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Abstract: In the Agriculture sector, control of plant leaf diseases is crucial as it influences the1

quality and production of plant species with an impact on the economy of any country. Therefore,2

automated identification and classification of plant leaf disease at an early stage is essential to reduce3

economic loss and to conserve the specific species. Previously, to detect and classify plant leaf4

disease, various Machine Learning models have been proposed; however, they lack usability due5

to hardware incompatibility, limited scalability and inefficiency in practical usage. Our proposed6

DeepLens Classification and Detection Model (DCDM) approach deal with such limitations by7

introducing automated detection and classification of the leaf diseases in fruits (apple, grapes, peach8

and strawberry) and vegetables (potato and tomato) via scalable transfer learning on AWS SageMaker9

and importing it on AWS DeepLens for real-time practical usability. Cloud integration provides10

scalability and ubiquitous access to our approach. Our experiments on extensive image data set11

of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a12

real-time diagnosis of plant leaves diseases. We used forty thousand images for the training of deep13

learning model and then evaluated it on ten thousand images. The process of testing an image for14

disease diagnosis and classification using AWS DeepLens on average took 0.349s, providing disease15

information to the user in less than a second.16

Keywords: Plant Diseases; Modern Agriculture; Plant Health; AWS DeepLens; SageMaker; Machine17

Learning; Deep Learning18

1. Introduction19

Plant disease has a destructive impact on quantitative and qualitative production [27], leading to20

a striking blow to producers, traders and consumers. In a US-based study conducted by the U.G.A.21

Centre for Agribusiness and Economic Development [1] discovered a 14.1% relative disease loss across22

all crops. A summary of losses due to plant disease included in the 2017 Georgia Farm Gate Value23

Report (AR-18-01) [1] published by University of Georgia Extension.24

Traditionally farmers detect and diagnose plant diseases through their observations and rely25

upon the opinions of local experts and their past experiences. An expert can decide whether a plant26

is healthy or not [8]. If a plant is found unhealthy, noticeable symptoms on its leaves and fruits are27

observed and reported. It is hard to correctly diagnose specific diseases even for agronomists and28

plant pathologists, resulting in incorrect decisions [11]. Practical plant health assessment and an early29
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diseases diagnosis can improve product quality and prevent production loss. Early detection and30

classification of crop disease are significant to secure the specific species production [24]. Various31

research studies have found that early detection of plant diseases is crucial as over the period, diseases32

start affecting the growth of their species, and their symptoms appear on the leaves [26]. When a plant33

got infected by a specific disease, then significant symptoms are shown on the leaves, which help in34

the identification and classification of that particular disease [6]. Thus controlling and assessment of35

diseases outspread becomes essential [37]. As in peach plant, for instance, the decayed area is small36

and looks similar in appearance to neighbouring healthy tissue at an early stage; therefore, it is tough37

to detect diseases [1].38

Figure 1. AWS DeepLens Hardware Setup. Input Source (Video) Is In The Right Side Monitor While
Output Shown In The Left Side Monitor

Technology is playing a vital role in exploring agriculture sector. Researchers are trying to explore39

plant disease detection and classification through the use of different machine learning and image40

processing techniques. Manual detection of plant diseases is difficult, time-consuming and unreliable.41

As a health assessment of an individual plant in a large plot is cumbersome and time-consuming,42

explicitly repeating this checking process over time [8]. A single plant may have different diseases43

having the same pattern of symptoms; moreover, various diseases of the plant show similar signs44

and symptoms [7], making it challenging to identify the specific disease. Thus technology is helping45

the agriculture sector, for instance, machine learning (ML) [21] algorithms are serving a lot in the46

process of classification and identification of plant diseases automation. ML helps in monitoring47

of health assessment of plant and predicting diseases in the plant at early stages [6]. With the time48

progression, new ML models evolved, and the researchers used them for their experiments in the field49

of recognising and classifying images. Some of those are used in automation of Agriculture systems50

[26].51

For the classification and detection of the plant leaves diseases, several classical and modern ML52

models are used, such as SVM, VGG architectures, R-FCN, Faster R-CNN, SDD and many others. The53

advancement in deep learning (DL) [9] has provided promising results and solutions in crop disease54

diagnosis and classification. Islam et al., [14] presented the integration of machine learning and image55

processing for the detection and classification of leaf disease images. They developed an SVM model56

for potato disease detection and used potato leaves dataset, consisting of healthy leaves and diseased57

leaves. For performance, they used performance parameters such as accuracy, sensitivity, recall and58

F1-score. Dubey et al., [10] came up with an image processing technique by using the K-Means59
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algorithm for the detection and classification of apple fruit disease and then used multiclass SVM60

for training and testing images. Al-Amin et al., [6] trained their model for potato disease detection61

through Deep CNN, and they computed performance for analysing the result using parameters such as62

recall, precision and F1-score. This model achieved an accuracy of 98.33 % in experiments. According63

to Sladojevic et al., [29] in order to learn features, CNN must be trained on a large dataset of a large64

number of images. They developed a CNN model for classification of leaves diseases of apple and65

tomato plants and the experimental accuracy findings of their research for numerous diseases trial66

with an accuracy of 96.3%. Miaomiao et al., [16] presented an effective solution for grape diseases67

detection as they mentioned that two entirely different basic models integrated, it would be more68

useful to obtain remarkable results and improve the accuracy of detection. Therefore, they proposed69

a UnitedModel based on the integration of GoogLeNet with ResNet, whereas GoogLeNet raises the70

total units for all layers of a network and ResNet to raise the total number of layers in a network.71

Ye Sun et al., [30] developed a model based on structured-illumination reflectance imaging (S.I.R.I.)72

for identification of peach fungal diseases. CNN and three image classification methods used for73

processing of ratio images, alternating component (AC) images and direct component (DC) images74

to detect the diseases and area of peach. As a result, they found that A.C. images performance is75

better than D.C. images in peach diseases detection and ratio images gave a high accuracy rate. Hyeon76

Park et al.,[25] developed a CNN network of two convolutional and three fully connected layers, for77

disease detection in the strawberry plant. They worked on a small dataset of leaves images consisting78

of healthy leaves and a powdery mildew strawberries disease class. Xiaoyue et al., [34] worked on79

four typical grapes diseases, and for detection, they proposed a Faster DR-IACNN detector, based on80

deep learning. They reported that their proposed detector automatically detects the diseased spots81

on grapes leaves, thus giving an excellent result for the detection of diseases in real-time. In order to82

detect leaves diseases in vegetables, Zhang et al., [36] come up with a model that is RGB colours based83

three channels CNN.84

According to the above-discussed studies, CNN always played a significant role and is widely85

used in the detection and classification of different plant diseases and provided agreeable results.86

However, there were some limitations such as these approaches lack usability due to hardware87

incompatibility issues, limited scalability, inefficiency and some real-time inferences in the practical88

usage in the real world. Konstantinos et al., [11] detected and classified 25 plant diseases by using89

different CNN based architectures. They trained and tested their model on the open-source dataset90

named PlantVillage. However, the results obtained in terms of accuracy may differ from using the91

same dataset for both training and testing purposes. We used a combination of PlantVillage dataset92

and images collected from the real-cultivation environment and applied different data augmentation93

techniques on the training data so that we can achieve high accuracy and a robust model.94

Moreover, we used a Cloud-based environment for our training and testing as well as95

implemented the model in AWS DeepLens for real-time results. The recent development in cloud-based96

services and efficient deep learning has motivated us to devise practical and scalable solutions to97

agricultural problems, and this paper lies in the similar domain. We proposed a model known98

as DeepLens Classification and Detection Model (DCDM) to detect and classify various fruits99

and vegetables leaves diseases, based on Deep Convolutional Neural Network (DCNN) with the100

integration of IoT Device like AWS DeepLens with an average accuracy rate of 98.78%. In our101

work, we extracted feature maps [29] of an input image after passing through the CNN model and102

applied filters to visualise the activations through the CNN layers [22]. We have trained the DCDM103

based upon PlantVillage dataset [35] and images collected from Tarnab Farm (an agriculture research104

institute)Pakistan. One limitation we found that most of the images in the PlantVillage dataset are105

either white or grey background; however, the real-world situation is different and may contain other106

colours in the background. Thus model trained only uniform background colour may result in low107

accuracy or wrong prediction. Therefore, in training out DCDM, we included real-world environment108

field images for training to get maximum accuracy and correct predictions. To make our model scalable109

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2020                   doi:10.20944/preprints202009.0142.v3

https://doi.org/10.20944/preprints202009.0142.v3


Version September 12, 2020 submitted to Remote Sens. 4 of 19

and efficient real-time classification and detection, it is integrated with AWS Cloud and implemented110

in IoT device, namely AWS DeepLens camera. We tested our system on real-time images of twenty-five111

classes of plant leaves comprising of a healthy leaves class and twenty-four classes of leaves diseases112

in apple, peach, grapes, strawberry, tomato and potato. The leaves diseases classes for fruits and113

vegetables that we used in our dataset listed in Table 1 with both standard and botanical names. Our114

particular focus is on leaves as they play an essential role in providing energy and producing food115

supplements for plants. The photosynthesis process produces food in the leaves, and the produced116

food is supplied to stems and rest of the plant to fulfil its food requirements to keep healthy. Hence, to117

get more fruit from the plant, their health monitoring is essential. Therefore, our work focuses on early118

disease detection and classification through health assessment of plant leaves. Another reason for leaf119

focused disease detection is that leaves remain on the plants for longer times rather than fruits and120

flowers because they supply energy to the plant.121

Figure 2. Data Flow Diagram of the DCDM Using AWS Cloud Backend.

2. Materials and Methodology122

The development process of DCDM model for plant leaves disease detection, and classification123

consists of various stages, i.e. starting with data collection along with data pre-processing and124

preparation, Training model in AWS Cloud (SageMaker Studio) [17] and implementing in AWS125

DeepLens for inferences purpose, as shown in Figure 1. We used real-time videos and images for126

testing purpose but in the figure we are testing a recorded video on one monitor and output on the127

other.128

Further details are as below.129

2.1. Transfer Learning in AWS Cloud130

Transfer learning (TL) is a concept in the ML which simply means that a method learns basic131

knowledge in solving a particular problem and later reusing that knowledge for other more or less132

similar problem solution [19]. This technique encourages us to use for solving any relevant problem for133

which there is not sufficient data available. Thus it relaxed the assumption of training and testing data,134

should be both distributed identically and independently [31]. It takes a long time and large-sized135

dataset for training CNN from the very scratch. Hence in certain situations where the dataset is136

limited, then TL is a helpful method. For our model, we used TL for different architectures and then137

training our own model from scratch. To address the scalability limitation, we choose Amazon’s138

Cloud platform and AWS DeepLens. Amazon’s cloud platform provides the facility of data storage,139

data transfer and computational capability. Amazon Web Services (AWS) provides multiple services140

for many different applications. They also provide a platform to build, train and deploy as well as141

to validate machine learning models. The trained model can be deployed on AWS Services or any142
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other compatible platforms, for instance, AWS DeepLens. We used SageMaker Studio for DCDM143

model training in the AWS Cloud Services so that after completion of training, the obtained trained144

model could be implanted/deployed in AWS DeepLens as both the platforms are compatible. While145

comparing with another pre-trained model, we used our system for training and testing purposes.146

A typical CNN consists of various layers. Each layer consists of multiple nodes with some147

activation function attached. The first layer is the input layer that takes input data, whereas, the last148

layer is the output layer that generates output. A random number of layers exists between input149

and output layer, referred to as hidden layers (i.e. Convolutional or Convo, Pooling, Dense or Fully150

Connected and SoftMax layer). If CNN contains two or more than two hidden layers, it is known as151

Deep Convolutional Neural Network (DCNN) [23].152

We designed our DCDM using deep learning TensorFlow framework [5] and Keras [13] library.153

Keras is an open-source deep-learning library used to perform different deep learning applications.154

We used it for the implementation of DCDM architecture, inspired from architecture of VGG19. This155

architecture uses filters of the same width and height for all the convolutional layers. That is why the156

architecture of VGG19 used to be very fast than the other state-of-the-art architectures like ResNet50,157

DenseNet, InceptionVNet. The VGG19 architecture consists of roughly about 139 million parameters158

[2] which makes it computationally expensive for training purpose. However, our architecture has159

same sequential structure as of VGG19 but with some less number of layers. Also, the numbers of160

parameters are extensively low, which makes it computationally less expensive.161

Our architecture comprises of a total of nine layers with six convolutional layers and three fully162

connected layers. Figure 3 shows visual representation of DCDM Convolutional layers are having163

non-linearity activation units following by max-pooling layers. The non-linearity activation is often164

used with convolutional layers. This activation is also known as a ramp function which has a shape of165

the ramp and transfers the output once it is a positive value; else it results in 0. The last layer, which is166

also known as a SoftMax layer comprising of 25 nodes is our output layer where each node specifies167

an individual class of our dataset.168

169

The details of these layers are described as:170

Convolutional Layer: The above stated proposed model used six convolutional layers. There are171

two types of characteristics in each layer, i.e., input and numeral filters. The filter numbers are then172

convolved on each layer which extracts the useful features and passes it to the next connected layer.173

For an RGB image, each filter is applied to all three colour channels, and thus, a corresponding matrix174

is obtained accordingly. We used a filter size of 3 x 3 for all convolutional layers. The number of filters175

and input of each layer is elaborated below176

(a) Convolution 272 x 363 – 64 filter177

(b) Convolution 272 x 363 – 64 filter178

(c) Convolution 136 x 181 – 128 filte179

(d) Convolution 68 x 90 – 256 filter180

(e) Convolution 34 x 45 – 512 filter181

(f) Convolution 17 x 22 – 512 filter182

Pooling Layer: Most commonly, the pooling layer follows each convolutional layer. There are183

five max-pooling layers in the proposed method. The pooling layers are often used to minimise184

computational cost as it reduces the size of each convolutional layer output. The max-pooling has185

an activated filter which slides on the input and based on the size of the filter, and the max value is186

selected as an output. We used a filter of 2 x 2 for all max-pooling layer. The characteristics for each187

layer is given below:188

(a) Max-pooling 136 x 181 – 64 filter189

(b) Max-pooling 68 x 90 – 128 filter190

(c) Max-pooling 34 x 45 – 256 filter191
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(d) Max-pooling 17 x 22 – 512 filter192

(e) Max-pooling 8 x 11 – 512 filter193

Dense Layer: It is also known as an artificial neural network (ANN) classifier. Our model has194

three dense or fully connected layers. In fully-connected layers, each node is connected with only one195

node of another layer. The first two fully-connected layers have ReLu activation while the last layer,196

which is also known as the output layer, has a softmax activation. The softmax activation works by197

finding the node with the highest probability value of prediction being made. Hence the node with the198

higher value is forwarded as an output.199

(a) Dense Layer: 1024 units200

(b) Dense Layer: 1024 units201

(c) Dense Layer: 25 units202

Dropout: The overfitting issue is prevented by the addition of a dropout of 0.5. It is added to the203

dense layers of the model.204

Parameters: The total model parameters of our model are 51,161, 305.205

206

The model takes the image data as an input, then processes that input data by extracting features207

from the image and then classifies it either healthy or a diseased leaf, if it is an infected leaf then it208

further predicts the disease class name, the most resemble one. The predicted class then results as an209

output.210

Figure 3. The DCDM Layered Architecture.

2.2. Lambda Function on DeepLens211

AWS DeepLens is a deep-learning-based H.D. 4-mega-pixel video camera that is designed212

specifically for machine learning models developments and implementation. It has a built-in 8GB213

memory and 16GB storage capacity with 32 GB SD card (extendable). It has more than 100 GFLOPS214

computing power so it can process machine learning projects independently as well as those integrated215

with AWS Cloud [15]. It has a straightforward usage process as the user can take picture/ image216

through DeepLens camera, then store it and process it to use in machine learning projects [12]. There217

are a large number of pre-trained models, built-in to it, but a customised model can also be used with218

DeepLens camera. For instance, any custom based model can be trained or imported into in SageMaker219

and then can be implemented in AWS DeepLens through various deep learning frameworks such as220

Tensorflow, Caffe [15],[12]. A lambda function is used to establish a successful connection to access221

the DeepLens on a local computer. The lambda functions are the pre-defined functions executed by222

DeepLens once the project has been deployed [3]. Lambda function streamlines the development223
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process by managing the servers necessary to execute code. They serve as the connection between224

the AWS DeepLens and Amazon Sagemaker for the camera to generate a real-time inference [4]. It225

controls various resources such as computing capability and power, networking. It has a user-specified226

function embedded in code, and Lambda function invoke that user code when it is executed. The code227

returns a message containing data from the event received as input [4]. The visual illustration of the228

AWS DeepLens work-flow is shown in Figure 4.229

After completing the training stage in SageMaker, we implemented the subsequent trained Model230

in AWS DeepLens camera for inferences of Leaves health assessment. Figure 2. represents the overall231

flow of the proposed model.232

Figure 4. DeepLens [14] Working Framework is Displayed.

3. Dataset Preparation233

We used a collection of plant leaves images (including both healthy and infectious leaves images234

for fruits and vegetables) from local farmlands and publicly available dataset known as PlantVillage235

[35]. We analysed around 50,000 images of plant leaves, which categorised into 25 classes and assigned236

labels to all. Each label represents either a plant disease class or its healthy nature class. A sample237

image for each class shown in Table 1.238

a. b. c. d. e.

f. g. h. i. j.
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Table 1 continued from previous page

k. l. m. n. o.

p. q. r. s. t.

u. v. w. x. y.
Table 1. Sample Dataset Images: (a). Apple Scab, (b). Black Rot, (c). Cedar Apple Rust, (d). Apple
Healthy, (e). Grape Black Rot, (f). Grape Esca, (g). Grape Leaf Blight, (h). Grape Healthy, (i). Peach
Bacterial Spot, (j). Peach Healthy, (k). Potato Early Blight, (l). Potato Late Blight, (m). Potato Healthy,
(n). Strawberry Leaf Scorch, (o). Strawberry Healthy, (p). Tomato Bacterial Spot, (q). Tomato Early
Blight, (r). Tomato Late Blight, (s). Tomato Leaf Mold, (t). Tomato Septoria Leaf Spot, (u). Tomato
Spider Mites, (v). Tomato Target Spot, (w). Tomato Leaf Curl Virus, (x). Tomato Mosaic Virus, (y).
Tomato Healthy.

3.1. Data Augmentation239

For training a DCNN model, a large number of images used for achieving a highly accurate240

prediction and accuracy. In our case, some of the plants leaves disease classes had fewer images in241

number; therefore, the process of data augmentation (technique) applied to those limited number of242

image diseases classes. The process of data augmentation [28] provided us with new images from243

our existing images. Different augmentation techniques like blurriness, rotation, flipping (horizontal244

and vertical), shearing (horizontal and vertical), and addition of noise were applied accordingly. An245

illustration of different augmentation techniques shown in Table 2. By using this technique, the number246

of images in our dataset increased, which is essential for obtaining more accurate results after the247

training stage of CNN. The techniques used for augmentation adds new information to the existing248

images. For instance, the addition of noise, Gaussian noise is added to the image, and thus an image249

gets noisy. For horizontal flipping, the image is flipped at the centre on x-axis. Thus, the information250

from the right side is shifted to the left side. For rotation, a certain angle is applied to the original251

image, and thus a new image is generated. All these augmentation techniques tweak the present252

information of an image and help to generate new images with some modifications.253
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a. b. c.

d. e. f.

g. h. i.

j. k. l.
Table 2. Various Data Augmentation Technique Examples: (a). Original Image, (b). Blur, (c) Random
Gaussian Noise, (d). Random Contrast, (e). Random Bright, (f). Scale Proportionality, (g). Random
Crop, (h). Deterministic Crop, (i). Vertical Flip, (j). Horizontal Flip, (k). Rotate Without Padding, (l).
Y-Sheared.

3.2. Image Registration and Classes Annotation254

After completion of data augmentation process, we had to re-register the images in same255

dimensions. As we used two types of dataset having different dimensions. Image registration [38][18]256

is an essential step in the image processing like quality improvement and formation of geometrically257

aligning images like others in the same dataset. We resized all the images into 272 x 363 pixels and258

annotated all the images before putting image as an input to any model/network for pre-training259

CNN structures. The labelled class names listed in Table 3.260
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Table 3. The Description of Leaf Disease Dataset

Class
No.

Pant Name
Plant

Botanical
Name

Disease Name
Disease

Botanical
Name

Training
Images

Validation
Images

1 Apple Malus Domestica Scab Venturia inaequalis 1504 326
2 Apple Malus Domestica Black rot Botryosphaeria obtusa 1496 325

3 Apple Malus Domestica Cedar apple rust Gymnosporangium
juniperivirginianae

1220 455

4 Apple
(Healthy)

Malus Domestica 1395 329

5 Grapes Vitis vinifera Black rot Guignardia bidwellii 1944 236

6 Grapes Vitis vinifera Esca
Phaeomoniella

chlamydospora
1107 276

7 Grapes Vitis vinifera Leaf blight Pseudocercospora vitis 1860 215

8 Grapes
(Healthy)

Vitis vinifera 1339 484

9 Peach Prunus persica Bacterial spot Xanthomonas
campestris

1838 459

10 Peach
(Healthy)

Prunus persica 1288 572

11 Potato Solanum tuberosum Early blight Alternaria solani 1800 200
12 Potato Solanum tuberosum Late blight Phytophthora infestans 1800 200

13 Potato
(Healthy)

Solanum tuberosum 1121 531

14 Strawberry Fragaria spp. Leaf scorch Diplocarpon earlianum 1887 350

15 Strawberry
(Healthy)

Fragaria spp. 1364 492

16 Tomato Lycopersicum
esculentum

Bacterial spot Xanthomonas campestris
pv. Vesicatoria

1710 425

17 Tomato Lycopersicum
esculentum

Early blight Alternaria solani 1800 457

18 Tomato Lycopersicum
esculentum

Late blight Phytophthora infestans 1527 382

19 Tomato Lycopersicum
esculentum

Leaf mold Fulvia fulva 1761 491

20 Tomato Lycopersicum
esculentum

Septoria leaf spot Septoria lycopersici 1417 454

21 Tomato Lycopersicum
esculentum

Spider mites Tetranychus urticae 1340 335

22 Tomato Lycopersicum
esculentum

Target spot Corynespora cassiicola 1123 481

23 Tomato Lycopersicum
esculentum

Leaf curl virus 3286 571

24 Tomato Lycopersicum
esculentum

Mosaic virus Tomato mosaic virus 1800 574

25 Tomato
(Healthy)

Lycopersicum
esculentum

1273 380
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3.3. Features Maps Extraction and Filters Visualization in CNN Layers261

3.3.1. Extraction of Feature Maps262

Feature maps [20] are used to present the local information passing through the CNN Layers.263

In an ideal feature mapping of CNN, they are sparse and help in the understanding of the classical264

model. In convolutional layer, to extract feature maps from the source image, several mathematical265

computations are carried out [32]. In Figure 5, a visual representation for the extraction of feature maps266

presented for various layers of our model. It also provides information about each layer, i.e. what267

and how a particular layer of CNN gains information from other layers, such piece of information268

can help the developer to make proper adjustments in the developing model for best results. From269

our visualisation images, we found that our model is gaining information in the hierarchical order. It270

means that the high-level layers present more specific features and vice versa.271

Similarly, if the dimensions are higher than feature maps would also classify images more272

accurately. For instance, in an image, edge corners, some abstract colour features are presented by273

a deep layer Figure 5, while other corners and edges represented in shallows layers. Moreover, the274

middle layers are usually responsible for capturing the same textures because these layers are having275

complex invariance and more layers in number, after extracting higher-level abstract features, the276

striking posture of the entire image shown by the high-level feature map.277

The feature maps extracted in the first layer represents the overall physical appearance of the leaf278

image. In the middle layers, the patterns of disease are extracted as can be seen in Figure 6. The last279

layers in Figure 6 often extract the delicate features as they are then used to finalise the predicted class.280

Figure 5. Feature Map Visualisation of DCDM Layers.

3.3.2. Filter Visualization in Model Layers281

Generally, filters are used for the detection of unique patterns in an input image. It is done by282

detecting the change in the intensity values of the image. Thus, each filter has its particular importance283

for feature extraction [33]. As an example, a high pass filter detects the existence of edges in an image.284

In our CNN model, various filters are used to extract features like edges, shape, the colour of the285

leaf, and many more useful features. In Figure 6, a visual representation for a few filters presented286
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where each filter has its application for extracting leaf features. After detecting the specific feature287

of the image by a filter, it is then passed to the next layer where other filters extract the additional288

feature. This process continues until the last layer, and thus integrating all together helps to define the289

predicted class for an input image.290

Figure 6. Filter Visualisation.

4. Results and Discussion291

After implementing the trained Model in AWS DeepLens, Experiments for DCDM model done on292

both Windows and Ubuntu operating systems workstations. It had Intel 9th Gen i7 CPU, i.e. 9700K, 32293

GB ECC RAM and NVIDIA RTX TITAN 24 GB VRAM GPU. Table 4. shows the system specifications.294

Table 4. System Specifications for Testing

System Hardware / Software (Operating System) Specifications

CPU Intel 9th Gen i7 9700K
RAM 32 GB ECC RAM
GPU NVIDIA RTX TITAN 24 GB VRAM

Operating System Windows 10 Professional and Ubuntu 18.04

As mentioned above, the deep learning-based framework TensorFlow [5] and Keras Library [13]295

were the environments used for experiments.296

To measure the performance of our approach and to prevent the issue of over-fitting, we also297

distributed the data into different training-testing sets. First, we split the data into 80-20, in which 80%298

is used for training whereas 20% for testing purpose. Again, split into 70-30 means 70% of the dataset299

used for training and 30% for testing purpose and lastly, split into 60-40 training-testing dataset, means300

60% of the complete dataset used for training and 40% for testing purpose. The total number of each301

disease class after the augmentation process and the splitting data ratio is given in detail in Table302

5. PlantVillage dataset contains numerous images of the same plant leaves. During the process of303

splitting data into a training-testing dataset, we kept all data of the same class in one group, i.e. either304
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in the training set or in the testing set. However, the data split of 80-20 performed very well for DCDM305

approach with the maximum accuracy of 98.78%. Thus, exceeding the accuracy results for all other306

CNN architectures. Some of the sample output images with an AWS DeepLens are shown in Figure 7.307

Table 5. Dataset Split.

Train Test Data Split % Training Images Testing Images

80 - 20 40000 10000
70 - 30 35000 15000
60 - 40 30000 20000

Figure 7. Sample Output Images.

4.1. Performance Measurement308

There are many ways for performance measurement that are used to evaluate the performance of309

neural networks. They include precision, recall, accuracy, and f1-score. The precision tells us about the310

correct predictions made out of false-positive while recall tells us about the correct predictions made311

out of false negatives. The accuracy is the number of correct predictions out of both false positives and312

false negatives. We calculated all the performance measures for our trained model using formulas313

listed in Eq (1), (2), (3), and (4) from the confusion matrix shown in Figure 9.314

315

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FN + FP
(3)

F1− Score = 2 ∗ precision ∗ recall
precision + recall

(4)
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Where TP is true positives, TN is true negatives, FP is false positives and FN is false negatives.316

Here the TP and TN are the correct predictions while the FP and FN are the wrong predictions made317

by our model. After computing values from the confusion matrix, the results are shown for the 80-20318

split in Table 6.319

Table 6. Classification / Model Performance Report

Evaluation Metrics Value in %

Precision 98.38%
Recall 97.98%

Accuracy 98.78%
F1-Score 98.17%

In Table 7, the performance measure of accuracy for each data split is presented. The values are320

presented after every ten epochs of training. The bold value for data split of 80-20 and epoch size of 50321

represents the highest accuracy.322

Table 7. Data Split for Testing / Training & Accuracy Obtained

Dataset (Train/Test) Split in %
Accuracy [%]

10 Epochs 20 Epochs 30 Epochs 40 Epochs 50 Epochs
80 – 20 92.31 95.84 96.86 97.39 98.78
70 – 30 91.23 94.89 96.15 96.77 97.46
60 – 40 90.70 94.92 95.04 95.98 96.21

In Figure 9, a confusion matrix is presented for a data split of 80 – 20. The confusion matrix shows323

the prediction of the model on a visual basis. The values on the diagonal are the correct predictions324

that are made by a model for the testing dataset. While any value other than diagonal represent the325

wrong prediction of a model. In this matrix, the healthy images of both fruits and vegetables are mostly326

predicted correctly. For example, a grape leaf, all the healthy images of grape leaf were classified327

correctly and was not mixed with any other leaf class of fruits or vegetables. Similarly, the disease328

class of grape leaf blight was also successfully predicted with no wrong predictions.329

(a) Training and Validation Accuracy (b) Training and Validation Loss
Figure 8. Training and Validation Graphs

In Figure 8 (a) (b), the accuracy and loss for both training and testing/validating are presented for330

each epoch. These graphs were generated for the data split of 80 – 20. The accuracy graph visually331

shows that accuracy for both training and testing increases gradually and then tends to converge on332

a specific point. It also shows that after 40 epochs, the change in accuracy reduces as the validation333

accuracy appears to be equivalent to training accuracy. Similarly, the right graph shows how the loss334
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starts decreasing gradually as the model learns on a given dataset. The loss of validation data becomes335

stable after 43 epochs and thus tends towards a specific value.336

Figure 9. Confusuion Matrix for 80 -20 % Data Split.

4.2. Comparative Analysis337

In this section, a visual analysis of different CNN architectures made with the DCDM approach.338

Training the model on different architecture is a critical approach used to find the best architecture339

for targeted application. The architectures we used are the best performing architectures for the340

classification problem. We obtained a performance accuracy of 90+ for each trained architecture. The341

architecture of AlexNet performs with the lowest accuracy of 92.43%. This architecture is considered342

as the smallest architecture and most straightforward architecture out of all. However, still providing343

us with accuracy above 90%. The VGG16 and VGG19 architectures are the same with some minor344

modifications and a different number of layers. They have a significant record of performing very well345
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for the classification problems. For our testing dataset, they provide us with an accuracy of 94.05% and346

96.89% respectively.347

Similarly, the architecture of SqueezeNet and DenseNet also performed with an accuracy of348

94.67% and 96.59%. The ResNet50 architecture is well-known for good performance on large datasets.349

It has a bulk of 50 layers with different inter-connections. Thus, performing with an accuracy of350

97.85% and being able to score the position of the third-best architecture in our list. The architecture of351

DarkNet provides an accuracy close to DCDM approach. It results from an accuracy of 98.21%, scoring352

the position of second-best architecture while DCDM architecture performed outstanding and stood353

with the position of best architecture with an accuracy of 98.78%. The results for each architecture is354

shown in Table 8 and then visually represented in Figure 10. We compared the performance of each355

architecture for the testing dataset. An evaluation metric of accuracy was used for comparison, based356

on Equation 3.357

The comparison of each architecture with respect to time consumed has also been made which358

results in the time required for training. The average time for each training epoch is presented in Table359

8. The time consumed by our architecture requires less computation time, thus having lowest average360

time while training. It testifies that our architecture is the most efficient both performance as well as361

computation wise.362

Table 8. Disease Classes Accuracy

Trained CNN Models Accuracy in % Average Time Per Epoch(in Minutes)

ResNet - 50 97.85% 2:03
DensNet 96.59% 2:38
VGG-16 94.05% 1:53
VGG-19 96.89 % 1:59
AlexNet 92.43 % 1:44
SqueezeNet 94.67% 2:32
DarkNet 98.21% 2:13
Our Model 98.78% 1:26

Figure 10. Comparison Graph
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5. Conclusion363

This proposed deep model implemented on AWS DeepLens can predict 25 different disease364

classes in Apple, Grape, Peach, Potato, Strawberry and Tomatoes in real-time. Our model obtained365

98.78% accuracy in predictions and classifications in real-time on-field experimentations. This practical366

approach would facilitate the agriculture-related professionals and community by contributing to the367

Agri-economy enhancement as the grave problem of plant (leaves) diseases would be easily detected368

and classified instantly. In addition, this approach is scalable, and we can add more classes of other369

vegetables and fruit leaves. In our future work, we would integrate our models to different mobile370

platforms such as iOS, Windows and Android-based Applications to increase its usability. Furthermore,371

new techniques such as Multi-spectral and Hyper-spectral images should also be experimented for372

detection and classification of plant diseases.373

Abbreviations374

The following abbreviations are used in this manuscript:375

376

DL Deep Learning
TL Transfer Learning
ML Machine Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DCDM DeepLens Convolutional Detection Model

377
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