of in terms of coordinates in order to prove existence of solutions
or to find concrete ones. However, tensorial PDEs in differential geometry contain also information
which is independent of the choice of coordinates. This is actually the most important information as it
is independent of any external structure, artificially added to the PDE, and in this sense it is genuine.
That is why, the differential geometry is often considered as an "art of manipulating PDEs" [9], [12],
[14], [15], [17], [18], [24].

The most important geometric PDEs are those producing flatness (e.g. connection-flatness,
curvature-flatness, Ricci-flatness, scalar curvature-flatness) and those producing constant curvature
(−1, 0, 1). The connection-flatness PDEs system is non-tensorial, while curvature-flatness, Ricci-flatness,
scalar curvature-flatness PDEs systems are tensorial. Our ideas are coming also from the papers [3],
[4], [5], [6], [7], [8], [21], [22], [23].

The connection-flatness and the curvature-flatness are interconnected.
In this paper, we present some specific features: (i) introducing those differential geometric

structures needed to define and study geometric PDEs (some of them in a manifestly
coordinate-independent way); (ii) defining PDEs and their signification within Differential Geometry
and Global Analysis; (iii) developing techniques to find intrinsic properties of PDEs; (iv) discussing
explicit examples to illustrate the importance of the choice of an appropriate context and language.

1.2. Riemannian volume form

Suppose (M, g = (gij)) is a smooth oriented Riemannian manifold. Then there is a consistent way

to choose the sign of the square root
√

det(gij) and define a volume form dµ =
√

det(gij) dx1 ∧ · · · ∧
dxn. We call it the Riemannian volume form of (M, g). Having a volume form allows us to integrate
functions on M. In particular vol(M) =

∫
M dµ is an important invariant of (M, g). It also allows us

to define an inner product 〈φ, ψ〉 =
∫

M〈φ(x), ψ(x)〉g dµ, on the space of differential forms and other
tensors or objects on M, using the metric g and its inverse g−1. This inner product induces the square
of the norm ‖φ‖2 =

∫
M |φ(x)|2g dµ.

1.3. Least squares Lagrangian densities

Having in mind the so-called variational approach [1], [2], [16], in this Subsection we add typical
functionals that appear in the theory of geometric and physical fields [20].

Let M be an oriented manifold of dimension n. Any differential operator (of vectorial form,
tensorial or not) on the Riemannian manifold (M, g = (gij)) and the metric (geometric structure) g

generate a least squares Lagrangian density L. The extremals of the Lagrangian L = L
√

det(gij),
described by Euler-Lagrange PDEs, include the solutions of initial PDEs and other solutions which we
call "Euler-Lagrange prolongations" of that solutions (best approximation of initial PDEs solutions).

Generally, the Euler-Lagrange equation provides the equation of motion for the dynamical field
specified in the Lagrangian. If the Lagrangian attached to a PDE is that of the smallest squares, then
the extremals give the best approximation of the PDE solutions.

The Euler-Lagrange PDEs are indexed related to the chosen fibered chart (Rn, Ψ), Ψ = ( f I , xi).
However, since the Euler-Lagrange expressions are components of a global differential form (the
Euler-Lagrange form), the solutions are independent of fibered charts [16].
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Example 1. (Compare with the paper [20]) Let (M, g = (gij)) be an n-dimensional Riemannian manifold,
with local coordinates x = (x1, ..., xn), and T ⊂ M be a compact subset. Let I, J be multiindices, each subindex
running in 1, n. Being given I × J Lagrangians LI

J(x, f (x), fx(x)), where f (x) has multi-components, then

the associated least squares Lagrangian with respect to the Riemannian metrics G J
I (x)GL

K(x), induced by the
Riemannian metric gij, is

L =
1
2

G J
I (x)GH

K (x) LK
J (x, f (x), fx(x)) LI

H(x, f (x), fx(x))
√

det(gij).

The extremals are solutions of the Euler-Lagrange PDE system(
1
2

∂(G J
I GH

K )

∂xm LK
J LI

H + G J
I GH

K LK
J

∂LI
H

∂xm

)√
det(gij)

+
1
2

G J
I GH

K LK
J LI

H
∂

∂xm

√
det(gij)− Dl

(
G J

I GH
K LK

J

√
det(gij)

∂LI
H

∂ f m
l

)
= 0.

If the Lagrangian LI
J is associated to the PDEs system LI

J(x, f (x), fx(x)) = 0, then the extremals contain the
solutions of that system and the Euler-Lagrange dynamics is decomposable.

Remark 1. If we need to subject the Euler-Lagrange PDEs to boundary conditions, then instead of M we use Ω
as a compact, n-dimensional submanifold of M with boundary (a piece of M).

1.4. Dual variational principle

Let (M, g) be a Riemannian manifold. Usually, the local components of the metric g are denoted
by gij and the components of the inverse g−1 are denoted by gij. Due to the musical isomorphism
between the tangent bundle TM and the cotangent bundle T∗M of a Riemannian manifold induced by
its metric tensor g, the arbitrary variations of gij are equivalent to the arbitrary variations of gij, and
any Lagrangian with respect to gij can be regarded as a Lagrangian in relation to gij, but the differential
orders are different.

When calculating the variation with respect to gij, certain terms may appear whose integral
over any domain Ω can be reduced via Divergence Theorem (integration by parts) to an integral
over the boundary ∂Ω, which vanish (variations vanish on boundary). Modulo this statement, the
Euler-Lagrange PDEs are reduced to ∂L

∂gij = 0 (the formal partial derivatives equal to zero).

1.5. Positive definite differential operator

For an n× n matrix of numbers or functions, positive definiteness is equivalent to the fact that its
leading principal minors are all positive (n inequalities).

For an n× n matrix of partial derivatives operators, positive definiteness is equivalent to the fact
that its leading principal minors are all positive (n partial differential inequalities). For differential
inequalities, see also [19].

2. Least squares Lagrangian density attached to ∇-flatness

Let (M, g) be a smooth oriented Riemannian manifold. The Riemannian metric g of components
gij and its inverse g−1 of components gij determine (locally) the Christoffel symbols of the second kind

Γi
jk =

1
2

gil
(

∂gl j

∂xk +
∂glk

∂xj −
∂gjk

∂xl

)
=

1
2

gil(δr
l δs

j δt
k + δr

l δs
kδt

j − δt
l δr

j δs
k)

∂grs

∂xt ,
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i, j, k = 1, n (overdetermined elliptic partial differential operator). The ∇-flatness PDEs system Γi
jk = 0

is a (non-tensorial) PDEs system

(1)
1
2

gil(δr
l δs

j δt
k + δr

l δs
kδt

j − δt
l δr

j δs
k)

∂grs

∂xt = 0 ⇔ ∂grs

∂xt = 0

on the space of Riemannian metrics S2
+T∗M, i.e., n2(n+1)

2 distinct first order non-linear

nonhomogeneous PDEs whose unknowns are n(n+1)
2 functions gij (positive definite tensor); for n > 1,

overdetermined system of PDEs; for n = 1, determined system. This PDEs system is symmetric in j, k.
Imposing the initial condition gij(0) = δij, we find the solution gij(x) = δij (Euclidean manifold).

The square of the norm L = ‖∇‖2 = gipgjqgkrΓi
jkΓp

qr is a Lagrangian density of first order with

respect to gij and of order zero with respect to gij. That is why, we have two kinds of writing the
functional describing∇-flatness deviation, either I(g) =

∫
M ‖∇‖

2dµ or I(g−1) =
∫

M ‖∇‖
2dµ. Though

the second is more simple, from variational point of view, let us begin the study with I(g) whose

associated Lagrangian L = ‖∇‖2
√

det(gij) is of first order in gij.

Theorem 1. The extremals of I(g), i.e., the solutions of PDEs

Γi
jkΓp

qr

[
gjqgkrδm

i δn
p − gip(gmjgnqgkr + gjqgmkgnr) +

1
2

gipgjqgkrgmn
]√

det(gij)

−Dxl

[
gjqgkr(δm

u δn
j δl

k + δm
u δn

k δl
j − δl

uδm
j δn

k )Γ
u
qr

√
det(gij)

]
= 0

split in two categories: gij(x) = δij (global minimum points, i.e., solutions of ∇-flatness) and local minimum
points of I(g).

Proof. The extremals of the Lagrangian L are solutions of Euler-Lagrange PDEs

∂L
∂gmn

− Dxl
∂L

∂(∂xl gmn)
= 0.

This critical points are global (when L=0) or local (when L 6= 0).
Suppose L 6= 0. Based on obvious formulas

∂gjk

∂gmn
= δm

j δn
k ,

∂gjk

∂gmn
= −gmjgnk,

∂

∂gmn
det(gij) = det(gij)gmn,

∂(∂xt grs)

∂(∂xl gmn)
= δl

tδ
m
r δn

s ,

we obtain
∂L

∂gmn
=
[

gjqgkrΓm
jkΓn

qr − gipΓi
jkΓp

qr(gmjgnqgkr + gjqgmkgnr)
]√

det(gij)

+
1
2

gipgjqgkrΓi
jkΓp

qr

√
det(gij) gmn,

∂L
∂(∂xl gmn)

= 2gipgjqgkrΓp
qr

√
det(gij)

∂Γi
jk

∂(∂xl gmn)

= gipgjqgkrΓp
qrgiu(δr

uδs
j δt

k + δr
uδs

kδt
j − δt

uδr
j δs

k)
√

det(gij)
∂(∂xt grs)

∂(∂xl gmn)

= gjqgkrΓu
qr(δ

r
uδs

j δt
k + δr

uδs
kδt

j − δt
uδr

j δs
k)δ

l
tδ

m
r δn

s

√
det(gij)
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= gjqgkr(δm
u δn

j δl
k + δm

u δn
k δl

j − δl
uδm

j δn
k )Γ

u
qr

√
det(gij).

The explicit Euler-Lagrange PDEs are those in Theorem.
Now let us compute the Hessian matrix of components

H(lmn)(abc) =
∂2L

∂(∂xl gmn)∂(∂xa gbc)
= gjqgkr(δm

u δn
j δl

k + δm
u δn

k δl
j − δl

uδm
j δn

k )
∂Γu

qr

∂(∂xa gbc)

=
1
2

gjqgkr(δm
u δn

j δl
k + δm

u δn
k δl

j − δl
uδm

j δn
k )guv(δr

vδs
qδt

r + δr
vδs

r δt
q − δt

vδr
qδs

r)
∂(∂xt grs)

∂(∂xa gbc)

=
1
2

gjqgkrguv(δm
u δn

j δl
k + δm

u δn
k δl

j − δl
uδm

j δn
k )(δ

b
vδc

qδa
r + δb

vδc
r δa

q − δa
vδb

qδc
r ).

This matrix is invariant if one interchange l with a and the (un-ordered) pair m, n with the (un-ordered)
pair b, c, what must happen with a mixed derivative. Since the matrix H is positive definite, all
extremals are minimum points (Legendre-Jacobi criterium).

2.1. Homothetic flat extremals

The extremals g of I(g) are Euler-Lagrange prolongations (the best approximations) of the flat
solutions gij(x) = δij. Let us show that the Euclidean metrics extremals are stable with respect to
conformal changing.

To simplify the problem, we consider a 2-dimensional manifold with the Riemannian metric
g11 = f , g22 = h, g12 = 0. Then the least squares Lagrangian is

L(g) = gipgjqgkrΓi
jkΓp

qr

√
det(gij) = L

√
det(gij),

and the Euler-Lagrange PDEs are

∂L
∂gmn

− Dxl
∂L

∂(∂xl gmn)
= 0.

We find
∂L

∂gmn
=
√

det(gij)

(
∂L

∂gmn
+

1
2

Lgnm
)

.

The Lagrangian density

L = 2g11g11g22(Γ1
12)

2 + g11(g11)2(Γ1
11)

2 + g11(g22)2(Γ1
22)

2

+g22(g11)2(Γ2
11)

2 + 2g22g11g22(Γ2
12)

2 + g22(g22)2(Γ2
22)

2

becomes
L =

3
4 f 2h

g2
11,2 +

3
4 f h2 g2

22,1 +
1

4 f 3 g2
11,1 +

1
4h3 g2

22,2.

We get
∂L

∂g11
= −

3 f 2
2

2 f 3h
−

3h2
1

4 f 2h2 −
3 f 2

1
4 f 4 ,

∂L
∂g22

= −
3 f 2

2
4 f 2h2 −

3h2
1

2 f h3 −
3h2

2
4h4 ,

∂L
∂g11,1

=
√

f h
f1

2 f 3 ,
∂L

∂g11,2
=
√

f h
3 f2

2 f 2h
,

∂L
∂g22,1

=
√

f h
3h1

2 f h2 ,
∂L

∂g22,2
=
√

f h
h2

2h3 .
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It follows the Euler-Lagrange PDEs system

√
f h

(
−

9 f 2
2

8 f 3h
−

3h2
1

8 f 2h2 −
5 f 2

1
8 f 4 +

h2
2

8 f h3

)

−Dx1

(√
f h

f1

2 f 3

)
− Dx2

(√
f h

3 f2

2 f 2h

)
= 0.

√
f h

(
−

3 f 2
2

8 f 2h2 −
9h2

1
8 f h3 −

5h2
2

8h4 +
f 2
1

8 f 3h

)

−Dx1

(√
f h

3h1

2 f h2

)
− Dx2

(√
f h

h2

2h3

)
= 0.

Remark 2. If f = f (x1), h = h(x2), then the previous PDEs system is reduced to

√
f h

(
−

5 f 2
1

8 f 4 +
f 2
1

8 f h3

)
− Dx1

(√
f h

f1

2 f 3

)
= 0.

√
f h

(
−

5h2
2

8h4 +
h2

2
8 f h3

)
− Dx2

(√
f h

h2

2h3

)
= 0,

Remark 3. If f = h (conformal case), then one gets the PDEs system

2 f ( f 2
1 + f 2

2 ) + ( f f11 − 2 f 2
1 ) + 3( f f22 − 2 f 2

2 ) = 0,

2 f ( f 2
1 + f 2

2 ) + 3( f f11 − 2 f 2
1 ) + ( f f22 − 2 f 2

2 ) = 0

equivalent to
f ( f 2

1 + f 2
2 ) + 2( f f22 − 2 f 2

2 ) = 0, f ( f 2
1 + f 2

2 ) + 2( f f11 − 2 f 2
1 ) = 0.

Since f must be positive throughout, this system of PDEs has only solutions of the form f (x) = c >
0 (see Maple (pde, pdsolve(pde)). The metrics with c > 0, c 6= 1 are homothetic to δij. Consequently,
the Euclidean metrics extremals are stable with respect to conformal changing.

For comparison we use L(g−1) = gipgjqgkrΓi
jkΓp

qr

√
det(gij), the general form of Euler-Lagrange

PDEs ∂L
∂gmn = 0 and we formulate the following

Theorem 2. The extremals g = (gij) of L(g−1) are solutions of PDEs system

gkr
(
−2gmpgnigjq + gmignpgjq − 2gipδ

j
mδ

q
n +

1
2

gipgjqgmn

)
Γi

jkΓp
qr = 0.

For calculus of the matrix H(ab);(mn) =
∂2L

∂gab∂gmn , we need ∂gkr

∂gab = δk
aδr

b and
∂gmj

∂gab = −gmagbj. We find

H(ab);(mn) = 2gipΓi
maΓp

nb

+gkr
[
2gapgbiΓ

i
mkΓp

nr + (4gmpgni − gipgmn − 2gmignp)Γi
akΓp

br

+
1
2

gjq(gipgmagnb − gapgmngib)Γ
i
jkΓp

qr

]
.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 September 2020                   doi:10.20944/preprints202009.0234.v1

https://doi.org/10.20944/preprints202009.0234.v1


7 of 17

This matrix is not (neither positive nor negative) definite since it vanishes in the center of normal
coordinates. This is why this matrix is of no help in determining that extremals could be extremum
points.

2.2. Homothetic flatness extremals

General case There are extremals of the type gij(x) = f (x)δij, f (x) > 0, on a Riemannian
manifold (M, gij) of dimension n? Since

Γi
jk =

1
2 f

( f jδ
i
k + fkδi

j − fiδjk), i, j, k = 1, ..., n,

the Euler-Lagrange PDEs reduced to

∑
r

f 2
r δij

(
3n
2
− 7
)
+ fi f j(6− 3n) = 0.

It follows fk = 0, ∀k = 1, ..., n. Therefore f (x) = c and gij = cδij. The metrics with c > 0, c 6= 1 are
homothetic to δij. Consequently, the Euclidean metric extremals are stable with respect to conformal
changing.

Bidimensional case Let us consider a 2-dimensional Riemannian manifold with the metric g11 =

f , g22 = h, g12 = 0. Let us show again that the Euclidean metric extremals are stable with respect to
conformal changing.

In this case
L(g−1) = gipgjqgkrΓi

jkΓp
qr

√
det(gij) = L

√
det(gij)

and the general form of Euler-Lagrange PDEs system is

∂L
∂gmn =

√
det(gij)

(
∂L

∂gmn −
1
2

Lgnm

)
= 0.

Since
L =

3
4 f 2h

g2
11,2 +

3
4 f h2 g2

22,1 +
1

4 f 3 g2
11,1 +

1
4h3 g2

22,2,

∂L
∂g11 =

3 f 2
2

2 f h
+

3h2
1

4h2 +
3 f 1

1
4 f 2 ,

∂L
∂g22 =

3 f 2
2

4 f 2 +
3h2

1
2 f h

+
3h2

2
4h2 ,

the Euler-Lagrange PDEs system becomes

12 f h2 f 2
2 + 6 f 2hh2

1 + 6h3 f 2
1 − 3 f h2 f 2

2 − 3 f 2hh2
1 − h3 f 2

1 − f 3 f 2
2 = 0,

6 f h2 f 2
2 + 12 f 2hh2

1 + 6 f 3h2
2 − 3 f h2 f 2

2 − 3 f 2hh2
1 − h3 f 2

1 − f 3 f 2
2 = 0.

Remark 4. If f = f (x1), h = h(x2), then Euler-Lagrange PDEs are reduced to h3 f 2
1 = 0, f 3h2

2 = 0, i.e.,
f1 = 0, h2 = 0 (Euclidean case).

Remark 5. The conformal case f = h leads to f 2
1 + f 2

2 = 0, and we get f1 = f2 = 0, i.e., f is constant
(confirming the general case).
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3. Least squares Lagrangian density attached to Riemann-flatness

Let∇ be a symmetric connection of components Γi
jk and g be a Riemannian metric of components

gij. We use the operator Pps
jk = 1

2 (δ
p
j δs

k − δ
p
k δs

j ) which is a projection, i.e., P2 = P, and is covariant

constant. The Riemann-flatness PDEs system is either Riem∇ = 0 or

Rl
ijk =

∂

∂xj Γl
ik −

∂

∂xk Γl
ij + Γl

jsΓs
ik − Γl

ksΓs
ij

= 2Pps
jk

(
∂

∂xp Γl
is + Γl

pnΓn
is

)
= 2Pps

jk

(
∂

∂xp Γl
is − Γl

snΓn
ip

)
= 0,

where i, j, k, l, ... = 1, n, and has the general solution Γi
jk = 0.

Each of the Riemann - flatness PDEs systems Rl
ijk = 0 is a system of n2(n2−1)

12 distinct first order

linear quadratic PDEs whose unknowns are n2(n+1)
2 functions Γi

jk; for n > 7, overdetermined system;
for n < 7, undetermined system; for n = 7, determined system.

The curvature flatness was discussed in [3], [4], [5], [6], [7], [21] based on the idea of finding
an adapted coordinate system. We bring up another point of view, looking for suitable metrics and
connections, and not for adapted coordinate systems.

On the smooth oriented manifold (M,∇, g), we introduce the square of the norm L = ‖Riem∇‖2

= gipgjqgkrglsRi
jkl R

p
qrs, which is a Lagrangian density of first order in Γi

jk. It determines a functional

(Riemann - flatness deviation) similar to the Yang-Mills functional, namely I(∇) =
∫

M ‖Riem∇‖2dµ.

The extremals ∇ of L(∇, ∂∇) = ‖Riem∇‖2
√

det(gij) are solutions of Euler-Lagrange PDEs ∂L
∂Γu

vw
−

Dxt
∂L

∂(∂xt Γu
vw)

= 0.

Theorem 3. The explicit form of Euler-Lagrange PDEs attached to the Lagrangian L(∇, ∂∇) is

(δi
uδv

[kδb
l]Γ

w
bj + δw

j δa
[kδv

l]Γ
i
au)Rp

qrsgjqgkrglsgip

√
det(gij)

−Dxt

[
δt
[kδv

l]R
p
qrsgwqgkrglsgup

√
det(gij)

]
= 0.

The Riemann-flatness solutions Γi
jk = 0 are global minimum points. The others solutions are best

approximation of flatness PDEs solutions.
Let (M, g = (gij)) be a Riemannian manifold. The Riemannian metric (gij) determines the

Riemannian curvature tensor field Riemg of components

Rijkl = −
1
2

(
∂2gik

∂xj∂xl +
∂2gjl

∂xi∂xk −
∂2gjk

∂xi∂xl −
∂2gil

∂xj∂xk

)
+ gmn(Γm

jkΓn
il − Γm

jl Γn
ik)

=
1
2

δ
p
[iδ

q
j]δ

r
[lδ

s
k]

∂2gpr

∂xq∂xs − gmnδ
q
j δ

p
i δr

[lδ
s
k]Γ

m
qrΓn

ps,

where
δ

p
[iδ

q
j] = δ

p
i δ

q
j − δ

p
j δ

q
i , Γi

jk =
1
2

gil(δr
l δs

j δt
k + δr

l δs
kδt

j − δt
l δr

j δs
k)

∂grs

∂xt .

In this case Riemannian curvature flatness condition means the tensorial PDEs system

1
2

δ
p
[iδ

q
j]δ

r
[lδ

s
k]

∂2gpr

∂xq∂xs − gmnδ
q
j δ

p
i δr

[lδ
s
k]Γ

m
qrΓn

ps = 0,
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on S2
+T∗M, with n2(n2−1)

12 distinct second order linear non-homogeneous PDEs whose unknowns

are n(n+1)
2 functions gij (positive definite tensor); for n < 3, undetermined system; for n > 3,

overdetermined system; for n = 3, determined system. This PDEs system is parabolic since the
set of eigenvalues of the matrix Tpqrs

ijlk = δ
p
[iδ

q
j]δ

r
[lδ

s
k] (tensorial product of a matrix by itself) contains the

eigenvalue 0. Indeed all eigenvectors, respectively eigenvalues are: Xijlk-symmetric in (i, j) or in (l, k),
with λ = 0; Xijlk-skewsymmetric in (i, j) and in (l, k) with λ = 2. Of course, this PDEs system has all
properties of curvature tensor field.

On the Riemannian manifold (M, g = (gij)), we introduce the square of the norm L = ‖Riemg‖2 =

gipgjqgkrglsRijkl Rpqrs which is of second order with respect to gij and of order zero with respect
to gij. In this way the Riemann - flatness deviation is written either I(g) =

∫
M ‖Riemg‖2dµ or

I(g−1) =
∫

M ‖Riemg‖2dµ. For I(g) the extremals g are solutions of fourth order Euler-Lagrange PDEs

∂L
∂gmn

− Dxl
∂L

∂(∂xl gmn)
+ Dxk Dxl

∂L
∂(∂xk ∂xl gmn)

= 0,

while for I(g−1) the Euler-Lagrange PDEs are reduced to ∂L
∂gmn = 0.

Theorem 4. The extremals g = (gij) of the Lagrangian L(g−1) are solutions of the PDEs system

−2δc
[kδd

l]RpqrsgapgbqgkrglsgnvgwmΓv
bcΓw

ad

+2Rijkl Rpqrs(δ
i
mδ

p
n gjq + δ

j
mδ

q
ngip)gkrgls − 1

2
Rijkl Rpqrsgipgjqgkrgls gmn = 0.

The Riemann-flat solutions gij(x) = δij are global minimum points. So are the metrics obtained
from δij by changing variables, such as

g(x) = diag
(

1
h1(x1)2 , ...,

1
hn(xn)2

)
.

The others solutions are best approximation of flatness PDEs solutions.

3.1. Non-flat extremals

We consider a 2-dimensional Riemannian manifold (M, g), where g11 = f , g22 = h, g12 = 0. In

this case L = (g11g22R1212)
2
√

det(gij), and

R1212 = −1
2
(g11,22 + g22,11) + gab(Γ

a
21Γb

12 − Γa
22Γb

11)

= −1
2
(g11,22 + g22,11) + g11(Γ1

21Γ1
12 − Γ1

22Γ1
11) + g22(Γ2

21Γ2
12 − Γ2

22Γ2
11)

or
R1212 = −1

2
(h11 + f22) +

1
4 f

( f 2
2 + f1h1) +

1
4h

(h2
1 + f2h2).

We get
∂R1212

∂g11 =
1
4
( f 2

2 + f1h1),
∂R1212

∂g22 =
1
4
(h2

1 + f2h2),
∂R1212

∂g12 = 0.

The Euler-Lagrange PDEs ∂L
∂gmn = 0 become the following system of equations

2g11(g22)2R2
1212 + 2(g11g22)2R1212

∂R1212

∂g11 −
1
2
(g11g22R1212)

2g11 = 0,
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2g22(g11)2R2
1212 + 2(g11g22)2R1212

∂R1212

∂g22 −
1
2
(g11g22R1212)

2g22 = 0.

Explicitly,
R1212

2 f 2h2 [3 f R1212 + f 2
2 + f1h1] = 0,

R1212

2 f 2h2 [3 f R1212 + h2
1 + f2h2] = 0,

Case 1: R1212 = − 1
2 (h11 + f22) +

1
4 f ( f 2

2 + f1h1) +
1

4h (h
2
1 + f2h2) = 0 produces the Euclidean

metric.
Case 2: 3 f R1212 + f 2

2 + f1h1 = 0, 3hR1212 + h2
1 + f2h2 = 0. Equivalently

3 f R1212 + f 2
2 + f1h1 = 0, h( f 2

2 + f1h1)− f (h2
1 + f2h2) = 0.

Case 3: The conformal case f = h becomes:
(1) R1212 = − 1

2 ( f11 + f22) +
1

2 f ( f 2
1 + f 2

2 ) = 0, i.e., Euclidean space.

(2) 3 f R1212 + f 2
1 + f 2

2 = 0. Therefore 3 f ( f11 + f22) = 5( f 2
1 + f 2

2 ) or 3 f ∆ f = 5‖grad f ‖2 (Poisson
PDE). Maple answer (pde, sol := pdsolve(pde)): this PDE has solutions of the form f (x1, x2) =

ϕ1(x1)ϕ2(x2), where

d2 ϕ1

dx2 (x) =
1
3

c1 ϕ1(x) +
5
3
( dϕ1

dx (x))2

ϕ1(x)
,

d2 ϕ2

dy2 (y) =
1
3

c1 ϕ2(y) +
5
3

( dϕ2
dy (y))2

ϕ2(y)

or

C1 sin((x/3)
√

2c1) + C2 cos((x/3)
√

2c1)−
√

2c1

ϕ1(x)2/3 = 0,

C3 sin((y/3)
√

2c1) + C4 cos((y/3)
√

2c1)−
√

2c1

ϕ2(y)2/3 = 0.

Globally, these solutions are not convenient since they are not strictly positive.
We have two particular cases: a) If f1 = 0, then f (x1, x2) = f (x2) and hence −3 f f22 + 5 f 2

2 = 0, a
Liouville equation with the general solution

3
2 f (x2)2/3 + C1x2 + C2 = 0.

This function is strictly positive only locally. b) If f2 = 0, then f (x1, x2) = f (x1) and hence −3 f f11 +

5 f 2
1 = 0, a Liouville equation with the general solution

3
2 f (x1)2/3 + c1x1 + c2 = 0.

This function is strictly positive only locally.

Theorem 5. The extremals g = (gij) of the Lagrangian

L(g, ∂g, ∂2g) = ||Riemg||2
√

det(gij)

are solutions of the PDEs system

Rpqrsgkrgls
[
2(Γn

jkΓm
il − Γn

jlΓ
m
ik)gipgjq

−Rijkl

(
2(gmignpgjq + gipgmjgnq)− 1

2
gnmgipgjq

)]√
det(gij)

+Dxh

[
δa

i δb
j δc

[lδ
d
k]

[
Γm

ad(δ
h
c δn

b + δh
b δn

c )− Γh
adδm

b δn
c
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+Γm
bc(δ

h
a δn

d + δh
d δn

a )− Γh
bcδm

a δn
d

]
Rpqrsgipgjqgkrgls

√
det(gij)

]
+D2

xhxa

[
gipgjqgkrglsδm

[i δh
j]δ

n
[lδ

a
k]Rpqrs

√
det(gij)

]
= 0.

The Riemann-flat solutions gij(x) = δij are global minimum points.

3.2. Non-flat extremals

We consider a 2-dimensional Riemannian manifold (M, g), g11 = f , g22 = h, g12 = 0. Then

L = (g11g22R1212)
2
√

det(gij), where

R1212 = −1
2
(g11,22 + g22,11) + gab(Γ

a
21Γb

12 − Γa
22Γb

11)

−1
2
(h11 + f22) +

1
4 f

( f 2
2 + f1h1) +

1
4h

(h2
1 + f2h2).

Since
∂L

∂gmn
= 2(g11g22)2R1212

√
det(gij)

∂R1212

∂gmn
+

1
2
Lgmn

−2g11g22(g22gm1gn1 + g11gm2gn2)R2
1212

√
det(gij),

∂R1212

∂g11
= − 1

4 f 2 ( f 2
2 + f1h1),

∂R1212

∂g22
= − 1

4h2 (h
2
1 + f2h2),

∂L
∂g11

= R1212

√
det(gij)

[
− 3

2 f 3h2 R1212 −
1

2 f 4h2 ( f 2
2 + f1h1)]

]
.

∂L
∂g22

= R1212

√
det(gij)

[
− 3

2 f 2h3 R1212 −
1

2 f 2h4 (h
2
1 + f2h2)]

]
,

∂L
∂g11,1

=
h1

2 f 3h2 R1212

√
det(gij).

∂L
∂g11,2

=
1

2 f 2h2

(
2 f2

f
+

h2

h

)
R1212

√
det(gij).

∂L
∂g22,1

=
1

2 f 2h2

(
f1

f
+

2h1

h

)
R1212

√
det(gij).

∂L
∂g22,2

=
f2

2 f 2h3 R1212

√
det(gij).

∂L
∂g11,11

=
∂L

∂g11,12
=

∂L
∂g22,12

=
∂L

∂g22,22
= 0.

∂L
∂g11,22

=
∂L

∂g22,11
= −(g11g22)2R1212

√
det(gij)

it follows the Euler-Lagrange PDEs

∂L
∂g11

− Dx1
∂L

∂(∂g11,1)
− Dx2

∂L
∂(∂g11,2)

+Dx1 Dx1
∂L

∂g11,11
+ 2Dx1 Dx2

∂L
∂g11,12

+ Dx2 Dx2
∂L

∂g11,22
= 0,

∂L
∂g22

− Dx1
∂L

∂(∂g22,1)
− Dx2

∂L
∂(∂g22,2)
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+Dx1 Dx1
∂L

∂g22,11
+ 2Dx1 Dx2

∂L
∂g22,12

+ Dx2 Dx2
∂L

∂g22,22
= 0.

Equivalently,

−
(

3
2 f 3h2 R1212 +

1
2 f 4h2 ( f 2

2 + f1h1)

)
R1212

√
f h− Dx1

(
h1

2 f 3h2 R1212
√

f h
)

−Dx2

[
1

2 f 2h2

(
2 f2

f
+

h2

h

)
R1212

√
f h
]
+ Dx2x2

(
− 1

f 2h2 R1212
√

f h
)
= 0.

−
(

3
2 f 2h3 R1212 +

1
2 f 2h4

(
h2

1 + f2h2

))
R1212

√
f h

−Dx1

[
1

f 2h2

(
f1

f
+

2h1

h

)
R1212

√
f h
]
− Dx2

(
f2

2 f 2h3 R1212
√

f h
)

+Dx1x1

(
− 1

f 2h2 R1212
√

f h
)
= 0.

The conformal case f = h. The PDE system becomes

− 3
2 f 4 R2

1212 −
1

2 f 5 ( f 2
2 + f 2

1 )R1212 − Dx1

(
f1

2 f 4 R1212

)

−Dx2

(
3 f2

2 f 4 R1212

)
+ Dx2x2

(
− 1

f 3 R1212

)
= 0.

− 3
2 f 4 R2

1212 −
1

2 f 5 ( f 2
2 + f 2

1 )R1212 − Dx1

(
3 f1

2 f 4 R1212

)
−Dx2

(
f2

2 f 4 R1212

)
+ Dx1x1

(
− 1

f 3 R1212

)
= 0.

The case R1212 = − 1
2 ( f11 + f22) +

1
2 f ( f 2

1 + f 2
2 ) = 0 produce trivial solution g11 = 1 = g22, g12 = 0.

We subtract the second equation from the first one and we get

Dx1

(
f1

f 4 R1212

)
− Dx2

(
f2

f 4 R1212

)
+ (Dx2x2 − Dx1x1)

(
− 1

f 3 R1212

)
= 0.

Particular cases a) f1 = 0 and

Dx2

[
f2

f 4 (− f f22 + f 2
2 )

]
+ Dx2x2

[
1
f 4 (− f f22 + f 2

2 )

]
= 0.

The second PDE is equivalent to f2
f 4 (− f f22 + f 2

2 ) + Dx2

[
1
f 4 (− f f22 + f 2

2 )
]
= c2 or to

1
f 4 (− f f22 + f 2

2 ) = e− f
(

c + c2

∫
e f dx2

)
.

The Liouville equation − f f22 + f 2
2 = 0 has the solution f (x2) = aebx2

, a > 0.
b) f2 = 0 and

Dx1

[
f1

f 4 (− f f11 + f 2
1 )

]
+ Dx1x1

[
1
f 4 (− f f11 + f 2

1 )

]
= 0.

The second PDE is equivalent to f1
f 4 (− f f11 + f 2

1 ) + Dx1

[
1
f 4 (− f f11 + f 2

1 )
]
= c1 or to

1
f 4 (− f f11 + f 2

1 ) = e− f
(

c + c1

∫
e f dx1

)
.
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The Liouville equation − f f11 + f 2
1 = 0 has the solution f (x1) = cedx1

, c > 0.

4. Least squares Lagrangian density attached to Ricci - flatness

Let (M,∇) be an equiaffine manifold. The components Rik of the Ricci tensor field Ric∇ are
obtained by the contraction of the first and third indices of the curvature tensor field Rl

ijk, i.e.,

Rik = Rl
ilk =

∂

∂xl Γl
ik −

∂

∂xk Γl
il + Γl

lsΓs
ik − Γl

ksΓs
il

= P ps
qk

(
∂

∂xp Γq
is + Γq

pnΓn
is

)
= P ps

qk

(
∂

∂xp Γq
is − Γq

snΓn
ip

)
,

i, j, k, ... = 1, n. Each of the Ricci - flatness PDEs systems Rik = 0 is a system of n(n+1)
2 distinct first order

divergence quadratic tensorial PDEs with n2(n+1)
2 unknown functions Γi

jk; for n > 1, undetermined

system; for n = 1, determined system. Here P ps
qk = δ

p
q δs

k − δ
p
k δs

q works like a trace between p and q, in
order to produce a divergence term. This operator is associated to the projection P. Any divergence
PDE represents a conservation law.

Ricci flatness was described in the papers [8], [10], [11], [22], [23], [13] underlining locally the
difference between an "Euclidean ball" and a "geodesic ball".

In Physics, Ricci-flat manifolds represent vacuum solutions to the analogues of Einstein’s
equations for Riemannian manifolds of any dimension, with vanishing cosmological constant.

Let g = (gij) be a Riemannian metric. On the smooth oriented manifold (M,∇, g), let us
consider the Lagrangian density L = ‖Ric∇‖2 = gikgjl RijRkl (square of the norm, first order in Γi

jk)

and the functional (Ricci - flatness deviation) I(∇) =
∫

M ‖Ric∇‖2dµ. The Euler-Lagrange PDEs are
∂L

∂Γl
mn
− Dxr ∂L

∂(∂xr Γl
mn)

= 0.

Theorem 6. Let Rij = P ps
qj

(
∂

∂xp Γq
is + Γq

pnΓn
is

)
. The extremals Γi

jk of the Lagrangian L(∇, ∂∇) =

gikgjl RijRkl

√
det(gij) are solutions of PDEs system

[δv
uΓw

ij − δv
j Γw

iu + δv
i (δ

w
j Γc

cu − Γw
ju)]Rkl gikgjl

√
det(gij)

−Dxt

(
δt
[uδw

j] Rkl gvkgjl
√

det(gij)
)
= 0.

The Ricci-flat solutions Γi
jk are global minimum points. The other solutions are best approximation

of flatness PDEs solutions.
In case that (M, g = (gij)) is a Riemannian manifold, the Ricci tensor field Ricg has the components

Rik =
∂Γl

ik
∂xl − Γm

il Γl
km −∇k

(
∂

∂xi

(
ln
√

det(gmn)

))
,

where
Γi

jk =
1
2

gil(δr
l δs

j δt
k + δr

l δs
kδt

j − δt
l δr

j δs
k)

∂grs

∂xt .

The Ricci tensor field of a connection derived from a metric is always symmetric. In this case, the
Ricci-flat manifold

∂Γl
ik

∂xl − Γm
il Γl

km −∇k

(
∂

∂xi

(
ln
√

det(gmn)

))
= 0

means n(n+1)
2 distinct PDEs with n(n+1)

2 unknown functions gij, on S2
+T∗M. They are special cases of

Einstein manifolds, where the cosmological constant vanishes.
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On the Riemannian manifold (M, g = (gij)), let us consider the Lagrangian density L =

‖Ricg‖2 = gikgjl RijRkl (square of the norm) which is of second order in gij and order zero in gij. The
Ricci - flatness deviation is described either by I(g) =

∫
M ‖Ricg‖2dµ or by I(g−1) =

∫
M ‖Ricg‖2dµ.

For I(g) the extremals g are solutions of fourth order Euler-Lagrange PDEs ∂L
∂gmn
− Dxl

∂L
∂(∂xl gmn)

+

Dxk Dxl
∂L

∂(∂xk ∂xl gmn)
= 0. To simplify, we work first with I(g−1) since the Euler-Lagrange PDEs

determined by L = gikgjl RijRkl

√
det(gij) are reduced to ∂L

∂gmn = 0.

Theorem 7. We fix a harmonic coordinate system [13]. The extremals g = (gij) of the functional I(g−1) are
solutions of PDEs system

2gikRimRkn + 2gikgjl Rkl

(
− 1

2
∂2gij

∂xm∂xn + gcdΓc
imΓd

nj + gabgmdgncΓc
iaΓd

bj

)
−1

2
gikgjl RijRkl gmn = 0.

The Ricci-flat solutions gij(x) are global minimum points. The other solutions are best
approximation of flatness PDEs solutions.

Theorem 8. We fix a harmonic coordinate system [13]. The extremals g = (gij) of the functional I(g) are
solutions of PDEs system√

det(gij)
[

RijRkl(−2gmignkgjl +
1
2

gikgjl gmn) + 2gikgjl

×Rij

[
− gmpgnq

(
−1

2
∂2gkl

∂xp∂xq + grsΓr
kpΓs

ql

)
− gpqΓn

kpΓm
ql

]]
−Dxh

[√
det(gij)Rkl gabgikgjl

[(
δn

d (δ
h
a δm

i + δh
i δm

a )− δh
d δm

i δn
a

)
Γd

bj

+
(

δn
d

(
δh

j δm
b + δh

b δm
j )− δh

d δm
b δn

j

)
Γd

ia

]]
+ D2

xhxt

[√
det(gij)ghtgmkgnl Rkl

]
= 0.

The Ricci-flat solutions gij(x) are global minimum points. The other solutions are best
approximation of flatness PDEs solutions.

5. Least squares Lagrangian density attached to scalar curvature - flatness

Let ∇ be an equiaffine connection of components Γi
jk and g = (gij) be a Riemannian metric,

where i, j, k, ... = 1, n. On the manifold (M,∇, g), we introduce the functional (total scalar curvature)

I(∇) =
∫

MR
∇ dµ, where R∇ = gijRij, and the Lagrangian L = R∇

√
det(gij) is of first order with

respect to Γi
jk. The general Euler-Lagrange PDEs are ∂L

∂Γl
mn
− Dxr ∂L

∂(∂xr Γl
mn)

= 0.

Theorem 9. The Euler-Lagrange PDEs attached to the functional I(∇), i.e., to the Lagrangian L =

gikRik
√

det(gik), are

P ps
qk

[
gik
(

δ
q
l δm

p Γn
is + δm

i δn
s Γq

pl

)√
det(gab)− δ

q
l δn

s Dxp

(
gmk
√

det(gab)

)]
= 0.

Proof. Since L = gikRik
√

det(gik), Rik = P
ps
qk

(
∂

∂xp Γq
is + Γq

prΓr
is

)
, and

∂Γi
jk

∂Γl
mn

= δi
lδ

m
j δn

k ,
∂
(

∂xp Γq
is

)
∂
(
∂xr Γl

mn
) = δr

pδ
q
l δm

i δn
s ,
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∂Rik

∂Γl
mn

= P ps
qk

(
δ

q
l δm

p Γn
is + δm

i δn
s Γq

pl

)
;

∂Rik

∂xr Γl
mn

= P ps
qk δr

pδ
q
l δm

i δn
s

we obtain the PDEs in the Theorem.

On a smooth oriented Riemannian manifold (M, g = (gij)), we attach the functional (total scalar

curvature) I(g) =
∫

M Rg dµ, Rg = gijRij. Here the Lagrangian L = gijRij

√
det(gij) is of the second

order with respect to gij, and of order zero with respect to gij. In dimension two, this is a topological
quantity, namely the Euler characteristic of the Riemann surface by the Gauss-Bonnet formula. In
n ≥ 3 dimension we prefer to write the functional in the form I(g−1) =

∫
M Rg dµ.

Theorem 10. The Euler-Lagrange PDEs attached to the functional I(g−1), n ≥ 3, i.e., to the Lagrangian
L = gijRij

√
det(gij), are Einstein PDEs Rij = 0.

Proof. The Euler-Lagrange PDEs are ∂L
∂gmn = 0, where L = gijRij

√
det(gij). On the other hand, we

have
∂ det(gij)

∂gmn = −det(gij)gmn,
∂gjl

∂gmn = −gmjgnl ,
∂gjl

∂gmn = δ
j
mδl

n.

The term gij ∂Rij
∂gmn

√
det(gij) is of divergence type, and it has no contribution to the Euler-Lagrange

equations. Consequently ∂R
∂gmn =

∂(gijRij)

∂gmn = Rmn. Finally, we obtain the explicit Euler–Lagrange PDEs
as Rij = 0.

Theorem 11. [16] The solutions of the problem "mingij

∫
M Rg dµ subject to

∫
M dµ = 1, n ≥ 3", are solutions

of nD Einstein PDEs Rij =
R
n

gij.

Proof. We use the Lagrangian L = gijRij

√
det(gij)− λ

√
det(gij), where λ is a constant multiplier.

Taking the variations with respect to gij, we obtain

Rij −
R− λ

2
gij = 0.

The hypothesis n ≥ 3 and λ = c implies that R is constant. We replace R, respectively Rij, in∫
M Rg dµ and we obtain R vol(M) =

∫
M Rg dµ = R−λ

2 n vol(M). Consequently, λ = (n−2)R
n and

Rij =
R
n gij.

The exact solutions of Einstein PDEs were discussed many times. In dimension four, there are
topological obstructions to the existence of Einstein metrics.

On a smooth oriented Riemannian manifold (M, g = (gij)), we attach a scalar curvature - flatness
deviation either by the action I(g) =

∫
M (Rg)2 dµ or as the functional I(g−1) =

∫
M (Rg)2 dµ.

Theorem 12. The Euler-Lagrange PDEs attached to functional I(g−1), i.e. to the Lagrangian L =

(gijRij)
2
√

det(gij) (zero order with respect to gij), are either R = 0 or Rij = 0.

Corollary 1. The solutions gij(x) of PDEs R = 0 or Rij = 0 are Euler-Lagrange prolongations of Euclidean
metrics gij(x) = δij.

6. Conclusions and future work

In this paper were studied least squares Lagrangian densities attached to flatness PDEs on
Riemannian manifolds. The index form technique facilitates the understanding of the significance of
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the geometric PDEs and of the Lagrangian densities attached to them using the Riemannian metrics.
This paper is the continuation of some ideas in the papers [2], [20].

Some of our results are proved for a wider class of manifolds and as a special case we also reprove
well-known results for the Einstein PDEs. Also, the proposed approach can be used for each least
squares Lagrangian on Riemannian setting and is able to give intermediate results, which can be seen
as the "best approximation" of solutions of geometric PDEs.

In the Riemannian case we have two facilities: (i) the most important Lagrange-type densities
are the squares of the norms of important geometric objects: connection, curvature tensor field, Ricci
tensor field, scalar curvature field; (ii) to obtain the Euler-Lagrange PDEs, we can select alternatively
either the variations with respect to the metric g or the variations with respect to the inverse metric
g−1.

In light of the above discussion, if one is able to say something about the solution of a PDEs system
whose solution is a Riemannian metric or an affine connection, one could perhaps say something
interesting about the behaviour of the manifold and its structure. Further research into the nature of the
geometric extremals (metrics or connections) may yield strong theoretic results for finite dimensional
Riemannian manifolds.
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