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11 

Abstract: Digital enabled manufacturing systems require high level of automation for fas t and 12 
low-cost production but should also present flexibility and adaptiveness to varying and dynamic 13 
conditions in their environment, including the presence of human beings. This issue is addressed in 14 
this work by implementing a reliable system for real-time safe human-robot collaboration based 15 
upon the combination of human action and contact type detection systems. Two datasets 16 
containing contact and vision data are collected by using different volunteers. The action 17 
recognition system classifies human actions using the skeleton representation of the latter when 18 
entering the shared workspace and the contact detection system distinguishes between intentional 19 
and incidental interactions if a physical contact between human and robot takes  place. Two 20 
different deep learning networks are used for human action recognition and contact detection 21 
which in combination, lead to the enhancement of human safety and an increase of the level of 22 
robot awareness about human intentions. The results show a promising path for future AI-driven 23 
solutions in safe and productive human–robot collaboration (HRC) in industrial automation. 24 

Keywords: Safe physical Human-Robot Collaboration, collision detection, human action 25 
recognition, artificial intelligence, industrial automation 26 

 27 

1. Introduction 28 

Recently, human-robot collaboration (HRC) has gained increasing attention, evolving the 29 
manufacturing industry from rigid conventional procedures of production to a much more flexible 30 
and intelligent way of manufacturing within the frame of the Industry 4.0 paradigm [1,2]. The 31 
present industrial need is to develop a  new generation of robots that support operators by 32 
leveraging tasks in terms of flexibility and cognitive skills requirements  [1]. Consequently, the robot 33 
becomes a companion or so-called collaborative robot (Cobot) for flexible task accomplishment 34 
rather than a preprogrammed slave for repetitive, rigid automation. These robots  are expected to 35 
actively assist operators in performing complex tasks, with highest priority on human safety in cases 36 
humans and robots need to physically cooperate and/or share their workspace [3].  37 

This issue can only be tackled by implementing a cascaded, multi-objective safety system which 38 
primarily avoids collisions and in all other cases limits the force impact if a collision-free movement 39 
is inevitable. Ensuring safety of humans during collaboration with cobots in physical Human-Robot 40 
Interaction (pHRI) is crucial, and one of the main preconditions to answer this cha llenge is human 41 
intention detection [4]. Therefore, the primary goal of this work is to make a step-change in assuring 42 
safety in pHRI. The task is divided in two parts, Human Action Recognition (HAR) and contact type 43 
detection which will be subsequently investigated. At the end by combining these subsystems, it is  44 
considered to attain a reliable safety system which takes advantages of both methodologies. 45 
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1.1. Human Action Recognition (HAR) 46 

HAR can be used to allow the robot keeping a  safe distance to its human counterpart or the 47 
environment, ensuring an essential requirement for fulfilling safety in shared workspaces. Recent 48 
studies have been concentrated on visual and non-visual perception systems to recognize human 49 
actions [5]. One method amongst non-visual approaches consists of using wearable devices [6–11]; 50 
Nevertheless, applying this technology as a possible solution for an industrial situation seems at 51 
present neither feasible nor comfortable in industrial environments because of restrictions imposed 52 
to the operator’s movements. On the other hand, active vision-based systems are widely used in  53 
such applications for recognizing human gestures and actions but can be significantly affected in  54 
their performance in  poorly lit scenes  or scenarios with large changes in  lighting conditions. In  55 
general, vision-based approaches consist of two main steps: proper human detection and action 56 
classification. 57 

As alluded by recent researches, machine learning methods are essential in recognizing human 58 
actions and interpreting them. Some traditional machine learning methods such as Support Vector 59 
Machine (SVM) [12–14], Hidden Markov Model (HMM) [15,16], neural networks [17,18] and 60 
Gaussian mixture models (GMM) [19,20], have been used for human action detection with a  61 
reported accuracy of about 70 to 90 percent. On the other hand, Deep Learning (DL) algorithms 62 
prevail as a new generation of machine learning algorithms with significant capabilities in  63 
discovering and learning complex underlying patterns from a large amount of data [21]. This 64 
algorithm provides  a new approach to improve the recognition accuracy of human actions by using 65 
depth data provided by time-of-flight, depth or stereo cameras, extracting human location and 66 
skeleton pose. DL researchers either use video stream data [22,23], RGB-D images [24–27] or 3D 67 
skeleton tracking and joints  extraction [28–31] for classification of arbitrary actions. Most of these 68 
articles mainly focus on action classification based on domestic scenarios [15,32], only few have an 69 
approach for industrial scenarios [33–35] and a restricted number worked on unsupervised human 70 
activities in presence of mobile robots [36].  71 

In this work, we use a deep learning approach for real-time human action recognition in an 72 
industrial automation scenario. A convolutional analysis is applied on RGB images of the scene in  73 
order to model the human motion over the frames by skeleton-based action recognition. The 74 
artificial intelligence based human action recognition algorithm provides the core part for 75 
distinguishing between collision and intentional contact. 76 

1.2. Contact Type Detection 77 

Toward this goal, at the first step, it is imperative to detect robot contact with human and then 78 
distinguish between intentional and incidental contacts, a process called collision detection. Some 79 
researchers propose sensor-less procedures for detecting a collision based on the robot dynamics 80 
model [37,38], but also through momentum observers [37,39–42], using extended state observers  81 
[43], vibration analysis models [44], finite-time disturbance observers  [41], energy observers [42], or 82 
joint velocity observers [45]. Among these methods, the momentum observer is the most common 83 
method of collision detection because it has better  performance compared to the other methods, 84 
although the disadvantage is that it requires for precise dynamic parameters of the robot [46]. For 85 
this reason, machine learning approaches like artificial neural networks [47–49] and deep learning 86 
[50,51] have recently been applied for collision detection based on robot sensors stream data  due to  87 
their fast response and low computational cost.  88 

Deep neural networks are extremely effective in feature extraction and learning complex 89 
patterns[52]. Among these deep networks, recurrent neural networks (RNN) like long short-term 90 
memory network approaches (LSTM) are frequently used in research for processing time series and 91 
sequential data [53–56]. However, the main drawback of this network is the difficulty and time 92 
consumption for training in comparison to convolutional neural networks (CNN) [50]. Additionally, 93 
current researches showed that CNN has a great  performance for image processing in real time 94 
situations [22,57–59] where the input data is much more complicated than 1D time series signals. 95 
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Therefore, in this part, we aim to detect and distinguish between intentional and incidental 96 
(collision) human contact by using the convolutional neural network approach to achieve a model 97 
free safety system. In the second step, depending on whether the contact is intentional or incidental, 98 
the robot should provide an adequate response which in every case ensures the safety of the human 99 
operator. At this step, identifying at which link the collision occurred,  is an important information 100 
for anticipating proper robot reaction [46] which is also considered in the current work. 101 

2. Material and Methods 102 

2.1. Robotic Platform 103 

The accessible platform used throughout this project is a Franka Emika robot (Panda), 104 
recognized as a suitable collaborative robot in terms of agility and contact sensitivit y. The key 105 
features of this robot will be summarized hereafter; It consists of two main parts, arm, and hand. The 106 
arm has 7 revolute joints and precise torque sensors (13 bits resolution) at every joint, is driven by 107 
high efficiency brushless dc motors, and has the possibility to be controlled by external or internal 108 
torque controllers at a 1 kHz frequency. The hand is equipped with a gripper which can securely 109 
grasp objects due to a force controller. Generally, the robot has a total weight of approximately  18 kg 110 
and can handle payloads up to 3 kg. 111 

2.2. Camera Systems 112 

The vision system is based on a multi-sensor approach using two Kinect V2 cameras for 113 
monitoring the environment and tackle the risk of occlusion. The Kinect V2 has a depth camera with 114 
resolution of 512 x 424 pixels with a  field of view (FoV) of 70.6° x 60° and the color camera  has a 115 
resolution of 1920 x 1080px with a FoV of 84.1° x 53.8°. So, this sensor as one of the RGB-D Cameras 116 
can be used for human body and skeleton detection. 117 

2.3. Standard robot collision detection: 118 

A common collision detection approach is defined as [46] 119 
 120 

         True       if |μ(t)|> ϵµ                                    

 cd(μ(t)) =                                                   

     False     if |μ(t)|≤ ϵµ  

 

(1) 

where cd is the collision detection output function which maps the selected monitoring signal μ(t) 121 
into a collision state, TRUE or FALSE. ϵµ indicates a threshold parameter, which determines the 122 
sensitivity for detecting a collision.  123 

2.4. Deep learning approach 124 

A Convolutional Neural Network (CNN) model performs classification in an end-to-end 125 
manner and learns data patterns automatically which is different to the traditional  approaches 126 
where the classification is done after feature extraction and selection [60]. In this paper, a  127 
combination of 3D-CNN for HAR and 1D-CNN for contact type detection has been utilized. The 128 
following subsections describe each network separately. 129 

2.4.1. Human Action Recognition Network 130 

Since human actions can be interpreted by analyzing the sequence of human body movements  131 
such as arms and legs and placing them in a situational context, the consecutive skeleton images  are 132 
used as inputs for our 3D-CNN network which was successfully applied for real-time action 133 
recognition. In  this section, the 3D-CNN which is shown in Figure 1, classifies HAR to five sta tes, 134 
namely: Passing, Observation, Dangerous Observation, Interaction, and Fail. 135 
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 136 

Figure 1: 3D CNN for Human Action Recognition 137 

• Input layer  138 

The input layer has 4 dimensions, Nimage-width × Nimage-height × Nchannel × Nframe. The RGB image of 139 
Kinect V2 has a resolution of 1980×1080 pixels which is decreased to 320×180 for reducing the 140 
trainable parameters and network complexity. So  Nimage-width, Nimage-height, and Nchannel are 320, 180, and 141 
3 respectively. Nframe indicates the total number of frames in the image sequence which is 3 in this 142 
research.  143 

• Layers  144 

As shown in Figure 3, the proposed CNN is composed of fifteen layers, consisting of 4  145 
convolutional layers, 4 pooling layers, 3 fully connected layers followed by 3 dropout layers and 146 
a Softmax layer for predicting actions. Over 10 million parameters must be trained for establishing a 147 
map to action recognition.   148 

The input layer is followed by a convolution layer with 96 feature maps of 149 
size 73. Subsequently, the output is fed to the Rectified Linear Unit (ReLU) acti vation function. ReLU 150 
is the most suitable activation function for this work, as it is specially designed for image processing 151 
and it can keep the most important features of the input. In addition, it is easier to train and usually 152 
achieves better performance, which is significant for real-time applications. Next layer is a max 153 
pooling layer with size and stride of 3. The filter size of the next convolutional layers decreases to 154 
53 and 33 respectively with stride 1 and zero padding. Then, Max-pooling windows decline to 23 with  155 
stride of 2.  The output of the last pooling layer is flattened out for the fully connected layer input. 156 
The fully connected layers consist of 2024, 1024, 512 neurons, respectively. The last step is to use a  157 
Softmax level for activity recognition. 158 
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2.4.2. Contact Detection Network 159 

For contact detection, a deep network which is shown in Figure 2 is proposed. In this scheme, a  160 
1D-CNN which is a  multi-layered architecture with each layer consisting of few one-dimensional 161 
convolution filters, is used. It includes one network for classification of 5 states, which were defined 162 
as: 163 

• No-Contact:          no contact is detected within the specified sensitivity 164 
• Intentional_Link5:    an intentional contact at robot link 5 is detected 165 
• Incidental_Link5:    a collision at robot link 5 is detected 166 
• Intentional_Link6:    an intentional contact at robot link 6 is detected 167 
• Incidental_Link6:    a collision at robot link 6 is detected 168 
 169 

 170 

Figure 2: Contact Detection Network Diagram 171 

• Input vector  172 

In this paper, the input vector represents a time series of robot data as  173 
 174 
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                               175 
And 176 

𝜏𝐽
𝑖     =   𝜏𝑗1

𝑖  𝜏𝑗2
𝑖  𝜏𝑗3

𝑖  𝜏𝑗4
𝑖  𝜏𝑗5

𝑖  𝜏𝑗6
𝑖  𝜏𝑗7

𝑖   
 

(3) 

𝜏𝑒𝑥𝑡
𝑖 =   𝜏𝑒𝑥𝑡1

𝑖  𝜏𝑒𝑥𝑡2
𝑖  𝜏𝑒𝑥𝑡3

𝑖  𝜏𝑒𝑥𝑡4
𝑖  𝜏𝑒𝑥𝑡5
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(4) 
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𝑞𝑖    =   𝑞1
𝑖  𝑞2

𝑖  𝑞3
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𝑖  𝑞6
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(5) 
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𝑖  𝑞 2

𝑖  𝑞 3
𝑖  𝑞 4

𝑖  𝑞 5
𝑖  𝑞 6

𝑖  𝑞 7
𝑖   

 
(6) 

where τJ, τext, q, and q˙ indicate joint torque, external torque, joint position, and joint velocity, 177 
respectively. W is the size of a window over the collected signals which stores time-domain samples 178 
as an independent instance for training the proposed models. Hence, the input vector is W×28, and 179 
in this research, by selecting 100, 200, and 300 samples for W, three different networks  were trained 180 
to compare the influence of this parameter.  181 

• Layers (generalization) 182 

As shown in Figure 2, the designed CNN is composed of eleven layers. In  the first layer of this  183 
model, the convolution process maps the data with 160 filters. The kernel size of this layer is  184 
optimally considered 5 to obtain a faster and sensitive enough human contact status; a parameter 185 
higher than 5 led to an insufficient network’s response as it is more influenced by past data rather 186 
than near to present data. To normalize the data and avoid overfitting, especially due to the different 187 
maximum force patterns  of every human, a Batch Normalization is used in the second layer. 188 
Furthermore, the size of all max pooling layers is chosen as 2, and ReLU function is considered as the 189 
activation function, due to reasons already mentioned before. 190 

2.5. Central Decision Maker (CDM) 191 

To determine the level of safety for the human cooperator, a  Central Decision Maker system 192 
(CDM) is designed by combining the results of the two parts, ARN and CDN, using rules which is 193 
shown in Figure 3. Different human actions and contact types are categorized in three level of safety, 194 
namely safe, caution, and danger, with color-code as green, yellow, and red.  195 

 196 

Figure 3: Central Decision Maker rules 197 
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2.6. Data Collection 198 

2.6.1. Human Action Recognition  199 

The HAR data is collected simultaneously from different views by two Kinect V2 cameras 200 
recording the scene of an operator moving next to a  robot performing repetitive motions. As Kinect 201 
V2 library in Linux is not precise and does not project human skeleton in  RGB images, depth 202 
coordinates are converted to RGB coordinates as follows 203 

 204 

𝑥𝑟𝑔𝑏 = 𝑥𝑑 ×
𝑃𝐷𝑥𝑟𝑔𝑏

𝑃𝐷𝑥𝑑
+
𝐶𝑥𝑟𝑔𝑏 × 𝑃𝐷𝑥𝑑 −  𝐶𝑥𝑑 × 𝑃𝐷𝑥𝑟𝑔𝑏

𝑃𝐷𝑥𝑟𝑔𝑏  × 𝑃𝐷𝑥𝑑
 
 

(7) 

𝑦𝑟𝑔𝑏 = 𝑦𝑑 ×
𝑃𝐷𝑦𝑟𝑔𝑏

𝑃𝐷𝑦𝑑
+
𝐶𝑦𝑟𝑔𝑏 × 𝑃𝐷𝑦𝑑 −  𝐶𝑦𝑑 × 𝑃𝐷𝑦𝑟𝑔𝑏

𝑃𝐷𝑦𝑟𝑔𝑏  × 𝑃𝐷𝑦𝑑
 
 

(8) 

 205 
where (Cxrgb, Cyrgb) and (Cxd, Cyd) are RGB and depth image centers, respectively. PD shows the 206 
number of pixels per degree for depth and RGB images, respectively equal to 7×7 and 22 ×20 207 
[61][62].Then, the RGB images, which are supplemented with the skeleton representation in each 208 
frame, are collected as dataset. The collection rate by considering the required time for saving the 209 
images was 22 frames/second. Both cameras start collecting data once the human operator enters the 210 
environment. The collected images are then sorted into 5 different categories and labeled 211 
accordingly. 212 

2.6.2. Contact Detection  213 

The data acquired at the robot joints during a predefined motion were collected as shown in  214 
Figure 2, in a collision-free state and during interaction with the operator, at a sampling rate of 215 
200Hz (one sample per 5ms). Then, a frame of W -window with 200ms latency passed through the 216 
entire data gathered, preparing it to be used as training data for the input layer of the designed 217 
network. Thanks to the default cartesian contact detection ability of the Panda robot, those contact 218 
data is used as a trigger to stop recording data after contact occurrence. Consequently, th e last 219 
W-samples of each collision trial data is considered as input for training the network. For assuring 220 
comprehensiveness of the gathered data, each trial is  repeated 10 times with different scenes, 221 
including touched links, direction of motion, line of  collision with the human operator, and contact 222 
type (intentional or incidental). Additionally, each sample is labeled according to the mentioned 223 
sequence. 224 

2.7. Training hardware and API setup 225 

In the training of a network by using Graphic Processor Units (GPU), memory plays an 226 
important role in reducing the training time. In  this research, a  powerful computer with NVIDIA 227 
Quadro P5000 GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and 228 
training the CNN networks using the Keras library of TensorFlow. To enable CUDA and 229 
GPU-acceleration computing, a GPU version of TensorFlow is used, and in consequence, the 230 
training process is speeded up. The total runtime of the vision network trained with 30,000 image 231 
sequences was about 12 hours for 150 epochs, while it was less than 5 minutes for training contact 232 
networks.  233 

2.8. Real time interface 234 

The real time interface for collecting dataset and implementing the trained network on the 235 
system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 4 shows the 236 
hardware and software structure used in this work. Two computers execute the vision networks for 237 
each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore, 238 
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CDN and CDM are executed on another pc at the same rate, connected to the robot controller for 239 
receiving the robot torque, velocity and position data of joints 5 and 6.  240 

 241 

 242 

Figure 4: Real-time interface of complex system 243 

3. Results 244 

In order to evaluate the performance of the proposed system, the following metrics is used. A 245 
first evaluation consists of an offline testing, for which the results are compared based on the key 246 
figures Precision and Recall, defined as follows: 247 

 248 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 
 

(9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 
 

(10) 

 249 
Where tp is the amount of the predicted true positive samples, fp represents the amount of the 250 
predicted false positive samples and fn is the count of predicted false positive classes. Accuracy 251 
calculation follows later. 252 

The second evaluation is based on real-time testing; The tests have shown promising results in  253 
early trials, the following YouTube video gives an impression of the performance.  254 
https://www.youtube.com/watch?v=ED_wH9BFJck 255 

3.1. Dataset 256 

Regarding the vision category, the dataset consisting of 33050 images is divided into 5 classes, 257 
including Interaction, Observation, Passing, Fail, and Dangerous Observation, Figure 5 representing 258 
the different possible actions of a human operator during robot operation. Contact detection dataset 259 
[63] with 1114 samples is subdivided into 5 classes, namely No-contact, Intentional_Link5, 260 
Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact state on the last 261 
two links including their respective type, incidental or intentional. 262 
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(a) (b) (c) 

  

(d) (e) 

Figure 5: Type of human actions: (a) Passing: Operator is just passing by, without paying attention to 263 
the robot; (b) Fail: Blind spots or occlusion of the visual field may happen for a camera, in this 264 
situation the second camera takes over detection; (c) Observation: Operator enters the working zone, 265 
without any interaction intention and stands next to the robot; (d) Dangerous Observation: Operator 266 
proximity is too close, especially his head is at danger of collision with the robot; (e) Interaction: 267 
Operator enters the working zone and prepares to work with the robot. 268 

3.2. Comparison between Networks 269 

3.2.1. Action recognition 270 

For optimizing efficiency in  HAR, two different networks, 2D and 3D, were tested, the latter 271 
indicating a significant outcome in  both real-time and off-line testing cases. These two networks  are 272 
compared with respect to the results of 150 training epochs, in Table 1 and Table 2. As it is clear, the 273 
3D network shows superiority in terms of Accuracy, Precision and Recall. 274 

275 
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Table 1: Precision and Recall of two trained networks for Human Action Recognition 276 

Network 2D 3D 

 Precision Recall Precision Recall 

Observation 0.99 0.99 1.00 1.00 

Interaction 1.00 1.00 1.00 1.00 

Passing 1.00 1.00 1.00 1.00 

Fail 1.00 1.00 1.00 1.00 

Dangerous Observation 0.98 0.96 0.98 0.99 

Accuracy 0.9956 0.9972 

 277 

Table 2: Confusion Matrix for different classes in HRC 278 

 Network 2D 3D 

  O
b

serv
a

tio
n

 

In
tera

ctio
n

 

P
a

ssin
g

 

F
a

il 

D
a

n
g

ero
u

s 

O
b

serv
a

tio
n

 

O
b

serv
a

tio
n

 

In
tera

ctio
n

 

P
a

ssin
g

 

F
a

il 

D
a

n
g

ero
u

s 

O
b

serv
a

tio
n

 

T
ru

e 
L

a
b
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Observation 3696 7 2 0 5 3751 6 2 1 7 

Interaction 13 4130 0 0 1 8 4030 0 0 0 

Passing 2 0 1145 0 0 1 0 1160 0 0 

Fail 0 0 0 593 0 0 0 0 588 0 

Dangerous 

Observation 

12 1 0 0 313 2 0 0 0 359 

3.2.2. Contact detection 279 

To evaluate the influence of the size of the sampling window (w) on the precision of the trained 280 
networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to 281 
0.5, 1, 1.5  seconds of sampling period duration. 70% of the dataset are selected for training and 30% 282 
for testing. Each network is trained with 300 epochs and the results are shown in Table 3 and Error!  283 
Reference source not found. . Window size of 200 and 300 unities provide a  good precision for 284 
identifying the contact status, in  contrast to w=100 which is not satisfactory. Furthermore, by  285 
comparing the result of 200-window and 300-window networks, 200-window network has a better 286 
precision and recall. 287 

Table 3: Precision and recall of trained networks for contact detection with different window size 288 

w 100 200 300 100 200 300 

 Precision Recall 

No-Contact 0.94 0.99 0.98 0.94 1.00 1.00 

Intentional_Link5 0.74 0.91 0.89 0.84 0.91 0.84 

Intentional_Link6 0.68 0.97 0.91 0.64 0.90 0.91 

Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89 

Incidental_Link6 0.69 0.96 0.96 0.57 0.96 0.93 

Accuracy 0.78 0.96 0.93    

 289 
290 
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Table 4: Confusion matrix of trained networks for contact detection with different window size  291 

 Window Size 100 200 300 
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No-Contact 166 0 9 0 1 342 0 3 0 1 167 0 3 0 0 

Intentional_Link5 0 86 12 19 0 0 93 4 4 1 0 86 5 5 1 

Intentional_Link6 8 1 59 2 17 0 3 83 0 0 0 5 84 0 3 

Incidental_Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0 

Incidental_Link6 3 0 11 0 31 0 0 2 0 52 0 1 0 1 50 

4. Discussion 292 

Human Robot Collaboration has recently gained a lot of interest and received many 293 
contributions on both theoretical and practical aspects, including sensor development [64], design of 294 
robust and adaptive controllers [65,66], learning robots force-sensitive manipulation skills [67], 295 
human interfaces [68,69] and so on. In addition, some companies attempted to introduce 296 
collaborative robots so that HRC become more suited to enter in  manufacturing applications and 297 
production lines. However, Cobots available on the market have limited payload/speed capacities 298 
because of safety concerns which limits HRC application to some light tasks with low productivity.  299 

On the other hand, according to the norms for HRC operations [70], i t is not essential to observe 300 
a strict design or limit the power of operations if the human safety factor can be ensur ed in all its  301 
aspects; In this regard, an intelligent safety system has been developed in this research to detect 302 
hazardous situations, also assessing Human Intention Awareness (HIA) whether in physical contact 303 
with the robot or not. As a result, our studi es show that the different forms of collaboration such as 304 
coexistence, cooperation, etc. with their different safety requirements can be r educed to a single 305 
scenario. In this safety scenario, the robot reacts by being able to detect human intention and thu s  306 
ensuring safety in all work situations. Thus, a smart robot will take care of the safety of humans from 307 
entering the shared workspace to physical interaction in order to jointly accomplish a task.  308 

Another advantage of this system is that the robot would be smart enough to take care about 309 
safety norms depending on the conditions and consequently, could operate at an optimum speed 310 
during HRC applications. In other words, current safety requirements in most cases stop or 311 
drastically slow down the robot when human enters  a shared workspace. However, with the 312 
proposed safety system, based on the robot’s awareness, it is possible to implement a reasonable 313 
trade-off between security and productivity, which will  be discussed in more detail  in our future 314 
research. 315 

5. Conclusion 316 

The efficiency of safety and productivity of Cobots in HRC can be improved if they can easily 317 
recognize complex human actions and differentiate between multitude types of contact. In this 318 
paper, a safety system composed of visual and physical interaction detection systems is proposed to 319 
improve the productivity in HRC applications by making the robot aware of human intentions with 320 
the ability to distinguish between intentional and incidental contact. In a first step, the system is 321 
purposed to detect human intention once he enters the workspace and just in case of hazardous 322 
situations, the robot would adapt or stop accordingly which can lead to higher productivity. On the 323 
other hand, if there is any contact between robot and human, the system would decide about the 324 
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final situation (collision or intentional contact) based on the defined rules, and by considering both 325 
HAR and contact detection system outputs.  326 
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