

1 Article

2

A Mixed Perception Approach for Safe Human-Robot 3 Collaboration in Industrial Automation

4 **Fatemeh Mohammadi Amin** ¹, **Maryam Rezayati** ², **Hans Wernher van de Venn** ^{3,*} and **Hossein
5 Karimpour** ⁴6 ¹ Institute of mechatronics system, Zurich University of Applied Science, Switzerland; mohm@zhaw.ch7 ² Institute of mechatronics system, Zurich University of Applied Science, Switzerland; rzma@zhaw.ch8 ³ Institute of mechatronics system, Zurich University of Applied Science, Switzerland; vhns@zhaw.ch9 ⁴ Mechanical engineering department, University of Isfahan, Iran; h.karimpour@eng.ui.ac.ir10 * Correspondence: vhns@zhaw.ch; Tel.: +41-58-934-77-89

11

12 **Abstract:** Digital enabled manufacturing systems require high level of automation for fast and
13 low-cost production but should also present flexibility and adaptiveness to varying and dynamic
14 conditions in their environment, including the presence of human beings. This issue is addressed in
15 this work by implementing a reliable system for real-time safe human-robot collaboration based
16 upon the combination of human action and contact type detection systems. Two datasets
17 containing contact and vision data are collected by using different volunteers. The action
18 recognition system classifies human actions using the skeleton representation of the latter when
19 entering the shared workspace and the contact detection system distinguishes between intentional
20 and incidental interactions if a physical contact between human and robot takes place. Two
21 different deep learning networks are used for human action recognition and contact detection
22 which in combination, lead to the enhancement of human safety and an increase of the level of
23 robot awareness about human intentions. The results show a promising path for future AI-driven
24 solutions in safe and productive human–robot collaboration (HRC) in industrial automation.25 **Keywords:** Safe physical Human-Robot Collaboration, collision detection, human action
26 recognition, artificial intelligence, industrial automation

27

28

1. Introduction

29 Recently, human-robot collaboration (HRC) has gained increasing attention, evolving the
30 manufacturing industry from rigid conventional procedures of production to a much more flexible
31 and intelligent way of manufacturing within the frame of the Industry 4.0 paradigm [1,2]. The
32 present industrial need is to develop a new generation of robots that support operators by
33 leveraging tasks in terms of flexibility and cognitive skills requirements [1]. Consequently, the robot
34 becomes a companion or so-called collaborative robot (Cobot) for flexible task accomplishment
35 rather than a preprogrammed slave for repetitive, rigid automation. These robots are expected to
36 actively assist operators in performing complex tasks, with highest priority on human safety in cases
37 humans and robots need to physically cooperate and/or share their workspace [3].38 This issue can only be tackled by implementing a cascaded, multi-objective safety system which
39 primarily avoids collisions and in all other cases limits the force impact if a collision-free movement
40 is inevitable. Ensuring safety of humans during collaboration with cobots in physical Human-Robot
41 Interaction (pHRI) is crucial, and one of the main preconditions to answer this challenge is human
42 intention detection [4]. Therefore, the primary goal of this work is to make a step-change in assuring
43 safety in pHRI. The task is divided in two parts, Human Action Recognition (HAR) and contact type
44 detection which will be subsequently investigated. At the end by combining these subsystems, it is
45 considered to attain a reliable safety system which takes advantages of both methodologies.

46 *1.1. Human Action Recognition (HAR)*

47 HAR can be used to allow the robot keeping a safe distance to its human counterpart or the
48 environment, ensuring an essential requirement for fulfilling safety in shared workspaces. Recent
49 studies have been concentrated on visual and non-visual perception systems to recognize human
50 actions [5]. One method amongst non-visual approaches consists of using wearable devices [6–11];
51 Nevertheless, applying this technology as a possible solution for an industrial situation seems at
52 present neither feasible nor comfortable in industrial environments because of restrictions imposed
53 to the operator's movements. On the other hand, active vision-based systems are widely used in
54 such applications for recognizing human gestures and actions but can be significantly affected in
55 their performance in poorly lit scenes or scenarios with large changes in lighting conditions. In
56 general, vision-based approaches consist of two main steps: proper human detection and action
57 classification.

58 As alluded by recent researches, machine learning methods are essential in recognizing human
59 actions and interpreting them. Some traditional machine learning methods such as Support Vector
60 Machine (SVM) [12–14], Hidden Markov Model (HMM) [15,16], neural networks [17,18] and
61 Gaussian mixture models (GMM) [19,20], have been used for human action detection with a
62 reported accuracy of about 70 to 90 percent. On the other hand, Deep Learning (DL) algorithms
63 prevail as a new generation of machine learning algorithms with significant capabilities in
64 discovering and learning complex underlying patterns from a large amount of data [21]. This
65 algorithm provides a new approach to improve the recognition accuracy of human actions by using
66 depth data provided by time-of-flight, depth or stereo cameras, extracting human location and
67 skeleton pose. DL researchers either use video stream data [22,23], RGB-D images [24–27] or 3D
68 skeleton tracking and joints extraction [28–31] for classification of arbitrary actions. Most of these
69 articles mainly focus on action classification based on domestic scenarios [15,32], only few have an
70 approach for industrial scenarios [33–35] and a restricted number worked on unsupervised human
71 activities in presence of mobile robots [36].

72 In this work, we use a deep learning approach for real-time human action recognition in an
73 industrial automation scenario. A convolutional analysis is applied on RGB images of the scene in
74 order to model the human motion over the frames by skeleton-based action recognition. The
75 artificial intelligence based human action recognition algorithm provides the core part for
76 distinguishing between collision and intentional contact.

77 *1.2. Contact Type Detection*

78 Toward this goal, at the first step, it is imperative to detect robot contact with human and then
79 distinguish between intentional and incidental contacts, a process called collision detection. Some
80 researchers propose sensor-less procedures for detecting a collision based on the robot dynamics
81 model [37,38], but also through momentum observers [37,39–42], using extended state observers
82 [43], vibration analysis models [44], finite-time disturbance observers [41], energy observers [42], or
83 joint velocity observers [45]. Among these methods, the momentum observer is the most common
84 method of collision detection because it has better performance compared to the other methods,
85 although the disadvantage is that it requires for precise dynamic parameters of the robot [46]. For
86 this reason, machine learning approaches like artificial neural networks [47–49] and deep learning
87 [50,51] have recently been applied for collision detection based on robot sensors stream data due to
88 their fast response and low computational cost.

89 Deep neural networks are extremely effective in feature extraction and learning complex
90 patterns [52]. Among these deep networks, recurrent neural networks (RNN) like long short-term
91 memory network approaches (LSTM) are frequently used in research for processing time series and
92 sequential data [53–56]. However, the main drawback of this network is the difficulty and time
93 consumption for training in comparison to convolutional neural networks (CNN) [50]. Additionally,
94 current researches showed that CNN has a great performance for image processing in real time
95 situations [22,57–59] where the input data is much more complicated than 1D time series signals.

96 Therefore, in this part, we aim to detect and distinguish between intentional and incidental
 97 (collision) human contact by using the convolutional neural network approach to achieve a model
 98 free safety system. In the second step, depending on whether the contact is intentional or incidental,
 99 the robot should provide an adequate response which in every case ensures the safety of the human
 100 operator. At this step, identifying at which link the collision occurred, is an important information
 101 for anticipating proper robot reaction [46] which is also considered in the current work.

102 **2. Material and Methods**

103 *2.1. Robotic Platform*

104 The accessible platform used throughout this project is a Franka Emika robot (Panda),
 105 recognized as a suitable collaborative robot in terms of agility and contact sensitivity. The key
 106 features of this robot will be summarized hereafter; It consists of two main parts, arm, and hand. The
 107 arm has 7 revolute joints and precise torque sensors (13 bits resolution) at every joint, is driven by
 108 high efficiency brushless dc motors, and has the possibility to be controlled by external or internal
 109 torque controllers at a 1 kHz frequency. The hand is equipped with a gripper which can securely
 110 grasp objects due to a force controller. Generally, the robot has a total weight of approximately 18 kg
 111 and can handle payloads up to 3 kg.

112 *2.2. Camera Systems*

113 The vision system is based on a multi-sensor approach using two Kinect V2 cameras for
 114 monitoring the environment and tackle the risk of occlusion. The Kinect V2 has a depth camera with
 115 resolution of 512×424 pixels with a field of view (FoV) of $70.6^\circ \times 60^\circ$ and the color camera has a
 116 resolution of 1920×1080 px with a FoV of $84.1^\circ \times 53.8^\circ$. So, this sensor as one of the RGB-D Cameras
 117 can be used for human body and skeleton detection.

118 *2.3. Standard robot collision detection:*

119 A common collision detection approach is defined as [46]

$$cd(\mu(t)) = \begin{cases} \text{True} & \text{if } |\mu(t)| > \epsilon_\mu \\ \text{False} & \text{if } |\mu(t)| \leq \epsilon_\mu \end{cases} \quad (1)$$

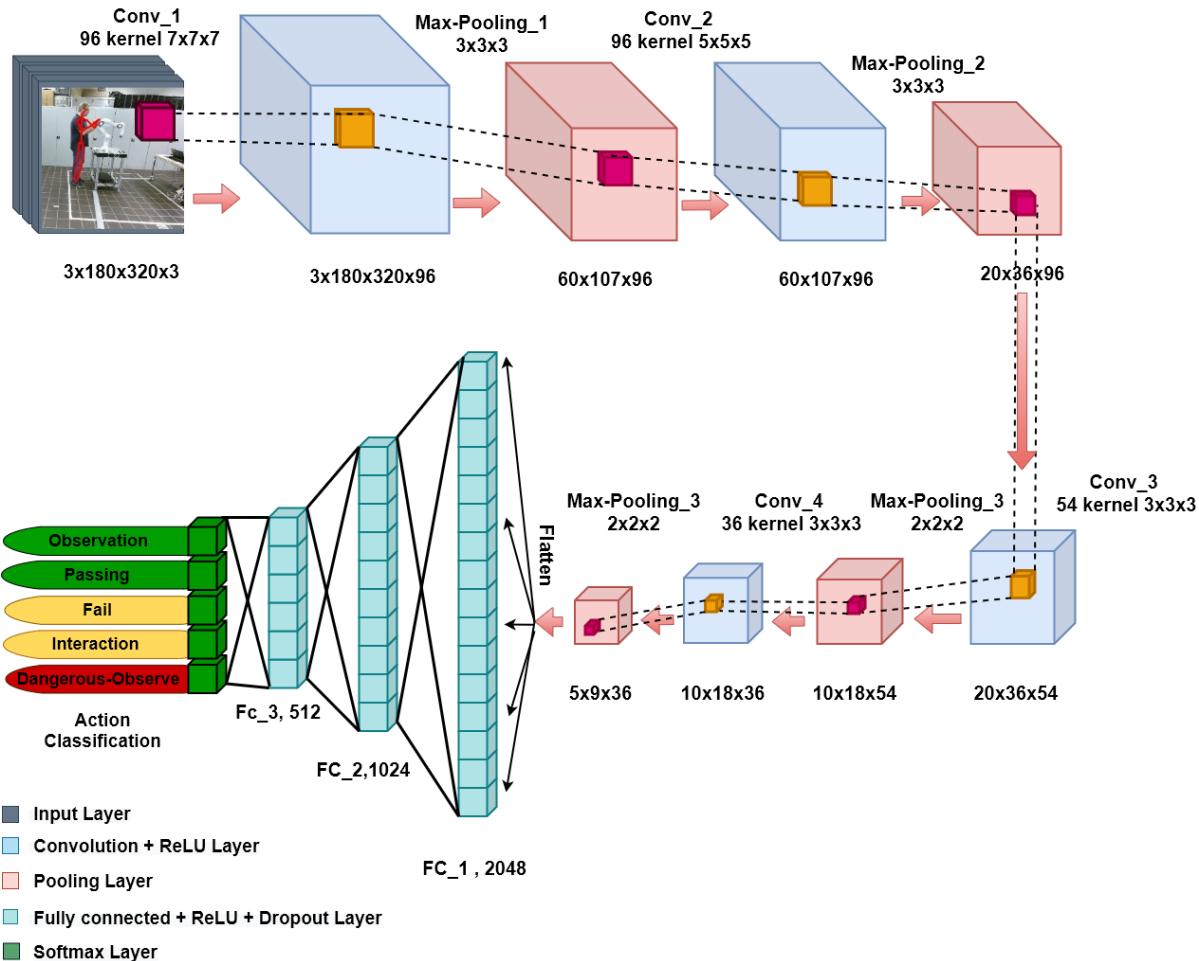
121 where cd is the collision detection output function which maps the selected monitoring signal $\mu(t)$
 122 into a collision state, TRUE or FALSE. ϵ_μ indicates a threshold parameter, which determines the
 123 sensitivity for detecting a collision.

124 *2.4. Deep learning approach*

125 A Convolutional Neural Network (CNN) model performs classification in an end-to-end
 126 manner and learns data patterns automatically which is different to the traditional approaches
 127 where the classification is done after feature extraction and selection [60]. In this paper, a
 128 combination of 3D-CNN for HAR and 1D-CNN for contact type detection has been utilized. The
 129 following subsections describe each network separately.

130 *2.4.1. Human Action Recognition Network*

131 Since human actions can be interpreted by analyzing the sequence of human body movements
 132 such as arms and legs and placing them in a situational context, the consecutive skeleton images are
 133 used as inputs for our 3D-CNN network which was successfully applied for real-time action
 134 recognition. In this section, the 3D-CNN which is shown in Figure 1, classifies HAR to five states,
 135 namely: Passing, Observation, Dangerous Observation, Interaction, and Fail.



136

137

Figure 1: 3D CNN for Human Action Recognition

138 • Input layer

139 The input layer has 4 dimensions, $N_{\text{image-width}} \times N_{\text{image-height}} \times N_{\text{channel}} \times N_{\text{frame}}$. The RGB image of
 140 Kinect V2 has a resolution of 1980×1080 pixels which is decreased to 320×180 for reducing the
 141 trainable parameters and network complexity. So $N_{\text{image-width}}$, $N_{\text{image-height}}$, and N_{channel} are 320, 180, and
 142 3 respectively. N_{frame} indicates the total number of frames in the image sequence which is 3 in this
 143 research.

144 • Layers

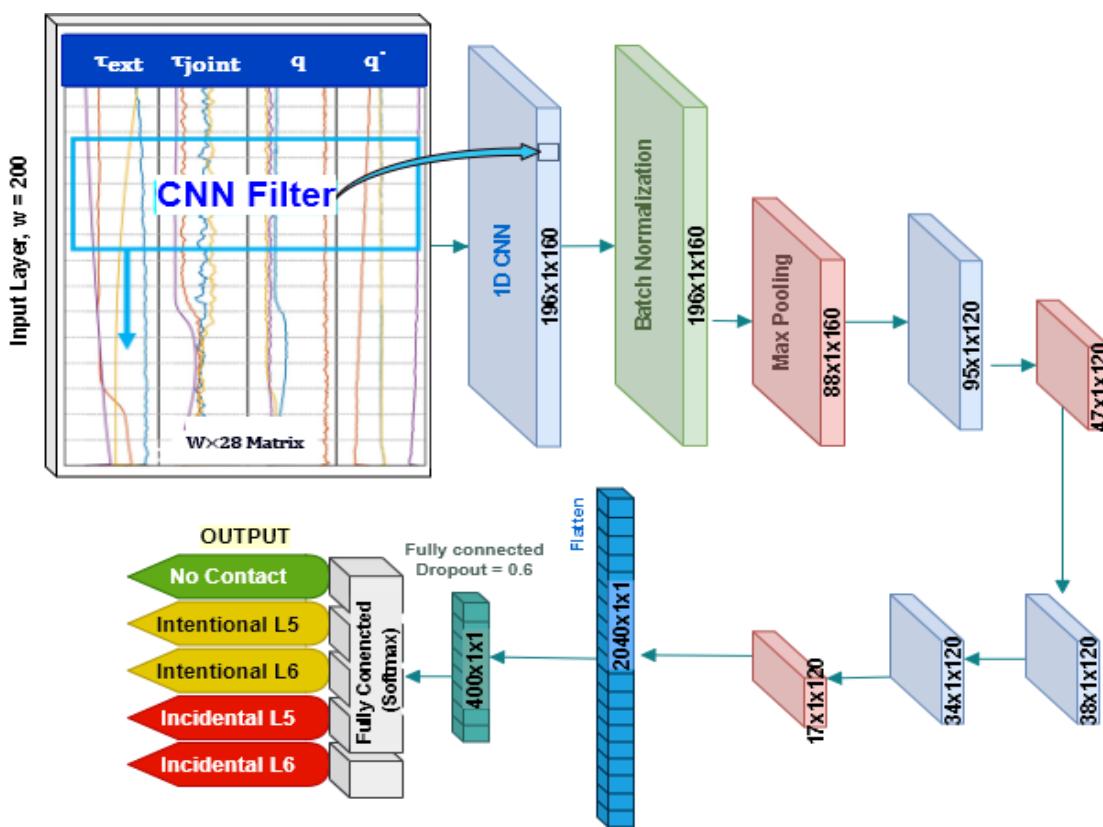
145 As shown in Figure 3, the proposed CNN is composed of fifteen layers, consisting of 4
 146 convolutional layers, 4 pooling layers, 3 fully connected layers followed by 3 dropout layers and
 147 a Softmax layer for predicting actions. Over 10 million parameters must be trained for establishing a
 148 map to action recognition.

149 The input layer is followed by a convolution layer with 96 feature maps of
 150 size 7^3 . Subsequently, the output is fed to the Rectified Linear Unit (ReLU) activation function. ReLU
 151 is the most suitable activation function for this work, as it is specially designed for image processing
 152 and it can keep the most important features of the input. In addition, it is easier to train and usually
 153 achieves better performance, which is significant for real-time applications. Next layer is a max
 154 pooling layer with size and stride of 3. The filter size of the next convolutional layers decreases to
 155 5^3 and 3^3 respectively with stride 1 and zero padding. Then, Max-pooling windows decline to 2^3 with
 156 stride of 2. The output of the last pooling layer is flattened out for the fully connected layer input.
 157 The fully connected layers consist of 2048, 1024, 512 neurons, respectively. The last step is to use a
 158 Softmax level for activity recognition.

159 2.4.2. Contact Detection Network

160 For contact detection, a deep network which is shown in Figure 2 is proposed. In this scheme, a
 161 1D-CNN which is a multi-layered architecture with each layer consisting of few one-dimensional
 162 convolution filters, is used. It includes one network for classification of 5 states, which were defined
 163 as:

164 • No-Contact: no contact is detected within the specified sensitivity
 165 • Intentional Link5: an intentional contact at robot link 5 is detected
 166 • Incidental Link5: a collision at robot link 5 is detected
 167 • Intentional Link6: an intentional contact at robot link 6 is detected
 168 • Incidental Link6: a collision at robot link 6 is detected
 169



170

171 **Figure 2:** Contact Detection Network Diagram

172 • Input vector

173 In this paper, the input vector represents a time series of robot data as
 174

$$x = \begin{bmatrix} \tau_j^0 & \tau_{ext}^0 & q^0 & \dot{q}^0 \\ \tau_j^1 & \tau_{ext}^1 & q^1 & \dot{q}^1 \\ \vdots & \vdots & \vdots & \vdots \\ \tau_j^W & \tau_{ext}^W & q^W & \dot{q}^W \end{bmatrix} \quad (2)$$

175

176 And

$$\tau_j^i = [\tau_{j1}^i \ \tau_{j2}^i \ \tau_{j3}^i \ \tau_{j4}^i \ \tau_{j5}^i \ \tau_{j6}^i \ \tau_{j7}^i] \quad (3)$$

$$\tau_{ext}^i = [\tau_{ext1}^i \ \tau_{ext2}^i \ \tau_{ext3}^i \ \tau_{ext4}^i \ \tau_{ext5}^i \ \tau_{ext6}^i \ \tau_{ext7}^i] \quad (4)$$

$$q^i = [q_1^i \ q_2^i \ q_3^i \ q_4^i \ q_5^i \ q_6^i \ q_7^i] \quad (5)$$

$$\dot{q}^i = [\dot{q}_1^i \ \dot{q}_2^i \ \dot{q}_3^i \ \dot{q}_4^i \ \dot{q}_5^i \ \dot{q}_6^i \ \dot{q}_7^i] \quad (6)$$

177 where τ_j , τ_{ext} , q_j and \dot{q}_j indicate joint torque, external torque, joint position, and joint velocity,
 178 respectively. W is the size of a window over the collected signals which stores time-domain samples
 179 as an independent instance for training the proposed models. Hence, the input vector is $W \times 28$, and
 180 in this research, by selecting 100, 200, and 300 samples for W , three different networks were trained
 181 to compare the influence of this parameter.

182 • Layers (generalization)

183 As shown in Figure 2, the designed CNN is composed of eleven layers. In the first layer of this
 184 model, the convolution process maps the data with 160 filters. The kernel size of this layer is
 185 optimally considered 5 to obtain a faster and sensitive enough human contact status; a parameter
 186 higher than 5 led to an insufficient network's response as it is more influenced by past data rather
 187 than near to present data. To normalize the data and avoid overfitting, especially due to the different
 188 maximum force patterns of every human, a Batch Normalization is used in the second layer.
 189 Furthermore, the size of all max pooling layers is chosen as 2, and ReLU function is considered as the
 190 activation function, due to reasons already mentioned before.

191 2.5. Central Decision Maker (CDM)

192 To determine the level of safety for the human cooperator, a Central Decision Maker system
 193 (CDM) is designed by combining the results of the two parts, ARN and CDN, using rules which is
 194 shown in Figure 3. Different human actions and contact types are categorized in three level of safety,
 195 namely safe, caution, and danger, with color-code as green, yellow, and red.

		Human Action Recognition Classifier				
		Passing	Observation	Interaction	Danger Situation	Fail
Contact Classifier	No Contact	Safe	Safe	Safe	Danger	Caution
	Intentional L5	Danger	Caution	Safe	Danger	Caution
	Intentional L5	Danger	Caution	Safe	Danger	Caution
	Incidental L5	Danger	Danger	Danger	Danger	Danger
	Incidental L6	Danger	Danger	Danger	Danger	Danger

196

197

Figure 3: Central Decision Maker rules

198 2.6. Data Collection

199 2.6.1. Human Action Recognition

200 The HAR data is collected simultaneously from different views by two Kinect V2 cameras
201 recording the scene of an operator moving next to a robot performing repetitive motions. As Kinect
202 V2 library in Linux is not precise and does not project human skeleton in RGB images, depth
203 coordinates are converted to RGB coordinates as follows

204

$$x_{rgb} = x_d \times \frac{PD_{xrgb}}{PD_{xd}} + \frac{C_{xrgb} \times PD_{xd} - C_{xd} \times PD_{xrgb}}{PD_{xrgb} \times PD_{xd}} \quad (7)$$

$$y_{rgb} = y_d \times \frac{PD_{yrgb}}{PD_{yd}} + \frac{C_{yrgb} \times PD_{yd} - C_{yd} \times PD_{yrgb}}{PD_{yrgb} \times PD_{yd}} \quad (8)$$

205

206 where (C_{xrgb}, C_{yrgb}) and (C_{xd}, C_{yd}) are RGB and depth image centers, respectively. PD shows the
207 number of pixels per degree for depth and RGB images, respectively equal to 7×7 and 22×20
208 [61][62]. Then, the RGB images, which are supplemented with the skeleton representation in each
209 frame, are collected as dataset. The collection rate by considering the required time for saving the
210 images was 22 frames/second. Both cameras start collecting data once the human operator enters the
211 environment. The collected images are then sorted into 5 different categories and labeled
212 accordingly.

213 2.6.2. Contact Detection

214 The data acquired at the robot joints during a predefined motion were collected as shown in
215 Figure 2, in a collision-free state and during interaction with the operator, at a sampling rate of
216 200Hz (one sample per 5ms). Then, a frame of W-window with 200ms latency passed through the
217 entire data gathered, preparing it to be used as training data for the input layer of the designed
218 network. Thanks to the default cartesian contact detection ability of the Panda robot, those contact
219 data is used as a trigger to stop recording data after contact occurrence. Consequently, the last
220 W-samples of each collision trial data is considered as input for training the network. For assuring
221 comprehensiveness of the gathered data, each trial is repeated 10 times with different scenes,
222 including touched links, direction of motion, line of collision with the human operator, and contact
223 type (intentional or incidental). Additionally, each sample is labeled according to the mentioned
224 sequence.

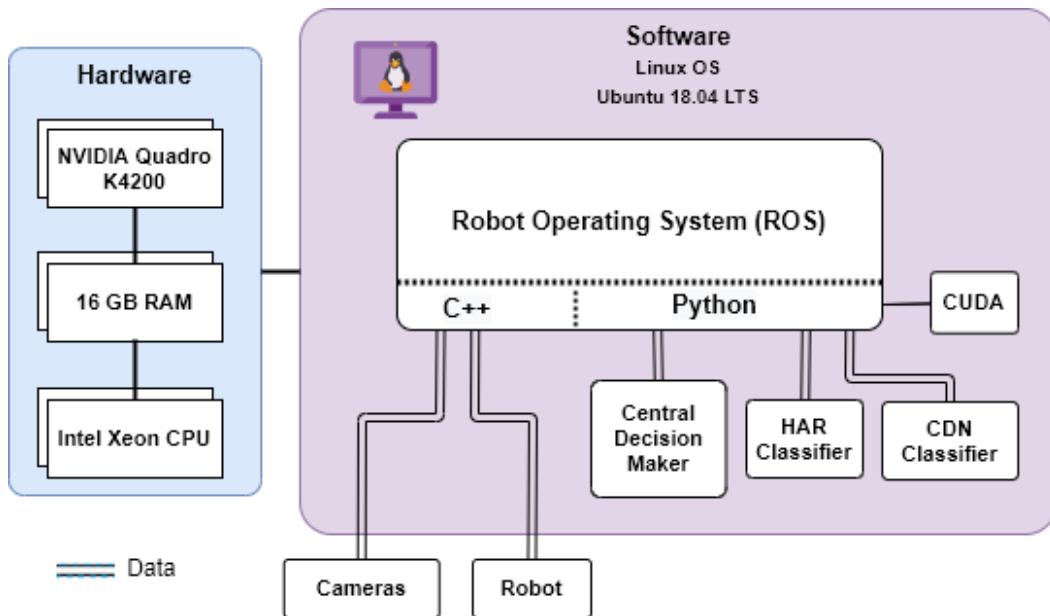
225 2.7. Training hardware and API setup

226 In the training of a network by using Graphic Processor Units (GPU), memory plays an
227 important role in reducing the training time. In this research, a powerful computer with NVIDIA
228 Quadro P5000 GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and
229 training the CNN networks using the Keras library of TensorFlow. To enable CUDA and
230 GPU-acceleration computing, a GPU version of TensorFlow is used, and in consequence, the
231 training process is speeded up. The total runtime of the vision network trained with 30,000 image
232 sequences was about 12 hours for 150 epochs, while it was less than 5 minutes for training contact
233 networks.

234 2.8. Real time interface

235 The real time interface for collecting dataset and implementing the trained network on the
236 system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 4 shows the
237 hardware and software structure used in this work. Two computers execute the vision networks for
238 each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore,

239 CDN and CDM are executed on another pc at the same rate, connected to the robot controller for
 240 receiving the robot torque, velocity and position data of joints 5 and 6.
 241



242
 243

Figure 4: Real-time interface of complex system

244 **3. Results**

245 In order to evaluate the performance of the proposed system, the following metrics is used. A
 246 first evaluation consists of an offline testing, for which the results are compared based on the key
 247 figures Precision and Recall, defined as follows:
 248

$$Precision = \frac{tp}{tp + fp} \quad (9)$$

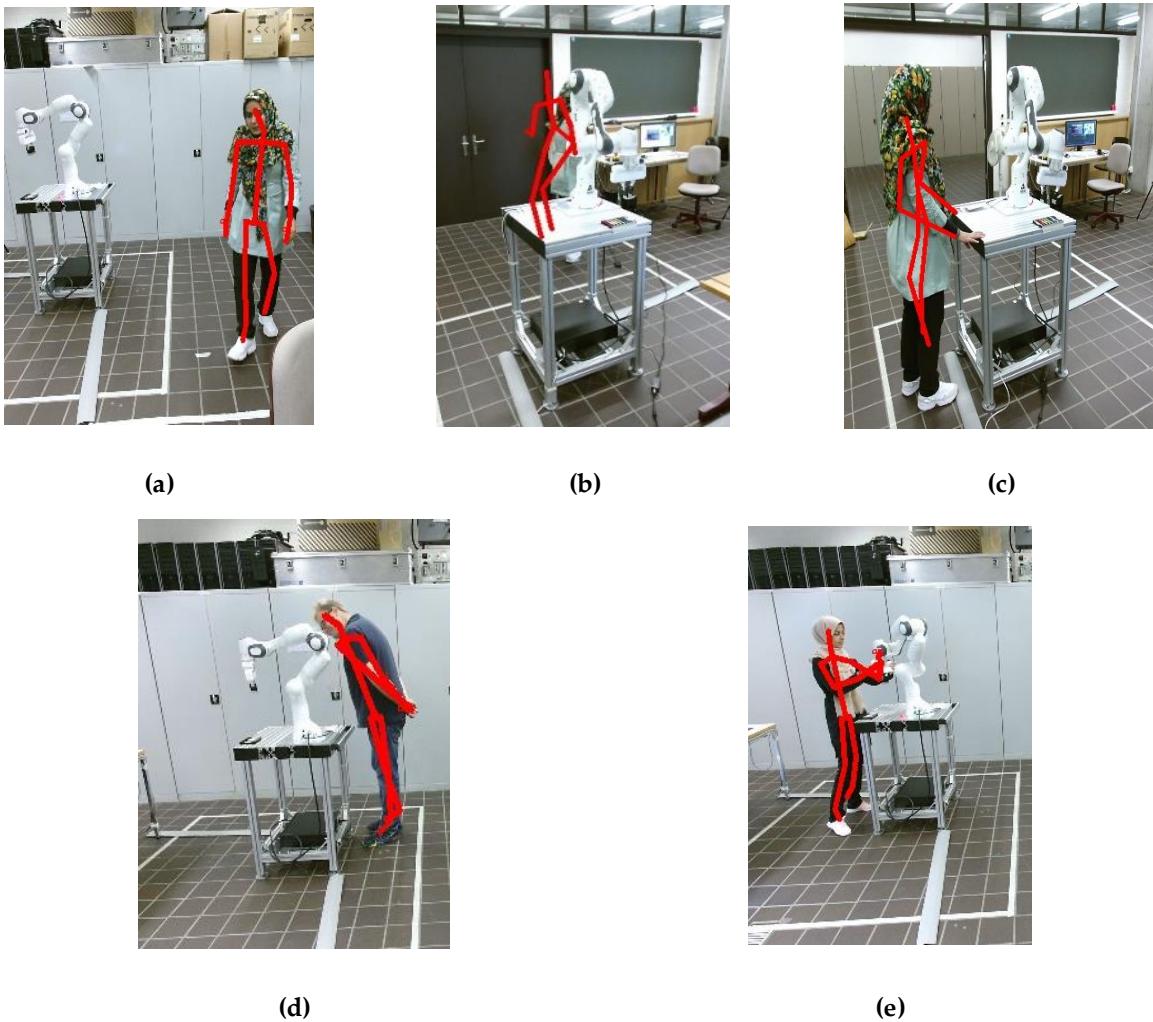
$$Recall = \frac{tp}{tp + fn} \quad (10)$$

249
 250 Where tp is the amount of the predicted true positive samples, fp represents the amount of the
 251 predicted false positive samples and fn is the count of predicted false positive classes. Accuracy
 252 calculation follows later.

253 The second evaluation is based on real-time testing; The tests have shown promising results in
 254 early trials, the following YouTube video gives an impression of the performance.
 255 https://www.youtube.com/watch?v=ED_wH9BFJck

256 **3.1. Dataset**

257 Regarding the vision category, the dataset consisting of 33050 images is divided into 5 classes,
 258 including Interaction, Observation, Passing, Fail, and Dangerous Observation, Figure 5 representing
 259 the different possible actions of a human operator during robot operation. Contact detection dataset
 260 [63] with 1114 samples is subdivided into 5 classes, namely No-contact, Intentional_Link5,
 261 Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact state on the last
 262 two links including their respective type, incidental or intentional.



263 **Figure 5:** Type of human actions: (a) Passing: Operator is just passing by, without paying attention to
 264 the robot; (b) Fail: Blind spots or occlusion of the visual field may happen for a camera, in this
 265 situation the second camera takes over detection; (c) Observation: Operator enters the working zone,
 266 without any interaction intention and stands next to the robot; (d) Dangerous Observation: Operator
 267 proximity is too close, especially his head is at danger of collision with the robot; (e) Interaction:
 268 Operator enters the working zone and prepares to work with the robot.

269 *3.2. Comparison between Networks*

270 *3.2.1. Action recognition*

271 For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter
 272 indicating a significant outcome in both real-time and off-line testing cases. These two networks are
 273 compared with respect to the results of 150 training epochs, in Table 1 and Table 2. As it is clear, the
 274 3D network shows superiority in terms of Accuracy, Precision and Recall.
 275

276

Table 1: Precision and Recall of two trained networks for Human Action Recognition

Network	2D		3D	
	Precision	Recall	Precision	Recall
Observation	0.99	0.99	1.00	1.00
Interaction	1.00	1.00	1.00	1.00
Passing	1.00	1.00	1.00	1.00
Fail	1.00	1.00	1.00	1.00
Dangerous Observation	0.98	0.96	0.98	0.99
Accuracy	0.9956		0.9972	

277

278

Table 2: Confusion Matrix for different classes in HRC

Network	2D					3D					
	Observation	Interaction	Passing	Fail	Dangerous Observation	Observation	Interaction	Passing	Fail	Dangerous Observation	
True Labels	Observation	3696	7	2	0	5	3751	6	2	1	7
	Interaction	13	4130	0	0	1	8	4030	0	0	0
	Passing	2	0	1145	0	0	1	0	1160	0	0
	Fail	0	0	0	593	0	0	0	0	588	0
	Dangerous Observation	12	1	0	0	313	2	0	0	0	359

279

3.2.2. Contact detection

280
281
282
283
284
285
286
287

To evaluate the influence of the size of the sampling window (w) on the precision of the trained networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to 0.5, 1, 1.5 seconds of sampling period duration. 70% of the dataset are selected for training and 30% for testing. Each network is trained with 300 epochs and the results are shown in **Table 3** and **Error! Reference source not found.**. Window size of 200 and 300 unities provide a good precision for identifying the contact status, in contrast to w=100 which is not satisfactory. Furthermore, by comparing the result of 200-window and 300-window networks, 200-window network has a better precision and recall.

288

Table 3: Precision and recall of trained networks for contact detection with different window size

w	100	200	300	100	200	300
	Precision			Recall		
No-Contact	0.94	0.99	0.98	0.94	1.00	1.00
Intentional_Link5	0.74	0.91	0.89	0.84	0.91	0.84
Intentional_Link6	0.68	0.97	0.91	0.64	0.90	0.91
Incidental_Link5	0.61	0.89	0.83	0.61	0.93	0.89
Incidental_Link6	0.69	0.96	0.96	0.57	0.96	0.93
Accuracy	0.78	0.96	0.93			

289
290

291

Table 4: Confusion matrix of trained networks for contact detection with different window size

		Window Size	100					200					300				
			No-Contact	Incidental_Link5	Incidental_Link6	Intentional_Link5	Intentional_Link6	No-Contact	Incidental_Link5	Incidental_Link6	Intentional_Link5	Intentional_Link6	No-Contact	Incidental_Link5	Incidental_Link6	Intentional_Link5	Intentional_Link6
True Labels	No-Contact	166	0	9	0	1	342	0	3	0	1	167	0	3	0	0	0
	Intentional_Link5	0	86	12	19	0	0	93	4	4	1	0	86	5	5	1	1
	Intentional_Link6	8	1	59	2	17	0	3	83	0	0	0	5	84	0	3	3
	Incidental_Link5	0	15	1	33	5	0	6	0	50	0	0	10	0	48	0	0
	Incidental_Link6	3	0	11	0	31	0	0	2	0	52	0	1	0	1	50	50

292

4. Discussion

Human Robot Collaboration has recently gained a lot of interest and received many contributions on both theoretical and practical aspects, including sensor development [64], design of robust and adaptive controllers [65,66], learning robots force-sensitive manipulation skills [67], human interfaces [68,69] and so on. In addition, some companies attempted to introduce collaborative robots so that HRC become more suited to enter in manufacturing applications and production lines. However, Cobots available on the market have limited payload/speed capacities because of safety concerns which limits HRC application to some light tasks with low productivity.

On the other hand, according to the norms for HRC operations [70], it is not essential to observe a strict design or limit the power of operations if the human safety factor can be ensured in all its aspects; In this regard, an intelligent safety system has been developed in this research to detect hazardous situations, also assessing Human Intention Awareness (HIA) whether in physical contact with the robot or not. As a result, our studies show that the different forms of collaboration such as coexistence, cooperation, etc. with their different safety requirements can be reduced to a single scenario. In this safety scenario, the robot reacts by being able to detect human intention and thus ensuring safety in all work situations. Thus, a smart robot will take care of the safety of humans from entering the shared workspace to physical interaction in order to jointly accomplish a task.

Another advantage of this system is that the robot would be smart enough to take care about safety norms depending on the conditions and consequently, could operate at an optimum speed during HRC applications. In other words, current safety requirements in most cases stop or drastically slow down the robot when human enters a shared workspace. However, with the proposed safety system, based on the robot's awareness, it is possible to implement a reasonable trade-off between security and productivity, which will be discussed in more detail in our future research.

316 5. Conclusion

The efficiency of safety and productivity of Cobots in HRC can be improved if they can easily recognize complex human actions and differentiate between multitude types of contact. In this paper, a safety system composed of visual and physical interaction detection systems is proposed to improve the productivity in HRC applications by making the robot aware of human intentions with the ability to distinguish between intentional and incidental contact. In a first step, the system is purposed to detect human intention once he enters the workspace and just in case of hazardous situations, the robot would adapt or stop accordingly which can lead to higher productivity. On the other hand, if there is any contact between robot and human, the system would decide about the

325 final situation (collision or intentional contact) based on the defined rules, and by considering both
326 HAR and contact detection system outputs.

327 **Acknowledgments:** This research was a part of an international project between Zurich University of Applied
328 Science ZHAW and University of Isfahan. Authors acknowledge the Leading House of South Asia and Iran at
329 Zurich University of Applied Science for funding this research.

330 The persons recognizable in the pictures have consented to private and / or commercial use - publication,
331 distribution, use, processing and transfer - in digital and print form by the photographer or by third parties.

332 7. References

- 333 1. Robla-Gomez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J.
334 Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments. *IEEE
335 Access* **2017**, *5*, 26754–26773, doi:10.1109/ACCESS.2017.2773127.
- 336 2. Nikolakis, N.; Maratos, V.; Makris, S. A cyber physical system (CPS) approach for safe human-robot
337 collaboration in a shared workplace. *Robot. Comput. Integrat. Manuf.* **2019**, *56*, 233–243,
338 doi:10.1016/j.rcim.2018.10.003.
- 339 3. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings:
340 Safety, intuitive interfaces and applications. *Mechatronics* **2018**, *55*, 248–266,
341 doi:10.1016/j.mechatronics.2018.02.009.
- 342 4. Losey, D.P.; McDonald, C.G.; Battaglia, E.; O’Malley, M.K. A Review of Intent Detection, Arbitration,
343 and Communication Aspects of Shared Control for Physical Human–Robot Interaction. *Appl. Mech. Rev.*
344 **2018**, *70*, doi:10.1115/1.4039145.
- 345 5. Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A comprehensive survey of
346 vision-based human action recognition methods. *Sensors (Switzerland)* **2019**, *19*, 1–20,
347 doi:10.3390/s19051005.
- 348 6. Otim, T.; Díez, L.E.; Bahillo, A.; Lopez-Iturri, P.; Falcone, F. Effects of the Body Wearable Sensor
349 Position on the UWB Localization Accuracy. *Electronics* **2019**, *8*, 1351, doi:10.3390/electronics8111351.
- 350 7. Moschetti, A.; Cavallo, F.; Esposito, D.; Penders, J.; Di Nuovo, A. Wearable sensors for human-robot
351 walking together. *Robotics* **2019**, *8*, 38, doi:10.3390/ROBOTICS8020038.
- 352 8. Otim, T.; Díez, L.E.; Bahillo, A.; Lopez-Iturri, P.; Falcone, F. A Comparison of Human Body Wearable
353 Sensor Positions for UWB-based Indoor Localization. In Proceedings of the 10th International
354 Conference Indoor Positioning Indoor Navigat; Piza, Italy, 2019; pp. 165–171.
- 355 9. Rosati, S.; Balestra, G.; Knaflitz, M. Comparison of different sets of features for human activity
356 recognition by wearable sensors. *Sensors (Switzerland)* **2018**, *18*, doi:10.3390/s18124189.
- 357 10. Xu, Z.; Zhao, J.; Yu, Y.; Zeng, H. Improved 1D-CNNs for behavior recognition using wearable sensor
358 network. *Comput. Commun.* **2020**, *151*, 165–171, doi:10.1016/j.comcom.2020.01.012.
- 359 11. Xia, C.; Sugiura, Y. Wearable Accelerometer Optimal Positions for Human Motion Recognition. In
360 Proceedings of the LifeTech 2020 - 2020 IEEE 2nd Global Conference on Life Sciences and Technologies;
361 Institute of Electrical and Electronics Engineers Inc., 2020; pp. 19–20.
- 362 12. Qian, H.; Mao, Y.; Xiang, W.; Wang, Z. Recognition of human activities using SVM multi-class classifier.
363 *Pattern Recognit. Lett.* **2010**, *31*, 100–111, doi:10.1016/j.patrec.2009.09.019.
- 364 13. Reddy, K.K.; Shah, M. Recognizing 50 human action categories of web videos. *Mach. Vis. Appl.* **2013**, *24*,
365 971–981, doi:10.1007/s00138-012-0450-4.
- 366 14. Manosha Chathuramali, K.G.; Rodrigo, R. Faster human activity recognition with SVM. In Proceedings
367 of the International Conference on Advances in ICT for Emerging Regions, ICTer 2012 - Conference

368 Proceedings; 2012; pp. 197–203.

369 15. Berg, J.; Reckordt, T.; Richter, C.; Reinhart, G. Action recognition in assembly for
370 human-robot-cooperation using hidden Markov Models. *Procedia CIRP* **2018**, *76*, 205–210,
371 doi:10.1016/j.procir.2018.02.029.

372 16. Hoang Le Uyen Thuc; Shian-Ru Ke; Jenq-Neng Hwang; Pham Van Tuan; Truong Ngoc Chau
373 Quasi-periodic action recognition from monocular videos via 3D human models and cycic HMMs. In
374 Proceedings of the The 2012 International Conference on Advanced Technologies for Communications;
375 IEEE, 2012; pp. 110–113.

376 17. Hasan, H.; Abdul-Kareem, S. Static hand gesture recognition using neural networks. *Artif. Intell. Rev.*
377 2014, *41*, 147–181.

378 18. Sharma, S.; Modi, S.; Rana, P.S.; Bhattacharya, J. Hand gesture recognition using Gaussian threshold
379 and different SVM kernels. In Proceedings of the Communications in Computer and Information
380 Science; Springer Verlag, 2018; Vol. 906, pp. 138–147.

381 19. Cho, W.H.; Kim, S.K.; Park, S.Y. Human action recognition using hybrid method of hidden Markov
382 model and Dirichlet process Gaussian mixture model. *Adv. Sci. Lett.* **2017**, *23*, 1652–1655,
383 doi:10.1166/asl.2017.8599.

384 20. Piyathilaka, L.; Kodagoda, S. Gaussian mixture based HMM for human daily activity recognition using
385 3D skeleton features. In Proceedings of the Proceedings of the 2013 IEEE 8th Conference on Industrial
386 Electronics and Applications, ICIEA 2013; 2013; pp. 567–572.

387 21. Wang, P.; Liu, H.; Wang, L.; Gao, R.X. Deep learning-based human motion recognition for predictive
388 context-aware human-robot collaboration. *CIRP Ann. - Manuf. Technol.* **2018**, *67*, 17–20,
389 doi:10.1016/j.cirp.2018.04.066.

390 22. Ullah, A.; Ahmad, J.; Muhammad, K.; Sajjad, M.; Baik, S.W. Action Recognition in Video Sequences
391 using Deep Bi-Directional LSTM with CNN Features. *IEEE Access* **2017**, *6*, 1155–1166,
392 doi:10.1109/ACCESS.2017.2778011.

393 23. Zhao, Y.; Man, K.L.; Smith, J.; Siddique, K.; Guan, S.U. Improved two-stream model for human action
394 recognition. *Eurasip J. Image Video Process.* **2020**, *2020*, 1–9, doi:10.1186/s13640-020-00501-x.

395 24. Wang, P.; Li, W.; Ogunbona, P.; Wan, J.; Escalera, S. RGB-D-based human motion recognition with deep
396 learning: A survey. *Comput. Vis. Image Underst.* **2018**, *171*, 118–139, doi:10.1016/j.cviu.2018.04.007.

397 25. Gao, J.; Yang, Z.; Sun, C.; Chen, K.; Nevatia, R. TURN TAP: Temporal Unit Regression Network for
398 Temporal Action Proposals. In Proceedings of the International Conference on Computer Vision; 2017.

399 26. Gu, Y.; Ye, X.; Sheng, W.; Ou, Y.; Li, Y. Multiple stream deep learning model for human action
400 recognition. *Image Vis. Comput.* **2020**, *93*, 103818, doi:10.1016/j.imavis.2019.10.004.

401 27. Srihari, D.; Kishore, · P V V; Kiran Kumar, · E; Anil Kumar, · D; Teja, · M; Kumar, K.; Prasad, · M V D;
402 Raghava Prasad, C. A four-stream ConvNet based on spatial and depth flow for human action
403 classification using RGB-D data. *Multimed. Tools Appl.* **2020**, *79*, 11723–11746,
404 doi:10.1007/s11042-019-08588-9.

405 28. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action
406 recognition. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018; 2018;
407 pp. 7444–7452.

408 29. Si, C.; Jing, Y.; Wang, W.; Wang, L.; Tan, T. Skeleton-Based Action Recognition with Spatial Reasoning
409 and Temporal Stack Learning. *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
410 Bioinformatics)* **2018**, *11205 LNCS*, 106–121, doi:10.1007/978-3-030-01246-5_7.

411 30. Cheng, J. Skeleton-Based Action Recognition with Directed Graph Neural Networks. *Comput. Vis.*
412 *Pattern Recognit.* **2019**, *7912–7921*.

413 31. Trăscău, M.; Nan, M.; Florea, A.M. Spatio-temporal features in action recognition using 3D skeletal
414 joints. *Sensors (Switzerland)* **2019**, *19*, doi:10.3390/s19020423.

415 32. Olatunji, I.E. Human Activity Recognition for Mobile Robot. *J. Phys. Conf. Ser.* **2018**, *1069*, *4–7*,
416 doi:10.1088/1742-6596/1069/1/012148.

417 33. Akkaladevi, S.C.; Heindl, C. Action recognition for human robot interaction in industrial applications.
418 In Proceedings of the 2015 IEEE International Conference on Computer Graphics, Vision and
419 Information Security, CGVIS2015; 2016; pp. 94–99.

420 34. Ding, Y.; Xu, W.; Liu, Z.; Zhou, Z.; Pham, D.T. Robotic Task Oriented Knowledge Graph for
421 Human-Robot Collaboration in Disassembly. *Procedia CIRP* **2019**, *83*, *105–110*,
422 doi:10.1016/j.procir.2019.03.121.

423 35. Roitberg, A.; Perzylo, A.; Somani, N.; Giuliani, M.; Rickert, M.; Knoll, A. Human activity recognition in
424 the context of industrial human-robot interaction. *2014 Asia-Pacific Signal Inf. Process. Assoc. Annu.*
425 *Summit Conf. APSIPA 2014* **2014**, doi:10.1109/APSIPA.2014.7041588.

426 36. Duckworth, P.; Hogg, D.C.; Cohn, A.G. Unsupervised human activity analysis for intelligent mobile
427 robots. *Artif. Intell.* **2019**, *270*, *67–92*, doi:10.1016/j.artint.2018.12.005.

428 37. Cao, P.; Gan, Y.; Dai, X. Model-based sensorless robot collision detection under model uncertainties
429 with a fast dynamics identification. *Int. J. Adv. Robot. Syst.* **2019**, *16*, *172988141985371*,
430 doi:10.1177/1729881419853713.

431 38. Haddadin, S.; Albu-Schaffer, A.; De Luca, A.; Hirzinger, G. Collision Detection and Reaction: A
432 Contribution to Safe Physical Human-Robot Interaction. In Proceedings of the 2008 IEEE/RSJ
433 International Conference on Intelligent Robots and Systems; IEEE, 2008; pp. 3356–3363.

434 39. de Luca, A.; Mattone, R. Sensorless Robot Collision Detection and Hybrid Force/Motion Control. In
435 Proceedings of the Proceedings of the 2005 IEEE International Conference on Robotics and Automation;
436 IEEE; pp. 999–1004.

437 40. Xiao, J.; Zhang, Q.; Hong, Y.; Wang, G.; Zeng, F. Collision detection algorithm for collaborative robots
438 considering joint friction. *Int. J. Adv. Robot. Syst.* **2018**, *15*, *172988141878899*,
439 doi:10.1177/1729881418788992.

440 41. Cao, P.; Gan, Y.; Dai, X. Finite-Time Disturbance Observer for Robotic Manipulators. *Sensors* **2019**, *19*,
441 *1943*, doi:10.3390/s19081943.

442 42. Luca, A.; Albu-Schaffer, A.; Haddadin, S.; Hirzinger, G. Collision Detection and Safe Reaction with the
443 DLR-III Lightweight Manipulator Arm. In Proceedings of the 2006 IEEE/RSJ International Conference
444 on Intelligent Robots and Systems; IEEE, 2006; pp. 1623–1630.

445 43. Ren, T.; Dong, Y.; Wu, D.; Chen, K. Collision detection and identification for robot manipulators based
446 on extended state observer. *Control Eng. Pract.* **2018**, *79*, *144–153*,
447 doi:10.1016/J.CONENGPRAC.2018.07.004.

448 44. Min, F.; Wang, G.; Liu, N. Collision Detection and Identification on Robot Manipulators Based on
449 Vibration Analysis. *Sensors* **2019**, *19*, *1080*, doi:10.3390/s19051080.

450 45. Haddadin, S. *Towards safe robots : approaching Asimov's 1st law*; ISBN 9783642403088.

451 46. Haddadin, S.; De Luca, A.; Albu-Schaffer, A. Robot Collisions: A Survey on Detection, Isolation, and
452 Identification. *IEEE Trans. Robot.* **2017**, *33*, *1292–1312*, doi:10.1109/TRO.2017.2723903.

453 47. Sharkawy, A.-N.; Koustoumpardis, P.N.; Aspragathos, N. Neural Network Design for Manipulator

454 Collision Detection Based Only on the Joint Position Sensors. *Robotica* **2019**, 1–19,
455 doi:10.1017/S0263574719000985.

456 48. Sharkawy, A.-N.; Koustoumpardis, P.N.; Aspragathos, N. Human–robot collisions detection for safe
457 human–robot interaction using one multi-input–output neural network. *Soft Comput.* **2019**, 1–33,
458 doi:10.1007/s00500-019-04306-7.

459 49. Liu, Z.; Hao, J. Intention Recognition in Physical Human–Robot Interaction Based on Radial Basis
460 Function Neural Network Available online: <https://www.hindawi.com/journals/jr/2019/4141269/>
461 (accessed on Jun 8, 2020).

462 50. Heo, Y.J.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W.K. Collision Detection for Industrial
463 Collaborative Robots: A Deep Learning Approach. *IEEE Robot. Autom. Lett.* **2019**, *4*, 740–746,
464 doi:10.1109/LRA.2019.2893400.

465 51. Dine, K.M. El; Sanchez, J.; Ramón, J.A.C.; Mezouar, Y.; Fauroux, J.-C. Force-Torque Sensor Disturbance
466 Observer using Deep Learning. **2018**.

467 52. Pham, C.; Nguyen-Thai, S.; Tran-Quang, H.; Tran, S.; Vu, H.; Tran, T.H.; Le, T.L. SensCapsNet: Deep
468 Neural Network for Non-Obtrusive Sensing Based Human Activity Recognition. *IEEE Access* **2020**, *8*,
469 86934–86946, doi:10.1109/ACCESS.2020.2991731.

470 53. Gao, X.; Shi, M.; Song, X.; Zhang, C.; Zhang, H. Recurrent neural networks for real-time prediction of
471 TBM operating parameters. *Autom. Constr.* **2019**, *98*, 225–235, doi:10.1016/J.AUTCON.2018.11.013.

472 54. Yang, K.; Wang, X.; Quddus, M.; Yu, R. Predicting Real-Time Crash Risk on Urban Expressways Using
473 Recurrent Neural Network. **2019**.

474 55. Masood, S.; Srivastava, A.; Thuwal, H.C.; Ahmad, M. Real-Time Sign Language Gesture (Word)
475 Recognition from Video Sequences Using CNN and RNN. In; Springer, Singapore, 2018; pp. 623–632.

476 56. Li, S.; Li, W.; Cook, C.; Zhu, C.; Gao, Y. Independently Recurrent Neural Network (IndRNN): Building a
477 Longer and Deeper RNN **2018**, 5457–5466.

478 57. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition With Enhanced
479 Motion Vector CNNs **2016**, 2718–2726.

480 58. Jin, C.-B.; Li, S.; Do, T.D.; Kim, H. Real-Time Human Action Recognition Using CNN Over Temporal
481 Images for Static Video Surveillance Cameras. In; Springer, Cham, 2015; pp. 330–339.

482 59. Pathak, D.; El-Sharkawy, M. Architecturally Compressed CNN: An Embedded Realtime Classifier
483 (NXP Bluebox2.0 with RTMaps). In Proceedings of the 2019 IEEE 9th Annual Computing and
484 Communication Workshop and Conference (CCWC); IEEE, 2019; pp. 0331–0336.

485 60. Ullah, I.; Hussain, M.; Qazi, E.-H.; Aboalsamh, H. An automated system for epilepsy detection using
486 EEG brain signals based on deep learning approach. *Expert Syst. Appl.* **2018**, *107*, 61–71,
487 doi:10.1016/J.ESWA.2018.04.021.

488 61. Kinect for Windows v2.

489 62. Kim, C.; Yun, S.; Jung, S.W.; Won, C.S. Color and depth image correspondence for Kinect v2. *Adv.*
490 *Multimed. Ubiquitous Eng.* **2015**, *352*, 111–116, doi:10.1007/978-3-662-47487-7_17.

491 63. Rezayati, M.; van de Venn, H.W. Dataset: Collision Detection in Physical Human Robot Interaction.
492 **2020**, *1*, doi:10.17632/CTW2256PHB.1.

493 64. Cirillo, A.; Cirillo, P.; De Maria, G.; Natale, C.; Pirozzi, S. A Distributed Tactile Sensor for Intuitive
494 Human–Robot Interfacing. **2017**, doi:10.1155/2017/1357061.

495 65. Khoramshahi, M.; Billard, A. A dynamical system approach to task-adaptation in physical
496 human–robot interaction. *Auton. Robots* **2019**, *43*, 927–946, doi:10.1007/s10514-018-9764-z.

497 66. Xiong, G.L.; Chen, H.C.; Xiong, P.W.; Liang, F.Y. Cartesian Impedance Control for Physical
498 Human-Robot Interaction Using Virtual Decomposition Control Approach. *Iran. J. Sci. Technol. - Trans.*
499 *Mech. Eng.* **2019**, *43*, 983–994, doi:10.1007/s40997-018-0208-3.

500 67. Johannsmeier, L.; Gerchow, M.; Haddadin, S. *A framework for robot manipulation: Skill formalism, meta*
501 *learning and adaptive control*; 2019; Vol. 2019-May; ISBN 9781538660263.

502 68. Yang, C.; Zeng, C.; Liang, P.; Li, Z.; Li, R.; Su, C.Y. Interface Design of a Physical Human-Robot
503 Interaction System for Human Impedance Adaptive Skill Transfer. *IEEE Trans. Autom. Sci. Eng.* **2018**, *15*,
504 329–340, doi:10.1109/TASE.2017.2743000.

505 69. Weistroffer, V.; Paljic, A.; Callebert, L.; Fuchs, P. *A Methodology to Assess the Acceptability of Human-Robot*
506 *Collaboration Using Virtual Reality*; 2013;

507 70. Normung, E.K. für TECHNICAL SPECIFICATION ISO / TS Robots and robotic devices —. **2016**, 2016.

508