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Abstract: Digital enabled manufacturing systems require high level of automation for fast and low-

cost production but should also present flexibility and adaptiveness to varying and dynamic 

conditions in their environment, including the presence of human beings; However, this presence 

of workers in the shared workspace with robots decreases the productivity as the robot is not aware 

about the human position and intention which leads to concerns about the human safety. This issue 

is addressed in this work by designing a reliable safety monitoring system for collaborative robots 

(Cobots). The main idea here is, to significantly enhance safety by a combination of recognition of 

human actions using visual perception and at the same time interpreting physical human-robot 

contact by tactile perception. Two datasets containing contact and vision data are collected by using 

different volunteers. The action recognition system classifies human actions using the skeleton 

representation of the latter when entering the shared workspace and the contact detection system 

distinguishes between intentional and incidental interactions if a physical contact between human 

and cobot takes place. Two different deep learning networks are used for human action recognition 

and contact detection which in combination, are expected to lead to the enhancement of human 

safety and an increase of the level of cobot perception about human intentions. The results show a 

promising path for future AI-driven solutions in safe and productive human–robot collaboration 

(HRC) in industrial automation. 

Keywords: Safe physical Human-Robot Collaboration, collision detection, human action 

recognition, artificial intelligence, industrial automation 

 

1. Introduction 

As the manufacturing industry evolves from rigid conventional procedures of production to a 

much more flexible and intelligent way of automation within the frame of the Industry 4.0 paradigm, 

human-robot collaboration (HRC) has gained rising attention [1,2]. To increase manufacturing 

flexibility, the present industrial need is to develop a new generation of robots that are able to interact 

with human and support operators by leveraging tasks in terms of cognitive skills requirements [1]. 

Consequently, the robot becomes a companion or so-called collaborative robot (Cobot) for flexible 

task accomplishment rather than a preprogrammed slave for repetitive, rigid automation. It is 

expected that cobots actively assist operators in performing complex tasks, with highest priority on 

human safety in cases humans and cobots need to physically cooperate and/or share their workspace 

[3]. This is problematic because the current settings of cobots do not provide an adequate perception 

of human presence in the shared workspace. Although there are some safety monitoring systems [4-

7], they can only provide a real or virtual fence for the cobot to stop or slow down when an object, 

including a human being, enters the defined safety zone. However, this reduces productivity in two 

ways as follows: 
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1. It is not possible to differentiate between people and other objects that enter the workspace of 

the cobot. Therefore, the speed is always reduced regardless of the object. 

2. It is also not possible to differentiate whether an interaction with the robot should really take 

place or not; this also always forces a maximum reduction in speed. 

This issue can only be tackled by implementing a cascaded, multi-objective safety system which 

primarily recognizes human actions and detects human-robot contact [4] to percept human intention 

in order to avoid collisions. Therefore, the primary goal of this work is to conduct a step-change in 

safety for HRC in enhancing the perception of cobots by providing visual and tactile feedback to the 

robot from which it is able to interpret the human intention. The task is divided into two parts, 

Human Action Recognition (HAR) using visual perception and contact type detection using tactile 

perception which will be subsequently investigated. Finally, by combining these subsystems, it is 

considered to attain a more reliable and intelligent safety system which takes advantage of 

considerably enhanced robot perceptional abilities. 

1.1 Human Action Recognition (HAR) 

Based on the existing safety regulation related to HRC applications and by inspiring from 

human perception and cognition ability in different situations, adding the visual perception to the 

cobot can enhance HRC performance. Nevertheless, the main challenge is how cobots are able to 

adapt to human behavior. HAR as part of visual perception plays a crucial role in overcoming this 

challenge and increasing productivity and safety. HAR can be used to allow the cobot keeping a safe 

distance with its human counterpart or the environment, ensuring an essential requirement for 

fulfilling safety in shared workspaces. Recent studies have been concentrated on visual and non-

visual perception systems to recognize human actions [5]. One method amongst non-visual 

approaches consists of using wearable devices [6–11]; Nevertheless, applying this technology as a 

possible solution for an industrial situation seems at present neither feasible nor comfortable in 

industrial environments because of restrictions that it will imposed to the operator’s movements. On 

the other hand, active vision-based systems are widely used in such applications for recognizing 

human gestures and actions. In general, vision based HAR approaches consist of two main steps: 

proper human detection and action classification. 

As alluded by recent researches, machine learning methods are essential in recognizing human 

actions and interpreting them. Some traditional machine learning methods such as Support Vector 

Machine (SVM) [12–14], Hidden Markov Model (HMM) [19, 20], Neural Networks [21, 22] and 

Gaussian Mixture Models (GMM) [23, 24], have been used for human action detection with a reported 

accuracy of about 70 to 90 percent. On the other hand, Deep Learning (DL) algorithms prevail as a 

new generation of machine learning algorithms with significant capabilities in discovering and 

learning complex underlying patterns from a large amount of data [21]. This algorithm provides a 

new approach to improve the recognition accuracy of human actions by using depth data provided 

by time-of-flight, depth or stereo cameras, extracting human location and skeleton pose. DL 

researchers either use video stream data [26, 27], RGB-D images [28 – 31] or 3D skeleton tracking and 

joints extraction [32 – 35] for classification of arbitrary actions. Among different types of Deep 

networks, Convolutional Neural Networks (CNN) stand for a popular approach which can be 

represented as 2D or 3D network in action recognition but still needs a large set of labeled data for 

training and contains many layers. The first 3D CNN for HAR has been introduced by [36 – 38] 

providing an average accuracy of 91 percent. Recent researches based on 3D CNN techniques [39 – 

42] have obtained a high performance on the KTH dataset [39] in comparison to 2D CNN networks 

[43 – 46]. Yet, the maximum accuracy of these researches is reported to be at 98.5 percent but being 

not capable of classifying in real-time. Also, most of these articles mainly focus on action classification 

based on domestic scenarios [19, 47], only few have an approach for industrial scenarios [48 – 50] and 

a restricted number works on unsupervised human activities in presence of mobile robots [49]. Thus, 

there is a need to introduce a fast and more precise network for HAR in industrial applications which 

can be presented as a new 3D network architecture by considering an outperforming result in action 

classification. 
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In this work, we use a deep learning approach for real-time human action recognition in an 

industrial automation scenario. A convolutional analysis is applied on RGB images of the scene in 

order to model the human motion over the frames by skeleton-based action recognition. The artificial 

intelligence based human action recognition algorithm provides the core part for distinguishing 

between collision and intentional contact. 

1.2 Contact Type Detection 

In more and more HRC applications, there is a need of having direct, physical collaboration 

between human and cobot, physical Human-Robot Collaboration (pHRC) due to an unmatched 

degree of flexibility in the execution of various tasks. Indeed, when a cobot is performing its task, it 

should be aware of its contact with human. Also, from a cobots point of view, the type of this contact 

is not immediate obvious, due to the fact that the cobot cannot distinguish whether a human gets in 

contact with the robot incidentally or intentionally, when a collaborative task is executed; Therefore, 

it is important that the cobot needs to percept human contact with deeper understanding. Towards 

this goal, it is imperative firstly, to detect the human-robot contact and secondly, distinguish between 

intentional and incidental contacts, a process called collision detection. Some researchers propose 

sensor-less procedures for detecting a collision based on the robot dynamics model [52, 53], but  

through momentum observers [52, 54 – 57], using extended state observers [56], vibration analysis 

models [57], finite-time disturbance observers [54], energy observers [55], or joint velocity observers 

[58]. Among these methods, the momentum observer is the most common method of collision 

detection because it provides better performance compared to the other methods, although the 

disadvantage is, that it requires precise dynamic parameters of the robot [59]. For this reason, 

machine learning approaches like artificial neural networks [62 – 64] and deep learning [65, 66] have 

recently been applied for collision detection based on robot sensors´ stream data due to their 

performance in modeling the uncertain systems with lower analytics effort.  

Deep neural networks are extremely effective in feature extraction and learning complex 

patterns [65]. Recurrent neural networks (RNN) like long short-term memory network approaches 

(LSTM) are frequently used in researches for processing time series and sequential data [66 – 69]. 

However, the main drawback of this network is the difficulty and time consumption for training in 

comparison to convolutional neural networks (CNN) [70]. Additionally, current researches showed 

that CNN has a great performance for image processing in real time situations [22, 71 – 73] where the 

input data is much more complicated than 1D time series signals. As proposed in [70], a 1D-CNN, 

named CollisionNet, has a proper potential in detecting collision, although only incidental contacts 

have been considered. Moreover, depending on whether the contact is intentional or incidental, the 

cobot should provide an adequate response which in every case ensures the safety of the human 

operator. At this step, identifying the cobot link where the collision occurred, is an important 

information for anticipating proper robot reaction which needs to be considered in contact perception 

[59].  

With this background and considering the fact that contact properties´ patterns of incidental and 

intentional states are different according to the contacted link, we aim to use supervised learning, 

convolutional neural network, to have a model-free contact detection. Indeed, not only does the 

proposed system detect the contact, which in other papers [59, 70, 74, 75] is named collision detection, 

it can also recognize the types of contact, incidental or intentional, provide information about 

contacted link, and consequently increase the robot awareness and perception about human intention 

during physical contact.  
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2. Material and Methods 

2.1. Mixed perception Terminology and design 

We hypothesize that combining two types of perception, visual and tactile, in a Mixed 

Perception approach can enhance the safety of human during collaborating with a robot by additional 

information to the robot's perception spectrum. It is easy to imagine that a robot then would be able 

to see and feel a human in its immediate vicinity at the same time. Using visual perception, a robot 

can notice: 

• a human entering the shared workspace (Passing), 

• a human observing its tasks when he/she is near to the robot and wants to supervise 

the robot task (Observation), 

• a dangerous situation when the human is not in a proper situation to do collaboration 

or observation which can threaten human safety (Dangerous Observation), 

• a human interaction when the human is close to robot and doing the collaboration 

(Interaction). 

However, it is difficult using a pure vision-based approach to distinguish between dangerous 

observation and interaction and to differentiate between incidental and intended contact types not 

only for a machine but also for a human. Therefore, at this stage, considering both types of perception, 

vision and haptics, is of significance. As indicated above, this approach is able to increase the safety 

and can be like a supervisory unit to the vision part as the latter can fail due to occlusion effects. 

To support our hypothesis, we first choose the approach of developing two separate networks 

for human action and contact recognition, which meet the requirements for human-robot 

collaboration and real-time capability. These networks will be examined and discussed with regard 

to their appropriateness and their results. As a first step, we want to determine in this paper whether 

a logical correlation of the outputs of the two networks is theoretically able to provide a reasonable 

expansion of the perception spectrum of a robot for human-robot collaboration. We want to find out 

what the additional information content is and how it can specifically be used to further increase the 

safety and with that possibly also additional performance parameters of HRC solutions like short 

cycle time, low downtime, high efficiency and high productivity. The concrete merging of the two 

networks in a common application represents an additional stage of our investigations, which is not 

subject of this work. The results of the present investigation however shall provide evidence that the 

use of AI in robotics is able to open up significant new possibilities and enables robots to achieve 

their operational objectives in close cooperation with humans. Enhanced perceptional abilities of 

robots are future key features to shift the existing technological limits and open up new fields of 

application in industry and beyond. 

2.2. Robotic Platform 

The accessible platform used throughout this project is a Franka Emika robot (Panda), 

recognized as a suitable collaborative robot in terms of agility and contact sensitivity. The key 

features of this robot will be summarized hereafter; It consists of two main parts, arm, and hand. The 

arm has 7 revolute joints and precise torque sensors (13 bits resolution) at every joint, is driven by 

high efficiency brushless dc motors, and has the possibility to be controlled by external or internal 

torque controllers at a 1 kHz frequency. The hand is equipped with a gripper which can securely 

grasp objects due to a force controller. Generally, the robot has a total weight of approximately 18 kg 

and can handle payloads up to 3 kg. 

2.3. Camera Systems 

The vision system is based on a multi-sensor approach using two Kinect V2 cameras for 

monitoring the environment to tackle the risk of occlusion. The Kinect V2 has a depth camera with 

resolution of 512 x 424 pixels with a field of view (FoV) of 70.6° x 60° and the color camera has a 
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resolution of 1920 x 1080px with a FoV of 84.1° x 53.8°. So, this sensor as one of the RGB-D Cameras 

can be used for human body and skeleton detection.  

2.4. Standard robot collision detection: 

A common collision detection approach is defined as [59] 

 

         True       if |μ(t)|> ϵµ                                    

 cd(μ(t)) =                                                   

     False     if |μ(t)|≤ ϵµ  

 

(1) 

where cd is the collision detection output function which maps the selected monitoring signal μ(t) 

like external torque into a collision state, true or false. ϵµ indicates a threshold parameter, which 

determines the sensitivity for detecting a collision.  

2.5. Deep learning approach 

A Convolutional Neural Network (CNN) model performs classification in an end-to-end 

manner and learns data patterns automatically which is different to the traditional approaches where 

the classification is done after feature extraction and selection [76]. In this paper, a combination of 

3D-CNN for HAR and 1D-CNN for contact type detection has been utilized. The following 

subsections describe each network separately. 

2.5.1 Human Action Recognition Network 

Since human actions can be interpreted by analysing the sequence of human body movements 

involving arms and legs and placing them in a situational context, the consecutive skeleton images 

are used as inputs for our 3D-CNN network which was successfully applied for real-time action 

recognition. In this section, the 3D-CNN, which is shown in Figure 1, classifies HAR to five states, 

namely: Passing, Observation, Dangerous Observation, Interaction, and Fail. These categories are 

based on the most feasible situations which may occur during human-robot collaboration: 

• Passing: a human operator occasionally needs to enter the robot’s workspace which 

is speciefied due to the fix position of the robot but without any intention to actively 

intervene the task execution of the robot. 

• Interaction: a human operator wants to actively intervene the robot’s task execution, 

which can be the case due to correct a TCP path or to help the robot if it gets stuck. 

• Observation: the robot is working on its own and a human operator is about to 

observe and check the working process from within the robot’s workspace. 

• Dangerous Observation: the robot is working on its own and a human operator is 

about to observe the working process. Due to the proximity of exposed body parts 

(head and upper extremities) to the robot in the shared workspace, there is a high 

potential of life-threatening injury in case of a collision. 

• Fail: one or all system cameras are not able to detect the human operator in the 

workspace due to occlusion by the robot itself or other artefacts in the working area. 

Input layer  

The input layer has 4 dimensions, Nchannel × Nimage-height × Nimage-width × Nframe. The RGB image of 

Kinect V2 has a resolution of 1980×1080 pixels which is decreased to 320×180 for reducing the 

trainable parameters and network complexity. So Nchannel, Nimage-height, and Nimage-width are 3, 180, and 320 

respectively. Nframe indicates the total number of frames in the image sequence which is 3 in this 

research. 

Layers 

As shown in Figure 1, the proposed CNN is composed of fifteen layers, consisting of four 

convolutional layers, four pooling layers, three fully connected layers followed by three dropout 
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layers and a Softmax layer for predicting actions. Convolutional layers utilize for feature extraction 

by applying filters and pooling layers specifically use to reduce the dimensionality of the input. This 

layer performs based on the specific function, such as max pooling or average pooling, which extracts 

the maximum or medium value in a particular region. Fully connected layers are like a neural 

network for learning non-linear features as represented by the output of convolutional layers. In 

addition, dropout layers as a regularization layer try to remove overfitting in the network. Over 10 

million parameters have to be trained for establishing a map to action recognition. 

 

Figure 1: 3D CNN for Human Action Recognition 

The input layer is followed by a convolution layer with 96 feature maps of size 73. Subsequently, 

the output is fed to the Rectified Linear Unit (ReLU) activation function. ReLU is the most suitable 

activation function for this work, as it is specifically designed for image processing and it can keep 

the most important features of the input. In addition, it is easier to train and usually achieves better 

performance, which is significant for real-time applications. Next layer is a max-pooling layer with 

size and stride of 3. The filter size of the next convolutional layers decreases to 53 and 33 , respectively 

with stride 1 and zero padding. Then, Max-pooling windows decline to 23 with stride of 2. The output 

of the last pooling layer is flattened out for the fully connected layer input. The fully connected layers 

consist of 2024, 1024, 512 neurons, respectively. The last step is to use a Softmax level for activity 

recognition. 

2.5.2 Contact Detection Network 

For contact detection, a deep network which is shown in Figure 2 is proposed. In this scheme, a 

1D-CNN which is a multi-layered architecture with each layer consisting of few one-dimensional 

convolution filters, is used. In this research, just two links of the robot which are more likely to be 

used as contact points during physical human-robot collaboration, considered which indeed, does 
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not influence the general approach used in this paper; Therefore, it includes one network for 

classification of 5 states, which were defined as: 

• No-Contact:      no contact is detected within the specified sensitivity 

• Intentional_Link5:    an intentional contact at robot link 5 is detected 

• Incidental_Link5:    a collision at robot link 5 is detected 

• Intentional_Link6:    an intentional contact at robot link 6 is detected 

• Incidental_Link6:    a collision at robot link 6 is detected 

 

Figure 2. Contact Detection Network Diagram. 

Input vector  

In this paper, the input vector represents a time series of robot data as 

 

(2) 

and 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

where τJ, τext, q, and q˙ indicate joint torque, external torque, joint position, and joint velocity, 

respectively. W is the size of a window over the collected signals which stores time-domain samples 

as an independent instance for training the proposed models. Hence, the input vector is W×28, and 
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in this research, by selecting 100, 200, and 300 samples for W, three different networks were trained 

to compare the influence of this parameter. 

Layers  

As shown in Figure 2, the designed CNN is composed of eleven layers. In the first layer of this 

model, the convolution process maps the data with 160 filters. The kernel size of this layer is optimally 

considered 5 to obtain a faster and sensitive enough human contact status; a parameter higher than 

5 led to an insufficient network’s response as it is more influenced by past data rather than near to 

present data. To normalize the data and avoid overfitting, especially due to the different maximum 

force patterns of every human, a Batch Normalization is used in the second layer. Furthermore, the 

size of all max pooling layers is chosen as 2, and ReLU function is considered as the activation 

function, due to reasons already mentioned before. 

2.6 Data Collection 

2.6.1 Human Action Recognition  

The HAR data is collected simultaneously from different views by two Kinect V2 cameras 

recording the scene of an operator moving next to a robot performing repetitive motions. The human 

skeleton is detected using the Kinect library based on the random Forest decision method [77]. As the 

Kinect V2 library in Linux is not precise and does not project human skeleton in RGB images, the 3D 

joint position in depth coordination was extracted and converted to RGB coordinates as follows: 

 

 

(7) 

 

 

(8) 

where (Cxrgb, Cyrgb) and (Cxd, Cyd) are RGB and depth image centers, respectively. PD shows the 

number of pixels per degree for depth and RGB images, respectively equal to 7×7 and 22 ×20 [78, 79]. 

Then, the RGB images, which are supplemented with the skeleton representation in each frame, are 

collected as dataset. The sample rate by considering the required time for saving the images was 22 

frames/second. Both cameras start collecting data once the human operator enters the environment 

while it is assumed that the robot is stationary in a structured environment. The collected images are 

then sorted into 5 different categories and labeled accordingly based on the skeleton position and 

configuration and with respect to the fixed base position of the robot.  

2.6.2 Contact Detection  

The data acquired at the robot joints during a predefined motion with a speed of 0.5 m/s were 

collected in three states, contact-free, during interaction with the operator, and collision-like contacts, 

at a sampling rate of 200Hz (one sample per 5ms). In this part, collecting collision-like contact data is 

challenging as the dedicated operator induces the collision intentionally [70]; However, the collision 

can be considered to happen like in a normal situation where the human is standing with no motion 

and the robot is performing its task, while the impact happens. Indeed, a data analysis shows, that it 

can be clearly distinguished from object and intentional contacts and therefore can be used at least as 

similar samples of real collision data. Then, a frame of W-window with 200ms latency passed through 

the entire data gathered, preparing it to be used as training data for the input layer of the designed 

network. Thanks to the default cartesian contact detection ability of the Panda robot, those contact 

data is used as a trigger to stop recording data after contact occurrence. Consequently, the last W-

samples of each collision trial data is considered as input for training the network. For assuring 

comprehensiveness of the gathered data, each trial is repeated 10 times with different scenes, 
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including touched links, direction of motion, line of collision with the human operator, and contact 

type (intentional or incidental). Additionally, each sample is labeled according to the mentioned 

sequence. 

2.7 Training hardware and API setup 

In the training of a network by using Graphic Processor Units (GPU), memory plays an 

important role in reducing the training time. In this research, a powerful computer with NVIDIA 

Quadro P5000 GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and 

training the CNN networks using the Keras library of TensorFlow. To enable CUDA and GPU-

acceleration computing, a GPU version of TensorFlow is used, and in consequence, the training 

process is speeded up. The total runtime of the vision network trained with 30,000 image sequences 

was about 12 hours for 150 epochs, while it was less than 5 minutes for training contact networks.  

2.8 Real time interface 

The real-time interface for collecting the dataset and implementing the trained network on the 

system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 3 shows the 

hardware and software structure used in this work. Two computers execute the vision networks for 

each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore, CDN 

and CDM are executed on another PC at the same rate, connected to the robot controller for receiving 

the robot torque, velocity and position data of joints 5 and 6. 

 

Figure 3: Real-time interface of complex system 

3. Results 

In order to evaluate the performance of the proposed system, the following metrics is used. A 

first evaluation consists of an offline testing, for which the results are compared based on the key 

figures precision, recall, and accuracy, defined as follows: 

 
(9) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2020                   



 
(10) 

  
(11) 

where tp is the amount of the predicted true positive samples, tn is the number of data points labeled 

as negative correctly, fp represents the amount of the predicted false positive samples, and fn is the 

count of predicted false positive classes.  

The second evaluation is based on real-time testing; The tests have shown promising results in 

early trials, the following YouTube video gives an impression of the performance (Due to safety 

reasons the velocity of the robot is reduced to an amount which is considered to be safe according to 

ISO 10218).  

https://www.youtube.com/watch?v=ED_wH9BFJck  

3.1 Dataset 

Regarding the vision category, the dataset consisting of 33050 images is divided into 5 classes, 

including Interaction, Observation, Passing, Fail, and Dangerous Observation, Figure 4 representing 

the different possible actions of a human operator during robot operation. The contact detection 

dataset [80] with 1114 samples is subdivided into 5 classes, namely No-contact, Intentional_Link5, 

Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact state on the last 

two links including their respective type, incidental or intentional. 

3.2 Comparison between Networks 

3.2.1 Human action recognition 

For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter 

indicating a significant outcome in both real-time and off-line testing cases. These two networks are 

compared with respect to the results of 150 training epochs, in Table 1. The confusion matrix can be 

considered as a good measurement to deliver the overall performance in the multi-category 

classification systems. As it is shown in Table 2, each row of table represents the actual label, and 

each column indicate the predicted labels, which can also show the number of fail prediction in every 

class. As shown in Table 1, both networks have promising result in classifying “Interaction”, 

“Passing”, and “Fail” states. However, these networks have lower, but sufficient, accuracy in 

classifying the “Dangerous Observation” category due to the lack of 3rd dimensional (depth) 

information in the network input. By considering the confusion matrix shown in Table 2, it is obvious 

that the networks did not precisely distinguish between “Interaction”, “Observation” and 

“Dangerous Observation” caused by the similarity of these three classes. With regard to the condition 

of the experimental setup where the location of cameras and robot base are fixed, the current 

approach has enough accuracy but for a real industry case, we need to add a true 3D representation 

of the human skeleton and the robot arm in our network input. 

Table 1: Precision and Recall of two trained networks for Human Action Recognition 

Network 2D 3D 

 Precision Recall Precision Recall 

Observation 0.99 0.99 1.00 1.00 

Interaction 1.00 1.00 1.00 1.00 

Passing 1.00 1.00 1.00 1.00 

Fail 1.00 1.00 1.00 1.00 

Dangerous Observation 0.98 0.96 0.98 0.99 

Accuracy 0.9956 0.9972 
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Table 2: Confusion Matrix for different classes in HRC 

 Network 2D 3D 
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Observation 3696 7 2 0 5 3751 6 2 1 7 

Interaction 13 4130 0 0 1 8 4030 0 0 0 

Passing 2 0 1145 0 0 1 0 1160 0 0 

Fail 0 0 0 593 0 0 0 0 588 0 

Dangerous 

Observation 

12 1 0 0 313 2 0 0 0 359 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 4: Type of human actions: (a) Passing: Operator is just passing by, without paying attention to 

the robot; (b) Fail: Blind spots or occlusion of the visual field may happen for a camera, in this situation 

the second camera takes over detection; (c) Observation: Operator enters the working zone, without 

any interaction intention and stands next to the robot; (d) Dangerous Observation: Operator 

proximity is too close, especially his head is at danger of collision with the robot; (e) Interaction: 

Operator enters the working zone and prepares to work with the robot. 
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3.2.2 Contact detection 

To evaluate the influence of the size of the sampling window (w) on the precision of the trained 

networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to 

0.5, 1, 1.5 seconds of sampling period duration. 70% of the dataset is selected for training and 30% for 

testing. Each network is trained with 300 epochs and the results are shown in Table 3 and Table 4. 

Window size of 200 and 300 unities provide a good precision for identifying the contact status, in 

contrast to w = 100 which is not satisfactory. Furthermore, by comparing the result of the 200-window 

and 300-window networks, the 200-window network provides a better precision and recall. 

Table 3: Precision and recall of trained networks for contact detection with different window size 

w 100 200 300 100 200 300 

 Precision Recall 

No-Contact 0.94 0.99 0.98 0.94 1.00 1.00 

Intentional_Link5 0.74 0.91 0.89 0.84 0.91 0.84 

Intentional_Link6 0.68 0.97 0.91 0.64 0.90 0.91 

Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89 

Incidental_Link6 0.69 0.96 0.96 0.57 0.96 0.93 

Accuracy 0.78 0.96 0.93    

Table 4: Confusion matrix of trained networks for contact detection with different window size 

 

Window Size 100 200 300 
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0 3 0 0 

Intentional_Link5 0 86 12 19 0 0 93 4 4 1 0 86 5 5 1 

Intentional_Link6 8 1 59 2 17 0 3 83 0 0 0 5 84 0 3 

Incidental_Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0 

Incidental_Link6 3 0 11 0 31 0 0 2 0 52 0 1 0 1 50 

3.2.3. Mixed Perception Safety monitoring 

Every perception system designed separately to detect human intention according to Figure 5 

(a, b), is regarded as a preliminary condition for the mixed perception system shown in Figure 5 (c). 

As shown in Figure 5, for proper safety monitoring, the robot is programmed to categorize human 

safety into three levels, Safe, Caution, and Danger, with its respective color-codes green/yellow, 

orange, and red. Safe level consist of two states, indicating whether the cobot has physical contact 

with human (yellow) or not (green). Considering only visual perception or only tactile perception in 
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determining the safety level does not provide sufficient information compared to the mixed 

perception system. For instance, in Green Safe state of mixed perception, the robot can have a higher 

speed and in consequence, increased productivity, while in the other perception systems, Green Safe 

does not give this confidence to the robot to be faster, consequently it should be more conservative 

about possible collisions. Thus, this higher information content can increase human safety and the 

robot’s productivity of pHRC systems. Already a simple logical composition of the results (Figure 5 

(c)) shows a significantly higher information content and thus a possible increase in safety and 

productivity in human-robot collaboration. However, it might be, that the mixed perception 

approach will have multiple effects on the safety of HRC. Therefore, we will examine in detail the 

influence of the two subsystems on the overall performance and quality of the entire system at a later 

stage. 

 
(a) 

 
(b) 

 
(c) 

Figure 5: Safety perception spectrum in a) Visual Perception, b) Contact Perception, c) Mixed 

Perception safety systems 

4. Discussion 

Human-Robot Collaboration has recently gained a lot of interest and received many 

contributions on both theoretical and practical aspects, including sensor development [81], design of 

robust and adaptive controllers [82, 83], learning robots force-sensitive manipulation skills [84], 

human interfaces [85, 86] and the like. Besides, some companies attempt to introduce collaborative 

robots in order HRC to become more suited to enter manufacturing applications and production 

lines. However, cobots available on the market have limited payload/speed capacities because of 

safety concerns, which limits HRC application to some light tasks with very limited productivity. On 

the other hand, according to the norms for HRC operations [87], it is not essential to observe a strict 

design or to limit the power of operations if human safety can be ensured in all its aspects. In this 

regard, an intelligent safety system as the mixed perception approach has been proposed in this 

research to detect hazardous situations to take care of the human safety from entering the shared 

workspace to physical interaction in order to jointly accomplish a task by taking advantage of visual 
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and tactile perceptions. Visual perception detects human actions in the shared workspace; 

Meanwhile, tactile perception identifies human-robot contacts. One of the relevant researches in 

human action recognition focusing on industrial assembly application is mentioned in [88]. By taking 

advantage of RGB image and 3D CNN network, the authors of the mentioned paper classified human 

action during assembly and achieved 82% accuracy [88], while our visual perception system shows 

higher accuracy of 99.7% by adding human skeleton to the RGB series as the network input. Although 

our skeleton detection using Kinect library can be slightly affected by lighting conditions, it detects 

the human skeleton in near 30 FPS, which is essential for fast human detection in real-time HRC 

applications [89]. Indeed, using deep learning approaches like OpenPose [90] and AlphaPose[91] can 

omit lightening problems [92]; However, their respective detection rate are 22 [90] and 23 FPS [91], 

which needs more researches to be faster and applicable in safety monitoring systems. Besides, 

among contact detection approaches in the state of the art, there are two similar works investigating 

collision detection using 1D-CNN. The authors of [93] compared both approaches, CollisionNet [70] 

and FMA [93], where the accuracy was 88% and 90%, respectively, featuring a detection delay of 

200ms [93]; While our procedure in tactile perception (what is called collision detection in the state 

of the art literature [59, 70, 74, 75]) reached 99% with 80ms detection delay. For detecting contact type 

and robot joint, the accuracy was higher than 89% up to 96% which in turn needs more research to 

achieve a higher accuracy.  

In this study, combining the result of both abovementioned intelligent systems is presented 

using a safety perception spectrum to examine the potential of the mixed perception approach in 

safety monitoring of collaborative workspaces. The result shows that even with a simple combination 

of both systems, the performance of safety monitoring can be improved as each system separately 

doesn’t have enough perception of the collaborative workspace. Furthermore, this research suggests 

that the different forms of collaboration such as coexistence, cooperation, etc. with their different 

safety requirements can be reduced to a single scenario using mixed perception as the robot would 

be able to “see” humans and “percept” external contacts. 

As a result of this safety scenario, the robot reacts by being able to detect human intention, 

determining human safety level, and thus ensuring safety in all work situations. Another advantage 

of the proposed system is that the robot would be smart enough to take care about safety norms 

depending on the conditions and consequently, could operate at an optimum speed during HRC 

applications. In other words, current safety requirements in most cases stop or drastically slow down 

the robot when human enters a shared workspace. However, with the proposed safety system, based 

on the robots’ awareness using the presented mixed perception approach, it is possible to implement 

a reasonable trade-off between safety and productivity, which will be discussed in more detail in our 

future research. 

In this research, there are two limitations concerning data collection: the collision occurred 

intentionally, and we did not gather data when the human and/or the robot move at high speed, 

which can be extremely dangerous for the human operator. As can be prooved, the speed of the robot 

has an insignificant influence on the result, since the model has learned the dynamics of the robot in 

the presence or absence of human contact with normalized input data. On the other hand, if the 

human operator wants to grab the robot at high speed with the intention of working with it, this 

could be classified as a collision by the model due to its clear difference between contactless and 

intentional data patterns. However, this only increases the false positive error of the collision class 

(i.e. this would then be mistakenly perceived as a collision by the robot), which does not represent a 

safety problem in this case.  

In addition, the current work focuses on a structured environment with fixed cameras and a 

stationary robot base position, which has yet to be generalized for an unstructured environment. In 

principle, however, this does not restrict the generality of this approach, since for cobots only the 

corresponding position of the robot base has to be determined for the proximity detection to a human 

operator. In our ongoing work, we are trying to use some methods to tackle these problems. 

Moreover, with the current software and hardware, a sampling rate of HAR and contact detection 

networks are 30 Hz and 200Hz, respectively, while for the mixed perception system, there is a need 

of synchronization of the result of both systems. 
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5. Conclusion 

The efficiency of safety and productivity of cobots in HRC can be improved if cobots are able to 

easily recognize complex human actions and can differentiate between multitude contact types. In 

this paper, a safety system using a mixed perception is proposed to improve the productivity and 

safety in HRC applications by making the cobot aware of human actions (visual perception), with the 

ability to distinguish between intentional and incidental contact (tactile perception). The Vision 

perception system is based on a 3D CNN algorithm for human action recognition, which unlike the 

latest HAR methods, was able to achieve 99.7% accuracy in an HRC scenario. The HAR system is 

intended to detect human action once the latter enters the workspace and only in case of hazardous 

situations, the robot would adapt its speed or stop accordingly which can lead to higher productivity. 

On the other hand, the tactile perception by focusing on the contact between robot and human, can 

decide about the final situation during pHRC. The contact detection system by taking advantage of 

the contact signal patterns and 1D-CNN network, was able to distinguish between the incidental and 

intentional contact and recognize the impacted cobot’s link. According to the experimental result, 

with respect to traditional and new methods, our proposed model is obtained the highest accuracy 

of 96% in tactile perception.  

Yet, based on our experimental results, visual and tactile perceptions are not sufficient enough 

separately for intrinsically safe robotic applications, since each system exhibits some lack of 

information which may cause less productivity and safety. By considering this fact, the mixed 

perception, by taking advantage of both visual and tactile perception, can enhance productivity and 

safety. Although a simple safety perception spectrum of the mixed perception is proposed which 

needs more research to enhance its intelligence, it shows higher resolution in compared to each single 

perception system. 

As a future work for our system, we will extend our research regarding to multi-contact and 

multi-person detection which is highly beneficial for the latest Industry 4.0 safety considerations. 
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