Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

Article
Perspectives on Adversarial Classification

David Rios Insua !, Roi Naveiro % and Victor Gallego 3

1 School of Management, University of Shanghai for Science and Technology and ICMAT-CSIC;
david.rios@icmat.es

2 ICMAT-CSIC; roi.naveiro@icmat.es

3 ICMAT-CSIC; victor.gallego@icmat.es

* Correspondence: david.rios@icmat.es

Version September 6, 2020 submitted to Mathematics

Abstract: Adversarial Classification (AC) is a major subfield within the increasingly important
domain of adversarial machine learning (AML). Most approaches to AC so far have followed
a classical game-theoretic framework. This requires unrealistic common knowledge conditions
untenable in the security settings typical of the AML realm. After reviewing such approaches, we
present alternative perspectives on AC based on Adversarial Risk Analysis.

Keywords: Classification; Adversarial Machine Learning; Security; Robustness; Adversarial Risk
Analysis

1. Introduction

Statistical classification is a major research area in security and cybersecurity. Applications
abound, including fraud detection [Bolton and Hand 2002]; phishing detection [El Aassal et al. 2020] or
terrorism [Simanjuntak et al. 2010]. Moreover, an increasing number of processes are being automated
through classification algorithms, being essential that these are robust to trust key operations based on
their output. State-of-the-art classifiers perform extraordinarily well on standard data, but they have
been shown to be vulnerable to adversarial examples, that is, data instances specifically targeted at
fooling their underlying algorithms. Comiter [2019] provides an excellent introduction from a policy
perspective, pointing out the potentially enormous security impacts that such attacks may have over
systems for filter content, predictive policing or autonomous driving, to name but a few.

Most research in classification has focused on obtaining more accurate algorithms, largely ignoring
the eventual presence of adversaries who actively manipulate data to fool the classifier in pursue of a
benefit. Consider the example of spam detection: as classification algorithms are incorporated to such
task, spammers learn how to evade them. Thus, rather than sending their spam messages in standard
language, they slightly modify spam words (frequent in spam messages but not so much in legitimate
ones), misspelling or changing them with synonyms; or they add good words (frequent in legitimate
emails but not in spam ones) to fool the detection system.

Consequently, classification algorithms in critical Al-based systems must be robust against
adversarial data manipulations. To this end, they have to take into account possible modifications of
input data due to adversaries. The subfield of statistical classification that seeks for algorithms with
robust behavior against adversarial perturbations is known as adversarial classification (AC) and was
pioneered by Dalvi et al. [2004]. Stemming from their work, the prevailing paradigm used to model
the confrontation between classification systems and adversaries has been game theory, see recent
reviews by Biggio and Roli [2018] and Zhou et al. [2018]. This entails well-known common knowledge
hypothesis [Antos and Pfeffer 2010] according to which agents share information about their utilities
and probabilities. From a fundamental point of view, this is clearly not sustainable in application areas
such as security or cibersecurity, as participants try to hide and conceal information.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
http://www.mdpi.com/journal/mathematics
https://doi.org/10.20944/preprints202009.0184.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

20f19

After reviewing key developments in game-theoretic approaches to AC in Sections 2 and 3, in
Sections 4 and 5 we cover novel techniques based on Adversarial Risk Analysis (ARA) [Rios Insua
et al. 2009], which do not assume standard common knowledge hypothesis. In thi, we unify, expand
and improve upon earlier work in Naveiro ef al. [2019] and Gallego et al. [2020]. Our focus will be
on binary classification problems in face only of exploratory attacks, defined to have influence over
operational data but not over training ones. In addition, we restrict our attention to attacks not
affecting innocent instances, denominated integrity-violation attacks, the usual context in most security
scenarios. Moreover, attacks will be assumed to be deterministic, in that we can predict for sure the
results of their application over a given instance. Huang et al. [2011] and Barreno et al. [2006] provide
taxonomies of attacks against classifiers. We first consider, Section 4, approaches in which learning
about the adversary is performed in the operational phase, studying how to robustify generative and
discriminative classifiers against attacks. In certain applications, these could be very demanding from
a computational perspective. For those cases, we present, Section 5, an approach in which adversarial
aspects are incorporated in the training phase to robustify the classifier.

2. Attacking classification algorithms

2.1. Binary classification algorithms

In binary classification settings, an agent that we call classifier (C, she), may receive two types
of objects denoted as malicious (y = y) or innocent (y = y,). Objects have features x € RY whose
distribution informs about their type y. Classification approaches can be typically broken down into
two separate stages [Bishop 2006]. The first one is a training stage to learn the distribution pc(y|x),
modelling the classifier’s beliefs about the instance type y given its features x. Frequently, a distinction
is introduced between generative and discriminative models. In the first case, models pc(x|y) and
pc(y) are learnt from training data and, based on them, pc(y|x) is deduced through Bayes formula.
Typical examples include Naive Bayes [Rish et al. 2001] and (conditional) variational autoencoders
[Kingma et al. 2014]. In discriminative cases, pc(y|x) is directly learnt from data. An important
class of methods uses for this a parameterized function fg : R? — R? so that the prediction is given
through pc(y|x,) = softmax(fg(x))[y]. When fg(x) = p’x, we recover the logistic regression model
[McCullagh and Nelder 1989]; if we take fg as a sequence of linear transformations alternating certain
non-linear activation functions, we obtain a feed-forward neural network [Bishop 2006]. Inference
depends then on the underlying methodology adopted.

o In classical approaches, training data D is typically used to construct a maximum likelihood
estimate 3, and pc(y|B, x) is employed to classify. Parametric differentiable models are amenable
to training with stochastic gradient descent (SGD) using a minibatch of samples at each iteration.
This facilitates, e.g., training deep neural networks with large amounts of high-dimensional data
as with images or text data [Goodfellow et al. 2016].

e In Bayesian approaches, a prior pc(B) is used to compute the posterior pc(B|D) and the
predictive distribution

pe(vlx, D) = [pc(ylB,x)pc(BID)p M

is used to classify. In complex environments, given current technology, we are sometimes only
able to approximate the posterior mode 8 and use pc(y|B, x).

In any case, and whatever the inference approach we adopt, we shall use the notation pc(y|x).

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

30f19

The second stage is operational. The agent makes class assignment decisions based on p¢(y|x).
This may be formulated through the influence diagram (ID) [Shachter 1986] in Figure 1'. The classifier

Yo

Yc

O

Figure 1. Classification as an Influence Diagram

guess Y for an observed x provides her a utility uc(y., y;) when the actual type is y;. She aims at
maximizing expected utility through

2
arg rrbax Z uc(Ye, yi)pc(yilx). &)
=)

An important class of utility functions is the 0-1 utility: uc(yc, v;) = I(yc = y;), where I is the indicator
function. This leads to deciding based on maximizing the predictive probability of correct classification

2
argmax), I(ye = yi) pe (yilx) = arg maxpe (yelx). ©)
c l':1 c

Note that there are classification techniques, such as those based on SVMs, that rather than
breaking classification in training and operational stages, directly learn a function that maps features x
into labels y. If we were to apply the subsequent methodology to this type of classifiers, we would need
to produce estimates of pc(y|x) using their outputs. This can be done using calibration techniques
such as Platt [1999] scaling.

2.2. Attacks to binary classification algorithms

Consider now another agent called adversary (A, he). The attacker aims at fooling C and make
her err in classifying objects to attain some benefit. A applies an attack a to the features x leading
tox = a(x), which is the actual observation received by C. For notational convenience, we shall
sometimes write x = a1 (x"). Upon observing x’, C needs to determine the object type. The originating
instance x is not observed by C. As we illustrate next, an adversary unaware classifier may incur in
gross mistakes if she classifies based on features x’, instead of the original ones.

Attacks to spam detection systems Consider attacks to standard classifiers used in spam
detection. Experiments are carried out with the UCI Spam Data Set [Hopkins et al. 1999]. This
set contains data about 4601 emails, out of which 39.4% are spam. For classification purposes, we
represent each email through 54 binary variables indicating the presence (1) or absence (0) of 54
designated words in a dictionary. The adversary is allowed to either insert good words (frequent in
legitimate emails) or remove bad ones (frequent in junk messages) from spam emails trying to make
the defender misclassify them as legitimate. In our example, the adversary is allowed to modify at

1 Square nodes describe decisions; circle nodes, uncertainties; hexagonal nodes refer to the associated utilities. Arcs pointing

to decision nodes are dashed and represent information available when the corresponding decisions are made. Arcs pointing
to chance and value nodes suggest conditional dependence.

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

40f19

most two words in a message. These were chosen using the procedure described in Gallego et al.
[2020].

Table 1 presents the accuracy of four standard classifiers (Naive Bayes, logistic regression, neural net
and random forest) based on a 0 — 1 utility function, against tainted and untainted data. The neural
network model is a two layer one; the logistic regression is applied with L1 regularization?. Means and
standard deviations of accuracies are estimated via repeated hold-out validation over ten repetitions
[Kim 2009].

Classifier Acc. Unt. Acc. Taint.
Naive Bayes 0.891 £0.003 0.774 £0.026
Logistic Reg. 0.928 £0.004 0.681 +0.009

Neural Net 0.905+0.003 0.764 £+ 0.007
Random Forest 0.946 +0.002 0.663 = 0.006

Table 1. Accuracy comparison (with precision) of four classifiers on clean (untainted) and attacked
(tainted) data.

Observe the important loss in accuracy of the four classifiers, showcasing a major degradation in
performance of adversary unaware classifiers when facing attacks. A

3. Adversarial classification: game-theoretic approaches

As exemplified, an adversary unaware classifier may be fooled into issuing wrong classifications
leading to severe performance deterioration. Strategies to mitigate this problem are thus needed.
These may be based on building models of the attacks likely to be undertaken by the adversaries and
enhancing classification algorithms to be robust against such attacks.

For this, the ID describing the classification problem (Figure 1) is augmented to incorporate
adversarial decisions, leading to a bi-agent influence diagram (BAID) [Banks ef al. 2015], Figure 23. We
only describe the elements that are new. First, the adversary decision is represented through node
a (the chosen attack). The impact of the data transformation over x implemented by A is described
through node x/, the data actually observed by the classifier; the corresponding node is deterministic
(double circle) as we assume deterministic attacks. Finally, the utility of A is represented with node 14,
with form u 4 (y¢, y), when C says y. and the actual label is y. We assume that attack implementation
has negligible costs. As before, C aims at maximizing her expected utility; A also aims at maximizing
his expected utility by trying to confuse the classifier (and, consequently reducing her expected utility).

3.1. Adversarial classification. The model of Dalvi et al. [2004]

Dalvi et al. [2004] provided a pioneering approach to enhance classification algorithms when an
adversary is present, calling it adversarial classification (AC). Because of its importance, we review it
in some detail, using our notation.

The authors view AC as a game between a classifier C and an adversary A. The classifier
aims at finding an optimal classification strategy against A’s optimal attacking strategy. However,
computing Nash equilibria [Menache and Ozdaglar 2011] in such general games becomes overly
complex. Therefore, they propose the following simplified forward myopic version.

1. C first assumes that data is untainted and computes her optimal classifier through (2). They focus
on a utility sensitive Naive Bayes algorithm [Elkan 2001].

This is equivalent to performing maximum a posteriori estimation in a logistic regression model with a Laplace prior [Park
and Casella 2008].

Grey nodes refer to elements solely affecting A’s decision; white nodes to issues solely pertaining to C’s decision; striped
nodes affect both agents’ decisions

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

50f19

Figure 2. Adversarial classification as a Bi-agent Influence Diagram

2. Then, the authors, assuming that A has complete information about the classifier’s elements (a
common knowledge assumption) and that she is not aware of his presence, compute A’s optimal
attack. To that end, they propose solving the integer programming problem

ming Y) C(x, xll')éi,x; s.t.

XeXc x;GXi

4 /
Y X (log pelxily) _ log pdxlm)) 8 > gap(x).

X;eXc xle PC(xi|y2) PC(xH:VZ)

4)

To wit, let X be the set of features the classifier uses for making her decision and X;, the i-th
feature, with original value x; € X}, assumed to be discrete. J; ,/ is a binary variable adopting
value 1 when feature X; is changed from x; to x/, being C(x;, x:l) the cost of such change; and
0, otherwise. Thus, the objective function in (4), expresses that the adversary tries to change
features minimizing his total cost. In turn, the constraint ensures that feature modification will
induce a change in the classification decision. It is easy to see that the classifier will declare an
instance as malicious if

pe(xlyr) . uc(yz y2) —uc(y,y2)

0 > 0.
pc(xly2) 8 ucyr,) — uclya, 1)

gap(x) = log

The adversary is thus interested in modifying the features of malicious instances from x to x/,

such that they are classified as legitimate, that is gap(x’) < 0. A feature modification induces a

pc(xly1) pc(x'|y1)
pc(xly2) pc(¥'ly2)”
for the new instance to have gap(x’) < 0, old minus new odds must surpass gap(x), as reflected

by the constraint in (4).

3. Subsequently, the classifier, assuming that A implements the previous attack (again a common
knowledge assumption) and that the training data is untainted, deploys her optimal classifier
against it: she chooses y. maximizing Y7 ; uc(yc, v;)pc(yi|x), her posterior expected utility
given that she observes the possibly modified instance x’. This is equivalent to optimizing

change on the log odds, from log

to log It is straightforward to see that, in order

uc (e, y1)pe(x'|y1)pc(vr) + uc (e, v2) pe (X' y2) pe (v2)- ®)

Estimating p(y1) (and p(y2)) is simple, based on training data, clean by assumption. In addition,
as the authors assume that legitimate instances are not modified, pc(x'|y2) = pc(x|y2) which
can be estimated as well from training data. To estimate pc(x’|y;), the authors appeal yet again

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

6 of 19

to a common knowledge assumption: if the adversary receives instance x, then the classifier,
who knows all its involved elements, can solve problem (4) and compute x’ = a(x). Thus

pc(Xly1) = Y pe(xlyr)pe(xx, y1)

xeXx’

where X’ is the set of possible instances leading to the observed one and pc(x|x,y1) = 1 if
a(x) = x" and 0 otherwise.

The procedure could continue for more stages. However, Dalvi et al. [2004] consider sufficient to use
these three.

As presented (and the authors actually stress in their paper) very strong common knowledge
assumptions are made: all parameters of both players are known to each other. Although standard in
game theory, such assumption is unrealistic in the security scenarios typical of AC.

3.2. Other AC game-theoretic developments

In spite of this, stemming from Dalvi et al. [2004], AC has been predated by game-theoretic
approaches, reviewed in Biggio et al. [2014] or Li and Vorobeychik [2014]. Subsequent attempts have
focused on analyzing attacks over classification algorithms and assessing their robustness against
such attacks, under various assumptions about the adversary. Regarding these, attacks have been
classified as white box, when the adversary knows every aspect of the defender’s system including data,
algorithms and the entire feature space; black box, that assume limited capabilities for the adversary, e.g.
he is able to send membership queries to the classification system as in Lowd and Meek [2005]; and
gray box, which are in between the previous ones, e.g. as in Zhou et al. [2012] where the adversary, who
has no knowledge about the data and the algorithm used, seeks to push his malicious instances into
innocuous ones, thus assuming that he is able to estimate such instances and has knowledge about the
feature space.

Of special importance in the AC field, mainly within the deep learning community, are the so
called adversarial examples [Goodfellow et al. 2014] which may be formulated in game-theoretic terms
as optimal attacks to a deployed classifier, requiring, in principle, precise knowledge about the model
used by the classifier. To create such examples, A finds the best attack which leads to perturbed
data instances obtained from solving problem min ;<. ¢4 (hg(a(x)),y), with a(x) = x + ¢, a suitable
perturbation of the original data instance x; hg(x), the output of a predictive model with parameters 6;
and ¢4 (hg(x),y) the adversary’s cost when instance x of class y is classified as of being of class hg(x).
This cost is usually taken to be —¢p (hg(x),y), where cp is the defender’s cost. The Fast Gradient Signed
Method (FGSM) and related attacks in the literature [Vorobeichyk and Kantarcioglu 2019] assume that
the attacker has precise knowledge of the underlying model and parameters of the involved classifier,
debatable in most security settings.

A few methods have been proposed to robustify classification algorithms in adversarial
environments. Most of them have focused on application-specific domains, as Kofcz and Teo [2009] on
spam detection. Vorobeychik and Li [2014] study the impact of randomization schemes over different
classifiers against adversarial attacks proposing an optimal randomization scheme as best defense. To
date, there is one promising defence technique: adversarial training (AT) [Madry et al. 2018] trains the
defender model using attacked samples, solving the problem

minE., . max ¢p(hg(a(x)), ,

0 (xy)~D 162 <€ D(9(()) y)
thus minimizing the empirical risk of the model under worst case perturbations of the data D. AT
can be formulated as a zero-sum game. The inner maximization problem is solved through project
gradient descent (PGD) with iterations x;41 = Ilp(y) (xt — aVxCa(hg(xt),y)), where ITis a projection
operator ensuring that the perturbed input falls within an acceptable boundary B(x). After T PGD

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

7 of 19

iterations, set a(x) = x7 and optimize with respect to 6. The authors argue that the PGD attack is the
strongest one using only gradient information from the target model. However, there is evidence that
it is not sufficient for full defence in neural models [Gowal et al. 2018].

Other approaches have focused on improving the game theoretic model in Dalvi et al. [2004] but,
to our knowledge, none has been able to overcome the unrealistic common knowledge assumptions,
as may be seen in recent reviews by Biggio and Roli [2018] and Zhou et al. [2018], who point out the
importance of this issue. As an example, Kantarcioglu et al. [2011] use a Stackelberg game in which
both players know each other payoff functions. Only Grofshans et al. [2013] have attempted to relax
common knowledge assumptions in adversarial regression settings, reformulating the corresponding
problem as a Bayesian game.

4. Adversarial classification: Adversarial risk analysis approaches

Given the above mentioned issue, we provide ARA solutions to the AC problem. We focus first on
modelling the adversary’s problem in the operation phase. We present the classification problem faced
by C as a Bayesian decision analysis problem in Figure 3, derived from Figure 2. In it, A’s decision
appears as random to the classifier, since she does not know how the adversary will attack the data*.
An adversary unaware classifier would classify the observed instance x” based on

Figure 3. Classifier problem

2
arg max Y uc(ye, yi)pe(yilX = x'). (6)
¢ =1
This leads to performance degradation as reflected in Section 2.2. In contrast, an adversary aware
classifier would use

2
arg max Y uc (e vi)pe(yil X' = x'). @)
¢ =1

In the adversary unaware case, pc(y;|X = x') is easily estimated using the training data. However,
estimating the probabilities pc(y;| X’ = x) is harder, as it entails modeling how the adversary will
modify the original instance x, which is unobserved. Moreover, recall that common knowledge is not
available, so we actually lack A’s beliefs and preferences. ARA helps us in modeling our uncertainty
about them. In doing so, model robustness is typically enhanced. We discuss two strategies depending
on whether we use generative or discriminative classifiers as base models.

4 For notational convenience, when necessary we distinguish between random variables and realizations using upper and

lower case letters, respectively. In particular, we denote by X the random variable referring to the original instance (before
the attack) and X’ that referring to the possibly attacked instance. Z will indicate an estimate of z.

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

8of 19

4.1. The case of generative classifiers

Suppose a generative classifier is required. As training data is clean by assumption, we can
estimate pc(y) (modeling the classifier’s beliefs about the class distribution) and pc(X = x|y)
(modeling her beliefs about the feature distribution given the class when A is not present). In addition,
assume that when the classifier observes X’ = x/, she can estimate the set X’ of original instances x
potentially leading to the observed x’. When the feature space is endowed with a metric d, an heuristic
to approximate X’ would be to consider X' = {x : d(x,x") < p} for a certain threshold p.

Given the above, when observing x’ the classifier should choose the class with maximum posterior
expected utility (7). Applying Bayes formula, and ignoring the denominator, irrelevant for optimisation
purposes, she must find the class

2
ve(x') = argmax) uc(ye,y)pc(yi)pc(X = '|y;)
Ye i=1

2
= argmax)_uc(Ye,yi)pc(i) | Y pc(X' =x'|X = x,y;)pc(X = x|y;)
Ye i=1 xeX’!

®)

In such a way, A’s modifications are taken into account through the probabilities pc(X' = x'|X = x,y).
At this point, recall that the focus is restricted to integrity violation attacks. Then, pc(X' = x'|X =
x,Y2) = 8(x' — x) and problem (8) becomes

argmax, |uc(Ye,y1)pc(y1) Exexr pe(X' = x'|X = x,y1)pc(X = x|y1)
tuc (e, y2)pc(y2)pc(X = x'|y2) |-)

Note that should we assume common knowledge, we would know A’s beliefs and preferences
and, therefore, we would be able to solve his problem exactly: when A receives instance x with label
y1, we could compute the transformed instance. In this case, pc(X’'|X = x,y1) would be 1 just for the
x whose transformed instance coincides with that observed by the classifier and 0, otherwise. Inserting
this in (9), we would recover Dalvi’s formulation (5). However, common knowledge does not hold.
Thus, when solving A’s problem we have to take into account our uncertainty about his elements and,
given that he receives x with label y;, we will not be certain about the attacked output x’. This will be
reflected in our estimate pc(x’|x, y1) which will not be 0 or 1 as in Dalvi’s approach (stage 3). With this
estimate, we would solve problem (9), summing pc(x|y1) over all possible originating instances, with
each element weighted by pc(x'|x,y1).

To estimate these missing elements, we resort to A’s problem, assuming that the attacker aims at
modifying x to maximize his expected utility by making C classify malicious instances as innocent.
The decision problem faced by A is presented in Figure 4, derived from Figure 2. In it, C’s decision
appears as an uncertainty to A. To solve this problem, we need p4 (v} (x")|x"), which models A’s beliefs
about C’s decision when she observes x'. Let us designate by p the probability p4 (i (a(x)) = y1|a(x))
that A concedes to C saying that the instance is malicious when she observes x" = a(x). Since A will
have uncertainty about it, let us model its density using f4(p|x’ = a(x)) with expectation Pf/:ﬂ(x)-
Then, upon observing instance x of class 11, A would choose the data transformation maximizing his
expected utility:

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

90f19
Figure 4. Adversary problem
V(o) = o) = argmax [|ua(vi:) = m)
V4
A =)+ (1) | falplz =) dp
= argmax[ua(y1,y1) —ua(y2, y1)] Py + ualy2 1), (10)
z

where 14 (y;, y;) is the attacker’s utility when the defender classifies an instance of class y; as one of
class y;.

However, the classifier does not know the involved utilities 4 and probabilities p?:u (x) from
the adversary. Let us model such uncertainty through a random utility function U4 and a random
expectation P;; a(x)" Then, we could solve for the random attack, optimizing the random expected
utility

X'(x,y1) = A*(x,y1) = arg max < [Ua(y1,y1) = Ua(y2,v1)] PLL,) + UA(]/2,]/1)>,
z

and making pc(x'|x,y1) = Pr(X'(x,y1) = x’), assuming that the set of attacks is discrete.

Without loss of generality, we associate utility 0 with the worst consequence and 1 with the
best one, having the other consequences intermediate utilities [French and Rios Insua 2000]. In the
attacker’s problem, his best consequence holds when the classifier accepts a malicious instance as
benign (he has opportunities to continue with his operations) while the worst consequence appears
when the defender stops a instance (he has wasted effort in a lost opportunity). Therefore, we may
adopt U (y1,y1) ~ 6o and UA(y2,y1) ~ 61. Then, the Attacker’s random optimal attack would be

X'(x,y1) = A*(x,y1) = arg max [(0 — 1>Pf:a(x) + 1] = argminP;‘;a(x). (11)
z z

Modeling P;; a(x) is more delicate. It entails strategic thinking and could lead to a hierarchy of
decision making problems, as described in Rios and Rios Insua [2012] in a simpler context. An heuristic
to assess it is based on using the probability r = Prc(y(z) = y1|z) that C assigns to the object received
being malicious assuming that she observed z, with some uncertainty around it. Being a probability,
r ranges in [0, 1] and we could make PZA; a(x) ™ Be(61,62), with mean &1 /(61 + 62) = r and variance
(6162) /(81 + 62)%(81 + 62 + 1)] = var as perceived. var has to be tuned depending on the amount of
knowledge C has about A. Details on how to estimate r are problem dependent.

In general, to approximate pc(x’|x, y1) we use Monte Carlo (MC) simulation drawing K samples
(PZA’k), k=1,...,K from P2, finding X (x, ;) = argmin, PA* and estimating pc(x'|x, y1) using the

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

10 of 19

proportion of times in which the result of the random optimal attack coincides with the instance
actually observed by the defender:

el |xyy) = XN =X 12

It is easy to prove [Rubinstein and Kroese 2016] that (12) converges almost surely to pc(x’|x,y1). Once
we have such approach, we implement the scheme described through Algorithm 1.

Algorithm 1 General ARA procedure for AC. Generative

Input: Training data D, test instance x’.
Output: A classification decision y (x').

Training

Train a generative classifier to estimate pc(y) and pc(x|y)
End Training
Operation

Read x'.

Estimate pc(x'|x,yp) forall x € &”.

Solve

ye(x') = argmax |uc(yc,y1)pc(y1)). Pc(¥'|x,y1)Pc(xly1)
Yc xekX’
+ uc(yc,y2)Pe(x'ly2)pe(y2) |-
Output y (x').

End Operation

4.2. The case of discriminative classifiers

For discriminative classifiers, we cannot use the previous approach as we lack an estimate of
pc(X = x|y). To motivate an alternative analysis, assume the classifier knows the attack that she has
suffered, which is invertible in the sense that she may recover the original x = a~!(x’). Then, rather
than classifying based on (6), as an adversary unaware classifier would do, she should classify based
on

2
argmax) uc(ye, yi)pe(yil X = a~ ' (x')).
‘=1
However, the uncertainty about attack a, induces uncertainty about the originating instance x. Suppose
we model our uncertainty about the origin x of the attack through a distribution pc(X = x| X’ = x’)
with support over the set X’ of reasonable originating features x. Then, marginalizing out all possible
originating instances, the expected utility that the classifier would get for her classification decision y,

would be
2
P(ye) = (Zluc(yc,yi)rﬂc(yilx = x)) pc(X = x|X" = x')
xeX' \i=
2
= ZluC(yC’yi) l Y. pe(ilX = x)pe(X = x|X = x’)] , (13)
i= xeX'’

and we would solve for

vi(x') = argrr;chw(yc)-

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

11 0f 19

Typically, expected utilities (13) are approximated by MC using a sample {x,})_; from pc(x|x’).
Algorithm 2 summarises a general procedure.

Algorithm 2 General ARA procedure for AC. Discriminative

Input: Monte Carlo size N, training data D, test instance x'.
Output: A classification decision y} (x').
Training
Based on D, train a discriminative classifier to estimate pc(y|x).
End Training
Operation
Read x’
Estimate X’ and pc(x|x’), x € X’
Draw sample {x, }V_; from pc(x|x’).
Find y; () = argmax,, & Y21 (e (ye, i) [T pe(vila)))
Output 2 (+')
End Operation

When implementing this approach, we need to be able to estimate X’ and pc(x|x’) or, at least,
sample from this distribution. One possibility would be to use a uniform distribution over X’
Alternatively, in the metric case, we could make pc(x|x') = x/) , where 1 7= Lxexs di (ignoring
x’ as possible origin) assuming that the closer the feature, the more likely it is to be the origin. However,
as shown in Rios Insua et al. [2020], better forecasts hold if we explicitly model the attacker behaviour
using the information available about him. One possibility is to sample from pc(X|X' = x’) by
leveraging approximate Bayesian computation (ABC) techniques, Csilléry et al. [2010]. This requires
being able to sample from pc(X) and pc(X'| X = x), which we address first.

Estimating pc(x) is done using training data, untainted by assumption. For this, we can employ
an implicit generative model, such as a generative adversarial network [Goodfellow et al. 2014] or
energy-based modeling [Grathwohl ef al. 2019]. Instead, sampling from pc(x’|x) entails strategic
thinking. Notice first that

c(x']x) = ch "%, ye)pe(yelx) = pe(x'[x, y1)pe(yrlx) +6(x" — x)pe(y2]x).

We easily generate samples from pc(y.|x), as we can estimate those probabilities based on the training
data as in Section 2.1. Then, we can obtain samples from pc(x'|x) sampling y ~ pc(y|x) first; next, if
y = yp return x or, otherwise, sample X’ ~ pc(x’|x,y1). To sample from pc(x'|x, 1), we need to model
the problem faced by the attacker when he receives instance x with label y;.The attacker will maximize
his expected utility by transforming instance x to x’ given by the solution of (10). Again, associating
utility 0 with the attacker’s worst consequence and 1 with the best one; and modeling our uncertainty
about the attacker’s estimates of pf:a (x) using random expected probabilities PZA; a(x)r We would look
for random optimal attacks X’(x, ;) as in (11). By construction, if we sample p?:a w0 ~ PZA; a(x) and
solve
! _ ia A
X =argminpl’ .,
ze X!

x' is distributed according to pc(x'|x, y;) which was the last ingredient required.

Once with these two procedures, we could generate samples from pc(X|X' = x’) with ABC
techniques. This entails generating x ~ pc(X), ¥ ~ pc(X'|X = x) and accepting x if ¢p(&/,x") < 6,
where ¢ is a distance function defined in the space of features and J is a tolerance parameter. The
x generated in this way is distributed approximately according to the desired pc(x|x"). However,
the probability of generating samples for which ¢(%/,x") < § decreases with the dimension of x’. A

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

12 0of 19

common solution replaces x’ with s(x’), a set of summary statistics that capture the relevant information
in x’, and the acceptance criterion would be replaced by ¢(s(%’),s(x")) < d. The choice of summary
statistics is problem specific. We sketch the complete ABC sampling procedure in Algorithm 3, to be
integrated within Algorithm 2.

Algorithm 3 ABC scheme to sample from pc(x|x") within Algorithm 2

Input: Observed instance x/, data model pc(x), Uy, P4, family of statistics s.
Output: A sample approximately distributed according to pc(x|x’).
while ¢(s(x'),s(¥')) > 6 do

Sample x ~ pc(x)

Sample y ~ pc(y|x)

if y = y, then

f/

=x

else
Sample pZt ~ PA
Compute &' = argmin, p£!
end if
Compute ¢(s(x'),s(%"))

end while

Output x

5. Scalable adversarial classifiers

The approach presented in Section 4 performs all the relevant inference about the adversary
during operations. This could be too expensive computationally, especially in applications that require
fast predictions based on large scale deep models as motivated by the following image processing
problem.

Attacks to neural-based classifiers Section 3.2 discussed adversarial examples. This kind of
attacks may really harm neural network performance, such as those used in image classification tasks
[Szegedy et al. 2014]. As an example, with a relatively simple deep convolutional neural net (CNN)
model [Goodfellow et al. 2016] we accurately predict 99% of the handwritten digits in the MNIST data
set [Le Cun 1998]. Figure 5 provides ten MNIST original samples (top row) and the corresponding
images (bottom row) perturbed through FGSM, which are misclassified. For example, the original 0
(first column) is classified as such; however the perturbed one is not classifed as a 0 (more specifically,
as an 8) even if it looks as such to the human eye.

Oy1y2y3y4y5y6y7y8y9

IIEE

y=8 y=7 y=7 y=5 y=8 y=8 y=0 y=1 y=3 y=4
Figure 5. Ten MNIST examples (top) and their perturbations (bottom). Predicted class shown for each

example.

Globally, accuracy gets reduced to 62%, showing again a very important performance degradation due
to the attack. A

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

13 of 19

The difficulties entailed by the approach in Section 4 stem from three issues:

e Iteration over the set X’ of potentially originating instances. If no assumptions about the attacks
are made, this set grows rapidly. For instance, in the spam detection example in Section 2.2, let
n be the number of words in the dictionary considered by C to undertake the classification. If
we assume that the attacker modifies at most one word, the size of X’ is O(n); if he modifies
at most two words, it is (’)(nz), ..., and if he modifies at most n words, the number of possible
adversarial manipulations (and thus the size of X”’) is 2". Even more extremely, in the image
processing example we would have to deal with very high-dimensional data (the MNIST example
above consists of 28 x 28 pixels, each taking 256 possible values depending on the gray level).
This deems any enumeration over the set X ! totally unfeasible. In order to tackle this issue,
constraints over the attacks could be adopted.

e Sampling from pc(x|x’). In turn, a huge X’ renders this sampling inefficient. As an example,
the ABC scheme in Algorithm 3, could converge very slowly, requiring careful tuning of the
tolerance rate 6. In addition, such algorithm requires the use of an unconditional generative
model pc(x) to draw realistic samples from the data distribution. This could be computationally
demanding, specially when dealing with high-dimensional data.

o Inference about the adversary during operations. As the key adversary modelling steps are taken
during operations, the approach could be inefficient in applications that require fast predictions.

5.1. Protecting differentiable classifiers

Alternatively, inference about the adversary could be undertaken during the training phase as
now presented. This provides faster predictions during operations and avoids the expensive step of
sampling from pc(x|x’). For that, a relatively weak assumption is made: the model can be expressed
in a probabilistic form pc(y|x, B), that is differentiable in the parameters. Mainstream models such
as logistic regression or neural networks satisfy such condition. This assumption brings in several
benefits. First, we can train the model using stochastic gradient descent (SGD, Bottou and Bousquet
[2008]) or any of its recent variants, such as Adam [Kingma and Ba 2014] allowing for scaling to both
very wide and tall datasets. Then, from SGD we can obtain the posterior distribution of the model by
adding a suitable noise term as in SG-MCMC samplers like stochastic gradient Langevin Dynamics
(SGLD) [Welling and Teh 2011] or accelerated variants [Ma et al. 2015, Gallego and Insua 2018].

We require only sampling attacked instances from pc(x’|x), an attacker model. Depending on
the type of data, this attacker model can come through a discrete optimization problem (as in the
attacks of Section 2.2) or a continuous optimization problem (in which we typically resort to gradient
information to obtain the most harmful perturbation as in FGSM). These attacks require white-box
access to the defender model, which, as mentioned, is usually unrealistic in security. We add realism
by incorporating two kinds of uncertainties.

1. Defender uncertainty over the attacker model pc(x'|x). First, as the attacker modifies data
in the operation phase, the defender has access only to training data D; therefore, she will have
to simulate attacker’s actions using such training set. Next, uncertainty can also come from the
adversarial perturbation chosen. If the model is also differentiable wrt the input x (as with continuous
data such as images or audio), instead of computing a single, optimal and deterministic perturbation
as in AT, we use SGLD to sample adversarial examples from regions of high adversarial loss, adding a
noise term to generate uncertainty. Thus, we have iterates of the form

xpy1 = x¢ — €signVy log pe (y|xt, B) + N (0, 2¢) (14)

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

14 of 19

fort =1,...,T, where € is a step size. We can also consider uncertainty over the hyperparameters €
(from a re-scaled Beta distribution, since it is unreasonable to consider too high or too low learning
rates) and the number T of iterations (from a Poisson distribution).

2. Attacker uncertainty over the defender model pc(y|x, B). Itis reasonable to assume that the
specific model architecture and parameters are unknown by the attacker. To reflect his uncertainty, he
will instead perform attacks over a Bayesian model pc(y|x, B) reflecting uncertainty over the values of
the model parameters 8, with continuous support. This can be implemented through scalable Bayesian
approaches in deep models: the defended model is trained using SGLD, obtaining posterior samples
via the iteration

Biv1 = Bt +1Vglogpc(ylx, Br) +N(0,27), (15)

with 77 a learning rate, and x sampled either from the set D (untainted) or using an attacker model
as in the previous paragraph (adversarial). We sample maintaining a proportion 1 : 1 of clean and
attacked data.

The previous approaches incorporate some uncertainty on the attacker’s elements to sample from
pc(x’|x). A full ARA sampling from this distribution can be performed as well. Recall that pc(x'|x)
models the classifier’s uncertainty about the attack output when A receives instance x, which stems
from the lack of knowledge about A’s utilities and probabilities. Samples from pc(x’|x) could thus
be obtained as in Section 4.2. This enables explicit modeling of the classifier’s uncertainty about A’s
utilities and probabilities.

Algorithm 4 Large scale ARA-robust training for AC

Input: Defender model pc(y|x, B), attacker model pc(x'|x).
Output: A set of particles {B;}X | approximating the posterior distribution of the defender model
learnt using ARA training.
fort =1to T do

Sample x1,...,xg ~ pc(x’|x) with (14) or the approach in Section 4.2 (depending on continuous
or discrete data).

Bit+1 = Biy +1Vpglog pc(ylx, Bt) + N (0,21) for each i (SGLD)
end for

Output (1,1, ..., Bx,T))

Algorithm 4 describes how to generate samples incorporating both types of uncertainty previously
described. On the whole, this algorithm uses the first source to generate perturbations to robustly train
the defender’s model based on the second source. The outcome is a more robust model than the one
we could achieve with just AT protection, since we incorporate some level of adversarial uncertainty.
In the end, we collect K posterior samples, {B;}X_;, and compute predictive probabilities for a new

1
sample x via marginalization through pc(y|x) = % YK pc(y|x, Bx), using the previous predictive
probability to robustly classify the received sample.

6. Case study

We use the spam classification example from Section 2.2 and its dataset as a benchmark to illustrate
the frameworks in Sections 4 and 5. As shown in Section 2.2, simple attacks such as good /bad word
insertions are sufficient to critically affect the performance of spam detection algorithms. We first test
the performance of the ARA approach to AC in Section 4.2, as a defence mechanism against attacks
that modify at most 2 words. For the classifier, we use a 0-1 utility model.

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

15 0f 19

6.1. ARA defense in spam detection problems

For the first batch of experiments, we use the same classifiers as in Section 2.2. We simulate
attacks over the instances in the test set, solving problem (11) for each test spam email, removing
the uncertainty that is not present from the adversary’s point of view. He would have uncertainty
about p?:a(x), as this quantity depends on the defender’s decision. We test our ARA approach to

AC against a worst case attacker who knows the true value of pc(y|x) and estimates P?:a () through

LM pe(yr|xn) for a sample {x,}M, from p*(x|x’), a uniform distribution over the set of all
instances at distance less than or equal to 2 from the observed ¥/, using Z?il |x; — xg as distance
function. We use M = 40.

To model the uncertainty about p2, we use beta distributions centered at the attacker’s values
of probabilities with variances chosen to guarantee that the distribution is concave in its support:
they must be bounded from above by min { [p?(1 —)]/ (1 +), [u(1 — 1)?]/(2 — u) }, were y is the
corresponding mean. We set the variance to be 10% of this upper bound, thus reflecting a moderate
lack of knowledge about the attacker’s probability judgements.

Our implementations of Algorithms 2 and 3, use as summary statistics s the 11 most relevant
features, with relevance based on permutation importance, Altmann et al. [2010]; (which assesses how
accuracy decreases when a particular feature is not included). We set the ABC tolerance J to be 1,
and distance ¢(x/, x) = Y%, |x; — x/|. Finally, for each instance in the test set we generate 20 samples
from pc(x|x’). Table 2 compares the ARA performance on tainted data with that of the raw classifiers
(from Table 1). As can be seen, our approach outperforms all of them, showcasing the benefits of
explicitly modeling the attacker’s behaviour in adversarial environments, considerably recovering
from performance degradation.

Classifier Acc. Taint. Acc. ARA Taint.
Naive Bayes 0.774 £0.026 0.924 £ 0.004
Logistic Reg. 0.681 £ 0.009 0.917 £ 0.003

Neural Net 0.764 £ 0.007 0.811 £ 0.010
Random Forest 0.663 4 0.006 0.820 + 0.005

Table 2. Accuracy comparison (with precision) of four classifiers on attacked data, with and without
ARA-enhanced defense.

Interestingly, in the case of the naive Bayes classifier, our ARA approach outperforms the classifier
under raw untainted data (Table 1). This effect has been already observed by Naveiro et al. [2019]
and Goodfellow et al. [2014] for other algorithms and application areas. A possible explanation is that
taking into account the presence of an adversary has a regularizing effect, being able to improve the
original accuracy of the base algorithm and making it more robust.

6.2. Robustified classifiers

We next evaluate the scalable framework in Section 5 under the two differentiable models among
the previous ones: logistic regression and neural network (with two hidden layers). Observe that both
models can be trained using stochastic gradient methods plus noise to obtain uncertainty estimates
from the posterior as in (15). After, we attack the clean test set using the same procedure as in Section
2.2 and evaluate the performance of the robustification approach. Since we are dealing with discrete
attacks, we cannot use the uncertainty over attacks as in (14), and just resort to add the attacker’s
uncertainty over the defender model via the second uncertainty source described in Section 5.1. To
perform classification with this model, we maintain a Bayesian ensemble of 5 different parameter sets
obtained after SGLD iteration. Results are in Table 3 which include as entries: Acc. Unt. (accuracy
over untainted data); Acc. Tai. (it. over tainted data); Acc. Rob. Taint. (it. over tainted data after our
robustification adding uncertainties). Note that the first two columns do not coincide with those

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

16 of 19

in Table 1, as we have changed the optimizers to variants of SGD to be amenable to the robustified
procedure in Section 5.1.

Classifier Acc. Unt. Acc. Tai. Acc. Rob. Taint.
Logistic Reg. 0.931£0.007 0.705 % 0.009 0.946 4 0.003
Neural Net 0.937 +0.005 0.636 + 0.009 0.960 4 0.002

Table 3. Accuracy of two classifiers on clean (untainted), and attacked (tainted) data, with and without
robustification.

Observe that the robustification process from Section 5 indeed protects differentiable classifiers,
achieving even higher accuracies than those attained by the original classifier over clean data, as
commented above.

7. Discussion

Adversarial classification aims at enhancing classifiers to achieve robustness in presence of
adversarial examples, as usually encountered in many security applications. The pioneering work of
Dalvi et al. [2004] framed most later approaches to AC within the standard game theoretic paradigm,
in spite of the unrealistic common knowledge assumptions required, actually even questioned by
the authors. After reviewing them, and analysing critically their assumptions, we have presented
two formal probabilistic approaches for AC based on ARA, that avoid strong common knowledge
assumptions. They are general in the sense that application-specific assumptions are kept to a
minimum. We have presented the framework in two different forms: in Section 4 inference about
the adversary is performed in the operational phase, with variants for generative and discriminative
classifiers. In Section 5, adversarial aspects are incorporated in the training phase. Depending on the
particular application one of the frameworks could be preferred over the other. The first one allows
to make real time inference about the adversary, as it explicitly models his decision making process
in operation time; its adaptability is better as it does not need to be retrained every time we need
to modify the adversary model. However, this comes at a high computational cost. In applications
in which there is a computational bottleneck, the second approach may be preferable, with possible
changes in the adversary’s behaviour incorporated via retraining. This tension between the need to
robustify algorithms against attacks (training phase, Section 5) and the fast adaptivity of attackers
against defences (operational phase, Section 4) is well exemplified in the phishing detection domain as
discussed in El Aassal et al. [2020].

Our framework may be extended in several ways. First, we could adapt the proposed approach to
situations in which there is repeated play of the AC game, thus introducing the possibility of learning
the adversarial utilities and probabilities in a Bayesian way. Learning over opponent types has been
explored with success in reinforcement learning scenarios, Gallego ef al. [2019]. This could be extended
to the classification setting. Besides exploratory attacks, attacks over the training data [Biggio et al.
2012] may be relevant in certain contexts. Also, the extension to the case of attacks to innocent instances
(not just integrity violation ones) seems feasible using the scalable framework. Through this paper,
we focused on the binary classification task. An initial extension to multi-class problems is shown in
Gallego et al. [2020], but further attention to this setting would be helpful.

Additional work should be done on the algorithmic side as well. In our approach we go through a
simulation stage to forecast attacks and an optimization stage to determine optimal classification. The
whole process might be performed through a single stage, possibly based on augmented probability
simulation [Ekin et al. 2019].

We have also shown how the robustification procedure from Section 5 can be an efficient way
to protect large-scale models, such as those trained using first-order methods. It is well-known
that Bayesian marginalization improves the generalization capabilities of flexible models since the
ensemble helps in better exploring the posterior parameter space [Wilson and Izmailov 2020]. Our

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

17 of 19

experiments seem to confirm that this behaviour also happens in the domain of adversarial robustness.
Thus, bridging the gap between large scale Bayesian methods and Game Theory, as done in the ARA
framework, suggests a powerful way to develop principled defences. To this end, strategies to more
efficiently explore the highly complex, multi-modal posterior distributions of neural models constitutes
another line of further work.

Lastly, several application areas could benefit highly from protecting their underlying ML models.
Spam detectors were the running example in this article. Malware and phishing detection are two
crucial cybersecurity problems in which the data distribution of computer programs is constantly
changing, driven by attacker’s interests in evading detectors. Finally, the machine learning algorithms
underlying autonomous driving systems need to be robustified from perturbations to their visual
processing models and this could be performed through our approaches.

Acknowledgments: This work was partially supported by the NSF under Grant DMS-1638521 to the Statistical
and Applied Mathematical Sciences Institute, a BBVA Foundation project and the Trustonomy project, which
has received funding from the European Community’s Horizon 2020 research and innovation programme under
grant agreement No 812003. RN acknowledges support of the Spanish Ministry of Science and Research for his
grant FPU15-03636. VG acknowledges support of the Spanish Ministry of Science and Research for his grant
FPU16-05034. DRI is grateful to the MTM2017-86875-C3-1-R AEI/ FEDER EU project and the AXA-ICMAT Chair
in Adversarial Risk Analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

Bolton, R.J.; Hand, D.J. Statistical fraud detection: A review. Statistical science 2002, pp. 235-249.

El Aassal, A.; Bakis, S.; Das, A.; Verma, R. An In-depth benchmarking and evaluation of phishing
detection research for security needs. IEEE Access 2020, 8, 22170-22192.

Simanjuntak, D.; Ipung, H.; Lim, C.; Nugroho, A. Classification Techniques Used to Faciliate Cyber
Terrorism Investigation. Second International Conference on Advances in Computing, Control, and
Telecommunication Technologies 2010, pp. 198-200.

Comiter, M. Attacking Artificial Intelligence; Belfer Center Paper, 2019.

Dalvi, N.; Domingos, P.; Mausam.; Sumit, S.; Verma, D. Adversarial classification. Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004,
KDD 04, pp. 99-108.

Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern
Recognition 2018, 84, 317 — 331.

Zhou, Y.; Kantarcioglu, M.; Xi, B. A survey of game theoretic approach for adversarial machine
learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2018, p. e1259.
Antos, D.; Pfeffer, A. Representing Bayesian Games without a Common Prior. In Proc. AAMAS 2010;

van der Hoek, Kaninka, L.; Sen., Eds.; IFAMAS, 2010.

Rios Insua, D.; Rios, J.; Banks, D. Adversarial risk analysis. Journal of the American Statistical Association
2009, 104, 841-854.

Naveiro, R.; Redondo, A.; Insua, D.R; Ruggeri, E Adversarial classification: An
adversarial risk analysis approach. International Journal Approximate Reasoning 2019, p.
https:/ /doi.org/10.1016/j.ijar.2019.07.003.

Gallego, V.; Naveiro, R.; Redondo, A.; Insua, D.R.; Ruggeri, F. Protecting Classifiers From Attacks. A
Bayesian Approach. arXiv preprint arXiv:2004.08705 2020.

Huang, L.; Joseph, A.D.; Nelson, B.; Rubinstein, B.I.; Tygar, J.D. Adversarial machine learning.
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, 2011, AlSec 11, pp.
43-58.

Barreno, M.; Nelson, B.; Sears, R.; Joseph, A.D.; Tygar,].D. Can machine learning be secure?
Proceedings of the 2006 ACM Symposium on Information, Computer and Communications
Security. ACM, 2006, pp. 16-25.

Bishop, C.M. Pattern recognition and machine learning; Springer, 2006.

https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

18 of 19

Rish, I; others. An empirical study of the naive Bayes classifier. JCAI 2001 workshop on empirical
methods in artificial intelligence, 2001, Vol. 3, pp. 41-46.

Kingma, D.P; Mohamed, S.; Rezende, D.J.; Welling, M. Semi-supervised learning with deep generative
models. Advances in neural information processing systems, 2014, pp. 3581-3589.

McCullagh, P; Nelder, J. Generalized Linear Models, Second Edition; Chapman and Hall/CRC
Monographs on Statistics and Applied Probability Series, Chapman & Hall, 1989.

Goodfellow, L.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press, 2016.

Shachter, R.D. Evaluating Influence Diagrams. Operations Research 1986, 34, 871-882.

Platt,]. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers 1999, 10, 61-74.

Hopkins, M.; Reeber, E.; Forman, G.; Suermondt, J. Spambase Data Set. https://archive.ics.uci.edu/
ml/datasets/Spambase, 1999.

Park, T.; Casella, G. The Bayesian lasso. Journal of the American Statistical Association 2008, 103, 681-686.

Kim, J.H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and
bootstrap. Computational Statistics and Data Analysis 2009, 53, 3735-3745.

Banks, D.; Rios, J.; Rios Insua, D. Adversarial Risk Analysis; Francis Taylor, 2015.

Menache, I.; Ozdaglar, A. Network Games: Theory, Models, and Dynamics; Morgan & Claypool, 2011.

Elkan, C. The Foundations of Cost-Sensitive Learning. International Joint Conference on Artificial
Intelligence (IJCAI), 2001.

Biggio, B.; Fumera, G.; Roli, F. Security evaluation of pattern classifiers under attack. IEEE Transactions
on Knowledge and Data Engineering 2014, 26, 984-996.

Li, B.; Vorobeychik, Y. Feature cross-substitution in adversarial classification. Advances in Neural
Information Processing Systems, 2014, pp. 2087-2095.

Lowd, D.; Meek, C. Adversarial learning. Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, 2005, KDD ’05, pp. 641-647.

Zhou, Y,; Kantarcioglu, M.; Thuraisingham, B.; Xi, B. Adversarial support vector machine learning.
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2012, pp. 1059-1067.

Goodfellow, 1.].; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 2014.

Vorobeichyk, Y.; Kantarcioglu, M. Adversarial Machine Learning; Morgan Clayton, 2019.

Koflcz, A.; Teo, C.H. Feature Weighting for Improved Classifier Robustness. CEAS’09: Sixth Conference
on Email and Anti-Spam, 2009.

Vorobeychik, Y.; Li, B. Optimal randomized classification in adversarial settings. Proceedings of the
2014 International Conference on Autonomous Agents and Multi-agent Systems, 2014, AAMAS
14, pp. 485-492.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant
to Adversarial Attacks. International Conference on Learning Representations, 2018.

Gowal, S.; Dvijotham, K.; Stanforth, R.; Bunel, R.; Qin, C.; Uesato, J.; Arandjelovic, R.; Mann, T.A,;
Kohli, P. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust
Models. CoRR 2018, abs/1810.12715, [1810.12715].

Kantarcioglu, M.; Xi, B.; Clifton, C. Classifier evaluation and attribute selection against active
adversaries. Data Mining and Knowledge Discovery 2011, 22, 291-335.

Grofshans, M.; Sawade, C.; Briickner, M.; Scheffer, T. Bayesian games for adversarial regression
problems. International Conference on Machine Learning, 2013, pp. 55-63.

French, S.; Rios Insua, D. Statistical Decision Theory; Wiley, 2000.

Rios,].; Rios Insua, D. Adversarial Risk Analysis for Counterterrorism Modeling. Risk Analysis 2012,
32,894-915.

Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; Wiley Publishing, 2016.

Rios Insua, D.; Banks, D.; Rios, J.; Gonz’lez-Ortega,]. Adversarial Risk Analysis as a Decomposition
Technique for Structured Expert Judgment. Advances in Expert Judgement for Decision and Risk
Analysis 2020.

https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase
http://xxx.lanl.gov/abs/1810.12715
https://doi.org/10.20944/preprints202009.0184.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 d0i:10.20944/preprints202009.0184.v1

19 of 19

Csilléry, K.; Blum, M.G.; Gaggiotti, O.E.; Frangois, O. Approximate Bayesian computation (ABC) in
practice. Trends in ecology & evolution 2010, 25, 410-418.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27; Ghahramani,
Z.; Welling, M.; Cortes, C.; Lawrence, N.D.; Weinberger, K.Q., Eds.; Curran Associates, Inc., 2014;
pp- 2672-2680.

Grathwohl, W.; Wang, K.C.; Jacobsen,].H.; Duvenaud, D.; Norouzi, M.; Swersky, K. Your classifier
is secretly an energy based model and you should treat it like one. International Conference on
Learning Representations, 2019.

Szegedy, C.; Inc, G.; Zaremba, W.; Sutskever, I.; Inc, G.; Bruna, J.; Erhan, D.; Inc, G.; Goodfellow, L;
Fergus, R. Intriguing properties of neural networks. In ICLR, 2014.

Le Cun, Y., C.C.B.C. The MNIST Database. http://yann.lecun.com/exdb/mnist/ 1998.

Bottou, L.; Bousquet, O. The tradeoffs of large scale learning. Advances in neural information
processing systems, 2008, pp. 161-168.

Kingma, D.P,; Ba,]. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.

Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. Proceedings of
the 28th international conference on machine learning (ICML-11), 2011, pp. 681-688.

Ma, Y.A.; Chen, T.; Fox, E. A complete recipe for stochastic gradient MCMC. Advances in Neural
Information Processing Systems, 2015, pp. 2917-2925.

Gallego, V.; Insua, D.R. Stochastic gradient MCMC with repulsive forces. NIPS Workshop on Bayesian
Deep Learning 2018.

Altmann, A.; Tolosi, L.; Sander, O.; Lengauer, T. Permutation importance: a corrected feature
importance measure. Bioinformatics 2010, 26, 1340-1347.

Gallego, V.; Naveiro, R.; Insua, D.R.; Oteiza, D.G.U. Opponent Aware Reinforcement Learning, 2019,
[arXiv:cs.LG/1908.08773].

Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against support vector machines. arXiv preprint
arXiv:1206.6389 2012.

Ekin, T.; Naveiro, R.; Torres-Barran, A.; Rios-Insua, D. Augmented probability simulation methods for
non-cooperative games. arXiv preprint arXiv:1910.04574 2019.

Wilson, A.G.; Izmailov, P. Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
arXiv preprint arXiv:2002.08791 2020.

http://xxx.lanl.gov/abs/1908.08773
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202009.0184.v1

