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12 Abstract: Digital enabled manufacturing systems require high level of automation for fast and
13 low-cost production but should also present flexibility and adaptiveness to varying and dynamic
14 conditions in their environment, including the presence of human beings. This issue is addressed in
15 this work by implementing a reliable system for real-time safe human-robot collaboration based
16 upon the combination of human action and contact type detection systems. Two datasets
17 containing contact and vision data are collected by using different volunteers. The action
18 recognition system classifies human actions using the skeleton representation of the latter when
19 entering the shared workspace and the contact detection system distinguishes between intentional
20 and incidental interactions if a physical contact between human and robot takes place. Two
21 different deep learning networks are used for human action recognition and contact detection
22 which in combination, lead to the enhancement of human safety and an increase of the level of
23 robot awareness about human intentions. The results show a promising path for future Al-driven
24 solutions in safe and productive human-robot collaboration (HRC) in industrial automation.
25 Keywords: Safe physical Human-Robot Collaboration, collision detection, human action
26 recognition, artificial intelligence, industrial automation
27

28  1.Introduction

29 Recently, human-robot collaboration (HRC) has gained increasing attention, evolving the
30  manufacturing industry from rigid conventional procedures of production to a much more flexible
31  and intelligent way of manufacturing within the frame of the Industry 4.0 paradigm [1,2]. The
32  present industrial need is to develop a new generation of robots that support operators by
33 leveraging tasks in terms of flexibility and cognitive skills requirements [1]. Consequently, the robot
34  becomes a companion or so-called collaborative robot (Cobot) for flexible task accomplishment
35  rather than a preprogrammed slave for repetitive, rigid automation. These robots are expected to
36  actively assist operators in performing complex tasks, with highest priority on human safety in cases
37  humansand robots need to physically cooperate and/or share their workspace [3].

38 This issue can only be tackled by implementing a cascaded, multi-objective safety system which
39  primarily avoids collisions and in all other cases limits the force impact if a collision-free movement
40  isinevitable. Ensuring safety of humans during collaboration with cobots in physical Human-Robot
41  Interaction (pHRI) is crucial, and one of the main preconditions to answer this challenge is human
42  intention detection [4]. Therefore, the primary goal of this work is to make a step-change in assuring
43  safety in pHRL The task is divided in two parts, Human Action Recognition (HAR) and contact type
44 detection which will be subsequently investigated. At the end by combining these subsystems, it is
45  considered to attain a reliable safety system which takes advantages of both methodologies.
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46  1.1. Human Action Recognition (HAR)

47 HAR can be used to allow the robot keeping a safe distance to its human counterpart or the
48  environment, ensuring an essential requirement for fulfilling safety in shared workspaces. Recent
49  studies have been concentrated on visual and non-visual perception systems to recognize human
50  actions [5]. One method amongst non-visual approaches consists of using wearable devices [6-11];
51  Nevertheless, applying this technology as a possible solution for an industrial situation seems at
52 present neither feasible nor com fortable in industrial environments because of restrictions imposed
53  to the operator's movements. On the other hand, active vision-based systems are widely used in
54 such applications for recognizing human gestures and actions but can be significantly affected in
55  their performance in poorly lit scenes or scenarios with large changes in lighting conditions. In
56  general, vision-based approaches consist of two main steps: proper human detection and action
57  classification.

58 As alluded by recent researches, machine learning methods are essential in recognizing human
59  actions and interpreting them. Some traditional machine learning methods such as Support Vector
60  Machine (SVM) [12-14], Hidden Markov Model (HMM) [15,16], neural networks [17,18] and
61  Gaussian mixture models (GMM) [19,20], have been used for human action detection with a
62  reported accuracy of about 70 to 90 percent. On the other hand, Deep Learning (DL) algorithms
63  prevail as a new generation of machine learning algorithms with significant capabilities in
64  discovering and learning complex underlying patterns from a large amount of data [21]. This
65  algorithm provides a new approach to improve the recognition accuracy of human actions by using
66  depth data provided by time-of-flight, depth or stereo cameras, extracting human location and
67  skeleton pose. DL researchers either use video stream data [22,23], RGB-D images [24-27] or 3D
68  skeleton tracking and joints extraction [28-31] for classification of arbitrary actions. Most of these
69 articles mainly focus on action classification based on domestic scenarios [15,32], only few have an
70 approach for industrial scenarios [33-35] and a restricted number worked on unsupervised human
71 activities in presence of mobile robots [36].

72 In this work, we use a deep learning approach for real-time human action recognition in an
73 industrial automation scenario. A convolutional analysis is applied on RGB images of the scene in
74 order to model the human motion over the frames by skeleton-based action recognition. The
75  artificial intelligence based human action recognition algorithm provides the core part for
76  distinguishing between collision and intentional contact.

77  1.2.Contact Type Detection

78 Toward this goal, at the first step, it is imperative to detect robot contact with human and then
79  distinguish between intentional and incidental contacts, a process called collision detection. Some
80  researchers propose sensor-less procedures for detecting a collision based on the robot dynamics
81 model [37,38], but also through momentum observers [37,39-42], using extended state observers
82 [43], vibration analysis models [44], finite-time disturbance observers [41], energy observers [42], or
83  joint velocity observers [45]. Among these methods, the momentum observer is the most common
84  method of collision detection because it has better performance compared to the other methods,
85  although the disadvantage is that it requires for precise dynamic parameters of the robot [46]. For
86  this reason, machine learning approaches like artificial neural networks[47-49] and deep learning
87  [50,51] have recently been applied for collision detection based on robot sensors stream data due to
88  their fast response and low computational cost.

89 Deep neural networks are extremely effective in feature extraction and learning complex
90 patterns[52]. Among these deep networks, recurrent neural networks (RNN) like long short-term
91  memory network approaches (LSTM) are frequently used in research for processing time series and
92 sequential data [53-56]. However, the main drawback of this network is the difficulty and time
93  consumption for training in comparison to convolutional neural networks (CNN) [50]. Additionally,
94 current researches showed that CNN has a great performance for image processing in real time
95  situations [22,57-59] where the input data is much more complicated than 1D time series signals.
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96 Therefore, in this part, we aim to detect and distinguish between intentional and incidental

97  (collision) human contact by using the convolutional neural network approach to achieve a model

98 free safety system. In the second step, depending on whether the contact is intentional or incidental,

99  therobotshould provide an adequate response which in every case ensures the safety of the human
100  operator. At this step, identifying at which link the collision occurred, is an important information
101  for anticipating proper robot reaction [46] which is also considered in the current work.

102  2.Material and Methods

103 2.1. Robotic Platform

104 The accessible platform used throughout this project is a Franka Emika robot (Panda),
105  recognized as a suitable collaborative robot in terms of agility and contact sensitivity. The key
106 features of this robot will be summarized hereafter; It consists of two main parts, arm, and hand. The
107  arm has 7 revolute joints and precise torque sensors (13 bits resolution) at every joint, is driven by
108  high efficiency brushless dc motors, and has the possibility to be controlled by external or internal
109  torque controllers at a 1 kHz frequency. The hand is equipped with a gripper which can securely
110  grasp objects due to a force controller. Generally, the robot has a total weight of approximately 18 kg
111  and can handle payloads up to 3 kg.

112 2.2. Camera Systems

113 The vision system is based on a multi-sensor approach using two Kinect V2 cameras for
114 monitoring the environment and tackle the risk of occlusion. The Kinect V2 has a depth camera with
115  resolution of 512 x 424 pixels with a field of view (FoV) of 70.6° x 60° and the color camera has a
116  resolution of 1920 x 1080px with a FoV of 84.1° x 53.8°. So, this sensor as one of the RGB-D Cameras
117  canbe used for humanbody and skeleton detection.

118  2.3. Standard robot collision detection:

119 A common collision detection approach is defined as [46]

120
True if lut)!> en
cd(u(v) ={

1
False if Tu(t)!< en @
121  where cd is the collision detection output function which maps the selected monitoring signal p(t)
122  into a collision state, TRUE or FALSE. €, indicates a threshold parameter, which determines the
123 sensitivity for detecting a collision.

124 2.4. Deep learning approach

125 A Convolutional Neural Network (CNN) model performs classification in an end-to-end
126  manner and learns data patterns automatically which is different to the traditional approaches
127  where the classification is done after feature extraction and selection [60]. In this paper, a
128  combination of 3D-CNN for HAR and 1D-CNN for contact type detection has been utilized. The
129  following subsections describe each network separately.

130  2.4.1.Human Action Recognition Network

131 Since human actions can be interpreted by analyzing the sequence of human body movements
132 such as arms and legs and placing them in a situational context, the consecutive skeleton images are
133 used as inputs for our 3D-CNN network which was successfully applied for real-time action
134 recognition. In this section, the 3D-CNN which is shown in Figure 1, classifies HAR to five states,
135  namely: Passing, Observation, Dangerous Observation, Interaction, and Fail.
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137 Figure1: 3D CNN for Human Action Recognition
138 e Inputlayer
139 The input layer has 4 dimensions, Nimage-width X Nimage-height X Nchamel X Ntrame. The RGB image of

140  Kinect V2 has a resolution of 1980x1080 pixels which is decreased to 320x180 for reducing the
141  trainable parameters and network complexity. S0 Nimage-width, Nimage-height, and Nchannel are 320, 180, and

142 3 respectively. Nfameindicates the total number of frames in the image sequence which is 3 in this
143 research.

144 o Layers

145 As shown in Figure 3, the proposed CNN is composed of fifteen layers, consisting of 4
146  convolutional layers, 4 pooling layers, 3 fully connected layers followed by 3 dropout layers and
147  aSoftmax layer for predicting actions. Over 10 million parameters must be trained for establishing a
148  map to action recognition.

149 The input layer isfollowed by a convolution layer with 96 feature maps of
150  size 73. Subsequently, the output is fed to the Rectified Linear Unit (ReLU) acti vation function. ReLU
151  is the most suitable activation function for this work, as it is specially designed for image processing
152  and it can keep the most important features of the input. In addition, it is easier to train and usually
153  achieves better performance, which is significant for real-time applications. Next layer is a max
154  pooling layer with size and stride of 3. The filter size of the next convolutional layers decreases to
155  53and 33 respectively with stride 1 and zero padding. Then, Max-pooling windows decline to 23 with
156  stride of 2. The output of the last pooling layer is flattened out for the fully connected layer input.
157  The fully connected layers consist of 2024, 1024, 512 neurons, respectively. The last step is to use a
158  Softmax level for activity recognition.
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159  2.4.2.Contact Detection Network

160 For contact detection, a deep network which is shown in Figure 2 is proposed. In this scheme, a
161  1D-CNN which is a multi-layered architecture with each layer consisting of few one-dimensional
162 convolution filters, is used. It includes one netw ork for classification of 5 states, which were defined

163  as:

164 e« No-Contact: no contact is detected within the specified sensitivity
165 e Intentional Link5: an intentional contact atrobot link 5 is detected

166 e Incidental Link5: a collision at robot link 5 is detected

167 e Intentional Link6: an intentional contact atrobot link 6 is detected

168 ¢ Incidental Link6: a collision at robot link 6 is detected

169
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171 Figure 2: Contact Detection Network Diagram

172 e  Input vector

173 In this paper, the input vector represents a time series of robot data as
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177  where 1, tex, g, and q indicate joint torque, external torque, joint position, and joint velocity,
178  respectively. W is the size of a window over the collected signals which stores time-domain samples
179  as anindependent instance for training the proposed models. Hence, the input vector is Wx28, and
180 in this research, by selecting 100, 200, and 300 samples for W, three different networks were trained
181  to compare the influence of this parameter.

182 e Layers (generalization)

183 As shown in Figure 2, the designed CNN is composed of eleven layers. In the firstlayer of this
184  model, the convolution process maps the data with 160 filters. The kernel size of this layer is
185  optimally considered 5 to obtain a faster and sensitive enough human contact status; a parameter
186  higher than 5 led to an insufficient network’s response as it is more influenced by past data rather
187  than near to present data. To normalize the data and avoid overfitting, especially due to the different
188  maximum force patterns of every human, a Batch Normalization is used in the second layer.
189  Furthermore, the size of all max pooling layers is chosen as 2, and ReLU function is considered as the
190 activation function, due to reasons already mentioned before.

191  2.5. Central Decision Maker (CDM)

192 To determine the level of safety for the human cooperator, a Central Decision Maker system
193  (CDM) is designed by combining the results of the two parts, ARN and CDN, using rules which is
194 shown in Figure 3. Different human actions and contact types are categorized in three level of safety,
195 namely safe, caution, and danger, with color-code as green, yellow, and red.
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197 Figure 3: Central Decision Maker rules
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198  2.6. Data Collection
199  2.6.1.Human Action Recognition
200 The HAR data is collected simultaneously from different views by two Kinect V2 cameras

201  recording the scene of an operator moving next to a robot performing repetitive motions. As Kinect
202 V2 library in Linux is not precise and does not project human skeleton in RGB images, depth
203  coordinates are converted to RGB coordinates as follows

204
PD C X PDyy — Cyq X PD
Xygb = Xg x xrgb + xrgb xd xd xrgb )
PDyq PDxrgb X PDyg
oo =y x P Dot Cyrgp X PDyg — Cyq X PDyyg) 8
-
g PD,, PDy, g X PDyg
205

206  where (Cxgb, Cyrgv) and (Cxd, Cya) are RGB and depth image centers, respectively. PD shows the
207  number of pixels per degree for depth and RGB images, respectively equal to 7x7 and 22 x20
208 [61][62].Then, the RGB images, which are supplemented with the skeleton representation in each
209  frame, are collected as dataset. The collection rate by considering the required time for saving the
210  images was 22 frames/second. Both cameras start collecting data once the human operator enters the
211  environment. The collected images are then sorted into 5 different categories and labeled
212 accordingly.

213  2.6.2. Contact Detection

214 The data acquired at the robot joints during a predefined motion were collected as shown in
215  Figure 2, in a collision-free state and during interaction with the operator, at a sampling rate of
216  200Hz (one sample per 5ms). Then, a frame of W-window with 200ms latency passed through the
217  entire data gathered, preparing it to be used as training data for the input layer of the designed
218 network. Thanks to the default cartesian contact detection ability of the Panda robot, those contact
219  data is used as a trigger to stop recording data after contact occurrence. Consequently, the last
220  W-samples of each collision trial data is considered as input for training the network. For assuring
221  comprehensiveness of the gathered data, each trial is repeated 10 times with different scenes,
222  including touched links, direction of motion, line of collision with the human operator, and contact
223  type (intentional or incidental). Additionally, each sample is labeled according to the mentioned
224 sequence.

225  2.7.Training hardware and API setup

226 In the training of a network by using Graphic Processor Units (GPU), memory plays an
227  important role in reducing the training time. In this research, a powerful computer with NVIDIA
228  Quadro P5000 GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and
229  training the CNN networks using the Keras library of TensorFlow. To enable CUDA and
230  GPU-acceleration computing, a GPU version of TensorFlow is used, and in consequence, the
231  training process is speeded up. The total runtime of the vision network trained with 30,000 image
232  sequences was about 12 hours for 150 epochs, while it was less than 5 minutes for training contact
233 networks.

234 2.8. Real time interface

235 The real time interface for collecting dataset and implementing the trained network on the
236  system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 4 shows the
237  hardware and software structure used in this work. Two computers execute the vision networks for
238  each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore,
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239 CDN and CDM are executed on another pc at the same rate, connected to the robot controller for
240  receiving the robot torque, velocity and position data of joints 5 and 6.

241
o : Software
Hardware Linux O5
Ubuntu 12.04 LTS
1
NVIDIA Quadro h
| K4200
Robot Operating System (ROS)
1
16 GB RAM e Python
L * A
. Y Central
Intel Xeon CPU Decision | | HAR CON
1 Maker assiner Classifier
——— Data
‘ Cameras | ‘ Robot
242
243 Figure 4: Real-time interface of complex system
244 3.Results
245 In order to evaluate the performance of the proposed system, the following metrics is used. A

246  first evaluation consists of an offline testing, for which the results are compared based on the key
247  figures Precision and Recall, defined as follows:

248
Precision = t—p ©)
tp +fp
Recall = t—p 10
tp +fn
249

250  Where tp is the amount of the predicted true positive samples, fp represents the amount of the
251  predicted false positive samples and fn is the count of predicted false positive classes. Accuracy
252  calculation follows later.

253 The second evaluation is based on real-time testing; The tests have shown promising results in
254  early trials, the following YouTube video gives an impression of the performance.

255  https://www.youtube.com/watch?v=ED_wH9BFJck

256  3.1. Dataset

257 Regarding the vision category, the dataset consisting of 33050 images is divided into 5 classes,
258 including Interaction, Observation, Passing, Fail, and Dangerous Observation, Figure 5 representing
259  thedifferent possible actions of a human operator during robot operation. Contact detection dataset
260 [63] with 1114 samples is subdivided into 5 classes, namely No-contact, Intentional Link5,
261 Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact state on the last
262  two links including their respective type, incidental or intentional.
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(d) (e)
263 Figure 5: Type of human actions: (a) Passing: Operator is just passing by, without paying attention to
264 the robot; (b) Fail: Blind spots or occlusion of the visual field may happen for a camera, in this
265 situation the second camera takes over detection; (c) Observation: Operator enters the working zone,
266 without any interaction intention and stands next to the robot; (d) Dangerous Observation: Operator
267 proximity is too close, especially his head is at danger of collision with the robot; (e) Interaction:
268 Operator enters the working zone and prepares to work with the robot.

269  3.2. Comparison between Networks

270 3.2.1. Action recognition

271 For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter
272  indicating a significant outcome in both real-time and off-line testing cases. These two networks are
273  compared with respect to the results of 150 training epochs, in Table 1 and Table 2. As itis clear, the
274 3D network shows superiority in terms of Accuracy, Precision and Recall.

275
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276 Table 1: Precision and Recall of two trained networks for Human Action Recognition
Network 2D 3D
Precision Recall Precision Recall
Observation 0.99 0.99 1.00 1.00
Interaction 1.00 1.00 1.00 1.00
Passing 1.00 1.00 1.00 1.00
Fail 1.00 1.00 1.00 1.00
Dangerous Observation 0.98 0.96 0.98 0.99
Accuracy 0.9956 0.9972
277
278 Table 2: Confusion Matrix for different classes in HRC
Network 2D 3D
g 5 4 Qo| & 5 29
o ] o 1 & B a ] 2 o 6 3
2 ) & v 3R 3 2 @ 8 2%R
2 & & = 23| &8 &g g 7 83
S s @ s&| g § © S &
Observation 3696 7 2 0 5 3751 6 2 1 7
% Interaction 13 4130 0 0 1 8 4030 0 0 0
”§ Passing 2 0 1145 0 0 1 0 1160 0 0
g Fail 0 0 0 593 0 0 0 0 588 0
& Dangerous 12 1 0 0 313 2 0 0 0 359
Observation
279  3.2.2.Contact detection
280 To evaluate the influence of the size of the sampling window (w) on the precision of the trained

281  networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to
282  0.5,1,1.5 seconds of sampling period duration.70% of the dataset are selected for training and 30%
283  for testing. Each network is trained with 300 epochs and the results are shown in Table 3 and Error!
284  Reference source not found.. Window size of 200 and 300 unities provide a good precision for
285  identifying the contact status, in contrast to w=100 which is not satisfactory. Furthermore, by
286  comparing the result of 200-window and 300-window networks, 200-window network has a better
287  precision and recall.

288 Table 3: Precision and recall of trained networks for contact detection with different window size

w 100 200 300 100 200 300
Precision Recall
No-Contact 0.94 0.99 0.98 0.94 1.00 1.00
Intentional_Link5 0.74 091 0.89 0.84 091 0.84
Intentional_Link6 0.68 097 091 0.64 0.90 091
Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89
Incidental_Linké 0.69 0.96 0.96 0.57 0.96 0.93
Accuracy 0.78 0.96 0.93
289

290
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291 Table 4: Confusion matrix of trained networks for contact detection with different window size
Window Size 100 200 300
¢ 2 2 B Z|% 2 2 £ £|% 2 2z £ &
o 5§ 5 2 |0 § § 2 2|0 § § 2 =2
[e) ) — o ) I @) 1y 1y
5 = 2 - Ig g2 2~ & - =12 = = =
5 5 5 % x|&% 5 5 % Z|& 5 5 % &
5 5 & 8 5 5 & & 5 5 &5 5
No-Contact 166 0 9 0 1 342 0 3 0 1 167 0 3 0 0
2 Intentional Link5 0 86 12 19 0 0 93 4 4 1 0 86 5 5 1
9 . .
s Intentional_Link6 8 1 59 2 17 0 83 0 0 0 5 84
<] . .
E Incidental _Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0
E_1
Incidental_Link6 3 0 11 0 31 0 0 2 0 52 | 0 1 0 1 50
292  4.Discussion
293 Human Robot Collaboration has recently gained a lot of interest and received many

294 contributions on both theoretical and practical aspects, including sensor development [64], design of
295  robust and adaptive controllers [65,66], learning robots force-sensitive manipulation skills [67],
296  human interfaces [68,69] and so on. In addition, some companies attempted to introduce
297  collaborative robots so that HRC become more suited to enter in manufacturing applications and
298  production lines. However, Cobots available on the market have limited payload/speed capacities
299  because of safety concerns which limits HRC application to some light tasks with low productivity.
300 On the other hand, according to the norms for HRC operations [70], it is not essential to observe
301  a strict design or limit the power of operations if the human safety factor can be ensured in all its
302  aspects; In this regard, an intelligent safety system has been developed in this research to detect
303  hazardous situations, also assessing Human Intention Awareness (HIA) whether in physical contact
304 with the robot or not. As a result, our studies show that the different forms of collaboration such as
305  coexistence, cooperation, etc. with their different safety requirements can be reduced to a single
306  scenario. In this safety scenario, the robot reacts by being able to detect human intention and thus
307  ensuring safety in all work situations. Thus, a smart robot will take care of the safety of humans from
308  entering the shared workspace to physicalinteraction in order to jointly accomplish a task.

309 Another advantage of this system is that the robot would be smart enough to take care about
310  safety norms depending on the conditions and consequently, could operate at an optimum speed
311  during HRC applications. In other words, current safety requirements in most cases stop or
312  drastically slow down the robot when human enters a shared workspace. However, with the
313  proposed safety system, based on the robot's awareness, it is possible to implement a reasonable
314  trade-off between security and productivity, which will be discussed in more detail in our future
315  research.

316 5. Conclusion

317 The efficiency of safety and productivity of Cobots in HRC can be improved if they can easily
318  recognize complex human actions and differentiate between multitude types of contact. In this
319  paper, a safety system composed of visual and physical interaction detection systems is proposed to
320  improve the productivity in HRC applications by making the robot aware of human intentions with
321  the ability to distinguish between intentional and incidental contact. In a first step, the system is
322  purposed to detect human intention once he enters the workspace and just in case of hazardous
323  situations, the robot would adapt or stop accordingly which can lead to higher productivity. On the
324 other hand, if there is any contact between robot and human, the system would decide about the
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325 final situation (collision or intentional contact) based on the defined rules, and by considering both
326 HAR and contact detection system outputs.
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