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Abstract: Digital enabled manufacturing systems require high level of automation for fast and low-
cost production but should also present flexibility and adaptiveness to varying and dynamic
conditions in their environment, including the presence of human beings; However, this presence
of workers in the shared workspace with robots decreases the productivity as the robot is not aware
about the human position and intention which leads to concerns about the human safety. This issue
is addressed in this work by designing a reliable safety monitoring system for collaborative robots
(Cobots). The main idea here is, to significantly enhance safety by a combination of recognition of
human actions using visual perception and at the same time interpreting physical human-robot
contact by tactile perception. Two datasets containing contact and vision data are collected by using
different volunteers. The action recognition system classifies human actions using the skeleton
representation of the latter when entering the shared workspace and the contact detection system
distinguishes between intentional and incidental interactions if a physical contact between human
and cobot takes place. Two different deep learning networks are used for human action recognition
and contact detection which in combination, are expected to lead to the enhancement of human
safety and an increase of the level of cobot perception about human intentions. The results show a
promising path for future Al-driven solutions in safe and productive human-robot collaboration
(HRC) in industrial automation.

Keywords: Safe physical Human-Robot Collaboration, collision detection, human action
recognition, artificial intelligence, industrial automation

1. Introduction

As the manufacturing industry evolves from rigid conventional procedures of production to a
much more flexible and intelligent way of automation within the frame of the Industry 4.0 paradigm,
human-robot collaboration (HRC) has gained rising attention [1,2]. To increase manufacturing
flexibility, the present industrial need is to develop a new generation of robots that are able to interact
with human and support operators by leveraging tasks in terms of cognitive skills requirements [1].
Consequently, the robot becomes a companion or so-called collaborative robot (Cobot) for flexible
task accomplishment rather than a preprogrammed slave for repetitive, rigid automation. It is
expected that cobots actively assist operators in performing complex tasks, with highest priority on
human safety in cases humans and cobots need to physically cooperate and/or share their workspace
[3]. This is problematic because the current settings of cobots do not provide an adequate perception
of human presence in the shared workspace. Although there are some safety monitoring systems [4-
7], they can only provide a real or virtual fence for the cobot to stop or slow down when an object,
including a human being, enters the defined safety zone. However, this reduces productivity in two
ways as follows:
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1. Itis not possible to differentiate between people and other objects that enter the workspace of
the cobot. Therefore, the speed is always reduced regardless of the object.

2. It is also not possible to differentiate whether an interaction with the robot should really take
place or not; this also always forces a maximum reduction in speed.

This issue can only be tackled by implementing a cascaded, multi-objective safety system which
primarily recognizes human actions and detects human-robot contact [4] to percept human intention
in order to avoid collisions. Therefore, the primary goal of this work is to conduct a step-change in
safety for HRC in enhancing the perception of cobots by providing visual and tactile feedback to the
robot from which it is able to interpret the human intention. The task is divided into two parts,
Human Action Recognition (HAR) using visual perception and contact type detection using tactile
perception which will be subsequently investigated. Finally, by combining these subsystems, it is
considered to attain a more reliable and intelligent safety system which takes advantage of
considerably enhanced robot perceptional abilities.

1.1 Human Action Recognition (HAR)

Based on the existing safety regulation related to HRC applications and by inspiring from
human perception and cognition ability in different situations, adding the visual perception to the
cobot can enhance HRC performance. Nevertheless, the main challenge is how cobots are able to
adapt to human behavior. HAR as part of visual perception plays a crucial role in overcoming this
challenge and increasing productivity and safety. HAR can be used to allow the cobot keeping a safe
distance with its human counterpart or the environment, ensuring an essential requirement for
fulfilling safety in shared workspaces. Recent studies have been concentrated on visual and non-
visual perception systems to recognize human actions [5]. One method amongst non-visual
approaches consists of using wearable devices [6-11]; Nevertheless, applying this technology as a
possible solution for an industrial situation seems at present neither feasible nor comfortable in
industrial environments because of restrictions that it will imposed to the operator’s movements. On
the other hand, active vision-based systems are widely used in such applications for recognizing
human gestures and actions. In general, vision based HAR approaches consist of two main steps:
proper human detection and action classification.

As alluded by recent researches, machine learning methods are essential in recognizing human
actions and interpreting them. Some traditional machine learning methods such as Support Vector
Machine (SVM) [12-14], Hidden Markov Model (HMM) [19, 20], Neural Networks [21, 22] and
Gaussian Mixture Models (GMM) [23, 24], have been used for human action detection with a reported
accuracy of about 70 to 90 percent. On the other hand, Deep Learning (DL) algorithms prevail as a
new generation of machine learning algorithms with significant capabilities in discovering and
learning complex underlying patterns from a large amount of data [21]. This algorithm provides a
new approach to improve the recognition accuracy of human actions by using depth data provided
by time-of-flight, depth or stereo cameras, extracting human location and skeleton pose. DL
researchers either use video stream data [26, 27], RGB-D images [28 — 31] or 3D skeleton tracking and
joints extraction [32 — 35] for classification of arbitrary actions. Among different types of Deep
networks, Convolutional Neural Networks (CNN) stand for a popular approach which can be
represented as 2D or 3D network in action recognition but still needs a large set of labeled data for
training and contains many layers. The first 3D CNN for HAR has been introduced by [36 — 38]
providing an average accuracy of 91 percent. Recent researches based on 3D CNN techniques [39 —
42] have obtained a high performance on the KTH dataset [39] in comparison to 2D CNN networks
[43 — 46]. Yet, the maximum accuracy of these researches is reported to be at 98.5 percent but being
not capable of classifying in real-time. Also, most of these articles mainly focus on action classification
based on domestic scenarios [19, 47], only few have an approach for industrial scenarios [48 — 50] and
a restricted number works on unsupervised human activities in presence of mobile robots [49]. Thus,
there is a need to introduce a fast and more precise network for HAR in industrial applications which
can be presented as a new 3D network architecture by considering an outperforming result in action
classification.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2020

In this work, we use a deep learning approach for real-time human action recognition in an
industrial automation scenario. A convolutional analysis is applied on RGB images of the scene in
order to model the human motion over the frames by skeleton-based action recognition. The artificial
intelligence based human action recognition algorithm provides the core part for distinguishing
between collision and intentional contact.

1.2 Contact Type Detection

In more and more HRC applications, there is a need of having direct, physical collaboration
between human and cobot, physical Human-Robot Collaboration (pHRC) due to an unmatched
degree of flexibility in the execution of various tasks. Indeed, when a cobot is performing its task, it
should be aware of its contact with human. Also, from a cobots point of view, the type of this contact
is not immediate obvious, due to the fact that the cobot cannot distinguish whether a human gets in
contact with the robot incidentally or intentionally, when a collaborative task is executed; Therefore,
it is important that the cobot needs to percept human contact with deeper understanding. Towards
this goal, it is imperative firstly, to detect the human-robot contact and secondly, distinguish between
intentional and incidental contacts, a process called collision detection. Some researchers propose
sensor-less procedures for detecting a collision based on the robot dynamics model [52, 53], but
through momentum observers [52, 54 — 57], using extended state observers [56], vibration analysis
models [57], finite-time disturbance observers [54], energy observers [55], or joint velocity observers
[58]. Among these methods, the momentum observer is the most common method of collision
detection because it provides better performance compared to the other methods, although the
disadvantage is, that it requires precise dynamic parameters of the robot [59]. For this reason,
machine learning approaches like artificial neural networks [62 — 64] and deep learning [65, 66] have
recently been applied for collision detection based on robot sensors’ stream data due to their
performance in modeling the uncertain systems with lower analytics effort.

Deep neural networks are extremely effective in feature extraction and learning complex
patterns [65]. Recurrent neural networks (RNN) like long short-term memory network approaches
(LSTM) are frequently used in researches for processing time series and sequential data [66 — 69].
However, the main drawback of this network is the difficulty and time consumption for training in
comparison to convolutional neural networks (CNN) [70]. Additionally, current researches showed
that CNN has a great performance for image processing in real time situations [22, 71 — 73] where the
input data is much more complicated than 1D time series signals. As proposed in [70], a 1D-CNN,
named CollisionNet, has a proper potential in detecting collision, although only incidental contacts
have been considered. Moreover, depending on whether the contact is intentional or incidental, the
cobot should provide an adequate response which in every case ensures the safety of the human
operator. At this step, identifying the cobot link where the collision occurred, is an important
information for anticipating proper robot reaction which needs to be considered in contact perception
[59].

With this background and considering the fact that contact properties” patterns of incidental and
intentional states are different according to the contacted link, we aim to use supervised learning,
convolutional neural network, to have a model-free contact detection. Indeed, not only does the
proposed system detect the contact, which in other papers [59, 70, 74, 75] is named collision detection,
it can also recognize the types of contact, incidental or intentional, provide information about
contacted link, and consequently increase the robot awareness and perception about human intention
during physical contact.
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2. Material and Methods

2.1. Mixed perception Terminology and design

We hypothesize that combining two types of perception, visual and tactile, in a Mixed
Perception approach can enhance the safety of human during collaborating with a robot by additional
information to the robot's perception spectrum. It is easy to imagine that a robot then would be able
to see and feel a human in its immediate vicinity at the same time. Using visual perception, a robot
can notice:

e ahuman entering the shared workspace (Passing),

e ahuman observing its tasks when he/she is near to the robot and wants to supervise
the robot task (Observation),

e adangerous situation when the human is not in a proper situation to do collaboration
or observation which can threaten human safety (Dangerous Observation),

e a human interaction when the human is close to robot and doing the collaboration
(Interaction).

However, it is difficult using a pure vision-based approach to distinguish between dangerous
observation and interaction and to differentiate between incidental and intended contact types not
only for a machine but also for a human. Therefore, at this stage, considering both types of perception,
vision and haptics, is of significance. As indicated above, this approach is able to increase the safety
and can be like a supervisory unit to the vision part as the latter can fail due to occlusion effects.

To support our hypothesis, we first choose the approach of developing two separate networks
for human action and contact recognition, which meet the requirements for human-robot
collaboration and real-time capability. These networks will be examined and discussed with regard
to their appropriateness and their results. As a first step, we want to determine in this paper whether
a logical correlation of the outputs of the two networks is theoretically able to provide a reasonable
expansion of the perception spectrum of a robot for human-robot collaboration. We want to find out
what the additional information content is and how it can specifically be used to further increase the
safety and with that possibly also additional performance parameters of HRC solutions like short
cycle time, low downtime, high efficiency and high productivity. The concrete merging of the two
networks in a common application represents an additional stage of our investigations, which is not
subject of this work. The results of the present investigation however shall provide evidence that the
use of Al in robotics is able to open up significant new possibilities and enables robots to achieve
their operational objectives in close cooperation with humans. Enhanced perceptional abilities of
robots are future key features to shift the existing technological limits and open up new fields of
application in industry and beyond.

2.2. Robotic Platform

The accessible platform used throughout this project is a Franka Emika robot (Panda),
recognized as a suitable collaborative robot in terms of agility and contact sensitivity. The key
features of this robot will be summarized hereafter; It consists of two main parts, arm, and hand. The
arm has 7 revolute joints and precise torque sensors (13 bits resolution) at every joint, is driven by
high efficiency brushless dc motors, and has the possibility to be controlled by external or internal
torque controllers at a 1 kHz frequency. The hand is equipped with a gripper which can securely
grasp objects due to a force controller. Generally, the robot has a total weight of approximately 18 kg
and can handle payloads up to 3 kg.

2.3. Camera Systems

The vision system is based on a multi-sensor approach using two Kinect V2 cameras for
monitoring the environment to tackle the risk of occlusion. The Kinect V2 has a depth camera with
resolution of 512 x 424 pixels with a field of view (FoV) of 70.6° x 60° and the color camera has a
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resolution of 1920 x 1080px with a FoV of 84.1° x 53.8°. So, this sensor as one of the RGB-D Cameras
can be used for human body and skeleton detection.

2.4. Standard robot collision detection:

A common collision detection approach is defined as [59]

True if lu(t) > en
cd(u(t) =

False  if Iu(t) 1< e 1)

where cd is the collision detection output function which maps the selected monitoring signal p(t)
like external torque into a collision state, true or false. €, indicates a threshold parameter, which
determines the sensitivity for detecting a collision.

2.5. Deep learning approach

A Convolutional Neural Network (CNN) model performs classification in an end-to-end
manner and learns data patterns automatically which is different to the traditional approaches where
the classification is done after feature extraction and selection [76]. In this paper, a combination of
3D-CNN for HAR and 1D-CNN for contact type detection has been utilized. The following
subsections describe each network separately.

2.5.1 Human Action Recognition Network

Since human actions can be interpreted by analysing the sequence of human body movements
involving arms and legs and placing them in a situational context, the consecutive skeleton images
are used as inputs for our 3D-CNN network which was successfully applied for real-time action
recognition. In this section, the 3D-CNN, which is shown in Figure 1, classifies HAR to five states,
namely: Passing, Observation, Dangerous Observation, Interaction, and Fail. These categories are
based on the most feasible situations which may occur during human-robot collaboration:

e Passing: a human operator occasionally needs to enter the robot’s workspace which
is speciefied due to the fix position of the robot but without any intention to actively
intervene the task execution of the robot.

e Interaction: a human operator wants to actively intervene the robot’s task execution,
which can be the case due to correct a TCP path or to help the robot if it gets stuck.

e Observation: the robot is working on its own and a human operator is about to
observe and check the working process from within the robot’s workspace.

e Dangerous Observation: the robot is working on its own and a human operator is
about to observe the working process. Due to the proximity of exposed body parts
(head and upper extremities) to the robot in the shared workspace, there is a high
potential of life-threatening injury in case of a collision.

e Fail: one or all system cameras are not able to detect the human operator in the
workspace due to occlusion by the robot itself or other artefacts in the working area.

Input layer

The input layer has 4 dimensions, Nchannel X Nimage-height X Nimage-width X Nframe. The RGB image of
Kinect V2 has a resolution of 1980x1080 pixels which is decreased to 320x180 for reducing the
trainable parameters and network complexity. So Nehannel, Nimage-height, and Nimage-wiatn are 3, 180, and 320
respectively. Ntameindicates the total number of frames in the image sequence which is 3 in this
research.

Layers

As shown in Figure 1, the proposed CNN is composed of fifteen layers, consisting of four
convolutional layers, four pooling layers, three fully connected layers followed by three dropout



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2020

layers and a Softmax layer for predicting actions. Convolutional layers utilize for feature extraction
by applying filters and pooling layers specifically use to reduce the dimensionality of the input. This
layer performs based on the specific function, such as max pooling or average pooling, which extracts
the maximum or medium value in a particular region. Fully connected layers are like a neural
network for learning non-linear features as represented by the output of convolutional layers. In
addition, dropout layers as a regularization layer try to remove overfitting in the network. Over 10
million parameters have to be trained for establishing a map to action recognition.
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Figure 1: 3D CNN for Human Action Recognition

The input layer is followed by a convolution layer with 96 feature maps of size 73. Subsequently,
the output is fed to the Rectified Linear Unit (ReLU) activation function. ReLU is the most suitable
activation function for this work, as it is specifically designed for image processing and it can keep
the most important features of the input. In addition, it is easier to train and usually achieves better
performance, which is significant for real-time applications. Next layer is a max-pooling layer with
size and stride of 3. The filter size of the next convolutional layers decreases to 5% and 3?, respectively
with stride 1 and zero padding. Then, Max-pooling windows decline to 23 with stride of 2. The output
of the last pooling layer is flattened out for the fully connected layer input. The fully connected layers
consist of 2024, 1024, 512 neurons, respectively. The last step is to use a Softmax level for activity
recognition.

2.5.2 Contact Detection Network

For contact detection, a deep network which is shown in Figure 2 is proposed. In this scheme, a
1D-CNN which is a multi-layered architecture with each layer consisting of few one-dimensional
convolution filters, is used. In this research, just two links of the robot which are more likely to be
used as contact points during physical human-robot collaboration, considered which indeed, does
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not influence the general approach used in this paper; Therefore, it includes one network for
classification of 5 states, which were defined as:

¢ No-Contact: no contact is detected within the specified sensitivity
e Intentional Linkb: an intentional contact at robot link 5 is detected

e Incidental Link5: a collision at robot link 5 is detected

e Intentional Linké: an intentional contact at robot link 6 is detected

e Incidental Linké6: a collision at robot link 6 is detected
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Figure 2. Contact Detection Network Diagram.
Input vector
In this paper, the input vector represents a time series of robot data as
0 -0 .
7 Tew q° ¢
1 L1 1 41
T
] K @
wooW W
T Text ( q
and
AR (Y S A S S S ®)
7 =755 75 5. gs e 1
. . . . . ) . . 4)
L —_ L L L L L L L (
Text = [Textl Text2 Text3 Text4 Texts Texte Text ?]
, L ()
¢ =|aid a5 dias ai a7
(6)

q =|[aiaqsdaialal gt

where 1), Tex, q, and q' indicate joint torque, external torque, joint position, and joint velocity,
respectively. W is the size of a window over the collected signals which stores time-domain samples
as an independent instance for training the proposed models. Hence, the input vector is Wx28, and
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in this research, by selecting 100, 200, and 300 samples for W, three different networks were trained
to compare the influence of this parameter.

Layers

As shown in Figure 2, the designed CNN is composed of eleven layers. In the first layer of this
model, the convolution process maps the data with 160 filters. The kernel size of this layer is optimally
considered 5 to obtain a faster and sensitive enough human contact status; a parameter higher than
5 led to an insufficient network’s response as it is more influenced by past data rather than near to
present data. To normalize the data and avoid overfitting, especially due to the different maximum
force patterns of every human, a Batch Normalization is used in the second layer. Furthermore, the
size of all max pooling layers is chosen as 2, and ReLU function is considered as the activation
function, due to reasons already mentioned before.

2.6 Data Collection

2.6.1 Human Action Recognition

The HAR data is collected simultaneously from different views by two Kinect V2 cameras
recording the scene of an operator moving next to a robot performing repetitive motions. The human
skeleton is detected using the Kinect library based on the random Forest decision method [77]. As the
Kinect V2 library in Linux is not precise and does not project human skeleton in RGB images, the 3D
joint position in depth coordination was extracted and converted to RGB coordinates as follows:

PDygy  Cargp X PDyg — Cxg X PDyygy )
PDyy PDyrgp X PDyg @)

Xrgh = Xd X

PD}'r_f}'b Cyr_fjrb X PD},d - Cyd X PDyr_fjrb (8)
PD,, PD,,,, X PD,g

yr_f;rb =Va X

where (Cxgb, Cyrgo) and (Cxd, Cya) are RGB and depth image centers, respectively. PD shows the
number of pixels per degree for depth and RGB images, respectively equal to 7x7 and 22 x20 [78, 79].
Then, the RGB images, which are supplemented with the skeleton representation in each frame, are
collected as dataset. The sample rate by considering the required time for saving the images was 22
frames/second. Both cameras start collecting data once the human operator enters the environment
while it is assumed that the robot is stationary in a structured environment. The collected images are
then sorted into 5 different categories and labeled accordingly based on the skeleton position and
configuration and with respect to the fixed base position of the robot.

2.6.2 Contact Detection

The data acquired at the robot joints during a predefined motion with a speed of 0.5 m/s were
collected in three states, contact-free, during interaction with the operator, and collision-like contacts,
at a sampling rate of 200Hz (one sample per 5ms). In this part, collecting collision-like contact data is
challenging as the dedicated operator induces the collision intentionally [70]; However, the collision
can be considered to happen like in a normal situation where the human is standing with no motion
and the robot is performing its task, while the impact happens. Indeed, a data analysis shows, that it
can be clearly distinguished from object and intentional contacts and therefore can be used at least as
similar samples of real collision data. Then, a frame of W-window with 200ms latency passed through
the entire data gathered, preparing it to be used as training data for the input layer of the designed
network. Thanks to the default cartesian contact detection ability of the Panda robot, those contact
data is used as a trigger to stop recording data after contact occurrence. Consequently, the last W-
samples of each collision trial data is considered as input for training the network. For assuring
comprehensiveness of the gathered data, each trial is repeated 10 times with different scenes,
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including touched links, direction of motion, line of collision with the human operator, and contact
type (intentional or incidental). Additionally, each sample is labeled according to the mentioned
sequence.

2.7 Training hardware and API setup

In the training of a network by using Graphic Processor Units (GPU), memory plays an
important role in reducing the training time. In this research, a powerful computer with NVIDIA
Quadro P5000 GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and
training the CNN networks using the Keras library of TensorFlow. To enable CUDA and GPU-
acceleration computing, a GPU version of TensorFlow is used, and in consequence, the training
process is speeded up. The total runtime of the vision network trained with 30,000 image sequences
was about 12 hours for 150 epochs, while it was less than 5 minutes for training contact networks.

2.8 Real time interface

The real-time interface for collecting the dataset and implementing the trained network on the
system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 3 shows the
hardware and software structure used in this work. Two computers execute the vision networks for
each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore, CDN
and CDM are executed on another PC at the same rate, connected to the robot controller for receiving
the robot torque, velocity and position data of joints 5 and 6.

Software

Hardware Linux D5

Ubuwntu 18.04 LTS

—

NVIDIA Quadro
K4200

Robot Operating System (ROS)

16 GB RAM = Python —E
a -
| - %

EECETY

- . Central
Intel Xeon CPU Decision CIHA'F:' CON
| Maker assifier Classifier

—— Data

‘ Cameras | ‘ Robot

Figure 3: Real-time interface of complex system

3. Results

In order to evaluate the performance of the proposed system, the following metrics is used. A
first evaluation consists of an offline testing, for which the results are compared based on the key
figures precision, recall, and accuracy, defined as follows:

Procisi tp
recision = ——
tp +fp €)
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where tp is the amount of the predicted true positive samples, tn is the number of data points labeled
as negative correctly, fp represents the amount of the predicted false positive samples, and fx is the
count of predicted false positive classes.

The second evaluation is based on real-time testing; The tests have shown promising results in
early trials, the following YouTube video gives an impression of the performance (Due to safety
reasons the velocity of the robot is reduced to an amount which is considered to be safe according to
ISO 10218).
https://www.youtube.com/watch?v=ED_wH9BF]ck

3.1 Dataset

Regarding the vision category, the dataset consisting of 33050 images is divided into 5 classes,
including Interaction, Observation, Passing, Fail, and Dangerous Observation, Figure 4 representing
the different possible actions of a human operator during robot operation. The contact detection
dataset [80] with 1114 samples is subdivided into 5 classes, namely No-contact, Intentional_Link5,
Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact state on the last
two links including their respective type, incidental or intentional.

3.2 Comparison between Networks

3.2.1 Human action recognition

For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter
indicating a significant outcome in both real-time and off-line testing cases. These two networks are
compared with respect to the results of 150 training epochs, in Table 1. The confusion matrix can be
considered as a good measurement to deliver the overall performance in the multi-category
classification systems. As it is shown in Table 2, each row of table represents the actual label, and
each column indicate the predicted labels, which can also show the number of fail prediction in every
class. As shown in Table 1, both networks have promising result in classifying “Interaction”,
“Passing”, and “Fail” states. However, these networks have lower, but sufficient, accuracy in
classifying the “Dangerous Observation” category due to the lack of 3rd dimensional (depth)
information in the network input. By considering the confusion matrix shown in Table 2, it is obvious
that the networks did not precisely distinguish between “Interaction”, “Observation” and
“Dangerous Observation” caused by the similarity of these three classes. With regard to the condition
of the experimental setup where the location of cameras and robot base are fixed, the current
approach has enough accuracy but for a real industry case, we need to add a true 3D representation
of the human skeleton and the robot arm in our network input.

Table 1: Precision and Recall of two trained networks for Human Action Recognition

Network 2D 3D
Precision Recall Precision Recall

Observation 0.99 0.99 1.00 1.00
Interaction 1.00 1.00 1.00 1.00
Passing 1.00 1.00 1.00 1.00
Fail 1.00 1.00 1.00 1.00
Dangerous Observation 0.98 0.96 0.98 0.99

Accuracy 0.9956 0.9972
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Table 2: Confusion Matrix for different classes in HRC

Network 2D 3D
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Observation 3696 7 2 0 5 3751 6 2 1 7
% Interaction 13 4130 0 0 1 8 4030 0 0 0
E Passing 2 0 1145 0 0 1 0 1160 0 0
g Fail 0 0 0 593 0 0 0 0 588 0
& Dangerous 12 1 0 0 313 2 0 0 0 359
Observation

(d) (e)

Figure 4: Type of human actions: (a) Passing: Operator is just passing by, without paying attention to
the robot; (b) Fail: Blind spots or occlusion of the visual field may happen for a camera, in this situation
the second camera takes over detection; (c) Observation: Operator enters the working zone, without
any interaction intention and stands next to the robot; (d) Dangerous Observation: Operator
proximity is too close, especially his head is at danger of collision with the robot; (e) Interaction:
Operator enters the working zone and prepares to work with the robot.
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3.2.2 Contact detection

To evaluate the influence of the size of the sampling window (w) on the precision of the trained
networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to
0.5,1, 1.5 seconds of sampling period duration. 70% of the dataset is selected for training and 30% for
testing. Each network is trained with 300 epochs and the results are shown in Table 3 and Table 4.
Window size of 200 and 300 unities provide a good precision for identifying the contact status, in
contrast to w =100 which is not satisfactory. Furthermore, by comparing the result of the 200-window
and 300-window networks, the 200-window network provides a better precision and recall.

Table 3: Precision and recall of trained networks for contact detection with different window size

w 100 200 300 100 200 300
Precision Recall
No-Contact 0.94 0.99 0.98 0.94 1.00 1.00
Intentional_Link5 0.74 0.91 0.89 0.84 0.91 0.84
Intentional_Link6 0.68 0.97 0.91 0.64 0.90 0.91
Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89
Incidental_Linké 0.69 0.96 0.96 0.57 0.96 0.93
Accuracy 0.78 0.96 0.93
Table 4: Confusion matrix of trained networks for contact detection with different window size
Window Size 100 200 300
¢ 2 2 £ £|% 2 2 8 £/ 2 2 & ¢
9) 9) = o 9) 9) = = 9) 19 5 =
e 2 2 8 2|8 2 2 B 8|8 5 2 § B
C S il =S e e R G =S ol o —
& ¢ o B 2|18 © o E K |3 oo E £
- 2 2 2 |- 2 B & |7 Z B & =
& & & g 5 5 & % 5 5 & &
No-Contact 16 0 9 0 1 24 0 3 0 1 16 0 3 0 0
6 2 7
@ Intentional_Link5 86 12 19 0 93 4 4 1 86 5 5 1
()
Q
ﬁ Intentional_Link6 8 1 59 2 17 0 3 83 0 0 0 5 84 0 3
[}
E Incidental_Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0
Incidental_Link6 3 0 11 0 31 0 0 2 0 52 0 1 0 1 50

3.2.3. Mixed Perception Safety monitoring

Every perception system designed separately to detect human intention according to Figure 5
(a, b), is regarded as a preliminary condition for the mixed perception system shown in Figure 5 (c).
As shown in Figure 5, for proper safety monitoring, the robot is programmed to categorize human
safety into three levels, Safe, Caution, and Danger, with its respective color-codes green/yellow,
orange, and red. Safe level consist of two states, indicating whether the cobot has physical contact
with human (yellow) or not (green). Considering only visual perception or only tactile perception in
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determining the safety level does not provide sufficient information compared to the mixed
perception system. For instance, in Green Safe state of mixed perception, the robot can have a higher
speed and in consequence, increased productivity, while in the other perception systems, Green Safe
does not give this confidence to the robot to be faster, consequently it should be more conservative
about possible collisions. Thus, this higher information content can increase human safety and the
robot’s productivity of pHRC systems. Already a simple logical composition of the results (Figure 5
(c)) shows a significantly higher information content and thus a possible increase in safety and
productivity in human-robot collaboration. However, it might be, that the mixed perception
approach will have multiple effects on the safety of HRC. Therefore, we will examine in detail the
influence of the two subsystems on the overall performance and quality of the entire system at a later

stage.
Vision Perception Contact Perception
Passing Observation | Interaction | Dangerous Fail | No Contact Incidental Intentional
Observation
fv"o f’."
safe safe Safe | [MTYTN | Caution sate Danger Safe
(a) (b)
Visual Perception
Passing Observation | Interaction Dangerous Fail

Observation

No Contact |—» Safe Safe Safe QFTYES | Caution

y**e

Intentional |—» Danger Caution Safe DETIS: | Caution

OEE T e S Dan cer il BiiDanzer i liDanzeriiliDangeri liDange

Tactile Perception

(c)

Figure 5: Safety perception spectrum in a) Visual Perception, b) Contact Perception, c¢) Mixed

Perception safety systems

4. Discussion

Human-Robot Collaboration has recently gained a lot of interest and received many
contributions on both theoretical and practical aspects, including sensor development [81], design of
robust and adaptive controllers [82, 83], learning robots force-sensitive manipulation skills [84],
human interfaces [85, 86] and the like. Besides, some companies attempt to introduce collaborative
robots in order HRC to become more suited to enter manufacturing applications and production
lines. However, cobots available on the market have limited payload/speed capacities because of
safety concerns, which limits HRC application to some light tasks with very limited productivity. On
the other hand, according to the norms for HRC operations [87], it is not essential to observe a strict
design or to limit the power of operations if human safety can be ensured in all its aspects. In this
regard, an intelligent safety system as the mixed perception approach has been proposed in this
research to detect hazardous situations to take care of the human safety from entering the shared
workspace to physical interaction in order to jointly accomplish a task by taking advantage of visual
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and tactile perceptions. Visual perception detects human actions in the shared workspace;
Meanwhile, tactile perception identifies human-robot contacts. One of the relevant researches in
human action recognition focusing on industrial assembly application is mentioned in [88]. By taking
advantage of RGB image and 3D CNN network, the authors of the mentioned paper classified human
action during assembly and achieved 82% accuracy [88], while our visual perception system shows
higher accuracy of 99.7% by adding human skeleton to the RGB series as the network input. Although
our skeleton detection using Kinect library can be slightly affected by lighting conditions, it detects
the human skeleton in near 30 FPS, which is essential for fast human detection in real-time HRC
applications [89]. Indeed, using deep learning approaches like OpenPose [90] and AlphaPose[91] can
omit lightening problems [92]; However, their respective detection rate are 22 [90] and 23 FPS [91],
which needs more researches to be faster and applicable in safety monitoring systems. Besides,
among contact detection approaches in the state of the art, there are two similar works investigating
collision detection using 1D-CNN. The authors of [93] compared both approaches, CollisionNet [70]
and FMA [93], where the accuracy was 88% and 90%, respectively, featuring a detection delay of
200ms [93]; While our procedure in tactile perception (what is called collision detection in the state
of the art literature [59, 70, 74, 75]) reached 99% with 80ms detection delay. For detecting contact type
and robot joint, the accuracy was higher than 89% up to 96% which in turn needs more research to
achieve a higher accuracy.

In this study, combining the result of both abovementioned intelligent systems is presented
using a safety perception spectrum to examine the potential of the mixed perception approach in
safety monitoring of collaborative workspaces. The result shows that even with a simple combination
of both systems, the performance of safety monitoring can be improved as each system separately
doesn’t have enough perception of the collaborative workspace. Furthermore, this research suggests
that the different forms of collaboration such as coexistence, cooperation, etc. with their different
safety requirements can be reduced to a single scenario using mixed perception as the robot would
be able to “see” humans and “percept” external contacts.

As a result of this safety scenario, the robot reacts by being able to detect human intention,
determining human safety level, and thus ensuring safety in all work situations. Another advantage
of the proposed system is that the robot would be smart enough to take care about safety norms
depending on the conditions and consequently, could operate at an optimum speed during HRC
applications. In other words, current safety requirements in most cases stop or drastically slow down
the robot when human enters a shared workspace. However, with the proposed safety system, based
on the robots” awareness using the presented mixed perception approach, it is possible to implement
a reasonable trade-off between safety and productivity, which will be discussed in more detail in our
future research.

In this research, there are two limitations concerning data collection: the collision occurred
intentionally, and we did not gather data when the human and/or the robot move at high speed,
which can be extremely dangerous for the human operator. As can be prooved, the speed of the robot
has an insignificant influence on the result, since the model has learned the dynamics of the robot in
the presence or absence of human contact with normalized input data. On the other hand, if the
human operator wants to grab the robot at high speed with the intention of working with it, this
could be classified as a collision by the model due to its clear difference between contactless and
intentional data patterns. However, this only increases the false positive error of the collision class
(i-e. this would then be mistakenly perceived as a collision by the robot), which does not represent a
safety problem in this case.

In addition, the current work focuses on a structured environment with fixed cameras and a
stationary robot base position, which has yet to be generalized for an unstructured environment. In
principle, however, this does not restrict the generality of this approach, since for cobots only the
corresponding position of the robot base has to be determined for the proximity detection to a human
operator. In our ongoing work, we are trying to use some methods to tackle these problems.
Moreover, with the current software and hardware, a sampling rate of HAR and contact detection
networks are 30 Hz and 200Hz, respectively, while for the mixed perception system, there is a need
of synchronization of the result of both systems.
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5. Conclusion

The efficiency of safety and productivity of cobots in HRC can be improved if cobots are able to
easily recognize complex human actions and can differentiate between multitude contact types. In
this paper, a safety system using a mixed perception is proposed to improve the productivity and
safety in HRC applications by making the cobot aware of human actions (visual perception), with the
ability to distinguish between intentional and incidental contact (tactile perception). The Vision
perception system is based on a 3D CNN algorithm for human action recognition, which unlike the
latest HAR methods, was able to achieve 99.7% accuracy in an HRC scenario. The HAR system is
intended to detect human action once the latter enters the workspace and only in case of hazardous
situations, the robot would adapt its speed or stop accordingly which can lead to higher productivity.
On the other hand, the tactile perception by focusing on the contact between robot and human, can
decide about the final situation during pHRC. The contact detection system by taking advantage of
the contact signal patterns and 1D-CNN network, was able to distinguish between the incidental and
intentional contact and recognize the impacted cobot’s link. According to the experimental result,
with respect to traditional and new methods, our proposed model is obtained the highest accuracy
of 96% in tactile perception.

Yet, based on our experimental results, visual and tactile perceptions are not sufficient enough
separately for intrinsically safe robotic applications, since each system exhibits some lack of
information which may cause less productivity and safety. By considering this fact, the mixed
perception, by taking advantage of both visual and tactile perception, can enhance productivity and
safety. Although a simple safety perception spectrum of the mixed perception is proposed which
needs more research to enhance its intelligence, it shows higher resolution in compared to each single
perception system.

As a future work for our system, we will extend our research regarding to multi-contact and
multi-person detection which is highly beneficial for the latest Industry 4.0 safety considerations.
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