

# 1    Aquatic biota is not exempt from Coronavirus infections: An overview

2    Núñez-Nogueira, G\* and Granados-Berber, A.A.

3    Laboratorio de Hidrobiología y Contaminación Acuática, DACBiol Universidad Juárez Autónoma de Tabasco,  
4    Carretera Villahermosa-Cárdenas Km. 0.5., Villahermosa, Tabasco 86039, México. \*Corresponding author:  
5    [gabriel.nunez@ujat.mx](mailto:gabriel.nunez@ujat.mx) (ORCID: 0000-0001-9217-6959).

6

## 7    Abstract

8    Coronaviruses are pathogens recognized for having an animal origin and commonly associated with terrestrial  
9    environments. However, although in few cases, there are reports of their presence in aquatic organisms like fish,  
10   crustaceans, waterfowls and marine mammals. None of these cases have even led to human health effects, when contact  
11   with these infected organisms, whether they are alive or dead. Aquatic birds seem to be the main group in carrying and  
12   circulating these types of viruses in healthy bird populations and play an important role in these environments.  
13   Although the route of infection for CoVID-19 (Coronavirus disease 2019) by water or aquatic organisms, has not yet  
14   been observed in the wild, the relevance of its study is highlighted, because there are cases of other viral infections  
15   (no coronavirus), which are known to have been transferred to the human by aquatic biota. What is even better, it  
16   becomes encouraging to know that aquatic species shows very few cases in fishes, marine mammals, and crustaceans,  
17   and some other aquatic animals may also be a possible source of cure or treatment against coronaviruses, as some  
18   evidence with algae and marine sponges suggests.

19

20    **Keywords:** Coronavirus, aquatic organisms, fish, marine mammals, crustaceans, birds.

21

## 22    Declarations

23    **Funding:** Not applicable.

24    **Conflicts of interest/Competing interests:** The author declares no conflict of interest.

25    **Availability of data and material:** Not applicable.

26    **Ethics approval:** Not applicable

27    **Consent to participate:** Not applicable.

28    **Consent for publication:** Not applicable.

29    **Code availability:** Not applicable.

30    **Authors' contributions:** G.N-N. contributed to the study conception and design, and A.A.G-B and G.N-N material  
31   preparation, data collection, analyses, and approved the final manuscript.

32

33 **Acknowledgement**

34 The author G.N-N recognizes the support provided by the PII SNI-UJAT program and the assistance of Enrique Núñez-  
35 Jiménez to improve this manuscript.

36

37 **1. Introduction**

38 The current Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) or CoVID-19 pandemic, as it is  
39 commonly known, brought society's interest in one of the families of high-risk pathological-infectious viruses, known  
40 as Coronavirus (CoVs)[1]. The impact that the CoVID-19 has had on human dynamics is undoubtedly enormous. The  
41 mortality and public health impacts caused by CoVID-19, caught the attention of scientists to try to slow down its  
42 effects and look for a vaccine. This virus is already present in every continent, and as previous events with other viruses  
43 such as SARS or HIV (Human Immunodeficiency Virus), humans will have to learn how to live with it. However, this  
44 situation also makes us wonder about what other organisms may be subject to coronavirus infection? Which organisms  
45 can be vectors or reservoirs? That is that they may have the virus in their body, transport it and spread it in other areas  
46 or to other organisms, without suffering the symptoms of the infection. Moreover, can the coronavirus infect and affect  
47 aquatic organisms? These questions, indeed some present in the scientific and non-scientific communities may  
48 eventually be answered in a particular way over time for SARS-CoV-2. However, at the moment, scientific efforts are  
49 focused on the public health aspects at the global level [2,3]. Thanks to previous studies on the subject, we can have  
50 access to information that allows us to understand more about the possible scenarios associated with these questions.  
51 Moreover, to be able to make more specific approaches to the impact of SARS-CoV-2 on aquatic organisms, based on  
52 the general knowledge that is available on coronaviruses.

53

54 **1.2 Coronavirus features**

55 CoVs are pathogens associated with epithelial cells infections such as gastrointestinal (gastroenteritis) and respiratory  
56 (respiratory infections) [4–6]. Its structure consists of three components: 1) genetic material with which it replicates  
57 or reproduces within infected cells, known as RNA (ribonucleic acid of a chain between 26 and 32 kb in length), 2) an  
58 external protein that surrounds it known as caps (viral wrap) and 3) a membrane that surrounds and envelops the protein  
59 cover, which is covered in turn, with spicules that give the shape of a "crown", from which they are called coronavirus,  
60 and that allows them to recognize and come into contact with the membrane of the cell that will infect [7,8]. These  
61 spicules are called the "S" protein [7].

62

63 It is recognized that CoVs have its origin in bats, with several varieties or viral species depending on poly-protein or  
64 full genome analyses [8,9], which include some of the most toxic and lethal strains of recent decades. CoVs mainly  
65 affect terrestrial organisms, such as humans, bats, felines, camels and birds [8,10]; however, their potential to infect  
66 the aquatic life has been demonstrated.

67

68 Coronaviruses are part of the Family Coronaviridae of the Order Nidovirals, which in addition to infecting mammals  
69 and birds, have also been found in crustaceans, fish and marine mammals [6,8]. Four genera are recognized based on  
70 their phylogeny and genomic structure, from the subfamily Orthocoronavirinae, of which *Alphacoronavirus*,

71 *Betacoronavirus*, *Gammacoronavirus* and *Deltacoronavirus* stand out, for their ability to infect humans and non-  
72 human respiratory tracts, and other organisms at the digestive level (enteritis) [8]. Within this group of Nidovirals, we  
73 find viruses such as the widely known SARS-CoV and MERS-CoV (Middle East Respiratory Syndrome), both  
74 belonging to the genus *Betacoronavirus* and subgenus *Sarbecovirus* and *Merbecovirus*, respectively [6,8]. These two  
75 types of viruses are recognized as infectious of zoonotic origin, that implies a transmission from an animal, as a result  
76 of direct interactions with an animal carrying the infection. The other subfamily within the Coronaviridae is the  
77 Torovirinae, formed in turn by two genera, *Torovirus* and *Bafinivirus*, respectively. *Bafinivirus*, in fact, has been  
78 identified in a teleost fish [11,12].

79

## 80 **2. Coronavirus and aquatic environments**

81 Interest in virus transmissions in aquatic media focuses on those with public health relevance, which often enter natural  
82 water from treated and untreated wastewater discharges [4,13]. In the 1980s, it was recognized that as far as pathogenic  
83 viruses are concerned, more than 100 different types are excreted by man or by animals through their faeces [14]. The  
84 stool is one of the main materials for viruses transfer to water bodies. The transfer to the mouth as a result of poor  
85 hygiene, or the intake of contaminated water, allows viruses to enter the digestive system, infecting and replicating  
86 itself in the gastrointestinal tract, and then being expelled in large numbers again in the faeces produced by infected  
87 people or animals [15]. It is estimated that about 10 billion viral particles are present for every gram of excrement [16].  
88 Sewages, especially in countries with limited capacities for treatment and adequate sanitization, poses a risk of  
89 contamination when discharged or overflowing into the bodies of natural water occurs [16]. Unfortunately, this  
90 scenario becomes more complicated considering that also hospital waste, biological-infectious and sanitary waste  
91 (intimate towels, mouth covers, gauze, body protectors among others), can eventually reach lakes, lagoons, rivers and  
92 seas, due to their mishandling as solid waste, becoming vectors of viruses towards the aquatic environment. Recently,  
93 a study has shown the presence of SARS-CoV-2 from the waste discharge activities of infected communities [17]. For  
94 CoVs in general, it is reported that they can continue active or infectious for up to several weeks in water, including  
95 wastewaters [18]. Thus, viruses can come into contact with free-living aquatic organisms or in aquaculture farms and  
96 then be transmitted to humans when they become pets or food, and that, in the near future, it could be the way for new  
97 coronavirus outbreaks, which will need to be evaluated particularly for CoVID-19.

98

99 Some CoVs transmitted through contaminated food or water include *Alphacoronaviruses* such as 229E and NL63 or  
100 *Betacoronaviruses* such as OC43 and HKU1 (not well-known frequencies) and SARS (with occasional frequencies)  
101 [5]. Infections related to contaminated water can have various routes of contagion that may include aspiration,  
102 inhalation of aerosol droplets, penetration by the skin or mucous membranes, as well as by intake [19].

103

104 The presence of CoVs in natural waters has been determined with low percentages, compares to another type of viruses;  
105 however, they have been detected recently, as is the case of the Ilé river basin in Kazakhstan [20].

106

107

108 **2.1 CoVs and aquatic organisms**

109 Studies focusing on viral infections in aquatic organisms have targeted mainly those species of commercial importance  
110 and especially those of aquaculture exploitation [21], or those associated with captivity and tourism industry, such as  
111 marine mammals in aquariums and water parks [22].

112  
113 Within the CoVs that have been identified in aquatic organisms and also associated to important pathological  
114 infections, we find those that affect crustaceans, fish, marine mammals (Table 1) and waterfowl (Table 2 and 3). No  
115 mollusc infections by CoVs have been reported so far.

116  
117 **2.1.1 Crustaceans**

118 Crustaceans are recognized as a group capable of accumulating in their exoskeleton or body cover human pathogens.  
119 However, their role in the transmission of diseases to humans has not been proven [23], perhaps by the culinary habits  
120 and customs of removing body covers before ingesting them. In shrimps, the "Yellow head virus" or YHV [24], was  
121 reported in 1990 (Table 1) in East and Southeast Asia, affecting *Penaeus monodon* shrimp farmed. There are  
122 unconfirmed reports in Mexico for *P. Stylirostris* and *P. vannamei* [24–26]. Genetic studies showed that YHV had  
123 undergone significant recombination processes, apparently attributable to international trade with wild and farmed  
124 shrimp in the Asia-Pacific region, promoting a faster genetic diversity of the virus, as a result of several recombination  
125 events [27].

126  
127 **2.1.2 Fishes**

128 In the case of fish, viruses of the *Bafinivirus* group have been reported [6,12,28,29]. There are cases since the late  
129 1980s, where CoVs have been identified, particularly in Japan by 1988, in the common carp (*Cyprinus carpio*), widely  
130 cultivated and consumed in the world [30,31]. Production involvements reached 70% mortality within 20 days, with  
131 pathological damage including renal and hepatic tubular necrosis, as well as damage to renal hematopoietic tissue [28],  
132 skin and abdomen bleeding [12]. However, *Bafiniviruses*, together with *Gammacoronaviruses* detected in marine  
133 mammals, are usually found mainly in the digestive tract of the host or infected organisms [5]. It is also recognized  
134 that the first report of CoVs was in another European cyprinid known as white brema (*Blicca bjoerkna*), which showed  
135 a bacilliform structure, related to the viruses of the subfamily Torovirinae, giving rise to a new genus defined as  
136 *Bafinivirus* [12]. Most recently this genus has been reported in *Pimephales promelas* or bighead face fish [32,33] and  
137 on the salmon *Oncorhynchus tshawytscha* [34], identified as two different types of *Bafinivirus* (Table 1).

138  
139 Some Chinese electronic media have stated that CoVID-19 cannot be transmitted through fish, under the argument of  
140 the virus's thermo-tolerance and the low body temperature of fish, compared to those of mammals [35]. However, this  
141 must be confirmed. Recent and specific tests of SARS-CoV-2 tolerance to thermal gradients have demonstrated  
142 tolerance between 4°C and 20°C in the air [36]. This temperature range is below the human body temperature (36.6°C),  
143 which are resisted and tolerated by SARS-CoV-2 during human infections. In drinking water, its dispersion seems to  
144 decrease at 23°C [37]. In addition, we must recognize that this would have relevant implications for tolerance, if we

145 consider that fish and crustaceans are ectothermic (some fishes can be heterothermic, like tuna), that is, their body  
146 temperature is equal to that of the environment around them [38], and fish that have shown the presence of CoVs have  
147 a tolerance to a wide range of temperatures, from temperate to warm conditions (like cyprinid fish that lives or  
148 reproduces between 17 °C and 30°C [39]), which in the case of the CoVID-19, could allow its incorporation by fish,  
149 just considering their body temperature as a limit factor for its infection. On the other hand, Peneid shrimps are tropical  
150 (between 24 °C and 32°C [40]), and marine mammals regulate body temperatures in a lower range than humans (29-  
151 32°C [41]). Despite this, marine mammals have developed CoVs infections, as can be seen in Table 1. Under this  
152 evidence, the body temperature would not be a limiting factor on the possible future infection of SARS-CoV-2 to  
153 crustaceans, fish and marine mammals, or at least once they have already entered the body of the organism.

154

### 155 **2.1.3 Waterfowl.**

156 Of the groups of animals associated with aquatic environments, birds appear to be the group with the higher diversity  
157 of CoVs, with at least 96 genetically identified varieties found during this review (Table 2 and 3), within two of the  
158 four genera (71 *Gammacoronavirus* and 13 *Deltacoronavirus*, respectively) of the subfamily Orthocoronavirinae [42].  
159 Different types of birds, such as gulls (*Larus hyperboreus*; *L. galucesceus*), geese (*Branta bernicla*, *Anser*  
160 *caerulescens*), spatulas (*Platalea minor*), herons (*Ardea cinerea*, *Ardeola bacchus*), cormorants (*Phalacrocorax*  
161 *carbo*) and ducks (*Anas Americana*, *A. crecca*, *A. clypeata*, *A. penelope*, *A. acuta*, *Dendrocygna javanica*) are  
162 confirmed carriers of CoVs. The ducks of the genus *Anas* sp. and *Anser* sp. are the most represented and capable of  
163 carrying even strains of SARS-CoV. Particularly noteworthy are *Anas domestica*, *Anas platyrhynchos* and *Anser anser*  
164 (Table 2).

165

166 Some birds, such as cormorant and ducks are migratory, and that would allow wide geographical distribution of these  
167 types of viruses. Although no reports of human infection originated from waterfowl have been detected, the ecological  
168 study of these correlation becomes indispensable, to understand better the relationship of birds and CoVs, and their  
169 epidemiology among birds and other species within their ecosystems [42].

170

### 171 **2.1.4 Marine mammals.**

172 Regarding marine mammals, the first report of CoVs dates back to the 1970s associated with the death of several seals  
173 (*Phoca vitulina*) in a Florida aquarium [43] and other free-living pinnipeds off the coast of California [44]. This  
174 infection was known as HSCoV (Harbor Seal coronavirus), identified as deadly haemorrhagic pneumonia caused by  
175 *Alphacoronavirus* group [44]. Years later, in 2008, the presence of other CoVs was detected in a beluga whale  
176 (*Delphinapterus leucas*) under captivity (BWCoV SW1) [9,45]. In 2014, the presence of CoVs was detected in faeces  
177 from bottlenose dolphins [9], from the Indo-Pacific (*Tursiops aduncus*), which was called BdCoV HKU22 (Bottlenose  
178 dolphin CoV). These latter two were recognized within the *Gammacoronavirus* group, which caused viral bronchitis  
179 to those infected animals [9]. The gregarious behavior of several marine mammal species may promote the contagion  
180 and dispersal of these types of pathogens in wild populations, so their monitoring becomes essential and necessary for  
181 their health and avoid further transmission to others aquatic organisms.

182

183 Gammacoronavirus detected in marine mammals, unlike *Bafinivirus* in fish, can also be found in the respiratory tracts  
184 of terrestrial and marine mammals and not only in the digestive tracks [5]. Viruses such as influenza A and B have  
185 been reported in mammals such as seals and cetaceans [5,22], which have come to be considered as reservoirs and  
186 vectors towards humans [5]. This scenario opens up the possibility that other viruses, including CoVs, could be  
187 transmitted to humans when interacting and coming into contact with seals, sea lions and dolphins in water parks and  
188 aquariums. Working with infected wildlife, or using them as food sources, especially in communities such as Asian  
189 ones, might also be another route of transmission. These leads us to one of the main questions in case of the SARS-  
190 CoV-2 infects an aquatic ecosystem..., would SARS-CoV-2 from aquatic organisms infect humans?.

191

### 192 **3.- Virus infections to humans from aquatic organisms**

193 During this review, no published studies on the actual risk of SARS-CoV-2 contagion from aquatic organisms were  
194 found. There is a history of other viral respiratory infections transmitted to humans from either wild or captive animals  
195 [15,22]. That is the case with influenza-A, caused by the H7N7 virus, in people infected during a necropsy performed  
196 to a seal [43], or by coming into contact with the sneeze of a seal in captivity [22], causing conjunctivitis, rather than  
197 typical influenza or respiratory disease. A similar case has also been identified for Influenza B [5,22]. Moreover, a  
198 historical review carried out by Petrovic et al. [15], has shown numerous viral outbreaks (not CoVs related) associated  
199 with shellfish. These outbreaks, included human enteric viruses, mainly those of type NoV (norovirus). HAV (hepatitis  
200 virus A), EV (Enterovirus), HAdV (human adenovirus) and HRV (human rotavirus) are reported in shellfish in  
201 different countries, but not CoVs. Oysters and clams have been associated with NoV and HAV between 1976 and  
202 1999, in the United States alone. The presence of these viruses has also been identified in molluscs in Europe, both in  
203 fish and sea markets and in oyster farms associated with human enteric viruses between 1990 and 2006 [46,47] and all  
204 are good examples of food as a source of viral infections. For the World Health Organization and the Food and  
205 Agriculture Organization Joint Committee, coronaviruses related to Severe Acute Respiratory Syndrome (SARS-CoV)  
206 are viruses of concern by contaminated food [48]. There are other types of water-viruses associated with birds, such  
207 as H5N1 avian influenza and avian influenza A1, also highly infectious, and recognized for their transmission to  
208 humans from duck meat and blood [49,50]. Due to these examples, there are required extensive monitoring studies  
209 since ducks are one of the main groups of birds capable of carrying CoVs (Table 2).

210

211 At the moment, as long as there are no more significant scientific elements to be certain of the non-spread of the SARS-  
212 CoV-2 pandemic through natural waters and aquatic organisms, it is best to follow the indications that the health  
213 authorities have been issuing in this regard. These indications highlight those made by the World Health Organization  
214 [51], which recommends avoiding unprotected contact with wild and farm animals, and has even been recommended  
215 not to approach public markets where wild animals are under sale, both live and slaughtered [8].

216

### 217 **4.- Conclusions**

218 The presence of CoVs in aquatic environments is a reality, which has demonstrated its ability to be transmitted to  
219 organisms in wildlife, aquaculture farms and animals under captivity. The presence observed in farmed fish such as  
220 carp, in farmed and wild populations of peneid shrimp, although they have not reported significant effects or

221 consequences on human health, could be of potential risk in the near future. Knowledge of other cases such as marine  
222 mammals, where seals have shown to be carriers of respiratory infections, which have eventually been transmitted to  
223 humans, with effects on eye membranes, even in infections as dangerous as influenza diseases, must be taken in  
224 consideration. Waterfowl show to be a natural reservoir, mainly ducks, which, due to their migratory behaviors, deserve  
225 to be studied in more detail. The high adaptive capacity of viruses, the wide distribution and recombination potential  
226 of their genetic material, could be factors that favor their eventual pathogenicity through aquatic environments.  
227 Although molluscs are not infected with CoVs, their antecedents as vectors of other viruses, make them suitable for  
228 monitoring for possible future infections.

229

### 230 **5.- Further considerations for CoVs and aquatic biota**

231 The efforts of the scientific community will continue over the coming years to learn more about CoVID-19. Genetic  
232 adaptation, including mutation and recombination, identify routes of zoonotic (animal) origin, new vector organisms  
233 (birds, mammals, fish, molluscs or crustaceans), animal-human transmission events, wild natural storage and contagion  
234 risks, which will allow effective and realistic programmes to control the transmission of coronaviruses, particularly  
235 SARS-CoV-2. It is recognized that viral genotypes with epidemiological potential can become very variable, as a result  
236 of their genetic characteristics, which allow them to endure and survive, as well as spread and even mutate along  
237 trophic chains [23]. It is encouraging to know that even other aquatic organisms, such as seaweed or sponges, could  
238 play a key role in the treatment of CoVs infections. It has been observed through laboratory tests with *Halimeda tuna*  
239 algae, a natural product known as diterpene aldehyde or halitunal [52], with an antiCoV effect. Other examples are  
240 the sponge *Mycale sp*, which produces a substance called micalamide A, both with antiviral capacity against the A59-  
241 CoV of murine or rodent origin [53,54]. Another good example is the *Axinella corrugata* sponge that produces an ethyl  
242 ester of esculetin-4-carboxylic acid against SARS-CoV [55]. These substances together with other products of natural  
243 origin [54,56], could be the sources of some control against to coronavirus like SARS-CoV-2 in the future.

244

245 Although some scientists speculate that CoVs will not last long in the environment, especially in tropical and  
246 subtropical environments [57], due to their intolerance to high temperatures, the diversity and presence of CoVs in  
247 aquatic organisms should be monitored. Their varieties identified adequately in infected wild populations, to better  
248 understand their infectious potential and avoid future outbreaks in the wild, which eventually could also reach humans.

249

### 250 **References**

- 251 1. Burki T. Outbreak of coronavirus disease 2019. *Lancet Infect Dis*. 2020;20:292–3.  
252 [http://dx.doi.org/10.1016/S1473-3099\(20\)30076-1](http://dx.doi.org/10.1016/S1473-3099(20)30076-1)
- 253 2. Haleem A, Javaid M, Vaishya R, Deshmukh SG. Areas of academic research with the impact of COVID-19. *Am J  
254 Emerg Med*. 2020;5–7.
- 255 3. Qu G, Li X, Hu L, Jiang G. An imperative need for research on the role of environmental factors in transmission  
256 of novel coronavirus (COVID-19). *Environ Sci Technol*. 2020;54:3730–2.
- 257 4. Bosch A, Pintó RM, Le Guyader FS. Viral contaminants of molluscan shellfish: Detection and characterisation.

258 Shellfish Saf Qual. 2009;83–107.

259 5. Bouseettine R, Hassou N, Bessi H, Ennaji MM. Waterborne transmission of enteric viruses and their impact on  
260 public health. *Emerg. Reemerging Viral Pathog.* Vol. 1 Fundam. Basic Virol. Asp. Human, Anim. Plant Pathog.  
261 Elsevier Inc.; 2019. <http://dx.doi.org/10.1016/B978-0-12-819400-3.00040-5>

262 6. de Groot R, Baker S, Baric R, Enjuanes L, Gorbalya A, Holmes K, et al. Part II – The positive sense single  
263 stranded RNA viruses family Coronaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. *Virus*  
264 *Taxon ninth Rep Int Comm Taxon Viruses.* London: Academic Press; 2012. p. 806–28.  
265 <http://www.sciencedirect.com.proxy.lib.iastate.edu/science/book/9780123846846#ancp2>

266 7. Avendaño-López C. Aportaciones de las ciencias biomédicas en el estado de alarma motivado por la pandemia del  
267 virus COV-2. *An la Real Académia Nac Farm.* 2020;86:9–17.

268 8. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, et al. Emerging novel coronavirus (2019-nCoV)—  
269 current scenario, evolutionary perspective based on genome analysis and recent developments. *Vet Q.* Taylor &  
270 Francis; 2020;40:68–76. <https://doi.org/10.1080/01652176.2020.1727993>

271 9. Woo PCY, Lau SKP, Lam CSF, Tsang AKL, Hui S-W, Fan RYY, et al. Discovery of a novel bottlenose dolphin  
272 coronavirus reveals a distinct species of marine mammal coronavirus in *Gammacoronavirus*. *J Virol.* 2014;88:1318–  
273 31.

274 10. Kasmi Y, Khataby K, Souiri A, Ennaji MM. Coronaviridae: 100,000 years of emergence and reemergence. In: Ennaji MM, editor. *Emerg Reemerging Viral Pathog Vol 1 Fundam Basic Virol Asp Human, Anim Plant Pathog.* Netherlands: Academic Press; 2019. p. 127–49.

275 11. Granzow H, Weiland F, Fichtner D, Schütze H, Karger A, Mundt E, et al. Identification and ultrastructural  
276 characterization of a novel virus from fish. *J Gen Virol.* 2001;82:2849–59.

277 12. Leong JC. *Fish Viruses.* Encycl. Virol. Elsevier Ltd; 2008. p. 227–34.

278 13. Roa VC, Melnick JL. *Environmental virology.* Berkshire: Van Nostrand Reinhold Co. Ltd.; 1986.

279 14. Melnick JL. Etiologic agents and their potential for causing waterborne virus diseases. *Monogr Virol.* Basel,  
280 Switzerland: Karger and Basel; 1984;15:1–16.

281 15. Petrović T, D'Agostino M. Viral contamination of food. *Antimicrob Food Packag.* 2016;65–79.

282 16. Farthing MJG. *Viruses and the Gut.* Walwyn Garden City, Hertfordshire: Smith Kline & French LTD.; 1984.

283 17. Lesté-Lasserre C. Coronavirus found in Paris sewage points to early warning system. *Science (80- ).* 2020.

284 18. Casanova L, Rutala WA, Weber DJ, Sobsey MD. Survival of surrogate coronaviruses in water. *Water Res.*  
285 2009;43:1893–8. <http://dx.doi.org/10.1016/j.watres.2009.02.002>

286 19. Natarajan P, Miller A. Recreational infections. In: Cohen J, Powerly WG, Opal SM, editors. *Infect Dis (Auckl)*  
287 [Internet]. Fourth. London: Elsevier Ltd; 2017. p. 643-646.e1. <http://dx.doi.org/10.1016/B978-0-7020-6285-8.00071-X>

288 20. Alexyuk MS, Turmagambetova AS, Alexyuk PG, Bogoyavlenskiy AP, Berezin VE. Comparative study of  
289 viromes from freshwater samples of the Ile-Balkhash region of Kazakhstan captured through metagenomic analysis.  
290 *Virus Dis.* 2017;28:18–25.

291 21. Ahne W. Viral infections of aquatic animals with special reference to Asian aquaculture. *Annu Rev Fish Dis.*  
292 1994;4:375–88.

296 22. Shapiro DS. Infections acquired from animals other than pets. In: Cohen J, Powderly WG, Opal SM, editors.  
297 Infect Dis (Auckl). Fourth Edi. Elsevier Ltd; 2017. p. 663-669.e2. <http://dx.doi.org/10.1016/B978-0-7020-6285-8.00074-5>

299 23. Bosch A, Pintó RM, Guix S. Foodborne viruses. Curr Opin Food Sci. 2016;8:110–9.

300 24. Walker PJ, Cowley JA, Spann KM, Hodgson RAJ, Hall MR, Withycharnarnkul B. Yellow head complex  
301 viruses: transmission cycles and topographical distribution in the Asia-Pacific region. In: Browdy CL, Jory DJ,  
302 editors. new wave Proc Spec Sess Sustain Shrimp Cult Aquac 2001. Baton Rouge: World Aquaculture Society;  
303 2001. p. 292–302.

304 25. Chantanachookin C, Boonyaratpalin S, Kasornchandra J, Direkbusarakom, S. Ekpanithanpong, U. Supamataya  
305 K, Sriurairatana S, Flegel TW. Histology and ultrastructure reveal a new granulosis-like virus in *Penaeus monodon*  
306 affected by yellow-head disease. Dis Aquat Org. 1993;17:145–57.  
<https://pdfs.semanticscholar.org/6496/5bdc22dbbed904479487025c50030422563e.pdf>

308 26. De la Rosa-Velez J, Cedano-Thomas Y, Cid-Becerra J, Mendez-Payan JC, Vega-Perez C, Zambrano-Garcia, J.  
309 Bonami JR. Presumptive detection of yellow head virus by reverse transcriptasepolymerase chain reaction and dot-  
310 blot hybridization in *Litopenaeus vannamei* and *L. stylirostris* cultured on the Northwest coast of Mexico. J Fish Dis.  
311 2006;29:717–26.

312 27. Walker PJ, Winton JR. Emerging viral diseases of fish and shrimp. Vet Res. 2010;41.

313 28. Sano T, Yamaki T, Fukuda H. A novel carp coronavirus: characterization and pathogenicity. Fish Heal Conf.  
314 Vancouver, Canada; 1988. p. 160.

315 29. Schütze H. Coronaviruses in aquatic organisms. In: Kibenge F, Godoy M, editors. Aquac Virol. Amsterdam:  
316 Elsevier Inc.; 2016. p. 327–35. <http://dx.doi.org/10.1016/B978-0-12-801573-5.00020-6>

317 30. Miao W. Aquaculture production and trade trends : carp , tilapia and shrimp Weimin Miao , FAO RAP. 2015.

318 31. Karnai L, Szucs I. Outlooks and perspectives of the common carp production. Ann Polish Assoc Agric Agribus  
319 Econ. 2018;XX:64–72.

320 32. Batts WN, Goodwin AE, Winton JR. Genetic analysis of a novel nidovirus from fathead minnows. J Gen Virol.  
321 2012;93:1247–52.

322 33. Iwanowicz LR, Goodwin AE. A new bacilliform fathead minnow rhabdovirus that produces syncytia in tissue  
323 culture. Arch Virol. 2002;147:899–915.

324 34. Lord SD, Raymond MJ, Krell PJ, Kropinski AM, Stevenson RMW. Novel chinook salmon bafinivirus isolation  
325 from ontario fish health monitoring. Proc Seventh Int Symp Aquat Anim Heal. Portland, Oregon; 2014. p. 242.

326 35. Youdao N. Can freshwater fish transmit novel coronavirus ? Chinese W. 2020;19–20. Available from: //covid-  
327 19.chinadaily.com.cn/5e61f275a31012821727cf89)%0ACan

328 36. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on  
329 coronavirus survival on surfaces. Appl Environ Microbiol. 2010;76:2712–7.

330 37. Araujo MB, Naimi B. Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv.  
331 2020;2020.03.12.20034728.

332 38. Eckert R, Randall D, Augustine G. Fisiología animal: Mecanismos y adaptaciones. Third Edit. Madrid, España:  
333 McGraw-Hill-Interamericana; 1990.

334 39. Peteri A. *Cyprinus carpio* ( Linnaeus , 1758 ). In: Crespi V, New M, editors. Cult Aquat species fact sheets.  
335 Rome: FAO; 2009. p. 1–15. Available from:  
336 [http://www.fao.org/tempref/FI/CDrom/aquaculture/I1129m/file/es/es\\_commoncarp.htm](http://www.fao.org/tempref/FI/CDrom/aquaculture/I1129m/file/es/es_commoncarp.htm)

337 40. Fenucci JL. Manual para la cría de camarones peneidos. FAO. Brasilia, Brasil: FAO; 1988. Available from:  
338 <http://www.fao.org/docrep/field/003/AB466S/AB466S04.htm>

339 41. Melero M, Rodríguez-Prieto V, Rubio-García A, García-Párraga D, Sánchez-Vizcaíno JM. Thermal reference  
340 points as an index for monitoring body temperature in marine mammals. BMC Res Notes. BioMed Central;  
341 2015;8:411.

342 42. Chu DKW, Leung CYH, Gilbert M, Joyner PH, Ng EM, Tse TM, et al. Avian coronavirus in wild aquatic birds. J  
343 Virol. 2011;85:12815–20.

344 43. Bossart GD, Schwartz JC. Acute necrotizing enteritis associated with suspected coronavirus infection in three  
345 harbor seals (*Phoca vitulina*). J Zoo Wildl Med. 1990;21:84–7.

346 44. Kydyrmanov AI, Karamendin KO. Viruses of marine mammals and metagenomic monitoring of infectious  
347 diseases. Bull Natl Acad Sci Repub Kazakhstan. 2019;4:147–53.

348 45. Mihindukulasuriya KA, Wu G, St. Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from  
349 a Beluga whale by using a panviral microarray. J Virol. 2008;82:5084–8.

350 46. Boxman ILA, Tilburg JJHC, te Loeke NAJM, Vennema H, Jonker K, de Boer E, et al. Detection of noroviruses  
351 in shellfish in the Netherlands. Int J Food Microbiol. 2006;108:391–6.

352 47. Boxman ILA. Human enteric viruses occurrence in shellfish from european markets. Food Environ Virol.  
353 2010;2:156–66.

354 48. FAO/WHO. Viruses in food: Scientific advice to support risk management activities. Rome; 2008.

355 49. EFSA. Scientific Opinion on an update on the present knowledge on the occurrence and control of foodborne  
356 viruses. EFSA J. 2011;9:1–96.

357 50. Tumpey TM, Suarez DL, Perkins LEL, Senne DA, Lee J, Lee YJ, et al. Evaluation of a high-pathogenicity H5N1  
358 avian influenza A virus isolated from duck meat. Avian Dis. 2003;47:951–5.

359 51. WHO. Novel coronavirus (2019-nCoV) advice for the public. 2020. Available from:  
360 <https://www.who.int/emergencies/dis- eases/novel-coronavirus-2019>

361 52. Abad Martinez MJ, Bedoya Del Olmo LM, Bermejo Benito P. Natural marine antiviral products. Stud Nat Prod  
362 Chem. 2008;35:101–34.

363 53. Koehn FE, Gunasekera SP, Niel DN, Cross SS. Halitunal, an unusual disterpene aldehyde from the marine alga  
364 *Halmeda tuna*. Tetrahedron Lett. 1991;32:169–72.

365 54. Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet  
366 Infect Dis. 2003;3:338–48.

367 55. De Lira SP, Seleg him MHR, Williams DE, Marion F, Hamill P, Jean F, et al. A SARS-coronovirus 3CL protease  
368 inhibitor isolated from the marine sponge *Axinella cf. corrugata*: Structure elucidation and synthesis. J Braz Chem  
369 Soc. 2007;18:440–3.

370 56. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, et al. Natural products and their derivatives  
371 against coronavirus: A review of the non-clinical and pre-clinical data. Phyther Res. 2020;

372 57. Booth M. Climate change and the neglected tropical diseases. 1st ed. Rollinson D, Stothard R, editors. *Adv.*  
373 *Parasitol.* Elsevier Ltd.; 2018. Available from: <http://dx.doi.org/10.1016/bs.apar.2018.02.001>

374 58. Miyazaki T, Okamoto H, Kageyama T, Kobayashi T. Viremia-associated ana-aki-byo, anew viral disease in color  
375 carp *Cyprinus carpio* in Japan. *Dis Aquat Organ.* 2000;39:183–92.

376 59. Nollens HH, Wellehan JFX, Archer L, Lowenstine LJ, Gulland FMD. Detection of a respiratory coronavirus  
377 from tissues archived during a pneumonia epizootic in free-ranging pacific harbor seals *Phoca vitulina richardsii*.  
378 *Dis Aquat Organ.* 2010;90:113–20.

379 60. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. *Virus Res.* 2008;133:74–87.

380 61. Barbosa CM, Durigon EL, Thomazelli LM, Ometto T, Marcatti R, Nardi MS, et al. Divergent coronaviruses  
381 detected in wild birds in Brazil, including a central park in São Paulo. *Brazilian J Microbiol. Brazilian Journal of*  
382 *Microbiology;* 2019;50:547–56.

383 62. Hepojoki S, Lindh E, Vapalahti O, Huovilainen A. Prevalence and genetic diversity of coronaviruses in wild  
384 birds, Finland. *Infect Ecol Epidemiol.* Taylor & Francis; 2017;7. Available from:  
385 <https://doi.org/10.1080/20008686.2017.1408360>

386 63. de Sales Lima FE, Gil P, Pedrono M, Minet C, Kwiatek O, Campos FS, et al. Diverse gammacoronaviruses  
387 detected in wild birds from Madagascar. *Eur J Wildl Res.* 2015;61:635–9.

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

**Table 1. Coronavirus found in aquatic organisms. Taxonomical groups, according to de Groot et al. [6] and Kasmi et al. [10].**

| Group                       | Genus                                          | CoV type                                                                        | Host                                                        | Health Effects                                                                                                                           | Year                                                                                                                                                   | Reference                                |                                                   |
|-----------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| Order<br>Suborder<br>Family | Nidoviales<br>Coronidovirinea<br>Coronaviridae | <i>Coronavirus(?)</i> *<br><br><i>Coronavirus(?)</i> *                          | Carp CoV<br><br>Carp Viremia-<br>Associated Ana-<br>Aki-Byo | Common carp<br>(Japan)<br><br>Common carp<br>(Japan)                                                                                     | Erythema,<br>necrosis<br>(abdomen and<br>liver)<br><br>Dermal<br>ulcerations,<br>necrotic lesion.<br>Found in spleen<br>and<br>hematopoietic<br>tissue | 1988<br><br>1997-<br>1998                | [21,29]<br><br>[29,58]                            |
| Subfamily                   | Orthocorona-<br>virinae                        | <i>Alphacoronavirus</i><br><br><i>HsCoV</i><br><br><i>HsCoV</i>                 |                                                             | Harbor seals<br>(Aquatic Park,<br>Florida, USA)<br><br>Pacific Harbor<br>seals<br>(California,<br>USA)                                   | Acute enteritis,<br>pulmonary<br>edema<br><br>Pulmonary<br>congestion,<br>consolidation<br>and<br>hemorrhage,<br>pneumonia                             | 1987<br><br>2000                         | [43]<br><br>[59]                                  |
|                             |                                                | <i>Betacoronavirus</i><br><br><i>Gammacoronavirus</i><br><br><i>BdCoV HKU22</i> | Not reported<br><br>BWCoVSW1<br><br>BdCoV HKU22             |                                                                                                                                          |                                                                                                                                                        |                                          |                                                   |
|                             |                                                | <i>Deltacoronavirus</i>                                                         | Not reported                                                |                                                                                                                                          |                                                                                                                                                        |                                          |                                                   |
| Torovirinae                 |                                                | <i>Torovirus(?)</i> *<br><br><i>Bafinivirus</i>                                 | CIVH 33/86<br><br>WBV DF24/00                               | Beluga whale<br>(Aquatic Park,<br>California,<br>USA)<br><br>Bottlenose<br>Dolphin<br>(Aquatic Park,<br>Hong Kong)                       | Hepatic<br>necrosis and<br>pulmonary<br>disease<br><br>Found in faeces                                                                                 | 2008                                     | [6,45]<br><br>[9]                                 |
|                             |                                                |                                                                                 |                                                             |                                                                                                                                          |                                                                                                                                                        |                                          |                                                   |
| Family                      | Roniviridae                                    | <i>Okavirus</i>                                                                 | YHV (Yellow<br>Head Virus)                                  | Grass carp<br>(Hungary)<br><br>White bream<br>fish (Saxonia-<br>Anhalt,<br>Germany)<br><br>FHMNV<br><br>Chinook<br>Salmon<br>Bafinivirus | Not known<br><br>Not known<br><br>Fathead<br>minnow fish<br>(Arkansas,<br>USA)<br><br>Chinook salmon<br>(Ontario,<br>Canada)                           | 1986<br><br>2000<br><br>1997<br><br>2014 | [29]<br><br>[11,29]<br><br>[32,33]<br><br>[29,34] |
|                             |                                                |                                                                                 |                                                             |                                                                                                                                          |                                                                                                                                                        |                                          |                                                   |

\*still unclassified.

407

**Table 2. Coronavirus found in waterfowl of the Order Anseriformes.**

| Order        | Genus              | Species               | Type of bird               | Type of CoV                                                                                              | References |
|--------------|--------------------|-----------------------|----------------------------|----------------------------------------------------------------------------------------------------------|------------|
| Anseriformes | <i>Anas</i>        | <i>domestica</i>      | Duck                       | Gamma (SARS-CoV)                                                                                         | [60]       |
|              |                    | <i>platyrhynchos</i>  | Spotbill duck              | Gamma (SARS-CoV)                                                                                         | [60]       |
|              |                    | <i>americana</i>      | American wigeon            | Delta (JQ065048.1)                                                                                       | [61]       |
|              |                    | <i>crecca</i>         | Common teal                | Gamma (J0109, J0121, J0126, J0559, J0579, J1393); Delta (J1420)                                          | [42,62,63] |
|              |                    | <i>clypeata</i>       | Northern shoveler          | Gamma (K547, K554, K561, K589, J0554, J0807, J1300, J0901, J1491); Delta (J0590)                         | [42,63]    |
|              |                    | <i>penelope</i>       | Euroasian wigeon           | Gamma (K596, J0588, J1561)                                                                               | [42]       |
|              |                    | <i>acuta</i>          | Northern pintail           | Gamma (J1375, J1393, J1404, J1407, J1435, J1616, J1451, PBA-10, PBA-15, PBA-16, PBA-25, PBA-37, PBA-124) | [42,62,63] |
|              |                    | <i>erythrorhyncha</i> | Red-billed duck            | Gamma (KM093874, KM093875, KM093876, KM093877)                                                           | [63]       |
|              |                    | <i>hottentota</i>     | Hottentot teal             | Gamma (KM093880)                                                                                         | [61]       |
|              | <i>Clangula</i>    | <i>hyemalis</i>       | Long-tail duck             | Gamma (Fin14395)                                                                                         | [62]       |
|              | <i>Cygnus</i>      | <i>cygnus</i>         | Whooper swan               | Gamma (Fin4983)                                                                                          | [62]       |
|              | <i>Dendrocygna</i> | <i>javanica</i>       | Lesser whistling duck      | Gamma (KH08-0852)                                                                                        | [42,61]    |
|              |                    | <i>viduata</i>        | White-faced whistling duck | Gamma (KM093872, KM093873, KM093878)                                                                     | [63]       |
|              | <i>Aythya</i>      | <i>fuligula</i>       | Tufted duck                | Gamma (J1482)                                                                                            | [42]       |
|              | <i>Anser</i>       | <i>caerulescens</i>   | Snow goose                 | Gamma (WIR-159)                                                                                          | [42,61]    |
|              |                    | <i>anser</i>          | Greylag goose              | Gamma (SARS)                                                                                             | [60]       |
|              |                    | <i>cygnoides</i>      | Swan goose                 | Gamma (DPV_16). Delta (DPV_5, DPV_10)                                                                    | [61]       |
|              | <i>Branta</i>      | <i>bernicla</i>       | Brent goose                | Gamma (KR-69, KR-70, KR88)                                                                               | [42,61,63] |

408

409

410

411

412

413

414

415

416

Table 3. Gammacoronavirus and Deltacoronavirus reported in aquatic birds.

| Order             | Genus                  | Species                 | Type of bird           | Type of CoV                                                         | References |
|-------------------|------------------------|-------------------------|------------------------|---------------------------------------------------------------------|------------|
| Pelecaniformes    | <i>Ardeola</i>         | <i>bacchus</i>          | Pond heron             | Delta (KH08-1475, KH08-1474)                                        | [42]       |
|                   | <i>Ardea</i>           | <i>cinerea</i>          | Gray heron             | Delta (K581, K513)                                                  | [42]       |
|                   | <i>Bubulcus</i>        | <i>ibis</i>             | Heron                  | Gamma (KM093897)                                                    | [61,63]    |
|                   | <i>Platalea</i>        | <i>minor</i>            | Black-faced spoonbill  | Delta (J0569)                                                       | [42]       |
| Gruiformes        | <i>Phalacrocorax</i>   | <i>carbo</i>            | Great cormorant        | Delta (J0982, J1517)                                                | [42]       |
|                   | <i>Rallus</i>          | <i>madagascariensis</i> | Madagascar rail        | Gamma (KM093896)                                                    | [63]       |
|                   | <i>Porphyrrula</i>     | <i>allenii</i>          | Allen's gallinule      | Gamma (KM093890, KM093891, KM093892, KM093893, KM093894)            | [61,63]    |
|                   | <i>Gallinula</i>       | <i>chloropus</i>        | Common moorhen         | Gamma (KM093881, KM093885, KM093887), Delta (JQ065049.1)            | [61,63]    |
| Charadriiformes   | <i>Charadrius</i>      | <i>pecuarius</i>        | Kittlitz's plover      | Gamma (KM093879, KM093883, KM093884)                                | [61,63]    |
|                   | <i>Gallinago</i>       | <i>macrodactyla</i>     | Madagascan snipe       | Gamma (KM093888, KM093889, KM093895)                                | [63]       |
|                   | <i>Calidris</i>        | <i>mauri</i>            | Wester sandpiper       | Gamma (KR-28)                                                       | [61]       |
|                   |                        | <i>ptilocnemis</i>      | Rock sandpiper         | Gamma (CIR-66187, CIR-665821, CIR-665828)                           | [42,61,63] |
|                   |                        | <i>alba</i>             | Sanderling             | Gamma (PNLP100)                                                     | [61]       |
|                   | <i>Larus</i>           | <i>fuscicollis</i>      | White-rumped sandpiper | Gamma (PNLP159)                                                     | [61]       |
|                   |                        | <i>sp</i>               | Gull                   | Delta (JX548304)                                                    | [61]       |
|                   |                        | <i>argentatus</i>       | Herring gull           | Gamma (Fin9211, Fin10877, Fin10879, Fin12822, Fin13125)             | [62]       |
|                   |                        | <i>hyperboreus</i>      | Glaucous gull          | Gamma (PBA-173)                                                     | [42]       |
|                   |                        | <i>fuscus</i>           | Lesser Black-back gull | Gamma (Fin10059)                                                    | [62]       |
|                   |                        | <i>glaucescens</i>      | Glaucous-winged gull   | Gamma (CIR-66002, GU396682)                                         | [42]       |
|                   | <i>Chroicocephalus</i> | <i>ridibundus</i>       | Black-headed gull      | Gamma (CIR-66187, GU396679, GU396680, GU396683, KX588674, Fin10083) | [42,62]    |
| <i>Rostratula</i> | <i>benghalensis</i>    | Greater Painted-snipe   | Gamma (KM093883)       | [61]                                                                |            |
|                   | <i>Rynchops</i>        | <i>niger</i>            | Black skimmer          | Delta (PNLP115)                                                     | [61]       |