Article

Fixed Circle and Fixed Disc Results for New Type of $\boldsymbol{\Theta}_{c}$-Contractive Mappings in Metric Spaces

Hayel N. Saleh ${ }^{1,2,+(\mathbb{D}}$, Waleed M. Alfaqih ${ }^{3,+(\mathbb{D}}$, Mohammad Imdad ${ }^{1,+(\mathbb{D}}$, Salvatore Seesa ${ }^{4, *, \dagger^{(D)}}$ and Nabil Mlaiki ${ }^{5,+(\text { (D) }}$
1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; mhimdad@gmail.com
2 Department of Mathematics, Taiz University, Taiz 6803, Yemen; nasrhayel@gmail.com
3 Department of Mathematics, Hajjah University, Hajjah 1729, Yemen; waleedmohd2016@gmail.com
4 Dipartimento di Architettura, Università degli Studi di Napoli Federico II, Via Toledo 402,80134 Napoli, Italy;
5 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia; nmlaiki@psu.edu.sa
* Correspondence: sessa@unina.it
\dagger These authors contributed equally to this work.

5 Keywords: fixed point; fixed circle; fixed disc; Θ_{c}-contractions

1. Introduction and Preliminaries

Metric fixed point theory is the branch of mathematical analysis which study the existence and uniqueness of the fixed point of the mappings defined on a metric space (Y, ξ). The most important theorem in this theory is the classical Banach contraction principle due to Banach [1]. Many authors extended and generalized this principle in various directions (see[2-10]). In this regard, Jleli and Samet [11], introduced the auxiliary functions $\Theta:(0, \infty) \rightarrow(1, \infty)$ and utilized the same to prove a fixed point theorem concerning a new type of contraction, called Θ-contraction (or JS contraction).

Definition 1. [11] Let $\Theta:(0, \infty) \rightarrow(1, \infty)$ be a function such that the following conditions are hold:
(JS1) Θ is non-decreasing;
(JS2) for every sequence $\left\{\alpha_{n}\right\} \subset(0, \infty)$,

$$
\lim _{n \rightarrow \infty} \Theta\left(\alpha_{n}\right)=1 \Leftrightarrow \lim _{n \rightarrow \infty} \alpha_{n}=0^{+} ;
$$

(JS3) there exists $\lambda \in(0,1)$ and $k \in(0, \infty)$ such that $\lim _{\alpha \rightarrow 0^{+}} \frac{\Theta(\alpha)-1}{\alpha^{\lambda}}=k$.
In the sequel, we adopt the following notations:

- Ω_{1} the class of all functions Θ which satisfy (JS1).
- $\Omega_{1,2,3}$ the class of all functions Θ which satisfy (JS1)-(JS3).

From now on, the mapping S is a self-mapping defined on a metric space (Y, ξ). Utilizing the above auxiliary functions Jleli and Samet [11] defined Θ-contraction as follows:

Definition 2. [11] Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1,2,3}$. The mapping S is said to be Θ-contraction, if there exists a constant $\lambda \in(0,1)$ such that

$$
\begin{equation*}
\xi(S z, S w)>0 \Rightarrow \Theta(\xi(S z, S w)) \leq[\Theta(\xi(z, w))]^{\lambda}, \forall z, w \in Y \tag{1}
\end{equation*}
$$

By considering the notion of Θ-contractions, the authors in [11] proved that every Θ-contraction mapping defined on a generalized metric space possesses a unique fixed point. On the other hand, in the case that the mapping S has more than one fixed point, there exist some mappings that fixes all the points of circle, such circle is called a fixed circle.

For a metric space (Y, ξ), the two sets $C_{z_{0}, r}=\left\{z \in Y: \xi\left(z_{0}, z\right)=r\right\}$ and $D_{z_{0}, r}=\{z \in Y$: $\left.\xi\left(z_{0}, z\right) \leq r\right\}$ are called circle and disc, respectively, with center z_{0} and radius r. The notion of fixed circle was introduced recently in [12] as under:

Definition 3. [12] Let $S: Y \rightarrow Y$ be a mapping and $C_{z_{0}, r}$ a circle on Y. Then $C_{z_{0}, r}$ is said to be a fixed circle of S if $S z=z$, for all $z \in C_{z_{0}, r}$.

Example 1. [13] let \mathbb{C} be the set of all complex numbers and consider the mapping $S: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
S z= \begin{cases}\frac{1}{\bar{z}}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0,\end{cases}
$$

where \bar{z} is the conjugate of z. Then $C_{0,1}$ is the fixed circle of S.
These kind of mappings have some applications to neural networks (see [14]). For more details of such kind of mappings and fixed circle results we refer the reader to [12,13,15-19].

Here we would like to point out that there exist some mappings which map the circle $C_{z_{0}, r}$ to it self but $C_{z_{0}, r}$ is not a fixed circle, that is, the mapping does not fix the all point of the circle as we will see in the following example:

Example 2. [13] let \mathbb{C} be the set of all complex numbers and consider the mapping $T: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
T z= \begin{cases}\frac{1}{z}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Then $T\left(C_{0,1}\right)=C_{0,1}$, but $C_{0,1}$ is not a fixed circle of T. In fact, the mapping T fixes only two point of the unit circle.

Now, we introduce the notion of fixed disc as follows:

Definition 4. Let $S: Y \rightarrow Y$ be a mapping and $D_{z_{0}, r}$ a disc on Y. Then $D_{z_{0}, r}$ is said to be a fixed disc of S if $S z=z$, for all $z \in D_{z_{0}, r}$.

This paper aims to present some fixed circle (disc) results for many types of contraction self-mappings namely: Θ_{c}-contractions, Θ_{c}-weak contractions, Ćirić type Θ_{c}-contractions, Reich type Θ_{c}-contractions, Chatterjea type Θ_{c}-contractions, Hardy-Rogers type Θ_{c}-contractions and Khan type Θ_{c}-contractions in the setting of metric spaces by using JS technique. Furthermore, we establish some fixed circle (disc) results of integral type contractive self-mappings.

2. Fixed circle (disc) results

First, we introduce the notions of Θ_{c}-contractions, Ćirić type Θ_{c}-contractions and Θ_{c}-weak contractions as follows.

Definition 5. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is called Θ_{c}-contraction, if there exists $\lambda \in(0,1)$, and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(\xi\left(z, z_{0}\right)\right)\right]^{\lambda}, \forall z \in Y .
$$

Definition 6. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is said to be Ćirić type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(m\left(z, z_{0}\right)\right)\right]^{\lambda}, \forall z \in Y
$$

49 where $m\left(z, z_{0}\right)=\max \left\{\xi\left(z, z_{0}\right), \xi(z, S z), \xi\left(z_{0}, S z_{0}\right), \frac{1}{2}\left[\xi\left(z, S z_{0}\right)+\xi\left(z_{0}, S z\right)\right]\right\}$.

Definition 7. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is said to be a Θ_{c}-weak contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(M\left(z, z_{0}\right)\right)\right]^{\lambda}, \forall z \in Y
$$

where

$$
M\left(z, z_{0}\right)=\max \left\{\begin{array}{c}
\xi\left(z, z_{0}\right), a \xi(z, S z)+(1-a) \xi\left(z_{0}, S z_{0}\right) \\
(1-a) \xi(z, S z)+a \xi\left(z_{0}, S z_{0}\right), \frac{1}{2}\left[\xi\left(z, S z_{0}\right)+\xi\left(z_{0}, S z\right)\right]
\end{array}\right\}, 0 \leq a<1
$$

Proof. Assume that $S z_{0} \neq z_{0}$. From Definition 7, we have

$$
\begin{aligned}
\Theta\left(\xi\left(z_{0}, S z_{0}\right)\right) & \leq\left[\Theta\left(M\left(z_{0}, z_{0}\right)\right)\right]^{\lambda} \\
& =\left[\Theta\left(\max \left\{\begin{array}{r}
\xi\left(z_{0}, z_{0}\right), a \xi\left(z_{0}, S z_{0}\right)+(1-a) \xi\left(z_{0}, S z_{0}\right), \\
(1-a) \xi\left(z_{0}, S z_{0}\right)+a \xi\left(z_{0}, S z_{0}\right), \\
\frac{1}{2}\left[\xi\left(z_{0}, S z_{0}\right)+\xi\left(z_{0}, S z_{0}\right)\right]
\end{array}\right\}\right)\right]^{\lambda} \\
& =\left[\Theta\left(\max \left\{0, \xi\left(z_{0}, S z_{0}\right)\right\}\right)\right]^{\lambda} \\
& =\left[\Theta\left(\xi\left(z_{0}, S z_{0}\right)\right)\right]^{\lambda},
\end{aligned}
$$

a contradiction as $\lambda \in(0,1)$. Therefore, we must have $S z_{0}=z_{0}$.
Using Θ_{c}-weak contraction condition, we present the following fixed circle results.
${ }_{56}$ Theorem 1. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If S is a Θ_{c}-weak
Remark 1. (1) Every Θ_{c}-contraction is Θ_{c}-weak contraction.
(2) Taking $a=0$, then Definition 7 coincides with Definition 6.

The following proposition follows from Definition 7.
Proposition 1. Let (Y, ξ) be a metric space and $S: Y \rightarrow Y a \Theta_{c}$-weak contraction with $z_{0} \in Y$, then $S z_{0}=z_{0}$. contraction with $z_{0} \in Y$ and $\xi\left(z_{0}, S z\right)=r$, for all $z \in C_{z_{0}, r}$, then $C_{z_{0}, r}$ is a fixed circle of S.

Proof. Let $z \in C_{z_{0}, r}$ and assume on contrary that $S z \neq z$. From the definition of r, we have $\xi(z, S z) \geq r$. As S is Θ_{c}-weak contraction, using Proposition 1, we have

$$
\begin{align*}
\Theta(\xi(z, S z)) & \leq\left[\Theta\left(M\left(z, z_{0}\right)\right)\right]^{\lambda} \\
& =\left[\Theta\left(\max \left\{\begin{array}{r}
\xi\left(z, z_{0}\right), a \xi(z, S z)+(1-a) \xi\left(z_{0}, S z_{0}\right), \\
(1-a) \xi(z, S z)+a \xi\left(z_{0}, S z_{0}\right), \\
\frac{1}{2}\left[\xi\left(z, S z_{0}\right)+\xi\left(z_{0}, S z\right)\right]
\end{array}\right\}\right)\right]^{\lambda} \\
& =[\Theta(\max \{r, a \xi(z, S z),(1-a) \xi(z, S z)\})]^{\lambda} \\
& <\Theta(\max \{r, a \xi(z, S z),(1-a) \xi(z, S z)\}) . \tag{2}
\end{align*}
$$

Now, we have the following possibilities:
Case 1: If $\max \{r, a \xi(z, S z),(1-a) \xi(z, S z)\}=r$, then from (2), the definition of r and the fact that the function Θ is nondecreasing, we have

$$
\Theta(r) \leq \Theta(\xi(z, S z))<\Theta(r)
$$

a contradiction.
Case 2: If $\max \{r, a \xi(z, S z),(1-a) \xi(z, S z)\}=a \xi(z, S z)$, then we have two possibilities, $a=0$ or $0<a<1$. Assume that $0<a<1$, from (2) and the fact that the function Θ is nondecreasing, we have

$$
\Theta(\xi(z, S z))<\Theta(a \xi(z, S z)) \leq \Theta(\xi(z, S z))
$$

a contradiction. If $a=0$, then from (2), we get

$$
\Theta(\xi(z, S z))<\Theta(0)
$$

this inequality contradicts with the definition of Θ (as $\Theta:(0, \infty) \rightarrow(1, \infty))$.
Case 3: If $\max \{r, a \xi(z, S z),(1-a) \xi(z, S z)\}=(1-a) \xi(z, S z)$, then from (2) and the fact that the function Θ is nondecreasing, we have

$$
\Theta(\xi(z, S z))<\Theta((1-a) \xi(z, S z)) \leq \Theta(\xi(z, S z))
$$

a contradiction. Therefore, $S z=z$ for all $z \in C_{z_{0}, r}$. Consequently, $C_{z_{0}, r}$ is a fixed circle of S.
Next we prove the following fixed disc as follows.
Theorem 2. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If S is a Θ_{c}-weak contraction with $z_{0} \in Y$ and $\xi\left(z_{0}, S z\right)=r$, for all $z \in D_{z_{0}, r}$, then $D_{z_{0}, r}$ is a fixed disc of S.

Proof. The mapping S fixes the circle $C_{z_{0}, r}$ (in view of Theorem 1). Now, in order to show that $D_{z_{0}, r}$ is a fixed disc of S it is sufficient to show that S fixes any circle $C_{z_{0}, \rho}$ with $\rho<r$. Let $z \in C_{z_{0}, \rho}$ and for contrary let us assume that $z \neq S z$, for some $z \in C_{z_{0}, \rho}$. Since S is Θ_{c}-weak contraction, by using Proposition 1, we have

$$
\begin{align*}
\Theta(\xi(z, S z)) & \leq\left[\Theta\left(M\left(z, z_{0}\right)\right)\right]^{\lambda} \\
& =\left[\Theta\left(\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}\right)\right]^{\lambda} \\
& <\Theta\left(\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}\right) \tag{3}
\end{align*}
$$

Now, we have the following possibilities:
Case 1: If $\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}=\rho$, then from (3), the definition of r and the fact that the function Θ is nondecreasing, we have

$$
\Theta(\rho)<\Theta(r) \leq \Theta(\xi(z, S z))<\Theta(\rho)
$$

a contradiction.
Case 2: If $\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}=a \xi(z, S z)$, then we have two possibilities, $a=0$ or $0<a<1$. Assume that $0<a<1$, from (3) and the fact that the function Θ is nondecreasing, we have

$$
\Theta(\xi(z, S z))<\Theta(a \xi(z, S z)) \leq \Theta(\xi(z, S z))
$$

a contradiction. If $a=0$, then from (2), we get

$$
\Theta(\xi(z, S z))<\Theta(0)
$$

this inequality contradicts with the definition of Θ (as $\Theta:(0, \infty) \rightarrow(1, \infty))$.
Case 3: If $\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}=(1-a) \xi(z, S z)$, then from (3) and the fact that the function Θ is nondecreasing, we have

$$
\Theta(\xi(z, S z))<\Theta((1-a) \xi(z, S z)) \leq \Theta(\xi(z, S z))
$$

a contradiction.
Case 4: If $\max \left\{\rho, a \xi(z, S z),(1-a) \xi(z, S z), \frac{\rho+r}{2}\right\}=\frac{\rho+r}{2}$, then by the definition of r, the inequality (3) and the fact that the function Θ is nondecreasing, we have

$$
\Theta(r) \leq \Theta(\xi(z, S z))<\Theta\left(\frac{\rho+r}{2}\right) \leq \Theta(r)
$$

a contradiction. Therefore, $S z=z$ for all $z \in D_{z_{0}, r}$. Consequently, $D_{z_{0}, r}$ is a fixed disc of S.
By Theorems 1 and 2, and in view of Remark 1 , we have the following results:
Corollary 1. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If S is a Θ_{c}-contraction with $z_{0} \in Y$ and $\xi\left(z_{0}, S z\right)=r$, for all $z \in C_{z_{0}, r}\left(\right.$ or $\left.D_{z_{0}, r}\right)$, then $C_{z_{0}, r}\left(\right.$ or $\left.D_{z_{0}, r}\right)$ is a fixed circle (or disc) of S.

Corollary 2. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If S is a Ćirić type Θ_{c}-contraction with $z_{0} \in Y$ and $\xi\left(z_{0}, S z\right)=r$, for all $z \in C_{z_{0}, r}\left(\right.$ or $\left.D_{z_{0}, r}\right)$, then $C_{z_{0}, r}\left(\right.$ or $\left.D_{z_{0}, r}\right)$ is a fixed circle (or disc) of S.

The following example exhibit the utility of Theorems 1 and 2.
Example 3. Let $Y=[-4, \infty)$ be a metric space endowed with the usual metric ξ. Define $S: Y \rightarrow Y$ as

$$
S z=\left\{\begin{array}{cl}
z, & \text { if }-4 \leq z<4 \\
z+3, & \text { if } z \geq 4 .
\end{array}\right.
$$

Then S is $a \Theta$-weak contraction. To show this, let $\Theta(t)=e^{t}, z_{0}=0, a=\frac{1}{2}$ and $\lambda=\frac{6}{11}$.
Observe that for all $z \in[-4, \infty)$ such that $z \geq 4$, we have

$$
\xi(z, S z)=3>0,
$$

$$
\begin{aligned}
M\left(z, z_{0}\right) & =\max \left\{\xi(z, 0), \frac{1}{2} \xi(z, S z), \frac{1}{2} \xi(z, S z), \frac{\xi(z, 0)+\xi(0, S z)}{2}\right\} \\
& =\max \left\{|z|, \frac{3}{2}, \frac{3}{2}, \frac{|z|+|z+3|}{2}\right\} \\
& =\frac{|z|+|z+3|}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\Theta(\xi(z, S z))=e^{3} & \leq e^{\frac{3}{11}(|z|+|z+3|)} \\
& =\left[e^{\frac{|z|+|z+3|}{2}}\right]^{\frac{6}{11}}=\left[\Theta\left(M\left(z, z_{0}\right)\right)\right]^{\lambda}
\end{aligned}
$$

Also, we have

$$
r=\inf \{\xi(z, S z): z \neq S z\}=3 .
$$

Therefore, all the conditions of Theorems 1 and 2 are satisfied. Observe that $C_{0,3}=\{-3,3\}$ is a fixed circle and $D_{0,3}=[-3,3]$ is a fixed disc of S.

Remark 2. 1. Taking $\Theta(t)=e^{t}, z_{0}=0$, and $k=\frac{3}{4}$ in Example 3, we can easily show that the mapping S is θ_{c}-contraction.
2. Putting $\Theta(t)=e^{t}, z_{0}=0$, and $k=\frac{6}{11}$ in Example 3, we can easily show that the mapping S is Ćiric type Θ_{c}-contraction.

Next, we introduce the concepts of Reich type Θ_{c}-contractions, Chatterjea type Θ_{c}-contractions and Hardy-Rogers type Θ_{c}-contractions as follows:

Definition 8. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is said to be a Reich type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(\alpha \xi\left(z, z_{0}\right)+\beta \xi(z, S z)+\gamma \xi\left(z_{0}, S z_{0}\right)\right)\right]^{\lambda}, \forall z \in Y
$$

where $\alpha+\beta+\gamma<1$ and $\alpha, \beta, \gamma \geq 0$.

Definition 9. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is said to be a Chatterjea type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(\eta\left(\xi\left(z, S z_{0}\right)+\xi\left(z_{0}, S z\right)\right)\right)\right]^{\lambda}, \forall z \in Y
$$

where $\eta \in\left(0, \frac{1}{2}\right)$.

Definition 10. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is called a Hardy-Rogers type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that

$$
\xi(z, S z)>0 \Rightarrow \Theta(\xi(z, S z)) \leq\left[\Theta\left(M^{*}\left(z, z_{0}\right)\right)\right]^{\lambda}, \forall z \in Y
$$

where $M^{*}\left(z, z_{0}\right)=\alpha \xi\left(z, z_{0}\right)+\beta \xi(z, S z)+\gamma \xi\left(z_{0}, S z_{0}\right)+\delta \xi\left(z, S z_{0}\right)+\eta \xi\left(z_{0}, S z\right)$ with $\alpha+\beta+\gamma+\delta+\eta<$ 1 and $\alpha, \beta, \gamma, \delta, \eta \geq 0$.

Remark 3. (1) Taking $\alpha=\beta=\gamma=0$ and $\delta=\eta$, then Definition 10 coincides with Definition 9.

[^0]${ }_{85}$ Proposition 2. Let (Y, ξ) be a metric space. If $S: Y \rightarrow Y$ is a Hardy-Rogers type Θ_{c}-contraction with $z_{0} \in Y$,
${ }_{\text {s6 }}$ then $S z_{0}=z_{0}$.
Proof. Assume that $S z_{0} \neq z_{0}$. From Definition 10 and the fact that Θ is non-decreasing, we obtain
\[

$$
\begin{aligned}
\Theta\left(\xi\left(z_{0}, S z_{0}\right)\right) & \leq\left[\Theta\left(M^{*}\left(z_{0}, z_{0}\right)\right)\right]^{\lambda} \\
& <\Theta\left(M^{*}\left(z_{0}, z_{0}\right)\right) \\
& =\Theta\left(\alpha \xi\left(z_{0}, z_{0}\right)+\beta \xi\left(z_{0}, S z_{0}\right)+\gamma \xi\left(z_{0}, S z_{0}\right)+\delta \xi\left(z_{0}, S z_{0}\right)+\eta \xi\left(z_{0}, S z_{0}\right)\right) \\
& =\Theta\left((\beta+\gamma+\delta+\eta) \xi\left(z_{0}, S z_{0}\right)\right) \leq \Theta\left(\xi\left(z_{0}, S z_{0}\right)\right)
\end{aligned}
$$
\]

a contradiction. Therefore, we must have $S z_{0}=z_{0}$.
${ }_{88} \quad$ Using a Hardy-Rogers type Θ_{c}-contraction, we present the following fixed circle results.
s9 Theorem 3. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ a Hardy-Rogers type Θ_{c}-contraction with $z_{0} \in Y$ and 90 $r=\inf \{\xi(z, S z): z \neq S z\}$. If $\xi\left(z_{0}, S z\right)=r$ for all $z \in C_{z_{0}, r}$ then $C_{z_{0}, r}$ is a fixed circle of S.

Proof. Let $z \in C_{z_{0}, r}$ and assume on contrary that $S z \neq z$. By the definition of r, we have $\xi(z, S z) \geq r$. Since S is Hardy-Rogers type Θ_{c}-contraction, by using Proposition 2 and the fact that Θ is non-decreasing, we have

$$
\begin{aligned}
\Theta(\xi(z, S z)) & \leq\left[\Theta\left(M^{*}\left(z, z_{0}\right)\right)\right]^{\lambda} \\
& <\Theta\left(\alpha \xi\left(z, z_{0}\right)+\beta \xi(z, S z)+\gamma \xi\left(z_{0}, S z_{0}\right)+\delta \xi\left(z, S z_{0}\right)+\eta \xi\left(z_{0}, S z\right)\right) \\
& =\Theta(\alpha r+\beta \xi(z, S z)+\delta r+\eta r) \\
& \leq \Theta((\alpha+\beta+\delta+\eta) \xi(z, S z)) \leq \Theta(\xi(z, S z))
\end{aligned}
$$

a contradiction. Therefore, $S z=z$ for all $z \in C_{z_{0}, r}$. Consequently, $C_{z_{0}, r}$ is a fixed circle of S.
Next, we prove the following fixed disc result as follows:
Theorem 4. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ a Hardy-Rogers type Θ_{c}-contraction with $z_{0} \in Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If $\xi\left(z_{0}, S z\right)=r$ for all $x \in D_{z_{0}, r}$ then $D_{z_{0}, r}$ is a fixed disc of S.

Proof. In view of Theorem 3, S fixes the circle $C_{z_{0}, r}$. Now, in order to show that $D_{z_{0}, r}$ is a fixed disc of the mapping S it is sufficient to show that S fixes any circle $C_{z_{0}, \rho}$ with $\rho<r$. Let $z \in C_{z_{0}, \rho}$ and assume that $\xi(z, S z)>0$. Since S is Hardy-Rogers type Θ_{c}-contraction, by using Proposition 2 and the fact that Θ is non-decreasing, we have

$$
\begin{aligned}
\Theta(\xi(z, S z)) & \leq\left[\Theta\left(M^{*}\left(z, z_{0}\right)\right)\right]^{\lambda} \\
& <\Theta\left(\alpha \xi\left(z, z_{0}\right)+\beta \xi(z, S z)+\gamma \xi\left(z_{0}, S z_{0}\right)+\delta \xi\left(z, S z_{0}\right)+\eta \xi\left(z_{0}, S z\right)\right) \\
& =\Theta(\alpha \rho+\beta \xi(z, S z)+\delta \rho+\eta \rho) \\
& \leq \Theta((\alpha+\beta+\delta+\eta) \xi(z, S z)) \leq \Theta(\xi(z, S z))
\end{aligned}
$$

a contradiction. Thus, we obtain $S z=z$. So, $D_{z_{0, \rho}}$ is a fixed disc of S.
By Theorem 3 and 4 and in view of Remark 3 , we deduce the following results.

Example 4. Let $Y=\left\{3,4, \ln \left(\frac{3}{e}\right), \ln (3), \ln (3 e)\right\}$ be endowed with the usual metric ξ. Define $S: Y \rightarrow Y$ as

$$
S z= \begin{cases}4, & \text { if } z=3 \\ z, & \text { otherwise } .\end{cases}
$$

Let $\Theta(t)=e^{t}, z_{0}=\ln 3, k=\frac{3}{10-3 \ln 3}, \alpha=\delta=\eta=\frac{1}{3}$ and $\beta=0$. Then S is a Hardy-Rogers type Θ_{c}-contraction. Indeed, for $z=3$

$$
\begin{gathered}
\xi(z, S z)=\xi(3, T 3)=1>0, \\
M\left(z, z_{0}\right)=\alpha \xi\left(z, z_{0}\right)+\beta \xi(z, S z)+\delta \xi\left(z, S z_{0}\right)+\eta \xi\left(z_{0}, S z\right) \\
=\frac{1}{3}[\xi(3, \ln 3)+\xi(3, \ln 3)+\xi(\ln 3,4)] \\
=\frac{10}{3}-\ln 3
\end{gathered}
$$

and

$$
\begin{aligned}
\Theta(\xi(z, S z))=\Theta(\xi(3,4))=e & \leq\left[e^{\frac{10}{3}-\ln 3}\right] \frac{3}{10-3 \ln 3} \\
& =\left[\Theta\left(M\left(z, z_{0}\right)\right)\right]^{\lambda}
\end{aligned}
$$

Also, we have

$$
r=\inf \{\xi(z, S z): z \neq S z\}=\{\xi(3,4)\}=1 .
$$

Hence, all the conditions of Theorems 3 and 4 are satisfied. Observe that S fixes the circle $C_{\ln 3,1}=$ $\left\{\ln \left(\frac{3}{e}\right), \ln (3 e)\right\}$ and the disc $D_{\ln 3,1}=\left\{\ln \left(\frac{3}{e}\right), \ln 3, \ln (3 e)\right\}$.

Remark 4. 1. Taking $\Theta(t)=e^{t}, z_{0}=\ln 3, k=\frac{3}{4}, \alpha=\frac{3}{4}$ and $\beta=\frac{1}{5}$ in Example 4 , we can easily show that the mapping S is Reich type Θ_{c}-contraction.
2. Puting $\Theta(t)=e^{t}, z_{0}=\ln 3, k=\frac{3}{7-2 \ln 3}$ and $\delta=\eta=\frac{1}{3}$ in Example 4, we can easily show that the mapping S is Chatterjea type Θ_{c}-contraction.

We close this section by introducing the concept of Khan type Θ_{c}-contraction followed by related fixed circle (disc) results.

Definition 11. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is called Khan type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that for all $z \in Y$, if $\max \left\{\xi\left(S z_{0}, z_{0}\right), \xi(S z, z)\right\} \neq 0$, then

$$
\Theta(\xi(S z, z)) \leq\left[\Theta\left(h \frac{\xi(S z, z) \xi\left(S z_{0}, z\right)+\xi\left(S z_{0}, z_{0}\right) \xi\left(S z, z_{0}\right)}{\max \left\{\xi\left(S z_{0}, z_{0}\right), \xi(S z, z)\right\}}\right)\right]^{\lambda}
$$

Corollary 4. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. If S is a Chatterjea type Θ_{c}-contraction with $z_{0} \in Y$ and $\xi\left(z_{0}, S z\right)=r$ for all $z \in C_{z_{0}, r}\left(\right.$ or $\left.D_{z_{0}, r}\right)$ then $C_{z_{0}, r}$ (or $\left.D_{z_{0}, r}\right)$ is a fixed circle (or disc) of S.

The following example exhibit the utility of Theorems 3 and 4 .

The following proposition is a direct consequence of Definition 11.
Proposition 3. Let (Y, ξ) be a metric space. If $S: Y \rightarrow Y$ is Khan type Θ_{c}-contraction with $z_{0} \in Y$, then $S z_{0}=z_{0}$.

Proof. Assume that $S z_{0} \neq z_{0}$, then $\max \left\{\xi\left(S z_{0}, z_{0}\right), \xi(S z, z)\right\} \neq 0$. As S is Khan type Θ_{c}-contraction, we have

$$
\begin{aligned}
\Theta\left(\xi\left(S z_{0}, z_{0}\right)\right) & \leq\left[\Theta\left(h \frac{\xi\left(S z_{0}, z_{0}\right) \xi\left(S z_{0}, z_{0}\right)+\xi\left(S z_{0}, z_{0}\right) \xi\left(S z_{0}, z_{0}\right)}{\xi\left(S z_{0}, z_{0}\right)}\right)\right]^{\lambda} \\
& =\left[\Theta\left(2 h \xi\left(S z_{0}, z_{0}\right)\right)\right]^{\lambda} \\
& <\Theta\left(2 h \xi\left(S z_{0}, z_{0}\right)\right) \leq \Theta\left(\xi\left(S z_{0}, z_{0}\right)\right)
\end{aligned}
$$

a contradiction. Therefore, we must have $S z_{0}=z_{0}$.
Now, utilizing the definition of Khan type Θ_{c}-contraction, we prove the following fixed circle and fixed disc results.

Theorem 5. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ a Khan type Θ_{c}-contraction with $z_{0} \in Y$ and $r=$ $\inf \{\xi(z, S z): z \neq S z\}$. Then $C_{z_{0}, r}$ is a fixed circle of S.

Proof. Let $z \in C_{z_{0}, r}$ and assume on contrary that $S z \neq z$, then $\max \left\{\xi\left(S z_{0}, z_{0}\right), \xi(S z, z)\right\} \neq 0$. From the definition of r, we have $\xi(z, S z) \geq r$. As S is Khan type Θ_{c}-contraction, by using Proposition 3 and the fact that Θ is non-decreasing, we have

$$
\begin{aligned}
\Theta(\xi(S z, z)) & \leq\left[\Theta\left(h \frac{\xi(S z, z) \xi\left(S z_{0}, x\right)+\xi\left(S z_{0}, z_{0}\right) \xi\left(S z, z_{0}\right)}{\xi(S z, z)}\right)\right]^{\lambda} \\
& =[\Theta(h r)]^{\lambda}<\Theta(h r) \leq \Theta(h \xi(S z, z)) \leq \Theta(\xi(S z, z))
\end{aligned}
$$

a contradiction. Therefore, $S z=z$ for all $z \in C_{z_{0}, r}$. Consequently, $C_{z_{0}, r}$ is a fixed circle of S.
Theorem 6. Let (Y, ξ) be a metric space, $S: Y \rightarrow Y$ a Khan type Θ_{c}-contraction with $z_{0} \in Y$ and $r=$ $\inf \{\xi(z, S z): z \neq S z\}$. Then $D_{z_{0}, r}$ is a fixed disc of S.

Proof. In view of Theorem $5, S$ fixes the circle $C_{z_{0}, r}$. Now, in order to show that $D_{z_{0}, r}$ is a fixed disc of the mapping S it is sufficient to show that S fixes any circle $C_{z_{0}, \rho}$ with $\rho<r$. Let $z \in C_{z_{0}, \rho}$ and assume that $\xi(z, S z)>0$. By the Khan type Θ_{c}-contractive condition, we have

$$
\Theta(\xi(z, S z)) \leq[\Theta(h \rho)]^{\lambda}<\Theta(h \rho) \leq \Theta(\rho) .
$$

As Θ is non-decreasing function, we get

$$
\xi(z, S z)<\rho<r,
$$

a contradiction (as $r \leq \xi(z, S z)$). Thus, we obtain $S z=z$ for all $z \in C_{z_{0}, \rho}$ with $\rho<r$. Therefore, $D_{z_{0}, r}$ is a fixed disc of S.

The following example shows the utility of Theorems 5 and 6 .

Example 5. Let $X=\mathbb{R}$ be endowed with the usual metric ξ. Define $S: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
S z=\left\{\begin{array}{cl}
z, & \text { if }|z|<4.5 \\
z+1, & \text { if }|z| \geq 4.5
\end{array}\right.
$$

Then S is Khan type Θ-contraction with $\Theta(t)=e^{t}, z_{0}=0, k=\frac{2}{3}$ and $h=\frac{1}{3}$. In fact

$$
\max \left\{\xi\left(S z_{0}, z_{0}\right), \xi(S z, z)\right\}=1 \neq 0
$$

for all $z \in \mathbb{R}$ such that $|z| \geq 4.5$. Now, we have

$$
h \frac{\xi(S z, z) \xi\left(S z_{0}, x\right)+\xi\left(S z_{0}, z_{0}\right) \xi\left(S z, z_{0}\right)}{\xi(S z, z)}=h \xi(0, z)=\frac{1}{3}|z|
$$

and

$$
\begin{aligned}
\Theta(\xi(S z, z))=e & \leq e^{\frac{2}{9}|z|} \\
& =\left[e^{\frac{1}{3}|z|}\right]^{\frac{2}{3}}=\left[\Theta\left(h \frac{\xi(S z, z) \xi\left(S z_{0}, z\right)+\xi\left(S z_{0}, z_{0}\right) \xi\left(S z, z_{0}\right)}{\xi(S z, z)}\right)\right]^{\lambda}
\end{aligned}
$$

Also, we have

$$
r=\inf \{\xi(z, S z): z \neq S z\}=1 .
$$

Therefore, all the conditions of Theorems 5 and 6 are satisfied. Observe that S fixes the circle $C_{0,1}=\{-1,1\}$ and the disc $D_{0,1}=[-1,1]$.

3. Fixed circle (disc) results of integral type

In this section, we establish some fixed circle and disc results of integral type.
Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a locally integrable function such that, for each $t>0$

$$
\begin{equation*}
\int_{0}^{t} \varphi(s) d s>0 \tag{4}
\end{equation*}
$$

Definition 12. Let $S: Y \rightarrow Y$ and $\Theta \in \Omega_{1}$. The mapping S is called an integral type Θ_{c}-contraction if there exist $\lambda \in(0,1)$ and $z_{0} \in Y$ such that, for all $z \in Y$

$$
\xi(z, S z)>0 \Rightarrow \int_{0}^{\Theta(\xi(z, S z))} \varphi(t) d t \leq \int_{0}^{\left[\Theta\left(\xi\left(z, z_{0}\right)\right)\right]^{\lambda}} \varphi(t) d t
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a function defined as in (4).
The following proposition is useful in the proof of the main results of this section.
Proposition 4. Let (Y, ξ) be a metric space and $S: Y \rightarrow Y$. If S is an integral type Θ_{c}-contraction with $z_{0} \in Y$, then $S z_{0}=z_{0}$.

Proof. Assume that $S z_{0} \neq z_{0}$. From Definition 12, we have

$$
\int_{0}^{\Theta\left(\xi\left(z_{0}, S z_{0}\right)\right)} \varphi(t) d t \leq \int_{0}^{\left[\Theta\left(\xi\left(z_{0}, z_{0}\right)\right)\right]^{\lambda}} \varphi(t) d t
$$

which contradicts the definition of Θ, as $\Theta:(0, \infty) \rightarrow(1, \infty)$ and $\xi\left(z_{0}, z_{0}\right)=0$. Hence, we must have $S z_{0}=z_{0}$.

In the following theorem we present fixed circle result for integral type Θ_{c}-contraction.
Theorem 7. Let (Y, ξ) be a metric space and $S: Y \rightarrow Y$. If S is an integral type Θ_{c}-contraction with $z_{0} \in Y$ and $r=\inf \{\xi(z, S z): z \neq S z\}$. Then $C_{z_{0}, r}$ is a fixed circle of S.

Proof. Assume that $z \neq S z$ for some $z \in C_{z_{0}, r}$. Making use of the definition of r, we have

$$
r \leq \xi(z, S z)
$$

Since Θ is non-decreasing function, we have

$$
\Theta(r) \leq \Theta(\xi(z, S z))
$$

and

$$
\begin{equation*}
\int_{0}^{\Theta(r)} \varphi(t) d t \leq \int_{0}^{\Theta(\xi(z, S z))} \varphi(t) d t \tag{5}
\end{equation*}
$$

As S is integral type Θ_{c}-contraction, by using (5), we obtain

$$
\begin{aligned}
\int_{0}^{\Theta(r)} \varphi(t) d t \leq \int_{0}^{\Theta(\xi(z, S z))} \varphi(t) d t & \leq \int_{0}^{\left[\Theta\left(\xi\left(z, z_{0}\right)\right)\right]^{\lambda}} \varphi(t) d t \\
& <\int_{0}^{\Theta\left(\xi\left(z, z_{0}\right)\right)} \varphi(t) d t=\int_{0}^{\Theta(r)} \varphi(t) d t
\end{aligned}
$$

a contradiction. Therefore, we have $S z=z$. Consequently, $C_{z_{0}, r}$ is a fixed circle of S.
Next, we prove the following fixed disc results.
Theorem 8. Let (Y, ξ) be a metric space, $\varphi:[0, \infty) \rightarrow[0, \infty)$ be defined as in (4), S an integral type Θ_{c}-contraction with $z_{0} \in Y$ and $r=\inf \{\xi(z, S z): x \neq S z\}$. Then $D_{z_{0}, r}$ is a fixed disc of S.

Proof. In view of Theorem 7, S fixes the circle $C_{z_{0}, r}$. Now, in order to show that $D_{z_{0}, r}$ is a fixed disc of the mapping S it is sufficient to show that S fixes any circle $C_{z_{0}, \rho}$ with $\rho<r$. Let $z \in C_{z_{0}, \rho}$ and assume that $z \neq S z$. Making use of the definition of r, we have

$$
\rho<r \leq \xi(z, S z)
$$

Since Θ is non-decreasing function, we have

$$
\Theta(\rho) \leq \Theta(\xi(z, S z))
$$

and

$$
\begin{equation*}
\int_{0}^{\Theta(\rho)} \varphi(t) d t \leq \int_{0}^{\Theta(\xi(z, S z))} \varphi(t) d t \tag{6}
\end{equation*}
$$

As S is integral type Θ_{c}-contraction, by using (6), we obtain

$$
\begin{aligned}
\int_{0}^{\Theta(\rho)} \varphi(t) d t \leq \int_{0}^{\Theta(\xi(z, S z))} \varphi(t) d t & \leq \int_{0}^{\left[\Theta\left(\xi\left(z, z_{0}\right)\right)\right]^{\lambda}} \varphi(t) d t \\
& <\int_{0}^{\Theta\left(\xi\left(z, z_{0}\right)\right)} \varphi(t) d t=\int_{0}^{\Theta(\rho)} \varphi(t) d t
\end{aligned}
$$

a contradiction. Therefore, we must have $S z=z, \forall z \in C_{z_{0}, \rho}$. Consequently, $D_{z_{0}, r}$ is a fixed disc of S.

Remark 5. Using similar arguments as in Definition 12, we can define the notions of an integral Ćirić type Θ_{c}-contraction mapping, an integral type Θ_{c}-weak contraction mapping, an integral Hardy-Rogers type Θ_{c}-contraction mapping, an integral Reich type Θ_{c}-contraction mapping, an integral Chatterjea type Θ_{c}-contraction mapping and an integral Khan type Θ_{c}-contraction and obtain corresponding fixed circle and fixed disc theorems.

4. Conclusion

In closing, we would like to bring to the readers' attention the following open questions:
Question 1 Under what extra condition we have the uniqueness of a fixed circle/disc?
Question 2 Can we prove the same results in partial metric spaces?
Author Contributions: All the authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.

Acknowledgments: The authors are grateful to an anonymous referees and the Editor for their valuable suggestions and fruitful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. math 1922, 3, 133-181.
2. Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications 2012, 2012, 94.
3. Jleli, M.; Karapınar, E.; Samet, B. Further generalizations of the Banach contraction principle. Journal of Inequalities and Applications 2014, 2014, 439.
4. Suzuki,T. A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society 2008, 136, 1861-1869.
5. Imdad, M.; Khan, A. R.; Saleh, H. N.; Alfaqih, W. M. Some φ-fixed point results for (F, $\varphi, \alpha-\psi$)-contractive type mappings with applications. Mathematics 2019, 7, 122.
6. Meir, A.; Keeler, E. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications 1969, 28, 326-329.
7. Reich, S. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin 1971, 14, 121-124.
8. Ciric, L. B. Generalized contractions and fixed-point theorems. Publ. Inst. Math.(Beograd)(NS) 1971, 12, 19-26.
9. Berinde, V. Approximating fixed points of weak contractions using the picard iteration. Nonlinear Analysis Forum 2004, 9, 43-54.
10. Zamfirescu, T. Fix point theorems in metric spaces. Archiv der Mathematik 1972, 23, 292-298.
11. Jleli, M; Samet,B. A new generalization of the Banach contraction principle. Journal of Inequalities and Applications 2014, 2014, 38.
12. Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bulletin of the Malaysian Mathematical Sciences Society 2019, 42, 1433-1449.
13. Taş, N.; Özgür, N.; Mlaiki, M. New types of F_{c}-contractions and the fixed-circle problem. Mathematics 2018, 6, 188.
14. Özdemir, N.; İskender, B. B.; Özgür, N. Y. Complex valued neural network with möbius activation function. Communications in Nonlinear Science and Numerical Simulation 2011, 16, 4698-4703.
15. Özgür, N.Y.; Tas, N.; Celik, U. New fixed-circle results on S-metric spaces. Bull. Math. Anal. Appl 2017, 9, 10-23.
16. Özgür, N. Y.; Taş, N. Fixed-circle problem on S-metric spaces with a geometric viewpoint. Facta Universitatis, Series: Mathematics and Informatics 2019, 34, 459-472.
17. Özgür, N.Y.; Taş, N. Some fixed-circle theorems and discontinuity at fixed circle. AIP Conference Proceedings 2018, 1926, 020048.
18. Mlaiki, N.; Taş, N.; Özgür, N. On the fixed-circle problem and Khan type contractions. Axioms 2018, 7, 80.
19. Pant, R.; Özgür, N. Y.; Taş, N. On discontinuity problem at fixed point. Bulletin of the Malaysian Mathematical Sciences Society 2018, 1-19.

Sample Availability: Samples of the compounds are available from the authors.

[^0]: (2) Putting $\eta=\delta=0$ in Definition 10, we obtain Definition 8.

